51
|
Cazzador D, Astolfi L, Daloiso A, Tealdo G, Simoni E, Mazzoni A, Zanoletti E, Marioni G. Tumor Microenvironment in Sporadic Vestibular Schwannoma: A Systematic, Narrative Review. Int J Mol Sci 2023; 24:ijms24076522. [PMID: 37047498 PMCID: PMC10094882 DOI: 10.3390/ijms24076522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Although diagnosis and treatment of vestibular schwannomas (VSs) improved in recent years, no factors have yet been identified as being capable of predicting tumor growth. Molecular rearrangements occur in neoplasms before any macroscopic morphological changes become visible, and the former are the underlying cause of disease behavior. Tumor microenvironment (TME) encompasses cellular and non-cellular elements interacting together, resulting in a complex and dynamic key of tumorigenesis, drug response, and treatment outcome. The aim of this systematic, narrative review was to assess the level of knowledge on TME implicated in the biology, behavior, and prognosis of sporadic VSs. A search (updated to November 2022) was run in Scopus, PubMed, and Web of Science electronic databases according to the PRISMA guidelines, retrieving 624 titles. After full-text evaluation and application of inclusion/exclusion criteria, 37 articles were included. VS microenvironment is determined by the interplay of a dynamic ecosystem of stromal and immune cells which produce and remodel extracellular matrix, vascular networks, and promote tumor growth. However, evidence is still conflicting. Further studies will enhance our understanding of VS biology by investigating TME-related biomarkers able to predict tumor growth and recognize immunological and molecular factors that could be potential therapeutic targets for medical treatment.
Collapse
Affiliation(s)
- Diego Cazzador
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
- Correspondence: (D.C.); (G.M.)
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Giulia Tealdo
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Edi Simoni
- Bioacoustics Research Laboratory, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Antonio Mazzoni
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
- Correspondence: (D.C.); (G.M.)
| |
Collapse
|
52
|
The Active Role of Pericytes During Neuroinflammation in the Adult Brain. Cell Mol Neurobiol 2023; 43:525-541. [PMID: 35195811 DOI: 10.1007/s10571-022-01208-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Microvessels in the central nervous system (CNS) have one of the highest populations of pericytes, indicating their crucial role in maintaining homeostasis. Pericytes are heterogeneous cells located around brain microvessels; they present three different morphologies along the CNS vascular tree: ensheathing, mesh, and thin-strand pericytes. At the arteriole-capillary transition ensheathing pericytes are found, while mesh and thin-strand pericytes are located at capillary beds. Brain pericytes are essential for the establishment and maintenance of the blood-brain barrier, which restricts the passage of soluble and potentially toxic molecules from the circulatory system to the brain parenchyma. Pericytes play a key role in regulating local inflammation at the CNS. Pericytes can respond differentially, depending on the degree of inflammation, by secreting a set of neurotrophic factors to promote cell survival and regeneration, or by potentiating inflammation through the release of inflammatory mediators (e.g., cytokines and chemokines), and the overexpression of cell adhesion molecules. Under inflammatory conditions, pericytes may regulate immune cell trafficking to the CNS and play a role in perpetuating local inflammation. In this review, we describe pericyte responses during acute and chronic neuroinflammation.
Collapse
|
53
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|
54
|
Chillà A, Anceschi C, Frediani E, Scavone F, Del Rosso T, Pelagio G, Tufaro A, De Palma G, Del Rosso M, Fibbi G, Chiarugi P, Laurenzana A, Margheri F. Inhibition of MMPs supports amoeboid angiogenesis hampering VEGF-targeted therapies via MLC and ERK 1/2 signaling. J Transl Med 2023; 21:102. [PMID: 36759828 PMCID: PMC9912547 DOI: 10.1186/s12967-023-03954-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the past decades studies on anti-tumoral drugs inhibiting matrix metalloproteinase (MMPs) were disappointing. Recently, we demonstrated that mature endothelial cells (ECs) and endothelial colony forming cells (ECFCs) can switch between invasion modes to cope with challenging environments, performing the "amoeboid angiogenesis" in the absence of proteases activity. METHODS We first set out to investigate by ELISA if the inhibitors of the main protease family involved in angiogenesis were differently expressed during breast cancer progression. We used Marimastat, a broad-spectrum MMP inhibitor, as a means of inducing amoeboid characteristics and studied VEGF role in amoeboid angiogenesis. Thus, we performed invasion and capillary morphogenesis assay, morphological, cell signaling and in vivo mouse studies. RESULTS Our data showed that TIMP1, TIMP2, alpha2-antiplasmin, PAI-1 and cystatin increase in breast cancer serum of patients with primary cancer and lymph node positive compared to healthy women. In vitro results revealed that the most high-powered protease inhibitors able to induce amoeboid invasion of ECFCs were TIMP1, 2 and 3. Surprisingly, Marimastat promotes ECFC invasion and tubular formation in vitro and in vivo, inducing amoeboid characteristics. We observed that the combination of Marimastat plus VEGF doesn't boost neither cell invasion nor vessel formation capacity. Moreover, inhibition of VEGF activity with Bevacizumab in the presence of Marimastat confirmed that amoeboid angiogenesis is independent from the stimulus of the main vascular growth factor, VEGF. CONCLUSIONS We underline the importance to consider the amoeboid mechanism of endothelial and cancer cell invasion, probably responsible for the failure of synthetic metalloproteinase inhibitors as cancer therapy and tumor resistance to VEGF-targeted therapies, to set-up new drugs to be used in cancer therapy.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
| | - Cecilia Anceschi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Elena Frediani
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Scavone
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Tommaso Del Rosso
- grid.4839.60000 0001 2323 852XDepartment of Physics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ 22451-900 Brazil
| | - Giuseppe Pelagio
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Antonio Tufaro
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giuseppe De Palma
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Mario Del Rosso
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Gabriella Fibbi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Paola Chiarugi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Anna Laurenzana
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Margheri
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
55
|
Abstract
BACKGROUND Retinal neovascularization is the major cause of vision loss that affects both adults and young children including premature babies. It has been a major pathology in several retinal diseases like age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP). Current treatment modalities such as anti-VEGF therapy, laser are not suitable for every patient and response to these therapies is highly variable. Thus, there is a need to investigate newer therapeutic targets for DR, ROP and AMD, based on a clear understanding of disease pathology and regulatory mechanisms involved. METHOD Appropriate articles published till February 2021 were extracted from PUBMED using keywords like ocular angiogenesis, DR, ROP, AMD, miRNA, mRNA, and cirMiRNA and containvaluable information regarding the involvement of miRNA in causing neovascularization. After compiling the list of miRNA regulating mRNA expression in angiogenesis and neovascularaization, their interactions were studied using online available tool MIENTURNET (http://userver.bio.uniroma1.it/apps/mienturnet/). The pathways involved in these processes were also predicted using the same tool. RESULTS Most of the studies have explored potential targets like HIF1-α, PDGF, TGFβ, FGF, etc., for their involvement in pathological angiogenesis in different retinal diseases. The regulatory role of microRNA (miRNA) has also been explored in various retinal ocular pathologies. This review highlights regulatory mechanism of cellular and circulatory miRNAs and their interactions with the genes involved in retinal neovascularization. The role of long noncoding RNA (ncRNA) in the regulation of genes involved in different pathways is also noteworthy and discussed in this review. CONCLUSION This review highlights the potential regulatory mechanism/pathways involved in retinal neovascularization and its implications in retinal diseases and for identifying new drug targets.
Collapse
Affiliation(s)
- Sushma Vishwakarma
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Inderjeet Kaur
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
56
|
do Kleyton Palmeira Ó, da Silva Freire AK, de Nóbrega DN, Dos Santos Souza R, Farias ICC, de Mendonça Belmont TF, da Silva AS, da Silva Arcanjo G, da Silva Araujo A, Dos Anjos ACM, de Araujo ARL, Bezerra MAC, de Moura PMMF, do Socorro Mendonça Cavalcanti M, Vasconcelos LRS. Polymorphisms and gene expression of metalloproteinases and their inhibitors associated with cerebral ischemic stroke in young patients with sickle cell anemia. Mol Biol Rep 2023; 50:3341-3353. [PMID: 36720795 DOI: 10.1007/s11033-023-08262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Sickle cell anemia (SCA) is a genetic disease with great clinical heterogeneity and few viable strategies for treatment; hydroxyurea (HU) is the only widely used drug. Thus, the study of single nucleotide polymorphisms (SNPs) and the gene expression of MMPs 1, 2, 9, 7 and TIMPs 1 and 2, which are involved in the regulation of extracellular matrix, inflammation, and neuropathies, may provide further insights into the pathophysiology of the disease and elucidate biomarkers and molecules as potential therapeutic targets for patients with SCA. METHODS AND RESULTS We evaluated 251 young individuals with SCA from northeastern Brazil. The groups were divided according to vaso-occlusive crisis (VOC) and cerebrovascular disease (CVD), compared to control individuals. SNP detection and gene expression assays were performed by real-time PCR, TaqMan system®. Both the expression levels of MMP1 gene, and the SNP MMP1-1607 1G/2G were associated with the risk of cerebral ischemic stroke (IS), and the expression of MMP1 was also associated with a higher frequency of VOC/year. Expression levels of MMP7, TIMP1, and TIMP2 were increased in patients conditioned to IS. The SNP 372T>C (rs4898) TIMP1 T alleles were more frequent in patients with > 5 VOC events/year. The SNP rs17576 of MMP9 showed differences in gene expression levels; it was increased in the genotypes AG, and AG+GG. CONCLUSION The findings of this study, the SNPs, and expression provide initial support for understanding the role of MMPs-TIMPs in the pathophysiology of SCA in young patients.
Collapse
Affiliation(s)
- Ó do Kleyton Palmeira
- Instituto Aggeu Magalhães Research Center - IAM-FIOCRUZ-PE, Av. Professor Moraes Rego, S/N, Recife, PE, 50.740-465, Brazil
| | - Ana Karla da Silva Freire
- Institute of Biological Sciences and Faculty of Medical Sciences, University of Pernambuco, Recife, PE, Brazil
| | - Débora Nascimento de Nóbrega
- Instituto Aggeu Magalhães Research Center - IAM-FIOCRUZ-PE, Av. Professor Moraes Rego, S/N, Recife, PE, 50.740-465, Brazil
| | - Roberta Dos Santos Souza
- Instituto Aggeu Magalhães Research Center - IAM-FIOCRUZ-PE, Av. Professor Moraes Rego, S/N, Recife, PE, 50.740-465, Brazil
| | | | | | - Andreia Soares da Silva
- Institute of Biological Sciences and Faculty of Medical Sciences, University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Antioxidant, Wound Healing Potential and In Silico Assessment of Naringin, Eicosane and Octacosane. Molecules 2023; 28:molecules28031043. [PMID: 36770709 PMCID: PMC9919607 DOI: 10.3390/molecules28031043] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
1. Diabetic chronic wounds, mainly foot ulcers, constitute one of the most common complications of poorly managed diabetes mellitus. The most typical reasons are insufficient glycemic management, latent neuropathy, peripheral vascular disease, and neglected foot care. In addition, it is a common cause of foot osteomyelitis and amputation of the lower extremities. Patients are admitted in larger numbers attributable to chronic wounds compared to any other diabetic disease. In the United States, diabetes is currently the most common cause of non-traumatic amputations. Approximately five percent of diabetics develop foot ulcers, and one percent require amputation. Therefore, it is necessary to identify sources of lead with wound-healing properties. Redox imbalance due to excessive oxidative stress is one of the causes for the development of diabetic wounds. Antioxidants have been shown to decrease the progression of diabetic neuropathy by scavenging ROS, regenerating endogenous and exogenous antioxidants, and reversing redox imbalance. Matrix metalloproteinases (MMPs) play vital roles in numerous phases of the wound healing process. Antioxidant and fibroblast cell migration activity of Marantodes pumilum (MP) crude extract has previously been reported. Through their antioxidant, epithelialization, collagen synthesis, and fibroblast migration activities, the authors hypothesise that naringin, eicosane and octacosane identified in the MP extract may have wound-healing properties. 2. The present study aims to identify the bioactive components present in the dichloromethane (DCM) extract of M. pumilum and evaluate their antioxidant and wound healing activity. Bioactive components were identified using LCMS, HPTLC and GCMS. Excision wound on STZ-induced diabetic rat model, human dermal fibroblast (HDF) cell line and colorimetric antioxidant assays were used to evaluate wound healing and antioxidant activities, respectively. Molecular docking and pkCMS software would be utilised to predict binding energy and affinity, as well as ADME parameters. 3. Naringin (NAR), eicosane (EIC), and octacosane (OCT) present in MP displayed antioxidant action and wound excision closure. Histological examination HDF cell line demonstrates epithelialization, collagen production, fibroblast migration, polymorphonuclear leukocyte migration (PNML), and fibroblast movement. The results of molecular docking indicate a substantial attraction and contact between MMPs. pkCMS prediction indicates inadequate blood-brain barrier permeability, low toxicity, and absence of hepatotoxicity. 4. Wound healing properties of (NEO) naringin, eicosane and octacosane may be the result of their antioxidant properties and possible interactions with MMP.
Collapse
|
58
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
59
|
Asgari R, Vaisi-Raygani A, Aleagha MSE, Mohammadi P, Bakhtiari M, Arghiani N. CD147 and MMPs as key factors in physiological and pathological processes. Biomed Pharmacother 2023; 157:113983. [PMID: 36370522 DOI: 10.1016/j.biopha.2022.113983] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Cluster of differentiation 147 (CD147) or extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that induces the synthesis of matrix metalloproteinases (MMPs). MMPs, as zinc-dependent proteases and versatile enzymes, play critical roles in the degradation of the extracellular matrix (ECM) components, cleaving of the receptors of cellular surfaces, signaling molecules, and other precursor proteins, which may lead to attenuation or activation of such targets. CD147 and MMPs play essential roles in physiological and pathological conditions and any disorder in the expression, synthesis, or function of CD147 and MMPs may be associated with various types of disease. In this review, we have focused on the roles of CD147 and MMPs in some major physiological and pathological processes.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nahid Arghiani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
60
|
Rai Y, Singh S, Pandey S, Sah D, Sah RK, Roy BG, Dwarakanath BS, Bhatt AN. Mitochondrial uncoupler DNP induces coexistence of dual-state hyper-energy metabolism leading to tumor growth advantage in human glioma xenografts. Front Oncol 2022; 12:1063531. [PMID: 36591481 PMCID: PMC9800826 DOI: 10.3389/fonc.2022.1063531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Cancer bioenergetics is an essential hallmark of neoplastic transformation. Warburg postulated that mitochondrial OXPHOS is impaired in cancer cells, leading to aerobic glycolysis as the primary metabolic pathway. However, mitochondrial function is altered but not entirely compromised in most malignancies, and that mitochondrial uncoupling is known to increase the carcinogenic potential and modifies treatment response by altering metabolic reprogramming. Our earlier study showed that transient DNP exposure increases glycolysis in human glioma cells (BMG-1). The current study investigated the persistent effect of DNP on the energy metabolism of BMG-1 cells and its influence on tumor progression in glioma xenografts. Methods BMG-1 cells were treated with 2,4-dinitrophenol (DNP) in-vitro, to establish the OXPHOS-modified (OPM-BMG) cells. Further cellular metabolic characterization was carried out in both in-vitro cellular model and in-vivo tumor xenografts to dissect the role of metabolic adaptation in these cells and compared them with their parental phenotype. Results and Discussion Chronic exposure to DNP in BMG-1 cells resulted in dual-state hyper-energy metabolism with elevated glycolysis++ and OXPHOS++ compared to parental BMG-1 cells with low glycolysis+ and OXPHOS+. Tumor xenograft of OPM-BMG cells showed relatively increased tumor-forming potential and accelerated tumor growth in nude mice. Moreover, compared to BMG-1, OPM-BMG tumor-derived cells also showed enhanced migration and invasion potential. Although mitochondrial uncouplers are proposed as a valuable anti-cancer strategy; however, our findings reveal that prolonged exposure to uncouplers provides tumor growth advantage over the existing glioma phenotype that may lead to poor clinical outcomes.
Collapse
Affiliation(s)
- Yogesh Rai
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Saurabh Singh
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sanjay Pandey
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Dhananjay Sah
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj Kumar Sah
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - B. G. Roy
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Bilikere S. Dwarakanath
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India,Indian Academy Degree College, Bengaluru, India
| | - Anant Narayan Bhatt
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India,*Correspondence: Anant Narayan Bhatt, ;
| |
Collapse
|
61
|
Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 2022; 156:113801. [DOI: 10.1016/j.biopha.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
|
62
|
El‐Hussieny M, Mansour ST, Hashem AI, Fouad MA, Abd‐El‐Maksoud MA. Design, synthesis, and biological evaluation of new heterocycles bearing both silicon and phosphorus as potent
MMP
‐2 inhibitors. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marwa El‐Hussieny
- Organometallic and Organometalloid Chemistry Department National Research Centre Giza Egypt
| | - Shaimaa T. Mansour
- Organometallic and Organometalloid Chemistry Department National Research Centre Giza Egypt
| | - Ahmed I. Hashem
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy Cairo University Giza Egypt
| | | |
Collapse
|
63
|
Rosenberg GA. Willis Lecture: Biomarkers for Inflammatory White Matter Injury in Binswanger Disease Provide Pathways to Precision Medicine. Stroke 2022; 53:3514-3523. [PMID: 36148658 PMCID: PMC9613611 DOI: 10.1161/strokeaha.122.039211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Binswanger disease is the small vessel form of vascular cognitive impairment and dementia. Deposition of Alzheimer disease proteins can begin in midlife and progress slowly, whereas aging of the vasculature also can begin in midlife, continuing to progress into old age, making mixed dementia the most common type of dementia. Biomarkers facilitate the early diagnosis of dementias. It is possible to diagnose mixed dementia before autopsy with biomarkers for vascular disease derived from diffusor tensor images on magnetic resonance imaging and Alzheimer disease proteins, Aβ (amyloid β), and phosphorylated tau, in cerebrospinal fluid or in brain with positron emission tomography. The presence of vascular disease accelerates cognitive decline. Both misfolded proteins and vascular disease promote inflammation, which can be detected in cerebrospinal fluid by the presence of MMPs (matrix metalloproteinases), angiogenic growth factors, and cytokines. MMPs disrupt the blood-brain barrier and break down myelin, producing Binswanger disease's 2 main pathological features. Advances in detecting biomarkers in plasma will provide early detection of dementia and aided by machine learning and artificial intelligence, will enhance diagnosis and form the basis for early treatments.
Collapse
Affiliation(s)
- Gary A Rosenberg
- Center for Memory and Aging, Departments of Neurology, Neurosciences, Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque
| |
Collapse
|
64
|
Torres-Vargas JA, Cheng-Sánchez I, Martínez-Poveda B, Medina MÁ, Sarabia F, García-Caballero M, Quesada AR. Characterization of the activity and the mechanism of action of a new toluquinol derivative with improved potential as an antiangiogenic drug. Biomed Pharmacother 2022; 155:113759. [DOI: 10.1016/j.biopha.2022.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
65
|
Ozaki S, Mikami K, Kunieda T, Tanaka J. Chloride Intracellular Channel Proteins (CLICs) and Malignant Tumor Progression: A Focus on the Preventive Role of CLIC2 in Invasion and Metastasis. Cancers (Basel) 2022; 14:cancers14194890. [PMID: 36230813 PMCID: PMC9562003 DOI: 10.3390/cancers14194890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Although chloride intracellular channel proteins (CLICs) have been identified as ion channel proteins, their true functions are still elusive. Recent in silico analyses show that CLICs may be prognostic markers in cancer. This review focuses on CLIC2 that plays preventive roles in malignant cell invasion and metastasis. CLIC2 is secreted extracellularly and binds to matrix metalloproteinase 14 (MMP14), while inhibiting its activity. As a result, CLIC2 may contribute to the development/maintenance of junctions between blood vessel endothelial cells and the inhibition of invasion and metastasis of tumor cells. CLIC2 may be a novel therapeutic target for malignancies. Abstract CLICs are the dimorphic protein present in both soluble and membrane fractions. As an integral membrane protein, CLICs potentially possess ion channel activity. However, it is not fully clarified what kinds of roles CLICs play in physiological and pathological conditions. In vertebrates, CLICs are classified into six classes: CLIC1, 2, 3, 4, 5, and 6. Recently, in silico analyses have revealed that the expression level of CLICs may have prognostic significance in cancer. In this review, we focus on CLIC2, which has received less attention than other CLICs, and discuss its role in the metastasis and invasion of malignant tumor cells. CLIC2 is expressed at higher levels in benign tumors than in malignant ones, most likely preventing tumor cell invasion into surrounding tissues. CLIC2 is also expressed in the vascular endothelial cells of normal tissues and maintains their intercellular adhesive junctions, presumably suppressing the hematogenous metastasis of malignant tumor cells. Surprisingly, CLIC2 is localized in secretory granules and secreted into the extracellular milieu. Secreted CLIC2 binds to MMP14 and inhibits its activity, leading to suppressed MMP2 activity. CLIC4, on the other hand, promotes MMP14 activity. These findings challenge the assumption that CLICs are ion channels, implying that they could be potential new targets for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Saya Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, Suita 564-8565, Japan
- Correspondence: (S.O.); (J.T.)
| | - Kanta Mikami
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
- Correspondence: (S.O.); (J.T.)
| |
Collapse
|
66
|
Baca-Gonzalez L, Serrano Zamora R, Rancan L, González Fernández-Tresguerres F, Fernández-Tresguerres I, López-Pintor RM, López-Quiles J, Leco I, Torres J. Plasma rich in growth factors (PRGF) and leukocyte-platelet rich fibrin (L-PRF): comparative release of growth factors and biological effect on osteoblasts. Int J Implant Dent 2022; 8:39. [PMID: 36184700 PMCID: PMC9527267 DOI: 10.1186/s40729-022-00440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the release of platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-I) and interleukin 1β (IL-1β) of plasma rich in growth factors (PRGF) and leucocyte platelet-rich fibrin (L-PRF) and to evaluate their biological implication in osteoblasts. METHODS Blood from 3 healthy volunteers was processed into PRGF, immediate L-PRF (L-PRF 0') and L-PRF 30 min after collection (L-PRF-30') and a control group. Growth factors release were analyzed at 7 times by ELISA. Cell proliferation, collagen-I synthesis and alkaline phosphatase activity were assessed in primary cultures of human osteoblasts. RESULTS A slower controlled release of IGF-I, VEGF and PDGF was observed in the PRGF group at day 14. A higher synthesis of type I collagen was also quantified in PRGF. L-PRF released significantly higher amounts of IL-1β, that was almost absent in the PRGF. CONCLUSIONS The addition of leukocytes dramatically increases the secretion of proinflammatory cytokines, which are likely to negatively influence the synthesis of type I collagen and alkaline phosphatase (ALP) by osteoblasts.
Collapse
Affiliation(s)
- Laura Baca-Gonzalez
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain.
| | - Rebeca Serrano Zamora
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology. Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Isabel Fernández-Tresguerres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Rosa M López-Pintor
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Juan López-Quiles
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Isabel Leco
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Jesús Torres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| |
Collapse
|
67
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
68
|
Xu X, Wang L, Chen Q, Wang Z, Pan X, Peng X, Wang M, Wei D, Li Y, Wu B. Decoding the Mechanism of CheReCunJin Formula in Treating Sjögren's Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1193846. [PMID: 36248435 PMCID: PMC9553462 DOI: 10.1155/2022/1193846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Background Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by progressive oral and ocular dryness that correlates poorly with autoimmune damage to the glands. CheReCunJin (CRCJ) formula is a prescription formulated according to the Chinese medicine theory for SS treatment. Objective This study aimed to explore the underlying mechanisms of CRCJ against SS. Methods The databases, including Traditional Chinese Medicine System Pharmacology, Encyclopedia of Traditional Chinese Medicine, Bioinformatics Analysis Tool for the molecular mechanism of Traditional Chinese Medicine, and Traditional Chinese Medicine Integrated Databases, obtained the active ingredients and predicted targets of CRCJ. Then, DrugBank, Therapeutic Target Database, Genecards, Comparative Toxicogenomics Database, and DisGeNET disease databases were used to screen the predicted targets of SS. Intersected targets of CRCJ and SS were visualized by using Venn diagrams. The overlapping targets were uploaded to the protein-protein interaction network analysis search tool. Cytoscape 3.8.2 software constructed a "compound-targets-disease" network. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses characterized potential targets' biological functions and pathways. AutoDock Vina 1.1.2 software was used to research and verify chemical effective drug components and critical targets. Results From the database, we identified 878 active components and 2578 targets of CRCJ, and 827 SS-related targets. 246 SS-related genes in CRCJ were identified by intersection analysis, and then ten hub genes were identified as crucial potential targets from PPI, including ALB, IL-6, TNF, INS, AKT1, IL1B, VEGFA, TP53, JUN, and TLR4. The process of CRCJ action against SS was mainly involved in human cytomegalovirus infection and Th17 cell differentiation, as well as the toll-like receptor signaling and p53 signaling pathways. Molecular docking showed that the bioactive compounds of CRCJ had a good binding affinity with hub targets. Conclusions The results showed that CRCJ could activate multiple pathways and treat SS through multiple compounds and targets. This study lays a foundation for better elucidation of the molecular mechanism of CRCJ in the treatment of SS, and also provides basic guidance for future research on Chinese herbal compounds.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xun Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xike Peng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanping Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
69
|
Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front Pharmacol 2022; 13:927506. [PMID: 36016550 PMCID: PMC9395980 DOI: 10.3389/fphar.2022.927506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The circadian rhythm is an endogenous clock system that coordinates and optimizes various physiological and pathophysiological processes, which accord with the master and the peripheral clock. Increasing evidence indicates that endogenous circadian rhythm disruption is involved in the lesion volume and recovery of ischemic stroke. As a critical recovery mechanism in post-stroke, angiogenesis reestablishes the regional blood supply and enhances cognitive and behavioral abilities, which is mainly composed of the following processes: endothelial cell proliferation, migration, and pericyte recruitment. The available evidence revealed that the circadian governs many aspects of angiogenesis. This study reviews the mechanism by which circadian rhythms regulate the process of angiogenesis and its contribution to functional recovery in post-stroke at the aspects of the molecular level. A comprehensive understanding of the circadian clock regulating angiogenesis in post-stroke is expected to develop new strategies for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Yuxing Zhang
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Desheng Zhou,
| |
Collapse
|
70
|
Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, Antoun E, Lillycrop KA, Calder PC. Dysregulation of Subcutaneous White Adipose Tissue Inflammatory Environment Modelling in Non-Insulin Resistant Obesity and Responses to Omega-3 Fatty Acids – A Double Blind, Randomised Clinical Trial. Front Immunol 2022; 13:922654. [PMID: 35958557 PMCID: PMC9358040 DOI: 10.3389/fimmu.2022.922654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background Obesity is associated with enhanced lipid accumulation and the expansion of adipose tissue accompanied by hypoxia and inflammatory signalling. Investigation in human subcutaneous white adipose tissue (scWAT) in people living with obesity in which metabolic complications such as insulin resistance are yet to manifest is limited, and the mechanisms by which these processes are dysregulated are not well elucidated. Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have been shown to modulate the expression of genes associated with lipid accumulation and collagen deposition and reduce the number of inflammatory macrophages in adipose tissue from individuals with insulin resistance. Therefore, these lipids may have positive actions on obesity associated scWAT hypertrophy and inflammation. Methods To evaluate obesity-associated tissue remodelling and responses to LC n-3 PUFAs, abdominal scWAT biopsies were collected from normal weight individuals and those living with obesity prior to and following 12-week intervention with marine LC n-3 PUFAs (1.1 g EPA + 0.8 g DHA daily). RNA sequencing, qRT-PCR, and histochemical staining were used to assess remodelling- and inflammatory-associated gene expression, tissue morphology and macrophage infiltration. Results Obesity was associated with scWAT hypertrophy (P < 0.001), hypoxia, remodelling, and inflammatory macrophage infiltration (P = 0.023). Furthermore, we highlight the novel dysregulation of Wnt signalling in scWAT in non-insulin resistant obesity. LC n-3 PUFAs beneficially modulated the scWAT environment through downregulating the expression of genes associated with inflammatory and remodelling pathways (P <0.001), but there were altered outcomes in individuals living with obesity in comparison to normal weight individuals. Conclusion Our data identify dysregulation of Wnt signalling, hypoxia, and hypertrophy, and enhanced macrophage infiltration in scWAT in non-insulin resistant obesity. LC n-3 PUFAs modulate some of these processes, especially in normal weight individuals which may be preventative and limit the development of restrictive and inflammatory scWAT in the development of obesity. We conclude that a higher dose or longer duration of LC n-3 PUFA intervention may be needed to reduce obesity-associated scWAT inflammation and promote tissue homeostasis. Clinical Trial Registration www.isrctn.com, identifier ISRCTN96712688.
Collapse
Affiliation(s)
- Helena L Fisk
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Caroline E Childs
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elizabeth A Miles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert Ayres
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Paul S Noakes
- School of Medicine, The University of Notre Dame Australia, Freemantle, WA, Australia
| | | | - Elie Antoun
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karen A Lillycrop
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
71
|
Kandhwal M, Behl T, Singh S, Sharma N, Arora S, Bhatia S, Al-Harrasi A, Sachdeva M, Bungau S. Role of matrix metalloproteinase in wound healing. Am J Transl Res 2022; 14:4391-4405. [PMID: 35958464 PMCID: PMC9360851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of endopeptidases that play a vital role in the restoration of damaged skin. Through mediating various cellular events such as angiogenesis and vasodilation, MMPs are very crucial for the mechanism of wound healing. These enzymes are endopeptidases that are reliant on zinc which are concealed through the extracellular matrix (ECM). MMPs have different targets in different phases of wound healing through which they are capable of promoting timely healing in the body. This review discusses all the possible role of MMPs and their inhibitors that are involved during every step of the wound healing process. This review highlights the latest advances in the respective field about the regulation and mediation of MMPs in human skin and how these studies can be applied to other branches of medical sciences as well. Published papers were searched via MEDLINE, PubMed and MDPI from the available peer reviewed journals. Research done in the past suggests that active MMPs are involved in the healing progression of the wounds or they have a positive effect towards healing of wounds. Present studies in the relative field will further enhance the knowledge about enzymes working along with their inhibitors. These studies will help in a way to resolve some of the parameters that are necessary for modulating them either positively or negatively.
Collapse
Affiliation(s)
- Mimansa Kandhwal
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
- School of Health Science, University of Petroleum and Energy StudiesDehradun 248007, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
| | - Monika Sachdeva
- Fatima College of Health SciencesAl Ain 50, United Arab Emirates
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of OradeaOradea 410028, Romania
| |
Collapse
|
72
|
Eiro N, Barreiro-Alonso E, Fraile M, González LO, Altadill A, Vizoso FJ. Expression of MMP-2, MMP-7, MMP-9, and TIMP-1 by Inflamed Mucosa in the Initial Diagnosis of Ulcerative Colitis as a Response Marker for Conventional Medical Treatment. Pathobiology 2022; 90:81-93. [PMID: 35797965 DOI: 10.1159/000524978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/07/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Experimental and clinical data involve matrix metalloproteases (MMPs) and their tissue inhibitors (TIMPs) in the pathogenesis of inflammatory bowel diseases. However, the impact of MMPs/TIMPs expression by inflamed mucosa on medical response therapy has scarcely been investigated. METHODS The expression of MMP-2, MMP-7, MMP-9, and TIMP-1 was determined by immunohistochemical analysis in inflamed mucosa samples at diagnosis in 82 patients with ulcerative colitis (UC; 22 never-treated with corticosteroids, 28 nonresponders, and 32 responders to corticosteroid therapy) and 15 patients with acute diverticulitis (AD). The global expression (score value) of each factor was analyzed by computer-generated image analysis. RESULTS UC samples showed higher MMP-2 and MMP-9 expression but lower TIMP-1 expression than the AD samples (p < 0.0001, for all). High MMP-9 and TIMP-1 scores were significantly associated with no need for corticosteroid treatment (p < 0.001 and p = 0.017, respectively); whereas higher score in the MMP-7 expression was significantly associated with nonresponse to corticosteroid therapy (p = 0.037). In addition, in this latter UC subgroup, MMP-7 correlated positively with the younger age of the patients and with the extension of the disease (p = 0.030 and p = 0.010, respectively). CONCLUSION Our results suggest the relevance of MMPs and TIMPs for predicting treatment response to both 5-aminosalicylates and corticosteroids in UC.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
| | - Eva Barreiro-Alonso
- Department of Gastroenterology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Maria Fraile
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
| | - Luis O González
- Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Antonio Altadill
- Department of Internal Medicine, Fundación Hospital de Jove, Gijón, Spain
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Gijón, Spain.,Department of Surgery, Fundación Hospital de Jove, Gijón, Spain
| |
Collapse
|
73
|
Li S, Pritchard DM, Yu LG. Regulation and Function of Matrix Metalloproteinase-13 in Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:3263. [PMID: 35805035 PMCID: PMC9265061 DOI: 10.3390/cancers14133263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13) is a member of the Matrix metalloproteinases (MMPs) family of endopeptidases. MMP-13 is produced in low amounts and is well-regulated during normal physiological conditions. Its expression and secretion are, however, increased in various cancers, where it plays multiple roles in tumour progression and metastasis. As an interstitial collagenase, MMP-13 can proteolytically cleave not only collagens I, II and III, but also a range of extracellular matrix proteins (ECMs). Its action causes ECM remodelling and often leads to the release of various sequestered growth and angiogenetic factors that promote tumour cell growth, invasion and angiogenesis. This review summarizes our current understanding of the regulation of MMP-13 expression and secretion and discusses the actions of MMP-13 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
74
|
Amabebe E, Ogidi H, Anumba DO. Matrix metalloproteinase-induced cervical extracellular matrix remodelling in pregnancy and cervical cancer. REPRODUCTION AND FERTILITY 2022; 3:R177-R191. [PMID: 37931406 PMCID: PMC9422233 DOI: 10.1530/raf-22-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract The phenomenal extracellular matrix (ECM) remodelling of the cervix that precedes the myometrial contraction of labour at term or preterm appears to share some common mechanisms with the occurrence, growth, invasion and metastasis of cervical carcinoma. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are pivotal to the complex extracellular tissue modulation that includes degradation, remodelling and exchange of ECM components, which contribute to homeostasis under normal physiological conditions such as cervical remodelling during pregnancy and puerperium. However, in cancer such as that of the uterine cervix, this extensive network of extracellular tissue modulation is altered leading to disrupted cell-cell and cell-basement membrane adhesion, abnormal tissue growth, neovascularization and metastasis that disrupt homeostasis. Cervical ECM remodelling during pregnancy and puerperium could be a physiological albeit benign neoplasm. In this review, we examined the pathophysiologic differences and similarities in the role of MMPs in cervical remodelling and cervical carcinoma. Lay summary During pregnancy and childbirth, the cervix, which is the barrel-shaped lower portion of the womb that connects to the vagina, gradually softens, shortens and opens to allow birth of the baby. This process requires structural and biochemical changes in the cervix that are stimulated by enzymes known as matrix metalloproteinases. Interestingly, these enzymes also affect the structural and biochemical framework of the cervix during cervical cancer, although cervical cancers usually occur after infection by human papillomavirus. This review is intended to identify and explain the similarities and differences between the structural and chemical changes in the cervix during pregnancy and childbirth and the changes seen in cervical cancer.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Henry Ogidi
- Department of Obstetrics and Gynaecology, Glan Clwyd Hospital North Wales, Gwynedd, UK
| | - Dilly O Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
75
|
Liu X, Wang Y, Zheng Y, Duan D, Dai F, Zhou B. Michael acceptor-dependent pro-oxidative intervention against angiogenesis by [6]-dehydroshogaol, a pungent constituent of ginger. Eur J Pharmacol 2022; 925:174990. [PMID: 35500643 DOI: 10.1016/j.ejphar.2022.174990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that ginger and its pungent constituents harbor a wealth of biological activities including cancer chemopreventive activity. However, relatively few researches focus on [6]-dehydroshogaol (6-DHS) compared with other ginger pungent constituents such as [6]-shogaol (6S). In this work, we selected three ginger compounds, 6-DHS, 6S and [6]-paradol (6P) differentiated by the presence and number of the Michael acceptor units, to probe structural basis and mechanism of 6-DHS in inhibiting angiogenesis, a key step for tumor growth and metastasis. It was found that their antiangiogenic activity is significantly dependent on the presence and number of Michael acceptor units. Benefiting from its two Michael acceptor units, 6-DHS is the most potent inhibitor of thioredoxin reductase and depletor of glutathione, thereby being the most active generator of reactive oxygen species, which is responsible for its strongest ability to inhibit angiogenesis. This work highlights 6-DHS being a Michael acceptor-dependent pro-oxidative angiogenesis inhibitor.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Yihua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Yalong Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Dechen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
76
|
Identification of Angiogenic Cargoes in Human Fibroblasts-Derived Extracellular Vesicles and Induction of Wound Healing. Pharmaceuticals (Basel) 2022; 15:ph15060702. [PMID: 35745621 PMCID: PMC9230817 DOI: 10.3390/ph15060702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
A complete redevelopment of the skin remains a challenge in the management of acute and chronic wounds. Recently, the application of extracellular vesicles (EVs) for soft tissue wound healing has received much attention. As fibroblasts are fundamental cells for soft tissues and skin, we investigate the proangiogenic factors in human normal fibroblast-derived EVs (hNF-EVs) and their effects on wound healing. Normal fibroblasts were isolated from human skin tissues and characterized by immunofluorescence (IF) and Western blotting (WB). hNF-EVs were isolated by ultracentrifugation and characterized using transmission electron microscopy and WB. The proangiogenic cargos in hNF-EVs were identified by a TaqMan assay and a protein array. Other in vitro assays, including internalization assays, cell counting kit-8 analysis, scratch wound assays, WBs, and tube formation assays were conducted to assess the effects of hNF-EVs on fibroblasts and endothelial cells. A novel scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue was applied onto full-thickness skin wounds in mice. The wound healing therapeutical effect of hNF-EVs was assessed by calculating the rate of wound closure and through histological analysis. Isolated hNF was confirmed by verifying the expression of the fibroblast markers vimentin, αSMA, Hsp70, and S100A4. Isolated hNF-EVs showed intact EVs with round morphology, enriched in CD81 and CD63, and devoid of the cell markers GM130, Calnexin, and Cytochrome C. Our TaqMan assay showed that hNF-EVs were enriched in miR130a and miR210, and protein arrays showed enriched levels of the proangiogenic proteins’ vascular endothelial growth factor (VEGF)-D and CXCL8. Next, we found that the internalization of hNF-EVs into hNF increased the proliferation and migration of hNF, in addition to increasing the expression of bFGF, MMP2, and αSMA. The internalization of hNF-EVs into the endothelial cells increased their proliferation and tube formation. A scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue accelerated the wound healing rate in full-thickness skin wounds in mice, and the treatments increased the cellular density, deposition, and maturation of collagens in the wounds. Moreover, the scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue increased the VEGF and CD31 expression in the wounds, indicating that hNF-EVs have an angiogenic ability to achieve complete skin regeneration. These findings open up for new treatment strategies to be developed for wound healing. Further, we offer a new approach to the efficient, scaffold-free noninvasive delivery of hNF-EVs to wounds.
Collapse
|
77
|
Gandhi GR, Antony PJ, Lana MJMDP, da Silva BFX, Oliveira RV, Jothi G, Hariharan G, Mohana T, Gan RY, Gurgel RQ, Cipolotti R, Quintans LJ. Natural products modulating interleukins and other inflammatory mediators in tumor-bearing animals: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154038. [PMID: 35358934 DOI: 10.1016/j.phymed.2022.154038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is a group of diseases characterized by abnormal cell growth and proliferation. Natural products are a potentially important source for bioactive phytochemicals in the management of cancer, which regulate a broad range of biological events via the modulation of interleukins (ILs), pro- and anti-inflammatory modulators, and other cancer hallmark-mediated signaling pathways. PURPOSE To systematically review the literature to identify in vivo studies investigating the anticancer properties of medicinal plants and natural molecules as modulators of ILs and their related pro- and anti-inflammatory signaling markers in tumor-bearing animals. METHODS Articles published in English were searched, without any constraint in respect of countries. The electronic databases PubMed, Embase, Scopus, and Web of Science were used for the literature search for studies published between January 2010 and January 2022. The search terms used included medicinal plants, anticancer, antineoplasic agent, ILs, cytokine, and their combinations. A manual search to detect any articles not found in the databases was also made. The identified studies were then critically reviewed and relevant data were extracted and summarized. RESULTS Natural products were found to modulate ILs, including IL-1β, IL-2, IL-4, IL-6, IL-8, IL-18, IL-23, and IL-12, and interferon gamma; increase tissue inhibitor metalloprotease; decrease vascular endothelial growth factor, tumor necrosis factor alpha, granulocyte macrophage colony-stimulating factor, and nuclear factor kappa B; augment immunity by increasing the major histocompatibility complexes II and CD4+, cluster of differentiation 8 + T cell and class II trans-activator expression; and heighten the action of antioxidant enzymes, which are involved in the detoxification of free radicals and reactive oxygen species. CONCLUSION Natural products discussed in this review show great potential to regulate ILs and weaken associated pro- and anti-inflammatory signaling markers in tumor-bearing animals. Flavonoids, polyphenols, polysaccharides, alkaloids and tannins are important phytochemicals in the modulation of ILs, especially pro-inflammatory ones. However, in terms of future research, the importance of clinical trials to investigate their beneficial properties should be warranted.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil.
| | | | | | | | - Roberta Vieira Oliveira
- Department of Medicine, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli 620005, Tamil Nadu, India
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli 620005, Tamil Nadu, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Madha Dental College and Hospital, Kundrathur 600069, Chennai, India
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ricardo Queiroz Gurgel
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; Department of Medicine, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil.
| | - Rosana Cipolotti
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; Department of Medicine, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil
| | - Lucindo José Quintans
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil.
| |
Collapse
|
78
|
Ying TH, Lin CL, Chen PN, Wu PJ, Liu CJ, Hsieh YH. Angelol-A exerts anti-metastatic and anti-angiogenic effects on human cervical carcinoma cells by modulating the phosphorylated-ERK/miR-29a-3p that targets the MMP2/VEGFA axis. Life Sci 2022; 296:120317. [PMID: 35026214 DOI: 10.1016/j.lfs.2022.120317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/15/2023]
Abstract
AIMS Angelol-A (Ang-A), a kind of coumarins, is isolated from the roots of Angelica pubescens f. biserrata. However, AA exerts antitumor effects and molecular mechanism on cervical cancer cells is unknown. MAIN METHODS Cell viability was determined using the MTT assay, and the cell cycle phase was assessed by PI staining with flow cytometry. Ang-A-treated cells with/without Antago-miR-29a-3p (miR-29a-3p inhibitor) or U0126 (MEK inhibitor) were assessed for the expression of miR-29a-3p, in vitro migration/invasion, and angiogenesis using qRT-PCR, a chemotaxis assay, and tube formation assay, respectively. The expression of mitogen-activated protein kinases/MMP2/MMP9/VEGFA was determined by western blot analysis with applicable antibodies. KEY FINDINGS Ang-A significantly inhibited MMP2 and VEGFA expression, cell migration, and invasive motility in human cervical cancer cells. Conditioned medium inhibited tube formation in HUVECs. Ang-A principally inhibited invasive motility and angiogenesis by upregulating the expression of miR-29a-3p that targets the VEGFA-3' UTR. The role of miR-29a-3p was confirmed using Antago-miR-29a-3p, which reversed the Ang-A-inhibited expression of MMP2 and VEGFA, invasive motility, and angiogenesis in human cervical cancer cells. The ERK pathway was implicated in mediating the metastatic and angiogenic action of Ang-A. Combined treatment with Ang-A treated and U0126 exerted a synergistic inhibitory effect on the expression of MMP2 and VEGFA and the metastatic and angiogenic properties of human cervical cancer cells. SIGNIFICANCE These findings are the first to indicate that in human cervical cancer cells, Ang-A exerts anti-metastatic and anti-angiogenic effects via targeting the miR-29a-3p/MMP2/VEGFA axis, mediated through the ERK pathway.
Collapse
Affiliation(s)
- Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ju Wu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
79
|
Ansari MJ, Bokov D, Markov A, Jalil AT, Shalaby MN, Suksatan W, Chupradit S, AL-Ghamdi HS, Shomali N, Zamani A, Mohammadi A, Dadashpour M. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun Signal 2022; 20:49. [PMID: 35392964 PMCID: PMC8991477 DOI: 10.1186/s12964-022-00838-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal vasculature is one of the most conspicuous traits of tumor tissue, largely contributing to tumor immune evasion. The deregulation mainly arises from the potentiated pro-angiogenic factors secretion and can also target immune cells' biological events, such as migration and activation. Owing to this fact, angiogenesis blockade therapy was established to fight cancer by eliminating the nutrient and oxygen supply to the malignant cells by impairing the vascular network. Given the dominant role of vascular-endothelium growth factor (VEGF) in the angiogenesis process, the well-known anti-angiogenic agents mainly depend on the targeting of its actions. However, cancer cells mainly show resistance to anti-angiogenic agents by several mechanisms, and also potentiated local invasiveness and also distant metastasis have been observed following their administration. Herein, we will focus on clinical developments of angiogenesis blockade therapy, more particular, in combination with other conventional treatments, such as immunotherapy, chemoradiotherapy, targeted therapy, and also cancer vaccines. Video abstract.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991 Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240 Russian Federation
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation
- Industrial University, Tyumen, Russian Federation
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023 Grodno, Belarus
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Hasan S. AL-Ghamdi
- Internal Medicine Department, Division of Dermatology, Albaha University, Al Bahah, Kingdom of Saudi Arabia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
80
|
Germline Variants in Angiogenesis-Related Genes Contribute to Clinical Outcome in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14071844. [PMID: 35406617 PMCID: PMC8997703 DOI: 10.3390/cancers14071844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary A high risk of relapse and treatment resistance are among the major challenges in locally advanced head and neck squamous cell carcinoma (HNSCC). Data show that common germline alterations in genes regulating angiogenesis may modulate treatment sensitivity, cancer progression, and prognosis, but relatively little is known about their role in HNSCC. Thus, our goal was to examine the effect of variation in these genes on survival outcomes in HNSCC patients receiving radiotherapy and cisplatin-based chemoradiotherapy. We identified genetic variants significantly affecting therapy results, constituting independent prognostic factors in these patients. Our results suggest that some polymorphisms in angiogenesis genes may be determinants of treatment efficacy and tumor aggressiveness in HNSCC, which may be of importance in standard therapy. These findings emphasize the potential value of the host genetic profile related to angiogenesis in assessing the risk of treatment failure. Abstract Fibroblast growth factor (FGF)/FGF receptor (FGFR), and platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) systems, as well as some matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), are involved in various steps of angiogenesis. Data indicate that common germline variations in angiogenesis-regulating genes may modulate therapy results and cancer progression. However, whether these variants affect clinical outcome in head and neck squamous cell carcinoma (HNSCC) is unclear. Hence, we assessed the relationship between FGF/FGFR, PDGF/PDGFR, MMP, and TIMP genetic variants and treatment outcomes in HNSCC patients receiving radiotherapy (RT) alone or combined with cisplatin-based chemotherapy. In multivariate analysis, FGF2 rs1048201 CC homozygotes showed a higher risk of death (p = 0.039), while PDGFRA rs2228230 T was strongly associated with an increased risk of locoregional relapse (HR 2.49, p = 0.001) in the combination treatment subgroup. In the RT alone subset, MMP2 rs243865 TT carriers had a higher risk of locoregional recurrence (HR 2.92, p = 0.019), whereas PDGFRB rs246395 CC homozygotes were at increased risk of metastasis (HR 3.06, p = 0.041). The MMP2 rs7201 C and TIMP2 rs7501477 T were associated with a risk of locoregional failure in the entire cohort (p = 0.032 and 0.045, respectively). Furthermore, rs1048201, rs2228230, rs246395, rs243865, rs7201, and rs7201/rs7501477 were independent indicators of an unfavorable outcome. This study demonstrates that the FGF2, PDGFRA, PDGFRB, MMP2, and TIMP2 variants may contribute to treatment failure and poor prognosis in HNSCC.
Collapse
|
81
|
He X, Lee B, Jiang Y. Extracellular matrix in cancer progression and therapy. MEDICAL REVIEW (2021) 2022; 2:125-139. [PMID: 37724245 PMCID: PMC10471113 DOI: 10.1515/mr-2021-0028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/31/2022] [Indexed: 09/20/2023]
Abstract
The tumor ecosystem with heterogeneous cellular compositions and the tumor microenvironment has increasingly become the focus of cancer research in recent years. The extracellular matrix (ECM), the major component of the tumor microenvironment, and its interactions with the tumor cells and stromal cells have also enjoyed tremendously increased attention. Like the other components of the tumor microenvironment, the ECM in solid tumors differs significantly from that in normal organs and tissues. We review recent studies of the complex roles the tumor ECM plays in cancer progression, from tumor initiation, growth to angiogenesis and invasion. We highlight that the biomolecular, biophysical, and mechanochemical interactions between the ECM and cells not only regulate the steps of cancer progression, but also affect the efficacy of systemic cancer treatment. We further discuss the strategies to target and modify the tumor ECM to improve cancer therapy.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Byoungkoo Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
82
|
A review on inflammation and angiogenesis as key mechanisms involved in the pathogenesis of bovine cystic ovarian disease. Theriogenology 2022; 186:70-85. [DOI: 10.1016/j.theriogenology.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
83
|
Kciuk M, Gielecińska A, Budzinska A, Mojzych M, Kontek R. Metastasis and MAPK Pathways. Int J Mol Sci 2022; 23:ijms23073847. [PMID: 35409206 PMCID: PMC8998814 DOI: 10.3390/ijms23073847] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide. In many cases, the treatment of the disease is limited due to the metastasis of cells to distant locations of the body through the blood and lymphatic drainage. Most of the anticancer therapeutic options focus mainly on the inhibition of tumor cell growth or the induction of cell death, and do not consider the molecular basis of metastasis. The aim of this work is to provide a comprehensive review focusing on cancer metastasis and the mitogen-activated protein kinase (MAPK) pathway (ERK/JNK/P38 signaling) as a crucial modulator of this process.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
- Correspondence:
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| |
Collapse
|
84
|
Wang A, Madden LA, Paunov VN. Fabrication of Angiogenic Sprouting Coculture of Cell Clusteroids Using an Aqueous Two-Phase Pickering Emulsion System. ACS APPLIED BIO MATERIALS 2022; 5:1804-1816. [PMID: 35315278 DOI: 10.1021/acsabm.2c00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumor cell spheroids and 3D cell culture have generated a lot of interest in the past decade due to their relative ease of production and biomedical research applications. To date, the frontier in tumor 3D models has been pushed to the level of personalized cancer treatment and customized tissue engineering applications. However, without vascularization, the central parts of these artificial constructs cannot survive without an adequate oxygen and nutrient supply. The formation of a necrotic core into in vitro 3D cell models still serves as the major obstacle in their wider practical application. Here, we propose a rapid formation protocol based on using a water-in-water (w/w) Pickering emulsion template to generate phenotypically endothelial/hepatic (ECV304/Hep-G2) coculture cell clusteroids with angiogenic capability. The w/w Pickering emulsion template was based on a dextran/poly(ethylene oxide) aqueous two-phase system stabilized by whey protein particles. The initial cell proportion in the coculture clusteroids can easily be manipulated for optimal performance. The cocultured pattern of the endothelial/hepatic cells could significantly promote the production of angiogenesis-related proteins. Our study confirmed that cocultured clusteroids can stimulate cell sprouting without the addition of vascular endothelial growth factor (VEGF) or other angiogenesis inducers at a 1:2 ratio of Hep-G2/ECV304. Angiogenesis gene production in the coculture clusteroids was enhanced with VEGF, urea, and insulin-like growth factor-binding protein along with angiogenesis-related marker CD34 levels, also indicating angiogenesis progress. Our aqueous two-phase Pickering emulsion templates provided a convenient approach to vascularize a target cell type in 3D cell coculture without additional stimulating factors, which could potentially apply to either cell lines or biopsy tissues, expanding the clusteroids downstream applications.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, United Kingdom
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull HU67RX, United Kingdom
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan 010000, Kazakhstan
| |
Collapse
|
85
|
Wang A, Madden LA, Paunov VN. Vascularized Co-Culture Clusteroids of Primary Endothelial and Hep-G2 Cells Based on Aqueous Two-Phase Pickering Emulsions. Bioengineering (Basel) 2022; 9:bioengineering9030126. [PMID: 35324815 PMCID: PMC8945860 DOI: 10.3390/bioengineering9030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional cell culture has been extensively involved in biomedical applications due to its high availability and relatively mature biochemical properties. However, single 3D cell culture models based on hydrogel or various scaffolds do not meet the more in-depth requirements of in vitro models. The necrotic core formation inhibits the utilization of the 3D cell culture ex vivo as oxygen permeation is impaired in the absence of blood vessels. We report a simple method to facilitate the formation of angiogenic HUVEC (human umbilical vein endothelial cells) and Hep-G2 (hepatocyte carcinoma model) co-culture 3D clusteroids in a water-in-water (w/w) Pickering emulsions template which can overcome this limitation. This method enabled us to manipulate the cells proportion in order to achieve the optimal condition for stimulating the production of various angiogenic protein markers in the co-cultured clusteroids. The HUVEC cells respond to the presence of Hep-G2 cells and their byproducts by forming endothelial cell sprouts in Matrigel without the exogenous addition of vascular endothelial growth factor (VEGF) or other angiogenesis inducers. This culture method can be easily replicated to produce other types of cell co-culture spheroids. The w/w Pickering emulsion template can facilitate the fabrication of 3D co-culture models to a great extent and be further utilized in drug testing and tissue engineering applications.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK;
| | - Leigh A. Madden
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, UK;
| | - Vesselin N. Paunov
- Department of Chemistry, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence:
| |
Collapse
|
86
|
Zha S, Utomo YKS, Yang L, Liang G, Liu W. Mechanic-Driven Biodegradable Polyglycolic Acid/Silk Fibroin Nanofibrous Scaffolds Containing Deferoxamine Accelerate Diabetic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14030601. [PMID: 35335978 PMCID: PMC8948832 DOI: 10.3390/pharmaceutics14030601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The extracellular matrix (ECM), comprising of hundreds of proteins, mainly collagen, provides physical, mechanical support for various cells and guides cell behavior as an interactive scaffold. However, deposition of ECM, especially collagen content, is seriously impaired in diabetic wounds, which cause inferior mechanical properties of the wound and further delay chronic wound healing. Thus, it is critical to develop ECM/collagen alternatives to remodel the mechanical properties of diabetic wounds and thus accelerate diabetic wound healing. Here, we firstly prepared mechanic-driven biodegradable PGA/SF nanofibrous scaffolds containing DFO for diabetic wound healing. In our study, the results in vitro showed that the PGA/SF-DFO scaffolds had porous three-dimensional nanofibrous structures, excellent mechanical properties, biodegradability, and biocompatibility, which would provide beneficial microenvironments for cell adhesion, growth, and migration as an ECM/collagen alternative. Furthermore, the data in vivo showed PGA/SF-DFO scaffolds can adhere well to the wound and have excellent biodegradability, which is helpful to avoid secondary damage by omitting the removal process of scaffolds. The finite element analysis results showed that the application of silk fibroin-based scaffolds could significantly reduce the maximum stress around the wound. Besides, PGA/SF-DFO scaffolds induced collagen deposition, re-vascularization, recovered impaired mechanical properties up to about 70%, and ultimately accelerated diabetic wound healing within 14 days. Thus, our work provides a promising therapeutic strategy for clinically chronic wound healing.
Collapse
|
87
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
88
|
Singh M, Akkaya S, Preuß M, Rademacher F, Tohidnezhad M, Kubo Y, Behrendt P, Weitkamp JT, Wedel T, Lucius R, Gläser R, Harder J, Bayer A. Platelet-Released Growth Factors Influence Wound Healing-Associated Genes in Human Keratinocytes and Ex Vivo Skin Explants. Int J Mol Sci 2022; 23:ijms23052827. [PMID: 35269967 PMCID: PMC8911300 DOI: 10.3390/ijms23052827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Platelet-released growth factors (PRGFs) or other thrombocyte concentrate products, e.g., Platelet-Rich Fibrin (PRF), have become efficient tools of regenerative medicine in many medical disciplines. In the context of wound healing, it has been demonstrated that treatment of chronic or complicated wounds with PRGF or PRF improves wound healing in the majority of treated patients. Nevertheless, the underlying cellular and molecular mechanism are still poorly understood. Therefore, we aimed to analyze if PRGF-treatment of human keratinocytes caused the induction of genes encoding paracrine factors associated with successful wound healing. The investigated genes were Semaphorin 7A (SEMA7A), Angiopoietin-like 4 (ANGPLT4), Fibroblast Growth Factor-2 (FGF-2), Interleukin-32 (IL-32), the CC-chemokine-ligand 20 (CCL20), the matrix-metalloproteinase-2 (MMP-2), the chemokine C-X-C motif chemokine ligand 10 (CXCL10) and the subunit B of the Platelet-Derived Growth Factor (PDGFB). We observed a significant gene induction of SEMA7A, ANGPLT4, FGF-2, IL-32, MMP-2 and PDGFB in human keratinocytes after PRGF treatment. The CCL20- and CXCL10 gene expressions were significantly inhibited by PRGF therapy. Signal transduction analyses revealed that the PRGF-mediated gene induction of SEMA7A, ANGPLT4, IL-32 and MMP-2 in human keratinocytes was transduced via the IL-6 receptor pathway. In contrast, EGF receptor signaling was not involved in the PRGF-mediated gene expression of analyzed genes in human keratinocytes. Additionally, treatment of ex vivo skin explants with PRGF confirmed a significant gene induction of SEMA7A, ANGPLT4, MMP-2 and PDGFB. Taken together, these results describe a new mechanism that could be responsible for the beneficial wound healing properties of PRGF or related thrombocytes concentrate products such as PRF.
Collapse
Affiliation(s)
- Michael Singh
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Serhat Akkaya
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Mark Preuß
- Department for Vascular Medicine, Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Franziska Rademacher
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Peter Behrendt
- Department of Trauma Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Jan-Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24015 Kiel, Germany;
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Regine Gläser
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Andreas Bayer
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
- Correspondence:
| |
Collapse
|
89
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
90
|
Liang W, Zhao E, Li G, Bi H, Zhao Z. Suture Cells in a Mechanical Stretching Niche: Critical Contributors to Trans-sutural Distraction Osteogenesis. Calcif Tissue Int 2022; 110:285-293. [PMID: 34802070 DOI: 10.1007/s00223-021-00927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
Trans-sutural distraction osteogenesis has been proposed as an alternative technique of craniofacial remodelling surgery for craniosynostosis correction. Many studies have defined the contribution of a series of biological events to distraction osteogenesis, such as changes in gene expression, changes in suture cell behaviour and changes in suture collagen fibre characteristics. However, few studies have elucidated the systematic molecular and cellular mechanisms of trans-sutural distraction osteogenesis, and no study has highlighted the contribution of cell-cell or cell-matrix interactions with respect to the whole expansion process to date. Therefore, it is difficult to translate largely primary mechanistic insights into clinical applications and optimize the clinical outcome of trans-sutural distraction osteogenesis. In this review, we carefully summarize in detail the literature related to the effects of mechanical stretching on osteoblasts, endothelial cells, fibroblasts, immune cells (macrophages and T cells), mesenchymal stem cells and collagen fibres in sutures during the distraction osteogenesis process. We also briefly review the contribution of cell-cell or cell-matrix interactions to bone regeneration at the osteogenic suture front from a comprehensive viewpoint.
Collapse
Affiliation(s)
- Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Enzhe Zhao
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Guan Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
91
|
Eid ES, Kurban MS. A Piez-O the Jigsaw: Piezo1 Channel in Skin Biology. Clin Exp Dermatol 2022; 47:1036-1047. [PMID: 35181897 DOI: 10.1111/ced.15138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
The skin is the largest organ covering the entirety of the body. Its role as a physical barrier to the outside world as well as its endocrinologic and immunologic functions subject it to continuous internal and external mechanical forces. Thus, mechanotransduction is of the utmost importance for the skin in order to process and leverage mechanical input for its various functions. Piezo1 is a mechanosensitive ion channel that is a primary mediator of mechanotransduction and is highly expressed in the skin. The Nobel prize winning discovery of Piezo1 has had a profound impact on our understanding of physiology and pathology including paramount contributions in cutaneous biology. This review provides insight into the roles of Piezo1 in the development, physiology, and pathology of the skin with a special emphasis on the molecular pathways through which it instigates these various roles. In epidermal homeostasis, Piezo1 mediates cell extrusion and division in the face of overcrowding and low cellular density conditions, respectively. Piezo1 also aids in orchestrating mechanosensation, DNA protection from mechanical stress, and the various components of wound healing. Conversely, Piezo1 is pathologically implicated in melanoma progression, wound healing delay, cutaneous scarring, and hair loss. By shedding light on these functions, we aim to unravel the potential diagnostic and therapeutic value Piezo1 might hold in the field of Dermatology.
Collapse
Affiliation(s)
- Edward S Eid
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Mazen S Kurban
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics; American University of Beirut.,Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
92
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
93
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
94
|
Jiguet-Jiglaire C, Boissonneau S, Denicolai E, Hein V, Lasseur R, Garcia J, Romain S, Appay R, Graillon T, Mason W, Carpentier AF, Brandes AA, Ouafik L, Wick W, Baaziz A, Gigan JP, Argüello RJ, Figarella-Branger D, Chinot O, Tabouret E. Plasmatic MMP9 released from tumor-infiltrating neutrophils is predictive for bevacizumab efficacy in glioblastoma patients: an AVAglio ancillary study. Acta Neuropathol Commun 2022; 10:1. [PMID: 34980260 PMCID: PMC8722051 DOI: 10.1186/s40478-021-01305-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
We previously identified matrix metalloproteinase 2 (MMP2) and MMP9 plasma levels as candidate biomarkers of bevacizumab activity in patients with recurrent glioblastoma. The aim of this study was to assess the predictive value of MMP2 and MMP9 in a randomized phase III trial in patients with newly diagnosed glioblastoma and to explore their tumor source. In this post hoc analysis of the AVAglio trial (AVAGlio/NCT00943826), plasma samples from 577 patients (bevacizumab, n = 283; placebo, n = 294) were analyzed for plasma MMP9 and MMP2 levels by enzyme-linked immunosorbent assay. A prospective local cohort of 38 patients with newly diagnosed glioblastoma was developed for analysis of tumor characteristics by magnetic resonance imaging and measurement of plasma and tumor levels of MMP9 and MMP2. In this AVAglio study, MMP9, but not MMP2, was correlated with bevacizumab efficacy. Patients with low MMP9 derived a significant 5.2-month overall survival (OS) benefit with bevacizumab (HR 0.51, 95% CI 0.34-0.76, p = 0.0009; median 13.6 vs. 18.8 months). In multivariate analysis, a significant interaction was seen between treatment and MMP9 (p = 0.03) for OS. In the local cohort, we showed that preoperative MMP9 plasma levels decreased after tumor resection and were correlated with tumor levels of MMP9 mRNA (p = 0.03). However, plasma MMP9 was not correlated with tumor size, invasive pattern, or angiogenesis. Using immunohistochemistry, we showed that MMP9 was expressed by inflammatory cells but not by tumor cells. After cell sorting, we showed that MMP9 was expressed by CD45+ immune cells. Finally, using flow cytometry, we showed that MMP9 was expressed by tumor-infiltrating neutrophils. In conclusion, circulating MMP9 is predictive of bevacizumab efficacy and is released by tumor-infiltrating neutrophils.
Collapse
|
95
|
Zheng Z, Chen J, Chopp M. Mechanisms of Plasticity Remodeling and Recovery. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
96
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio 2022; 13:100208. [PMID: 35198957 PMCID: PMC8841842 DOI: 10.1016/j.mtbio.2022.100208] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field.
Collapse
Key Words
- CFL, Cell-free layer
- CGMD, Coarse-grained molecular dynamic
- Clinical translation
- DPD, Dissipative particle dynamic
- Drug delivery
- Drug loading
- ECM, Extracellular matrix
- EPR, Permeability and retention
- IFP, Interstitial fluid pressure
- MD, Molecular dynamic
- MDR, Multidrug resistance
- MEC, Minimum effective concentration
- MMPs, Matrix metalloproteinases
- MPS, Mononuclear phagocyte system
- MTA, Multi-tadpole assemblies
- MTC, Minimum toxic concentration
- Nanomedicine
- Nanoparticle design
- RBC, Red blood cell
- TAF, Tumor-associated fibroblast
- TAM, Tumor-associated macrophage
- TIMPs, Tissue inhibitor of metalloproteinases
- TME, Tumor microenvironment
- Tumor microenvironment
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Lance L. Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
97
|
Herrera-Vargas AK, García-Rodríguez E, Olea-Flores M, Mendoza-Catalán MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev 2021; 62:23-41. [PMID: 34736827 DOI: 10.1016/j.cytogfr.2021.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.
Collapse
Affiliation(s)
- Ana K Herrera-Vargas
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO, 39090, Mexico.
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO 39087, Mexico.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
98
|
Colón-Bolea P, García-Gómez R, Casar B. RAC1 Activation as a Potential Therapeutic Option in Metastatic Cutaneous Melanoma. Biomolecules 2021; 11:1554. [PMID: 34827551 PMCID: PMC8615836 DOI: 10.3390/biom11111554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Metastasis is a complex process by which cancer cells escape from the primary tumor to colonize distant organs. RAC1 is a member of the RHO family of small guanosine triphosphatases that plays an important role in cancer migration, invasion, angiogenesis and metastasis. RAC1 activation has been related to most cancers, such as cutaneous melanoma, breast, lung, and pancreatic cancer. RAC1P29S driver mutation appears in a significant number of cutaneous melanoma cases. Likewise, RAC1 is overexpressed or hyperactivated via signaling through oncogenic cell surface receptors. Thus, targeting RAC1 represents a promising strategy for cutaneous melanoma therapy, as well as for inhibition of other signaling activation that promotes resistance to targeted therapies. In this review, we focus on the role of RAC1 in metastatic cutaneous melanoma emphasizing the anti-metastatic potential of RAC1- targeting drugs.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas—Universidad de Cantabria, 39011 Santander, Spain; (P.C.-B.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
99
|
Yang GL, Wang S, Zhang S, Liu Y, Liu X, Wang D, Wei H, Xiong J, Zhang ZS, Wang Z, Li LY, Zhang J. A Protective Role of Tumor Necrosis Factor Superfamily-15 in Intracerebral Hemorrhage-Induced Secondary Brain Injury. ASN Neuro 2021; 13:17590914211038441. [PMID: 34596444 PMCID: PMC8642778 DOI: 10.1177/17590914211038441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Destabilization of blood vessels by the activities of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) following intracerebral hemorrhage (ICH) has been considered the main causes of aggravated secondary brain injury. Here, we show that tumor necrosis factor superfamily-15 (TNFSF15; also known as vascular endothelial growth inhibitor), an inhibitor of VEGF-induced vascular hyper-permeability, when overexpressed in transgenic mice, exhibits a neuroprotective function post-ICH. In this study, we set-up a collagenase-induced ICH model with TNFSF15-transgenic mice and their transgene-negative littermates. We observed less lesion volume and neural function perturbations, together with less severe secondary injuries in the acute phase that are associated with brain edema and inflammation, including vascular permeability, oxidative stress, microglia/macrophage activation and neutrophil infiltration, and neuron degeneration, in the TNFSF15 group compared with the littermate group. Additionally, we show that there is an inhibition of VEGF-induced elevation of MMP-9 in the perihematomal blood vessels of the TNFSF15 mice following ICH, concomitant with enhanced pericyte coverage of the perihematomal blood vessels. These findings are consistent with the view that TNFSF15 may have a potential as a therapeutic agent for the treatment of secondary injuries in the early phase of ICH.
Collapse
Affiliation(s)
- Gui-Li Yang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shizhao Wang
- 128790North China University of Science and Technology Affiliated Hospital, Tangshan, HeBei Province, China
| | - Shu Zhang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ye Liu
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiao Liu
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Huijie Wei
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianhua Xiong
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, 12538Nankai University College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, 12538Nankai University College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
100
|
Erhardt EB, Adair JC, Knoefel JE, Caprihan A, Prestopnik J, Thompson J, Hobson S, Siegel D, Rosenberg GA. Inflammatory Biomarkers Aid in Diagnosis of Dementia. Front Aging Neurosci 2021; 13:717344. [PMID: 34489684 PMCID: PMC8416621 DOI: 10.3389/fnagi.2021.717344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Dual pathology of Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID) commonly are found together at autopsy, but mixed dementia (MX) is difficult to diagnose during life. Biological criteria to diagnose AD have been defined, but are not available for vascular disease. We used the biological criteria for AD and white matter injury based on MRI to diagnose MX. Then we measured multiple biomarkers in CSF and blood with multiplex biomarker kits for proteases, angiogenic factors, and cytokines to explore pathophysiology in each group. Finally, we used machine learning with the Random forest algorithm to select the biomarkers of maximal importance; that analysis identified three proteases, matrix metalloproteinase-10 (MMP-10), MMP-3 and MMP-1; three angiogenic factors, VEGF-C, Tie-2 and PLGF, and three cytokines interleukin-2 (IL-2), IL-6, IL-13. To confirm the clinical importance of the variables, we showed that they correlated with results of neuropsychological testing.
Collapse
Affiliation(s)
- Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - John C Adair
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States.,Center for Memory and Aging, Albuquerque, NM, United States
| | - Janice E Knoefel
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States.,Center for Memory and Aging, Albuquerque, NM, United States
| | | | | | | | - Sasha Hobson
- Center for Memory and Aging, Albuquerque, NM, United States
| | - David Siegel
- Department of Anesthesiology, University of New Mexico, Albuquerque, NM, United States
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States.,Center for Memory and Aging, Albuquerque, NM, United States
| |
Collapse
|