51
|
Cape E, Hall RJ, van Munster BC, de Vries A, Howie SEM, Pearson A, Middleton SD, Gillies F, Armstrong IR, White TO, Cunningham C, de Rooij SE, MacLullich AMJ. Cerebrospinal fluid markers of neuroinflammation in delirium: a role for interleukin-1β in delirium after hip fracture. J Psychosom Res 2014; 77:219-25. [PMID: 25124807 PMCID: PMC4274366 DOI: 10.1016/j.jpsychores.2014.06.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Exaggerated central nervous system (CNS) inflammatory responses to peripheral stressors may be implicated in delirium. This study hypothesised that the IL-1β family is involved in delirium, predicting increased levels of interleukin-1β (IL-1β) and decreased IL-1 receptor antagonist (IL-1ra) in the cerebrospinal fluid (CSF) of elderly patients with acute hip fracture. We also hypothesised that Glial Fibrillary Acidic Protein (GFAP) and interferon-γ (IFN-γ) would be increased, and insulin-like growth factor 1 (IGF-1) would be decreased. METHODS Participants with acute hip fracture aged >60 (N=43) were assessed for delirium before and 3-4 days after surgery. CSF samples were taken at induction of spinal anaesthesia. Enzyme-linked immunosorbent assays (ELISA) were used for protein concentrations. RESULTS Prevalent delirium was diagnosed in eight patients and incident delirium in 17 patients. CSF IL-1β was higher in patients with incident delirium compared to never delirium (incident delirium 1.74 pg/ml (1.02-1.74) vs. prevalent 0.84 pg/ml (0.49-1.57) vs. never 0.66 pg/ml (0-1.02), Kruskal-Wallis p=0.03). CSF:serum IL-1β ratios were higher in delirious than non-delirious patients. CSF IL-1ra was higher in prevalent delirium compared to incident delirium (prevalent delirium 70.75 pg/ml (65.63-73.01) vs. incident 31.06 pg/ml (28.12-35.15) vs. never 33.98 pg/ml (28.71-43.28), Kruskal-Wallis p=0.04). GFAP was not increased in delirium. IFN-γ and IGF-1 were below the detection limit in CSF. CONCLUSION This study provides novel evidence of CNS inflammation involving the IL-1β family in delirium and suggests a rise in CSF IL-1β early in delirium pathogenesis. Future larger CSF studies should examine the role of CNS inflammation in delirium and its sequelae.
Collapse
Affiliation(s)
- Eleanor Cape
- Edinburgh Delirium Research Group, University of Edinburgh, Edinburgh, Scotland, UK
| | - Roanna J Hall
- Edinburgh Delirium Research Group, University of Edinburgh, Edinburgh, Scotland, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Geriatrics, Western General Hospital, Edinburgh, Scotland, UK.
| | - Barbara C van Munster
- Department of Medicine, Amsterdam Delirium Study Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Department of Geriatrics, Gelre Hospitals, Apeldoorn, The Netherlands
| | | | - Sarah E M Howie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland, UK
| | - Andrew Pearson
- Edinburgh Delirium Research Group, University of Edinburgh, Edinburgh, Scotland, UK
| | - Scott D Middleton
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | - Fiona Gillies
- Edinburgh Delirium Research Group, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ian R Armstrong
- Department of Anaesthetics, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | - Tim O White
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Sophia E de Rooij
- Department of Medicine, Amsterdam Delirium Study Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Alasdair M J MacLullich
- Edinburgh Delirium Research Group, University of Edinburgh, Edinburgh, Scotland, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
52
|
Friedrich O, Yi B, Edwards JN, Reischl B, Wirth-Hücking A, Buttgereit A, Lang R, Weber C, Polyak F, Liu I, von Wegner F, Cully TR, Lee A, Most P, Völkers M. IL-1α reversibly inhibits skeletal muscle ryanodine receptor. a novel mechanism for critical illness myopathy? Am J Respir Cell Mol Biol 2014; 50:1096-106. [PMID: 24400695 DOI: 10.1165/rcmb.2013-0059oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Critical illness myopathies in patients with sepsis or sustained mechanical ventilation prolong intensive care treatment and threaten both patients and health budgets; no specific therapy is available. Underlying pathophysiological mechanisms are still patchy. We characterized IL-1α action on muscle performance in "skinned" muscle fibers using force transducers and confocal Ca(2+) fluorescence microscopy for force/Ca(2+) transients and Ca(2+) sparks. Association of IL-1α with sarcoplasmic reticulum (SR) release channel, ryanodine receptor (RyR) 1, was investigated with coimmunoprecipitation and confocal immunofluorescence colocalization. Membrane integrity was studied in single, intact fibers challenged with IL-1α. IL-1α reversibly stabilized Mg(2+) inhibition of Ca(2+) release. Low Mg(2+)-induced force and Ca(2+) transients were reversibly abolished by IL-1α. At normal Mg(2+), IL-1α reversibly increased caffeine-induced force and Ca(2+) transients. IL-1α reduced SR Ca(2+) leak via RyR1, as judged by (1) increased SR Ca(2+) retention, (2) increased IL-1α force transients being reproduced by 25 μM tetracaine, and (3) reduced Ca(2+) spark frequencies by IL-1α or tetracaine. Coimmunoprecipitation confirmed RyR1/IL-1 association. RyR1/IL-1 immunofluorescence patterns perfectly colocalized. Long-term, 8-hour IL-1α challenge of intact muscle fibers compromised membrane integrity in approximately 50% of fibers, and confirmed intracellular IL-1α deposition. IL-1α exerts a novel, specific, and reversible interaction mechanism with the skeletal muscle RyR1 macromolecular release complex without the need to act via its membrane IL-1 receptor, as IL-1R membrane expression levels were not detectable in Western blots or immunostaining of single fibers. We present a potential explanation of how the inflammatory mediator, IL-1α, may contribute to muscle weakness in critical illness.
Collapse
Affiliation(s)
- Oliver Friedrich
- 1 Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Mokarizadeh A, Abdollahi M, Rezvanfar MA, Rahmani MR. The possible role of peripherally generated cross-reactive IgG in breakdown of the blood–brain barrier and initiation of multiple sclerosis. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2013.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
54
|
Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, Wagner AK. IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 2014; 55:1109-19. [PMID: 24754437 DOI: 10.1111/epi.12628] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) is a significant complication following traumatic brain injury (TBI), yet the role of genetic variation in modulating PTE onset is unclear. We hypothesized that TBI-induced inflammation likely contributes to seizure development. We assessed whether genetic variation in the interleukin-1beta (IL-1β) gene, IL-1β levels in cerebrospinal fluid (CSF) and serum, and CSF/serum IL-1β ratios would predict PTE development post-TBI. METHODS We investigated PTE development in 256 Caucasian adults with moderate-to-severe TBI. IL-1β tagging and functional single nucleotide polymorphisms (SNPs) were genotyped. Genetic variance and PTE development were assessed. Serum and CSF IL-1β levels were collected from a subset of subjects (n = 59) during the first week postinjury and evaluated for their associations with IL-1β gene variants, and also PTE. Temporally matched CSF/serum IL-1β ratios were also generated to reflect the relative contribution of serum IL-1β to CSF IL-1β. RESULTS Multivariate analysis showed that higher CSF/serum IL-1β ratios were associated with increased risk for PTE over time (p = 0.008). Multivariate analysis for rs1143634 revealed an association between the CT genotype and increased PTE risk over time (p = 0.005). The CT genotype group also had lower serum IL-1β levels (p = 0.014) and higher IL-1β CSF/serum ratios (p = 0.093). SIGNIFICANCE This is the first report implicating IL-1β gene variability in PTE risk and linking (1) IL-1β gene variation with serum IL-1β levels observed after TBI and (2) IL-1β ratios with PTE risk. Given these findings, we propose that genetic and IL-1β ratio associations with PTE may be attributable to biologic variability with blood-brain barrier integrity during TBI recovery. These results provide a rationale for further studies (1) validating the impact of genetic variability on IL-1β production after TBI, (2) assessing genetically mediated signaling mechanisms that contribute to IL-1β CSF/serum associations with PTE, and (3) evaluating targeted IL-1β therapies that reduce PTE.
Collapse
Affiliation(s)
- Matthew L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | | | | | | | | | | | | |
Collapse
|
55
|
Klementiev B, Li S, Korshunova I, Dmytriyeva O, Pankratova S, Walmod PS, Kjær LK, Dahllöf MS, Lundh M, Christensen DP, Mandrup-Poulsen T, Bock E, Berezin V. Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist. J Neuroinflammation 2014; 11:27. [PMID: 24490798 PMCID: PMC3923439 DOI: 10.1186/1742-2094-11-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide. Methods We investigated the binding of Ilantide to IL-1 receptor type I (IL-1RI) using surface plasmon resonance, the inhibition of Il-1β-induced activation of nuclear factor κB (NF-κB) in HEK-Blue cells that contained an IL-1β-sensitive reporter, the secretion of TNF-α in macrophages, protection against IL-1-induced apoptosis in neonatal pancreatic islets, and the penetration of Ilantide through the blood–brain barrier using competitive enzyme-linked immunosorbent assay (ELISA). We studied the effects of the peptide on social behavior and memory in rat models of lipopolysaccharide (LPS)- and amyloid-induced neuroinflammation, respectively, and its effect in a rat model of experimental autoimmune enchephalomyelitis. Results Ilantide bound IL-1RI, inhibited the IL-1β-induced activation of NF-κB, and inhibited the secretion of TNF-α in vitro. Ilantide protected pancreatic islets from apoptosis in vitro and reduced inflammation in an animal model of arthritis. The peptide penetrated the blood–brain barrier. It reduced the deficits in social activity and memory in LPS- and amyloid-treated animals and delayed the development of experimental autoimmune enchephalomyelitis. Conclusions These findings indicate that Ilantide is a novel and potent IL-1RI antagonist that is able to reduce inflammatory damage in the central nervous system and pancreatic islets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Vladimir Berezin
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
56
|
|
57
|
Peng L, Xu L, Ouyang W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One 2013; 8:e79624. [PMID: 24236147 PMCID: PMC3827367 DOI: 10.1371/journal.pone.0079624] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/03/2013] [Indexed: 12/23/2022] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is common following cardiac and non-cardiac surgery, but the pathogenic mechanisms remain unknown. Many studies suggest that an inflammatory response is a key contributor to POCD. The current meta-analysis shows that the levels of peripheral inflammatory markers are associated with POCD. Methods An online search was performed to identify peer-reviewed studies without language restriction that measured peripheral inflammatory markers of patients with and without POCD, using PubMed, ScienceDirect, SinoMed and the National Knowledge Infrastructure database. Extracted data were analyzed with STATA (version 12).The standardized mean difference (SMD) and the 95% confidence interval (95%CI) were calculated for each outcome using a random effect model. Tests of heterogeneity assessment of bias, and meta-regression were performed in the meta-analysis. Results A total of 13 studies that measured the concentrations of peripheral inflammatory markers were included. The current meta-analysis found significantly higher concentrations of S-100β(SMD[95%CI]) (1.377 [0.423, 2.331], p-value < 0.001, N [POCD/non-POCD] =178/391, 7 studies), and interleukin(IL)-6 (SMD[95%CI]) (1.614 [0.603,2.624], p-value < 0.001, N[POCD/non-POCD] = 91/99, 5 studies), but not of neuron specific enolase, interleukin-1β, or tumor necrosis factor-α , in POCD compared with patients without POCD. In meta-regression analyses, a significant positive association was found between the SMD and the preoperative interleukin-6 peripheral blood concentration in patients with POCD (Coef.= 0.0587, p-value=0.038, 5 studies). Conclusions This study shows that POCD is indeed correlated with the concentrations of peripheral inflammatory markers, particularly interleukin-6 and S-100β.
Collapse
Affiliation(s)
- Linying Peng
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liwei Xu
- Department of Gastrointestinal Surgery, The First Xiangya Hospital of Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
- * E-mail:
| |
Collapse
|
58
|
Watson PMD, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci 2013; 14:59. [PMID: 23773766 PMCID: PMC3694476 DOI: 10.1186/1471-2202-14-59] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.
Collapse
|
59
|
Tong Y, Han J, Guan X, Lu Z, Miao X, Ye J, Hou SY, Zhang Y, Geng Y, Li Y, Zhan F, Liu J, Cheng JQ. Association of IL-1 receptor antagonist gene VNTR polymorphism with ischemic stroke in the Chinese Uyghur population. Biochem Genet 2013; 51:698-706. [PMID: 23743874 DOI: 10.1007/s10528-013-9599-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yeqing Tong
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
A multi-system approach assessing the interaction of anticonvulsants with P-gp. PLoS One 2013; 8:e64854. [PMID: 23741405 PMCID: PMC3669347 DOI: 10.1371/journal.pone.0064854] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/19/2013] [Indexed: 12/27/2022] Open
Abstract
30% of epilepsy patients receiving antiepileptic drugs (AEDs) are not fully controlled by therapy. The drug transporter hypothesis for refractory epilepsy proposes that P-gp is over expressed at the epileptic focus with a role of P-gp in extruding AEDs from the brain. However, there is controversy regarding whether all AEDs are substrates for this transporter. Our aim was to investigate transport of phenytoin, lamotrigine and carbamazepine by using seven in-vitro transport models. Uptake assays in CEM/VBL cell lines, oocytes expressing human P-gp and an immortalised human brain endothelial cell line (hCMEC/D3) were carried out. Concentration equilibrium transport assays were performed in Caco-2, MDCKII ±P-gp and LLC-PK1±P-gp in the absence or presence of tariquidar, an inhibitor of P-gp. Finally, primary porcine brain endothelial cells were used to determine the apparent permeability (Papp) of the three AEDs in the absence or presence of P-gp inhibitors. We detected weak transport of phenytoin in two of the transport systems (MDCK and LLC-PK1 cells transfected with human P-gp) but not in the remaining five. No P-gp interaction was observed for lamotrigine or carbamazepine in any of the seven validated in-vitro transport models. Neither lamotrigine nor carbamazepine was a substrate for P-gp in any of the model systems tested. Our data suggest that P-gp is unlikely to contribute to the pathogenesis of refractory epilepsy through transport of carbamazepine or lamotrigine.
Collapse
|
61
|
Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013; 36:437-49. [PMID: 23609350 DOI: 10.1007/s10545-013-9608-0] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
The neurons of the central nervous system (CNS) require precise control of their bathing microenvironment for optimal function, and an important element in this control is the blood-brain barrier (BBB). The BBB is formed by the endothelial cells lining the brain microvessels, under the inductive influence of neighbouring cell types within the 'neurovascular unit' (NVU) including astrocytes and pericytes. The endothelium forms the major interface between the blood and the CNS, and by a combination of low passive permeability and presence of specific transport systems, enzymes and receptors regulates molecular and cellular traffic across the barrier layer. A number of methods and models are available for examining BBB permeation in vivo and in vitro, and can give valuable information on the mechanisms by which therapeutic agents and constructs permeate, ways to optimize permeation, and implications for drug discovery, delivery and toxicity. For treating lysosomal storage diseases (LSDs), models can be included that mimic aspects of the disease, including genetically-modified animals, and in vitro models can be used to examine the effects of cells of the NVU on the BBB under pathological conditions. For testing CNS drug delivery, several in vitro models now provide reliable prediction of penetration of drugs including large molecules and artificial constructs with promising potential in treating LSDs. For many of these diseases it is still not clear how best to deliver appropriate drugs to the CNS, and a concerted approach using a variety of models and methods can give critical insights and indicate practical solutions.
Collapse
Affiliation(s)
- N Joan Abbott
- BBB Group, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
62
|
A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 2013; 1521:16-30. [PMID: 23603406 PMCID: PMC3694295 DOI: 10.1016/j.brainres.2013.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels and forms the critical interface regulating molecular flux between blood and brain. It contributes to homoeostasis of the microenvironment of the central nervous system and protection from pathogens and toxins. Key features of the BBB phenotype are presence of complex intercellular tight junctions giving a high transendothelial electrical resistance (TEER), and strongly polarised (apical:basal) localisation of transporters and receptors. In vitro BBB models have been developed from primary culture of brain endothelial cells of several mammalian species, but most require exposure to astrocytic factors to maintain the BBB phenotype. Other limitations include complicated procedures for isolation, poor yield and batch-to-batch variability. Some immortalised brain endothelial cell models have proved useful for transport studies but most lack certain BBB features and have low TEER. We have developed an in vitro BBB model using primary cultured porcine brain endothelial cells (PBECs) which is relatively simple to prepare, robust, and reliably gives high TEER (mean~800 Ω cm(2)); it also shows good functional expression of key tight junction proteins, transporters, receptors and enzymes. The model can be used either in monoculture, for studies of molecular flux including permeability screening, or in co-culture with astrocytes when certain specialised features (e.g. receptor-mediated transcytosis) need to be maximally expressed. It is also suitable for a range of studies of cell:cell interaction in normal physiology and in pathology. The method for isolating and growing the PBECs is given in detail to facilitate adoption of the model. This article is part of a Special Issue entitled Companion Paper.
Collapse
|
63
|
Teow HM, Zhou Z, Najlah M, Yusof SR, Abbott NJ, D’Emanuele A. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Int J Pharm 2013; 441:701-11. [DOI: 10.1016/j.ijpharm.2012.10.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 12/13/2022]
|
64
|
Interleukin-1β accelerates the onset of stroke in stroke-prone spontaneously hypertensive rats. Mediators Inflamm 2012; 2012:701976. [PMID: 23326018 PMCID: PMC3541647 DOI: 10.1155/2012/701976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 01/30/2023] Open
Abstract
High blood levels of inflammatory biomarkers and immune cells in stroke lesions have been recognized as results of stroke. However, recent studies have suggested that inflammation occurs prior to stroke onset. In this study, we aimed to clarify the role of inflammation in stroke onset among stroke-prone spontaneously hypertensive rats (SHRSP). At 4 weeks of age (before stroke onset), the plasma level of IL-1β was significantly higher in SHRSP (153.0 ± 49.7 pg/ml) than in Wistar Kyoto rats (WKY) (7.7 ± 3.4 pg/ml, P < 0.001 versus SHRSP) or spontaneously hypertensive rats (SHR) (28.0 ± 9.1 pg/ml, P < 0.001 versus SHRSP) (n = 6 per strain). Stimulated IL-1β signal was also observed in cerebrovascular endothelial cells of SHRSP. Gene expressions of IL-1β, IL-1 receptors, caspase-1, and downstream genes (MCP-1 and ICAM-1), which associated with immune cell recruitment, were significantly greater in SHRSP than in WKY or SHR, coincident with greater NFκB protein levels in SHRSP compared to WKY or SHR. In addition, continuous administration of IL-1β (2 μg/day) using an osmotic pump slightly increased the incidence of stroke in SHR (P = 0.046) and significantly accelerated the onset of stroke in SHRSP (P = 0.006) compared to each control (n = 10 per group). These results suggest that a stimulated IL-1β signal might be a cause of stroke onset when concomitant with severe hypertension.
Collapse
|
65
|
Cantrill CA, Skinner RA, Rothwell NJ, Penny JI. An immortalised astrocyte cell line maintains the in vivo phenotype of a primary porcine in vitro blood-brain barrier model. Brain Res 2012; 1479:17-30. [PMID: 22940232 DOI: 10.1016/j.brainres.2012.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 08/01/2012] [Accepted: 08/16/2012] [Indexed: 12/11/2022]
Abstract
Whilst it is well documented that all components of the neurovascular unit contribute to the restrictive nature of the blood-brain barrier (BBB), astrocytes have been identified as the cellular component most likely to play an essential role in maintaining the barrier properties. The aim of this study was to examine the impact of the rat astrocyte cell line, CTX-TNA2, on the structural and functional characteristics of an in vitro BBB and determine the capacity of this astrocyte cell line to maintain the BBB phenotype. Co-culture of the CTX-TNA2 cells with primary porcine brain endothelial cells produced an in vitro BBB model which retains key features of the in vivo BBB. High transendothelial electrical resistances, comparable to those reported in vivo, were obtained. Ultrastructural analysis revealed distinct intercellular tight junction protein complexes and immunocytochemistry confirmed expression of the tight junction proteins ZO-1 and occludin. Western blotting and fluorescent tracer assays confirmed expression and functional activity of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) efflux transporters. Studies employing Alexa-fluor 555-conjugated human transferrin revealed temperature-sensitive internalisation indicating the BBB model retains functional receptor-mediated transferrin uptake. The findings of this study indicate that a robust BBB model has been produced and this is the first report of the inductive capacity of the CTX-TNA2 cell line. Since this in vitro BBB model possesses many key characteristics of the BBB in vivo it has the potential to be a valuable tool for the study of biochemical and physiological processes associated with the BBB.
Collapse
Affiliation(s)
- Carina A Cantrill
- School of Pharmacy and Pharmaceutical Sciences, Stopford Building, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
66
|
Lam CH, Hansen EA, Janson C, Bryan A, Hubel A. The characterization of arachnoid cell transport II: paracellular transport and blood-cerebrospinal fluid barrier formation. Neuroscience 2012; 222:228-38. [PMID: 22814001 DOI: 10.1016/j.neuroscience.2012.06.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/01/2023]
Abstract
We used an immortalized arachnoid cell line to test the arachnoid barrier properties and paracellular transport. The permeabilities of urea, mannitol, and inulin through monolayers were 2.9 ± 1.1 × 10(-6), 0.8 ± .18 × 10(-6), 1.0 ± .29 × 10(-6)cm/s. Size differential permeability testing with dextran clarified the arachnoidal blood-cerebrospinal fluid (CSF) barrier limit and established a rate of transcellular transport to be about two orders of magnitude slower than paracellular transport in a polyester membrane diffusion chamber. The theoretical pore size for paracellular space is 11Å and the occupancy to length ratio is 0.8 and 0.72 cm(-1) for urea and mannitol respectively. The permeability of the monolayer was not significantly different from apical to basal and vice versa. Gap junctions may have a role in contributing to barrier formation. Although the upregulation of claudin by dexamethasone did not significantly alter paracellular transport, increasing intracellular cAMP decreased mannitol permeability. Calcium modulated paracellular transport, but only selectively with the ion chelator, EDTA, and with disruption of intracellular stores. The blood-CSF barrier at the arachnoid is anatomically and physiologically different from the vascular-based blood-brain barrier, but is similarly subject to modulation. We describe the basic paracellular transport characteristics of this CSF "sink" of the brain which will allow for a better description of mass and constitutive balance within the intracranial compartment.
Collapse
Affiliation(s)
- C H Lam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | | | | | | | | |
Collapse
|
67
|
Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 2012; 1521:1-15. [PMID: 22789905 PMCID: PMC3694297 DOI: 10.1016/j.brainres.2012.06.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/14/2012] [Accepted: 06/28/2012] [Indexed: 12/11/2022]
Abstract
Good in vitro blood-brain barrier (BBB) models that mimic the in vivo BBB phenotype are essential for studies on BBB functionality and for initial screening in drug discovery programmes, as many potential therapeutic drug candidates have poor BBB permeation. Difficulties associated with the availability of human brain tissue, coupled with the time and cost associated with using animals for this kind of research have led to the development of non-human cell culture models. However, most BBB models display a low transendothelial electrical resistance (TEER), which is a measure of the tightness of the BBB. To address these issues we have established and optimised a robust, simple to use in vitro BBB model using porcine brain endothelial cells (PBECs). The PBEC model gives high TEER without the need for co-culture with astrocytes (up to 1300 O cm(2) with a mean TEER of ~800 O cm(2)) with well organised tight junctions as shown by immunostaining for occludin and claudin-5. Functional assays confirmed the presence of high levels of alkaline phosphatase (ALP), and presence of the efflux transporter, P-glycoprotein (P-gp, ABCB1). Presence of the breast cancer resistance protein (BCRP, ABCG2) was confirmed by TaqMan real-time RT-PCR assay. Real-time RT-PCR assays for BCRP, occludin and claudin-5 demonstrated no significant differences between batches of PBECs, and also between primary and passage 1 PBECs. A permeability screen of 10 compounds demonstrated the usefulness of the model as a tool for drug permeability studies. Qualitative and quantitative results from this study confirm that this in vitro porcine BBB model is reliable and robust; it is also simpler to generate than most other BBB models. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Adjanie Patabendige
- King's College London, Institute of Pharmaceutical Science, BBB Group, Franklin Wilkins Building, 150 Stamford St, London SE1 9NH, UK
| | | | | |
Collapse
|
68
|
Pang T, Wang J, Benicky J, Sánchez-Lemus E, Saavedra JM. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J Neuroinflammation 2012; 9:102. [PMID: 22642771 PMCID: PMC3410820 DOI: 10.1186/1742-2094-9-102] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
Background Blockade of angiotensin II type 1 (AT1) receptors ameliorates brain inflammation, and reduces excessive brain interleukin-1 beta (IL-1β) production and release from cortical microglia. The aim of this study was to determine whether, in addition, AT1 receptor blockade directly attenuates IL-1β-induced inflammatory responses in neuronal cultures. Methods SK-N-SH human neuroblasts and primary rat cortical neurons were pretreated with telmisartan followed by exposure to IL-1β. Gene expression was determined by reverse transcriptase (RT)-PCR, protein expression and kinase activation by western blotting, NADPH oxidase activity by the lucigenin method, prostaglandin E2 (PGE2) release by enzyme immunoassay, reactive oxygen species (ROS) generation by the dichlorodihydrofluorescein diacetate fluorescent probe assay, and peroxisome proliferator-activated receptor gamma (PPARγ) involvement was assessed with the antagonists GW9662 and T0070907, the agonist pioglitazone and the expression of PPARγ target genes ABCG1 and CD36. Results We found that SK-N-SH neuroblasts expressed AT1 but not AT2 receptor mRNA. Telmisartan reduced IL-1β-induced cyclooxygenase-2 (COX-2) expression and PGE2 release more potently than did candesartan and losartan. Telmisartan reduced the IL-1β-induced increase in IL-1R1 receptor and NADPH oxidase-4 (NOX-4) mRNA expression, NADPH oxidase activity, and ROS generation, and reduced hydrogen peroxide-induced COX-2 gene expression. Telmisartan did not modify IL-1β-induced ERK1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation or nuclear factor-κB activation but significantly decreased IL-1β-induced c-Jun N-terminal kinase (JNK) and c-Jun activation. The JNK inhibitor SP600125 decreased IL-1β-induced PGE2 release with a potency similar to that of telmisartan. The PPARγ agonist pioglitazone reduced IL-1β-induced inflammatory reaction, whereas telmisartan did not activate PPARγ, as shown by its failure to enhance the expression of the PPARγ target genes ABCG1 and CD36, and the inability of the PPARγ antagonists GW9662 and T0070907 to modify the effect of telmisartan on COX-2 induction. The effect of telmisartan on IL-1β-stimulated COX-2 and IL-1R1 mRNA expression and ROS production was replicated in primary rat cortical neurons. Conclusions Telmisartan directly ameliorates IL-1β-induced neuronal inflammatory response by inhibition of oxidative stress and the JNK/c-Jun pathway. Our results support the hypothesis that AT1 receptor blockers are directly neuroprotective, and should be considered for the treatment of inflammatory conditions of the brain.
Collapse
Affiliation(s)
- Tao Pang
- Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Section on Pharmacology, NIMH, NIH, DHHS, 10 Center Drive, Bldg, 10, Room # 2D-57, Bethesda, MD, 20892, USA.
| | | | | | | | | |
Collapse
|
69
|
Márquez L, García-Bueno B, Madrigal JLM, Leza JC. Mangiferin decreases inflammation and oxidative damage in rat brain after stress. Eur J Nutr 2011; 51:729-39. [PMID: 21986672 DOI: 10.1007/s00394-011-0252-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/26/2011] [Indexed: 01/03/2023]
Abstract
PURPOSE Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. METHODS Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. RESULTS Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. CONCLUSIONS These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.
Collapse
Affiliation(s)
- Lucía Márquez
- Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | |
Collapse
|
70
|
Cawthorne C, Prenant C, Smigova A, Julyan P, Maroy R, Herholz K, Rothwell N, Boutin H. Biodistribution, pharmacokinetics and metabolism of interleukin-1 receptor antagonist (IL-1RA) using [¹⁸F]-IL1RA and PET imaging in rats. Br J Pharmacol 2011; 162:659-72. [PMID: 20942812 DOI: 10.1111/j.1476-5381.2010.01068.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Positron emission tomography (PET) has the potential to improve our understanding of the preclinical pharmacokinetics and metabolism of therapeutic agents, and is easily translated to clinical studies in humans. However, studies involving proteins radiolabelled with clinically relevant PET isotopes are currently limited. Here we illustrate the potential of PET imaging in a preclinical study of the biodistribution and metabolism of ¹⁸F-labelled IL-1 receptor antagonist ([¹⁸F]IL-1RA) using a novel [¹⁸F]-radiolabelling technique. EXPERIMENTAL APPROACH IL-1RA was radiolabelled by reductive amination on lysine moieties with [¹⁸F]fluoroacetaldehyde. Sprague-Dawley rats were injected intravenously with [¹⁸F]IL-1RA and imaged with a PET camera for 2 h. For the study of IL-1RA metabolites by ex vivoγ-counting of samples, rats were killed 20 min, 1 h or 2 h after injection of [¹⁸F]IL-1RA. KEY RESULTS [¹⁸F]IL-1RA distribution into the major organs of interest was as follows: kidneys >> liver > lungs >> brain. In lungs and liver, [¹⁸F]IL-1RA uptake peaked within 1 min post-injection then decreased rapidly to reach a plateau from 10 min post-injection. In the brain, the uptake exhibited slower pharmacokinetics with a smaller post-injection peak and a plateau from 6 min onward. IL-1RA was rapidly metabolized and these metabolites represented ∼40% of total activity in plasma and ∼80% in urine, 20 min after injection. CONCLUSIONS AND IMPLICATIONS Preclinical PET imaging is a feasible method of assessing the biodistribution of new biological compounds of therapeutic interest rapidly. The biodistribution of [¹⁸F]IL-1RA reported here is in agreement with an earlier study suggesting low uptake in the normal brain, with rapid metabolism and excretion via the kidneys.
Collapse
Affiliation(s)
- C Cawthorne
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Avdeef A. How well can in vitro brain microcapillary endothelial cell models predict rodent in vivo blood-brain barrier permeability? Eur J Pharm Sci 2011; 43:109-24. [PMID: 21514381 DOI: 10.1016/j.ejps.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 02/06/2011] [Accepted: 04/03/2011] [Indexed: 01/16/2023]
Abstract
The object of the study was to improve the blood-brain barrier (BBB) permeability in vitro-invivo correlations (IVIVC) between in vitro brain microcapillary endothelial cell (BMEC) models and the well-tested rodent in situ brain perfusion technique. Porcine, bovine, rat, mouse, and human in vitro BMEC apparent permeability values, P(e), (14 studies from several laboratories: 229 P(e), 60 compounds) were analyzed by a novel biophysical model encoded in a weighted nonlinear regression procedure to determine the aqueous boundary layer (ABL) thickness and the paracellular parameters: porosity-pathlength (dual-pore model), pore radius, and water channel electrostatic potential. The refined parameters were then used to transform the P(e) values into the transendothelial permeability (P(c)) values. Porcine BMEC mono-culture models showed tight junctions comparable to those reported in several Caco-2 studies. Bovine cultures were somewhat leakier. In the human primary cultured cell and the hCMEC/D3 cell line data, IVIVC based on P(e) values has r(2) = 0.14. With transformed permeability values, r(2) = 0.58. Comparable improvements were found in the other species data. By using the in vitro transendothelial P(c) values in place of the apparent P(e) values, IVIVC can be dramatically improved.
Collapse
|
72
|
Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry 2010; 68:930-41. [PMID: 20692646 DOI: 10.1016/j.biopsych.2010.06.012] [Citation(s) in RCA: 702] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Studies suggest that inflammation is involved in the neurodegenerative cascade leading to Alzheimer's disease (AD) pathology and symptoms. This study sought to quantitatively summarize the clinical cytokine data. METHODS Original English language peer-reviewed studies measuring cytokine concentrations in AD and healthy control subjects were included. Mean (± standard deviation) cytokine concentrations for AD and control subjects were extracted. RESULTS Forty studies measuring peripheral blood cytokine concentrations and 14 measuring cerebrospinal fluid (CSF) cytokine concentrations were included. In peripheral blood, there were significantly higher concentrations (weighted mean difference [95% confidence interval]) of interleukin (IL)-6 (2.86 [1.68, 4.04] pg/mL, p < .00001, N[AD/control subjects] = 985/680, 14 studies), tumor necrosis factor (TNF)-α (3.25 [.76, 5.74] pg/mL, p = .01, N = 680/447, 14 studies), IL-1β (.55 [.32, .78] pg/mL, p < .00001, N = 574/370, 10 studies), transforming growth factor (TGF)-β (67.23 [28.62, 105.83] pg/mL, p = .0006, N = 190/158, 5 studies), IL-12 (7.60 [5.58, 9.62] pg/mL, p < .00001, N = 148/106, 5 studies), and IL-18 (15.82 [1.98, 29.66] pg/mL, p = .03, N = 131/94, 4 studies) but not of IL-4, IL-8, IL-10, interferon-γ, or C-reactive protein in AD subjects compared with control subjects. There were significantly higher concentrations of TGF-β (7.81 [2.27, 13.35] pg/mL, p =.006, N = 113/114, 5 studies) but not IL-6, TNF-α, and IL-1β in the CSF of AD subjects compared with control subjects. CONCLUSIONS These results strengthen the clinical evidence that AD is accompanied by an inflammatory response, particularly higher peripheral concentrations of IL-6, TNF-α, IL-1β, TGF-β, IL-12 and IL-18 and higher CSF concentrations of TGF-β.
Collapse
Affiliation(s)
- Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
73
|
Terrando N, Rei Fidalgo A, Vizcaychipi M, Cibelli M, Ma D, Monaco C, Feldmann M, Maze M. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care 2010; 14:R88. [PMID: 20470406 PMCID: PMC2911722 DOI: 10.1186/cc9019] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/16/2010] [Accepted: 05/14/2010] [Indexed: 11/13/2022] Open
Abstract
Introduction The impact of pro-inflammatory cytokines on neuroinflammation and cognitive function after lipopolysaccharide (LPS) challenge remains elusive. Herein we provide evidence that there is a temporal correlation between high-mobility group box 1 (HMGB-1), microglial activation, and cognitive dysfunction. Disabling the interleukin (IL)-1 signaling pathway is sufficient to reduce inflammation and ameliorate the disability. Methods Endotoxemia was induced in wild-type and IL-1R-/- mice by intra peritoneal injection of E. Coli LPS (1 mg/kg). Markers of inflammation were assessed both peripherally and centrally, and correlated to behavioral outcome using trace fear conditioning. Results Increase in plasma tumor necrosis factor-α (TNFα) peaked at 30 minutes after LPS challenge. Up-regulation of IL-1β, IL-6 and HMGB-1 was more persistent, with detectable levels up to day three. A 15-fold increase in IL-6 and a 6.5-fold increase in IL-1β mRNA at 6 hours post intervention (P < 0.001 respectively) was found in the hippocampus. Reactive microgliosis was observed both at days one and three, and was associated with elevated HMGB-1 and impaired memory retention (P < 0.005). Preemptive administration of IL-1 receptor antagonist (IL-1Ra) significantly reduced plasma cytokines and hippocampal microgliosis and ameliorated cognitive dysfunction without affecting HMGB-1 levels. Similar results were observed in LPS-challenged mice lacking the IL-1 receptor to those seen in LPS-challenged wild type mice treated with IL-1Ra. Conclusions These data suggest that by blocking IL-1 signaling, the inflammatory cascade to LPS is attenuated, thereby reducing microglial activation and preventing the behavioral abnormality.
Collapse
Affiliation(s)
- Niccolò Terrando
- Department of Anesthetics, Pain Medicine and Intensive Care, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Greenhalgh AD, Galea J, Dénes A, Tyrrell PJ, Rothwell NJ. Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. Br J Pharmacol 2010; 160:153-9. [PMID: 20412072 PMCID: PMC2860215 DOI: 10.1111/j.1476-5381.2010.00684.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/23/2009] [Accepted: 01/13/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Limited data on the brain penetration of potential stroke treatments have been cited as a major weakness contributing to numerous failed clinical trials. Thus, we tested whether interleukin-1 receptor antagonist (IL-1RA), established as a potent inhibitor of brain injury in animals and currently in clinical development, reaches the brain via a clinically relevant administration route, in experimental stroke. EXPERIMENTAL APPROACH Male, Sprague-Dawley rats [either naïve or exposed to middle cerebral artery occlusion (MCAo)] were given a single s.c. dose of IL-1RA (100 mg*kg(-1)). The pharmacokinetic profile of IL-1RA was assessed in plasma and CSF up to 24 h post-administration. Brain tissue distribution of administered IL-1RA was assessed using immunohistochemistry. In a separate experiment, the neuroprotective effect of the single s.c. dose of IL-1RA in MCAo was assessed versus a placebo control group. KEY RESULTS A single s.c. dose of IL-1RA reduced damage caused by MCAo by 33%. This dose resulted in sustained, high concentrations in plasma and CSF, penetrated brain tissue exclusively in areas of blood-brain barrier breakdown and co-localized with morphologically viable neurones. CSF concentrations did not reflect massive parenchymal infiltration of IL-1RA in MCAo animals compared to naïve. CONCLUSIONS AND IMPLICATIONS These data are the first to show that a potential treatment for stroke, IL-1RA, rapidly reaches salvageable brain tissue via an administration route that is clinically relevant. This allows confidence that IL-1RA, as a candidate for further clinical development, is able to confer its protective actions both peripherally and centrally.
Collapse
Affiliation(s)
- A D Greenhalgh
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
75
|
Girard S, Tremblay L, Lepage M, Sébire G. IL-1 Receptor Antagonist Protects against Placental and Neurodevelopmental Defects Induced by Maternal Inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 184:3997-4005. [DOI: 10.4049/jimmunol.0903349] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
76
|
Abstract
In this issue, BJP is proud to publish an Endothelium Themed Section to celebrate the life of Robert F. Furchgott, who died on May 19th 2009. It is 30 years since he discovered endothelium-derived relaxant factor and a decade since he was awarded the Nobel Prize for this work. His discovery has led to an array of new therapeutic targets. The themed section includes three reviews on the pathophysiology of the endothelium and the drug targets that this presents, four research papers and three commentaries on research. This themed section also forms the nucleus of an online Virtual Issue that collects in one place further reviews and research papers on the topic of the 'Endothelium' that BJP and our sister journal BJCP have published in the past year, and that should help researchers and students to find the latest work in this field.
Collapse
|