51
|
Takeda K, Nagamatsu K, Okumura K. A water-soluble derivative of propolis augments the cytotoxic activity of natural killer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 218:51-58. [PMID: 29496576 DOI: 10.1016/j.jep.2018.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis, a resinous material collected from numerous plants by honeybees, has historically been used as a health-promoting food. Recently, due to its potential anti-tumor effects, use of propolis has been proposed as an adjuvant therapy to chemotherapy; however, the effects of propolis on immune responses remain unclear. AIM OF THE STUDY In this study, we examined the effects of the oral ingestion of propolis on natural killer (NK) cell activity, which is important in immune surveillance against cancer and viral infections. In addition, we assessed the effects of the major components of the water-soluble powder derivative of propolis (WPP). MATERIALS AND METHODS C57BL/6 (B6) wild-type (WT) and RAG 2-deficient (RAG-/-) mice and BALB/c WT, interferon (IFN)-γ-deficient (IFN-γ-/-), IFN-γ receptor-deficient (IFN-γR-/-) and RAG-/- mice were orally administered WPP or its major components. NK cell populations and cytotoxic activity were then examined by flow cytometry and 51Cr release assay, respectively. RESULTS While the cytotoxic activity of NK cells was increased following administration of 100 mg/kg/day of WPP for 7 days or 200 or 500 mg/kg/day of WPP for 4 days in WT mice, the proportions of NK cell populations were unaltered. Similar activation of NK cell cytotoxicity was observed when RAG-/-, but not IFN-γ-/- or IFN-γR-/-, mice were orally administered 200 mg/kg/day of WPP for 4 days. Oral ingestion of artepillin C or p-coumaric acid, but not drupanin, augmented NK cell cytotoxicity in a manner similar to WPP and to the mixture of these three components. CONCLUSION These results suggest that oral ingestion of WPP enhances NK cell cytotoxic activity, but not proliferation, in a manner dependent on IFN-γ and without the contribution of acquired immune responses. Further, artepillin C or p-coumaric acid, but not drupanin, may be the components responsible for this augmentation of NK cell cytotoxicity. These findings suggest the possible utility of WPP as a therapeutic for prevention of cancer development and against viral infection through NK cell activation.
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Katashi Nagamatsu
- Morikawa Kenkodo Co., Ltd., 2170 Taguchi, Kousa-machi, Kamimashiki-gun, Kumamoto 861-4616, Japan.
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
52
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
53
|
Carlin LE, Hemann EA, Zacharias ZR, Heusel JW, Legge KL. Natural Killer Cell Recruitment to the Lung During Influenza A Virus Infection Is Dependent on CXCR3, CCR5, and Virus Exposure Dose. Front Immunol 2018; 9:781. [PMID: 29719539 PMCID: PMC5913326 DOI: 10.3389/fimmu.2018.00781] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are vital components of the antiviral immune response, but their contributions in defense against influenza A virus (IAV) are not well understood. To better understand NK cell responses during IAV infections, we examined the magnitude, kinetics, and contribution of NK cells to immunity and protection during high- and low-dose IAV infections. Herein, we demonstrate an increased accumulation of NK cells in the lung in high-dose vs. low-dose infections. In part, this increase is due to the local proliferation of pulmonary NK cells. However, the majority of NK cell accumulation within the lungs and airways during an IAV infection is due to recruitment that is partially dependent upon CXCR3 and CCR5, respectively. Therefore, altogether, our results demonstrate that NK cells are actively recruited to the lungs and airways during IAV infection and that the magnitude of the recruitment may relate to the inflammatory environment found within the tissues during high- and low-dose IAV infections.
Collapse
Affiliation(s)
- Lindsey E Carlin
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Emily A Hemann
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zeb R Zacharias
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jonathan W Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
54
|
Guillerey C, Smyth MJ. Cancer Immunosurveillance by Natural Killer Cells and Other Innate Lymphoid Cells. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
55
|
Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, Schlom J, Hodge JW. IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 2017; 7:16130-45. [PMID: 26910920 PMCID: PMC4941302 DOI: 10.18632/oncotarget.7470] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-15-N72D superagonist-complexed with IL-15RαSushi-Fc fusion protein (IL-15SA/IL-15RαSu-Fc; ALT-803) has been reported to exhibit significant anti-tumor activity in murine myeloma, rat bladder cancer, and murine glioblastoma models. In this study, we examined the immunomodulatory and anti-tumor effects of IL-15SA/IL-15RαSu-Fc in tumor-free and highly metastatic tumor-bearing mice. Here, IL-15SA/IL-15RαSu-Fc significantly expanded natural killer (NK) and CD8+ T cells. In examining NK cell subsets, the greatest significant increase was in highly cytotoxic and migrating (CD11b+, CD27hi; high effector) NK cells, leading to enhanced function on a per-cell basis. CD8+ T cell subset analysis determined that IL-15SA/IL-15RαSu-Fc significantly increased IL-15 responding memory (CD122+, CD44+) CD8+ T cells, in particular those having the innate (NKG2D+, PD1−) phenotype. In 4T1 breast tumor–bearing mice, IL-15SA/IL-15RαSu-Fc induced significant anti-tumor activity against spontaneous pulmonary metastases, depending on CD8+ T and NK cells, and resulting in prolonged survival. Similar anti-tumor activity was seen in the experimental pulmonary metastasis model of CT26 colon carcinoma cells, particularly when IL-15SA/IL-15RαSu-Fc was combined with a cocktail of checkpoint inhibitors, anti-CTLA-4 and anti-PD-L1. Altogether, these studies showed for the first time that IL-15SA/IL-15RαSu-Fc (1) promoted the development of high effector NK cells and CD8+ T cell responders of the innate phenotype, (2) enhanced function of NK cells, and (3) played a vital role in reducing tumor metastasis and ultimately survival, especially in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Peter S Kim
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Xu
- Altor BioScience Corporation, Miramar, FL, USA
| | - Sarah Alter
- Altor BioScience Corporation, Miramar, FL, USA
| | | | - Hing C Wong
- Altor BioScience Corporation, Miramar, FL, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
56
|
Lin W, Man X, Li P, Song N, Yue Y, Li B, Li Y, Sun Y, Fu Q. NK cells are negatively regulated by sCD83 in experimental autoimmune uveitis. Sci Rep 2017; 7:12895. [PMID: 29038541 PMCID: PMC5643513 DOI: 10.1038/s41598-017-13412-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells represent a subset of lymphocytes that contribute to innate immunity and have been reported to play a role in autoimmune uveitis. However, the mechanisms regulating NK cellular function in this condition remain unclear. Herein, we investigated the status of NK cells in experimental autoimmune uveitis (EAU). We found that the number of CD83+CD3-NK1.1+ cells was increased in the inflamed eyes and spleens of the EAU mouse model. At the recovery stage of EAU, serum concentrations of soluble CD83 (sCD83) were increased. sCD83 treatment relieved retinal tissue damage and decreased the number of infiltrating NK cells in inflamed eyes. Further analysis of the effects of sCD83 treatment in EAU revealed that it reduced: 1) the expressions of CD11b and CD83 in NK cells, 2) the percent of CD11bhighCD27lowCD3-NK1.1+ cells and 3) the secretion of granzyme B, perforin and IFN-γ in NK cells as demonstrated both in vivo and in vitro. When sCD83 treated-NK cells were transferred into EAU mice, retinal tissue damage was relieved. These results demonstrate sCD83 down-regulate NK cellular function and thus provide important, new information regarding the means for the beneficial effects of this agent in the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Wei Lin
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China.
| | - Xuejing Man
- Department of Ophthalmology, Yuhuangding Hospital, Yantai, 264001, China
| | - Peng Li
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Nannan Song
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Yingying Yue
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Bingqing Li
- Department of microbiology, Institute of Basic medicine, Shandong Academy of medical Sciences, Jinan, 250032, China
| | - Yuanbin Li
- Department of Ophthalmology, Yuhuangding Hospital, Yantai, 264001, China
| | - Yufei Sun
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
57
|
Darji A, Desai N, Modi R, Khamar B, Rajkumar S. Establishment of cell line with NK/NKT phenotype from myeloid NK cell acute leukemia. Leuk Res 2017; 61:77-83. [PMID: 28934678 DOI: 10.1016/j.leukres.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022]
Abstract
Acute Myeloid Leukemia (AML) is the most common malignancy in adults with a 5-year survival rate of 27% of the total affected population. For effective treatment and new drug discovery, cell lines are considered as a very important tool. Here we report an establishment of a continuous human cell line AML-004 with a hypo-diploid chromosome 44 and presence of both NK/NKT phenotypes. The cell line was isolated from the blood sample of myeloid NK cell acute leukemia patients and extensively characterized by flow cytometery, morphology, and cytogentic analysis. Cytotoxicity by standard chemotherapeutic drugs was also examined. As characterized by Giemsa staining, the predominant cell type in the culture had high nuclear/cytoplasmic ratio. Cytogenetic analysis revealed high chromosome instability and structural abnormalities confirming the source of cell line from a patient with AML. The karyotype of the isolated cells did not alter up to around 40 passages. These AML-004 cells lacked specific markers for B and T lymphoid cells, but expressed surface receptors for lymphoid/NK cells. Cells also lacked the presence of early progenitors. The proliferation of the isolated cells was inversely proportional to the IL-2 concentration confirming presence of NK phenotype. AML-004 was resistant against standard chemotherapeutic drugs excluding cisplatin. Thus, AML-004 cells provide a continuous source of human cells for designing novel therapies for patients with T-lymphoblastic leukemia/lymphoma.
Collapse
Affiliation(s)
- A Darji
- Cadila Pharmaceuticals Ltd, 1389, Trasad Road, Dholka, Ahmedabad - 382225, Gujarat, India.
| | - N Desai
- Cadila Pharmaceuticals Ltd, 1389, Trasad Road, Dholka, Ahmedabad - 382225, Gujarat, India.
| | - R Modi
- Cadila Pharmaceuticals Ltd, Cadila Corporate Campus, Sarkhej-Dholka Road, Bhat, Ahmedabad - 382210, Gujarat, India.
| | - B Khamar
- Cadila Pharmaceuticals Ltd, Cadila Corporate Campus, Sarkhej-Dholka Road, Bhat, Ahmedabad - 382210, Gujarat, India.
| | - S Rajkumar
- Institute of Science, Nirma University, Ahmedabad - 382481, Gujarat, India.
| |
Collapse
|
58
|
NK cell subsets in autoimmune diseases. J Autoimmun 2017; 83:22-30. [DOI: 10.1016/j.jaut.2017.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
|
59
|
Mangan MS, Melo-Silva CR, Luu J, Bird CH, Koskinen A, Rizzitelli A, Prakash M, Scarff KL, Müllbacher A, Regner M, Bird PI. A pro-survival role for the intracellular granzyme B inhibitor Serpinb9 in natural killer cells during poxvirus infection. Immunol Cell Biol 2017; 95:884-894. [PMID: 28722018 DOI: 10.1038/icb.2017.59] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022]
Abstract
Intracellular serpins are proposed to inactivate proteases released from lysosome-related organelles into the host cell interior, preventing cell death. Serpinb9 opposes the immune cytotoxic protease, granzyme B, and in a number of settings protects cells against granzyme B-mediated cell death. Using a knockout mouse line engineered to express green fluorescent protein under the serpbinb9 promoter, we demonstrate that serpinb9 is vital for host survival during Ectromelia virus infection by maintaining both mature natural killer NK) cells, and activated CD8+ T cells. Serpinb9 expression parallels granzyme B expression within both populations during infection. Maturing serpinb9-null NK cells exhibit higher levels of granzyme B-mediated apoptosis during infection; hence there are fewer mature NK cells, and these cells also have lower cytotoxic potential. Thus the serpinb9-granzyme B axis is important for homeostasis of both major cytotoxic effector cell populations.
Collapse
Affiliation(s)
- Matthew S Mangan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carolina R Melo-Silva
- Department of Emerging Pathogens and Immunity, John Curtin School for Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jennii Luu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Catherina H Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Aulikki Koskinen
- Department of Emerging Pathogens and Immunity, John Curtin School for Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alexandra Rizzitelli
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Monica Prakash
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katrina L Scarff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Arno Müllbacher
- Department of Emerging Pathogens and Immunity, John Curtin School for Medical Research, Australian National University, Canberra, ACT, Australia
| | - Matthias Regner
- Department of Emerging Pathogens and Immunity, John Curtin School for Medical Research, Australian National University, Canberra, ACT, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
60
|
Choreño Parra JA, Martínez Zúñiga N, Jiménez Zamudio LA, Jiménez Álvarez LA, Salinas Lara C, Zúñiga J. Memory of Natural Killer Cells: A New Chance against Mycobacterium tuberculosis? Front Immunol 2017; 8:967. [PMID: 28855906 PMCID: PMC5558047 DOI: 10.3389/fimmu.2017.00967] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system, which play an important role in the initial defense against a wide variety of pathogens, including viruses and intracellular bacteria. NK cells produce cytokines that enhance immune responses directed toward pathogens and also exert cytotoxic activity against infected cells, thereby eliminating the reservoir of infection. Their role in defense against Mycobacterium tuberculosis (Mtb) has been recently studied, and there is increasing evidence that highlight the importance of NK cell function during pulmonary tuberculosis (PTB), especially in the absence of optimal T-cell responses. Additionally, in the last years, it has been observed that NK cells mediate secondary responses against antigens to which they were previously exposed, an ability classically attributed to lymphocytes of the adaptive branch of immunity. This phenomenon, called “innate memory,” could have important implications in the efforts to develop therapies and vaccines to improve the initial phases of immune reactions against different microorganisms, especially those to which there is not yet available vaccines to prevent infection, as is the case for tuberculosis. Therefore, the possibility of inducing memory-like NK cells ready to act prior to contact with Mtb or during the earliest stages of infection becomes quite interesting. However, our understanding of the mechanisms of innate memory remains incomplete. Here, we review recent literature about the mechanisms involved in the formation and maintenance of NK cell memory and the role of these cells in the immune response during tuberculosis. Finally, we discuss if the current evidence is sufficient to substantiate that NK cells exert more rapid and robust secondary responses after consecutive encounters with Mtb.
Collapse
Affiliation(s)
- José Alberto Choreño Parra
- Laboratory of Clinical Immunology I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas, Mexico City, Mexico
| | - Nayeli Martínez Zúñiga
- Brain Bank, Department of National Laboratories of Experimental Services, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Antonio Jiménez Zamudio
- Laboratory of Clinical Immunology I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Armando Jiménez Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas, Mexico City, Mexico
| | - Citlaltepetl Salinas Lara
- Department of Pathology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
61
|
Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2017; 17:1025-36. [PMID: 27540992 DOI: 10.1038/ni.3518] [Citation(s) in RCA: 767] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/22/2016] [Indexed: 12/14/2022]
Abstract
Alteration in the expression of cell-surface proteins is a common consequence of malignant transformation. Natural killer (NK) cells use an array of germline-encoded activating and inhibitory receptors that scan for altered protein-expression patterns, but tumor evasion of detection by the immune system is now recognized as one of the hallmarks of cancer. NK cells display rapid and potent immunity to metastasis or hematological cancers, and major efforts are now being undertaken to fully exploit NK cell anti-tumor properties in the clinic. Diverse approaches encompass the development of large-scale NK cell-expansion protocols for adoptive transfer, the establishment of a microenvironment favorable to NK cell activity, the redirection of NK cell activity against tumor cells and the release of inhibitory signals that limit NK cell function. In this Review we detail recent advances in NK cell-based immunotherapies and discuss the advantages and limitations of these strategies.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Medicine, University of Queensland, Herston, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Medicine, University of Queensland, Herston, Australia
| |
Collapse
|
62
|
Zamora AE, Aguilar EG, Sungur CM, Khuat LT, Dunai C, Lochhead GR, Du J, Pomeroy C, Blazar BR, Longo DL, Venstrom JM, Baumgarth N, Murphy WJ. Licensing delineates helper and effector NK cell subsets during viral infection. JCI Insight 2017; 2:87032. [PMID: 28515356 DOI: 10.1172/jci.insight.87032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) cells can be divided into phenotypic subsets based on expression of receptors that bind self-MHC-I molecules, a concept termed licensing or education. Here we show NK cell subsets with different migratory, effector, and immunoregulatory functions in dendritic cell and antigen (ag)-specific CD8+ T cell responses during influenza and murine cytomegalovirus infections. Shortly after infection, unlicensed NK cells localized in draining lymph nodes and produced GM-CSF, which correlated with the expansion and activation of dendritic cells, and resulted in greater and sustained ag-specific T cell responses. In contrast, licensed NK cells preferentially migrated to infected tissues and produced IFN-γ. Importantly, human NK cell subsets exhibited similar phenotypic characteristics. Collectively, our studies demonstrate a critical demarcation between the functions of licensed and unlicensed NK cell subsets, with the former functioning as the classical effector subset and the latter as the stimulator of adaptive immunity helping to prime immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - G Raymond Lochhead
- Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| | - Juan Du
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Claire Pomeroy
- President of Lasker Foundation, Albert and Mary Lasker Foundation, New York City, New York, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dan L Longo
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | - Nicole Baumgarth
- Center for Comparative Medicine, UC Davis, Davis, California, USA
| | - William J Murphy
- Department of Dermatology.,Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
63
|
Camps-Bossacoma M, Pérez-Cano FJ, Franch À, Untersmayr E, Castell M. Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats. J Nutr Biochem 2017; 42:182-193. [PMID: 28189917 DOI: 10.1016/j.jnutbio.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/14/2017] [Indexed: 01/10/2023]
Abstract
Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain; Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Francisco J Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
64
|
Littwitz-Salomon E, Dittmer U, Sutter K. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells. Retrovirology 2016; 13:77. [PMID: 27821119 PMCID: PMC5100108 DOI: 10.1186/s12977-016-0311-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/27/2016] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Ulf Dittmer
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
65
|
Abstract
Treatments for autoimmune diseases including type 1 diabetes (T1D) are aimed at resetting the immune system, especially its adaptive arm. The innate immune system is often ignored in the design of novel immune-based therapies. There is increasing evidence for multiple natural killer (NK) subpopulations, but their role is poorly understood in autoimmunity and likely is contributing to the controversial role reported for NKs. In this review, we will summarize NK subsets and their roles in tolerance, autoimmune diabetes, and immunotherapy.
Collapse
Affiliation(s)
- Chris Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
66
|
Bernardini G, Antonangeli F, Bonanni V, Santoni A. Dysregulation of Chemokine/Chemokine Receptor Axes and NK Cell Tissue Localization during Diseases. Front Immunol 2016; 7:402. [PMID: 27766097 PMCID: PMC5052267 DOI: 10.3389/fimmu.2016.00402] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Chemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including natural killer (NK) cells. Current research is focused on analyzing changes in chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors, including CXCR4, CXCR3, and CX3CR1, are differentially expressed by NK cell subsets, and their expression levels can be modulated during NK cell activation. At first, this review will summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University, Rome, Italy; IRCCS NEUROMED - Mediterranean Neurological Institute, Isernia, Italy
| | | | - Valentina Bonanni
- Department of Molecular Medicine, Sapienza University , Rome , Italy
| | - Angela Santoni
- IRCCS NEUROMED - Mediterranean Neurological Institute, Isernia, Italy; Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
67
|
Sipka A, Pomeroy B, Klaessig S, Schukken Y. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro. Comp Immunol Microbiol Infect Dis 2016; 48:54-60. [DOI: 10.1016/j.cimid.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
|
68
|
Ivanova DL, Fatima R, Gigley JP. Comparative Analysis of Conventional Natural Killer Cell Responses to Acute Infection with Toxoplasma gondii Strains of Different Virulence. Front Immunol 2016; 7:347. [PMID: 27721814 PMCID: PMC5033988 DOI: 10.3389/fimmu.2016.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Conventional natural killer (cNK) cells, members of group 1 innate lymphoid cells, are a diverse cell subpopulation based on surface receptor expression, maturation, and functional potential. cNK cells are critical for early immunity to Toxoplasma gondii via IFNγ production. Acute cNK cell responses to infection with different strains of T. gondii have not yet been characterized in detail. Here, we comprehensively performed this analysis with Type I virulent RH, Type II avirulent ME49, and fully attenuated Type I cps1-1 strains. In response to these three parasite strains, murine cNK cells produce IFNγ and become cytotoxic and polyfunctional (IFNγ+CD107a+) at the site of infection. In contrast to virulent RH and avirulent ME49 T. gondii strains, attenuated cps1-1 induced only local cNK cell responses. Infections with RH and ME49 parasites significantly decreased cNK cell frequency and numbers in spleen 5 days post infection compared with cps1-1 parasites. cNK cell subsets expressing activating receptors Ly49H, Ly49D, and NKG2D and inhibitory receptors Ly49I and CD94/NKG2A were similar when compared between the strains and at 5 days post infection. cNK cells were not proliferating (Ki67−) 5 days post infection with any of the strains. cNK cell maturation as measured by CD27, CD11b, and KLRG1 was affected after infection with different parasite strains. RH and ME49 infection significantly reduced mature cNK cell frequency and increased immature cNK cell populations compared with cps1-1 infection. Interestingly, KLRG1 was highly expressed on immature cNK cells after RH infection. After RH and ME49 infections, CD69+ cNK cells in spleen were present at higher frequency than after cps1-1 infection, which may correlate with loss of the mature cNK cell population. Cytokine multiplex analysis indicated cNK cell responses correlated with peritoneal exudate cell, spleen, and serum proinflammatory cytokine levels, including IL-12. qPCR analysis of parasite-specific B1 gene revealed that parasite burdens may affect cNK cell responses. This study demonstrates infection with RH and ME49 parasites impacts cNK cell maturation during acute T. gondii infection. Different cNK cell responses could impact early immunity and susceptibility to these strains.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| | - Rida Fatima
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| |
Collapse
|
69
|
Elhaik Goldman S, Moshkovits I, Shemesh A, Filiba A, Tsirulsky Y, Vronov E, Shagan M, Apte RN, Benharroch DA, Karo-Atar D, Dagan R, Munitz A, Mizrachi Nebenzahl Y, Porgador A. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation. PLoS One 2016; 11:e0160779. [PMID: 27580126 PMCID: PMC5007051 DOI: 10.1371/journal.pone.0160779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023] Open
Abstract
The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Itay Moshkovits
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet Filiba
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yevgeny Tsirulsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Elena Vronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - D aniel Benharroch
- Soroka University Medical Center, Department of Pathology, Bear Sheva, Israel
| | - Danielle Karo-Atar
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ron Dagan
- Faculty of Health Science, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
- * E-mail: ;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail: ;
| |
Collapse
|
70
|
Almishri W, Santodomingo-Garzon T, Le T, Stack D, Mody CH, Swain MG. TNFα Augments Cytokine-Induced NK Cell IFNγ Production through TNFR2. J Innate Immun 2016; 8:617-629. [PMID: 27560480 DOI: 10.1159/000448077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
NK cells play a central role in innate immunity, acting directly through cell-mediated cytotoxicity and by secreting cytokines. TNFα activation of TNFR2 enhances NK cell cytotoxicity, but its effects on the other essential function of NK cells - cytokine production, for which IFNγ is paramount - are poorly defined. We identify the expression of both TNFα receptors on human peripheral blood NK cells (TNFR2 > TNFR1) and show that TNFα significantly augments IFNγ production from IL-2-/IL-12-treated NK cells in vitro, an effect mimicked by a TNFR2 agonistic antibody. TNFα also enhanced murine NK cell IFNγ production via TNFR2 in vitro. In a mouse model characterized by the hepatic recruitment and activation of NK cells, TNFR2 also regulated NK cell IFNγ production in vivo. Specifically, in this model, after activation of an innate immune response, hepatic numbers of TNFR2-expressing and IFNγ-producing NK cells were both significantly increased; however, the frequency of IFNγ-producing hepatic NK cells was significantly reduced in TNFR2-deficient mice. We delineate an important role for TNFα, acting through TNFR2, in augmenting cytokine-induced NK cell IFNγ production in vivo and in vitro, an effect with significant potential implications for the regulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Wagdi Almishri
- Immunology Research Group, Snyder Institute, Liver Unit, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada
| | | | | | | | | | | |
Collapse
|
71
|
Hertwig L, Hamann I, Romero-Suarez S, Millward JM, Pietrek R, Chanvillard C, Stuis H, Pollok K, Ransohoff RM, Cardona AE, Infante-Duarte C. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Eur J Immunol 2016; 46:1984-96. [PMID: 27325505 DOI: 10.1002/eji.201546194] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022]
Abstract
Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals.
Collapse
Affiliation(s)
- Laura Hertwig
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Isabell Hamann
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvina Romero-Suarez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jason M Millward
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rebekka Pietrek
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Coralie Chanvillard
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hanna Stuis
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Karolin Pollok
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,German Rheumatism Research Center, Germany and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
72
|
Gao M, Yang Y, Li D, Ming B, Chen H, Sun Y, Xiao Y, Lai L, Zou H, Xu Y, Xiong P, Tan Z, Gong F, Zheng F. CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis. Innate Immun 2016; 22:395-404. [DOI: 10.1177/1753425916658111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27high and CD27low/− subsets. The CD27high subset was decreased and the CD27low/− subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27high subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27low/− subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27high subset, the CD27low/− subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro. Additionally, adoptive transfer of the CD27low/− subset, but not the CD27high subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease.
Collapse
Affiliation(s)
- Ming Gao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Daling Li
- Department of Anesthesiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huoying Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Sun
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xiong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Müller AA, Dolowschiak T, Sellin ME, Felmy B, Verbree C, Gadient S, Westermann AJ, Vogel J, LeibundGut-Landmann S, Hardt WD. An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection. PLoS Pathog 2016; 12:e1005723. [PMID: 27341123 PMCID: PMC4920399 DOI: 10.1371/journal.ppat.1005723] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 01/26/2023] Open
Abstract
Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. Salmonella Typhimurium is a common cause of foodborne diarrhea. The disease symptoms arise already a few hours after infection. However, it had remained unclear how the immune system can mount the responses eliciting the disease symptoms so quickly. Earlier work in a mouse model had shown that the gut epithelium expresses a sensor, called NAIP/NLRC4/caspase-1 inflammasome that can detect the pathogen and mount a defense by 12-18h p.i. However, it has remained uncharacterized how inflammasome sensing drives the initial gut inflammation. Here, we found that the caspase-1 inflammasome triggers the production of IL-18, a pro-inflammatory cytokine that appears essential for the early onset of inflammation. IL-18 is driving the accumulation of NK cells into the infected mucosa, via the upregulation of NK cell chemoattractants and by the stimulation of their migratory capacity. Mature NK cells seem to induce mucosal inflammation via a perforin-mediated cytotoxic response. These data suggest that the inflammasome/IL-18/NK cell axis is a driver of early mucosal inflammation via a perforin-dependent cytotoxic NK cell response. Future work will have to address, if this mechanism is equally potent in the human gut and may contribute to ramping up the host's response during the first hours of infection. This may have implications for other gut infections and might provide leads for developing therapies.
Collapse
Affiliation(s)
- Anna A. Müller
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Mikael E. Sellin
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Uppsala, Sweden
| | - Boas Felmy
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Sandra Gadient
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
74
|
Zhang QF, Yin WW, Xia Y, Yi YY, He QF, Wang X, Ren H, Zhang DZ. Liver-infiltrating CD11b -CD27 - NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression. Cell Mol Immunol 2016; 14:819-829. [PMID: 27321064 PMCID: PMC5649104 DOI: 10.1038/cmi.2016.28] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells have a vital role in killing hepatocellular carcinoma (HCC) cells; however, the mechanism underlying tumor-infiltrating NK (TINK)-cell dysfunction remains poorly understood. Using flow cytometry staining, we precisely characterized the frequency, phenotype and function of NK subsets distinguished by CD27 and CD11b in 30 patients with HCC in comparison to 30 healthy controls. Interestingly, we found a substantial proportion of liver-infiltrating CD11b−CD27− (DN) NK subsets in tumor tissue from HCC patients. Remarkably, these relatively expanded DN NK subsets exhibited an inactive and immature phenotype. By detecting the expression of CD107a and interferon-gamma (IFN-γ) on NK subsets and NK cells, we demonstrated that DN NK subsets exhibited a poor cytotoxic capacity and deficient potential to produce IFN-γ in comparison to the other three subsets, which contributed to the dysfunction of TINK cells in HCC patients. In addition, we found that the presence of DN NK cells was closely associated with the clinical outcomes of HCC patients, as the frequency of DN NK cells among TINK cells was positively correlated with tumor stage and size. A large percentage of DN NK cells among TINK cells was an independent prognostic factor for lower survival in the 60-month follow-up period. In conclusion, a substantial proportion of CD11b−CD27−NK subsets among TINK cells accounts for NK-cell dysfunction in patients with HCC and is associated with tumor progression. Our study may provide a novel therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Qiong-Fang Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Wen-Wei Yin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Yang Xia
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Ya-Yang Yi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Qiu-Feng He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Xing Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Da-Zhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
75
|
Finkel P, Frey B, Mayer F, Bösl K, Werthmöller N, Mackensen A, Gaipl US, Ullrich E. The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia. Oncoimmunology 2016; 5:e1101206. [PMID: 27471606 PMCID: PMC4938308 DOI: 10.1080/2162402x.2015.1101206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
Classical tumor therapy consists of surgery, radio(RT)- and/or chemotherapy. Additive immunotherapy has gained in impact and antitumor in situ immunization strategies are promising to strengthen innate and adaptive immune responses. Immunological effects of RT and especially in combination with immune stimulation are mostly described for melanoma. Since hyperthermia (HT) in multimodal settings is capable of rendering tumor cells immunogenic, we analyzed the in vivo immunogenic potential of RT plus HT-treated B16 melanoma cells with an immunization and therapeutic assay. We focused on the role of natural killer (NK) cells in the triggered antitumor reactions. In vitro experiments showed that RT plus HT-treated B16 melanoma cells died via apoptosis and necrosis and released especially the danger signal HMGB1. The in vivo analyses revealed that melanoma cells are rendered immunogenic by RT plus HT. Especially, the repetitive immunization with treated melanoma cells led to an increase in NK cell number in draining lymph nodes, particularly of the immune regulatory CD27+CD11b− NK cell subpopulation. While permanent NK cell depletion after immunization led to a significant acceleration of tumor outgrowth, a single NK cell depletion two days before immunization resulted in significant tumor growth retardation. The therapeutic model, a local in situ immunization closely resembling the clinical situation when solid tumors are exposed locally to RT plus HT, confirmed these effects. We conclude that a dual and time-dependent impact of NK cells on the efficacy of antitumor immune reactions induced by immunogenic tumor cells generated with RT plus HT exists.
Collapse
Affiliation(s)
- Patrick Finkel
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany; LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Friederike Mayer
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Karina Bösl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Nina Werthmöller
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Evelyn Ullrich
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany; LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany; Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
76
|
Mansilla MJ, Contreras-Cardone R, Navarro-Barriuso J, Cools N, Berneman Z, Ramo-Tello C, Martínez-Cáceres EM. Cryopreserved vitamin D3-tolerogenic dendritic cells pulsed with autoantigens as a potential therapy for multiple sclerosis patients. J Neuroinflammation 2016; 13:113. [PMID: 27207486 PMCID: PMC4874005 DOI: 10.1186/s12974-016-0584-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
Background Tolerogenic dendritic cells (tolDC) have been postulated as a potent immunoregulatory therapy for autoimmune diseases such as multiple sclerosis (MS). In a previous study, we demonstrated that the administration of antigen-specific vitamin D3 (vitD3) tolDC in mice showing clinical signs of experimental autoimmune encephalomyelitis (EAE; the animal model of MS) resulted in abrogation of disease progression. With the purpose to translate this beneficial therapy to the clinics, we have investigated the effectivity of vitD3-frozen antigen-specific tolDC pulsed with myelin oligodendrocyte glycoprotein 40-55 peptide (f-tolDC-MOG) since it would reduce the cost, functional variability and number of leukapheresis to perform to the patients. Methods Mice showing EAE clinical signs were treated with repetitive doses of f-tolDC-MOG. Tolerogenic mechanisms induced by the therapy were analysed by flow cytometry and T cell proliferation assays. Results Treatment with f-tolDC-MOG was effective in ameliorating clinical signs of mice with EAE, inhibiting antigen-specific reactivity and inducing Treg. In addition, the long-term treatment was well tolerated and leading to a prolonged maintenance of tolerogenicity mediated by induction of Breg, reduction of NK cells and activation of immunoregulatory NKT cells. Conclusions The outcomes of this study show that the use of antigen-specific f-tolDC promotes multiple and potent tolerogenic mechanisms. Moreover, these cells can be kept frozen maintaining their tolerogenic properties, which is a relevant step for their translation to the clinic. Altogether, vitD3 f-tolDC-MOG is a potential strategy to arrest the autoimmune destruction in MS patients.
Collapse
Affiliation(s)
- María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Raian Contreras-Cardone
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Juan Navarro-Barriuso
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Antwerp University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Antwerp University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Eva María Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
77
|
Carotta S. Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches. Front Immunol 2016; 7:152. [PMID: 27148271 PMCID: PMC4838611 DOI: 10.3389/fimmu.2016.00152] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Abstract
The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. Although the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer (NK) cells are the body’s first line of defense against infected or transformed cells, as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell-based anticancer therapies, which has lead to a steady increase of NK cell-based clinical and preclinical trials. Here, the role of NK cells in cancer immune surveillance is summarized, and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.
Collapse
Affiliation(s)
- Sebastian Carotta
- Immune Modulation Department, Boehringer Ingelheim RCV, Vienna, Austria; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| |
Collapse
|
78
|
Gotthardt D, Putz EM, Grundschober E, Prchal-Murphy M, Straka E, Kudweis P, Heller G, Bago-Horvath Z, Witalisz-Siepracka A, Cumaraswamy AA, Gunning PT, Strobl B, Müller M, Moriggl R, Stockmann C, Sexl V. STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discov 2016; 6:414-29. [PMID: 26873347 DOI: 10.1158/2159-8290.cd-15-0732] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Natural killer (NK) cells are tightly regulated by the JAK-STAT signaling pathway and cannot survive in the absence of STAT5. We now report that STAT5-deficient NK cells can be rescued by overexpression of BCL2. Our experiments define STAT5 as a master regulator of NK-cell proliferation and lytic functions. Although NK cells are generally responsible for killing tumor cells, the rescued STAT5-deficient NK cells promote tumor formation by producing enhanced levels of the angiogenic factor VEGFA. The importance of VEGFA produced by NK cells was verified by experiments with a conditional knockout of VEGFA in NK cells. We show that STAT5 normally represses the transcription of VEGFA in NK cells, in both mice and humans. These findings reveal that STAT5-directed therapies may have negative effects: In addition to impairing NK-cell-mediated tumor surveillance, they may even promote tumor growth by enhancing angiogenesis. SIGNIFICANCE The importance of the immune system in effective cancer treatment is widely recognized. We show that the new signal interceptors targeting the JAK-STAT5 pathway may have dangerous side effects that must be taken into account in clinical trials: inhibiting JAK-STAT5 has the potential to promote tumor growth by enhancing NK-cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva M Putz
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Grundschober
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elisabeth Straka
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petra Kudweis
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria. Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Agnieszka Witalisz-Siepracka
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Abbarna A Cumaraswamy
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick T Gunning
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Birgit Strobl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Mathias Müller
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria. Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Christian Stockmann
- PARCC Paris - Centre de recherche Cardiovasculaire à l'HEGP Inserm - UMR 970, Paris, France
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
79
|
Pinhas N, Sternberg-Simon M, Chiossone L, Shahaf G, Walzer T, Vivier E, Mehr R. Murine peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived NK cells. Eur J Immunol 2016; 46:1258-70. [PMID: 26919267 DOI: 10.1002/eji.201545847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/17/2015] [Accepted: 02/10/2016] [Indexed: 01/09/2023]
Abstract
Murine NK cells can be divided by the expression of two cell surface markers, CD27 and Mac-1 (a.k.a. CD11b), into four separate subsets. These subsets suggest a linear development model: CD27(-) Mac-1(-) → CD27(+) Mac-1(-) → CD27(+) Mac-1(+) → CD27(-) Mac-1(+) . Here, we used a combination of BrdU labeling experiments and mathematical modeling to gain insights regarding NK-cell development in mouse bone marrow (BM), spleen and liver. The modeling results that best fit the experimental data show that the majority of NK cells already express CD27 upon entering the NK-cell developmental pathway. Additionally, only a small fraction of NK cells exit the BM to other sites, suggesting that peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived mature NK cells.
Collapse
Affiliation(s)
- Nissim Pinhas
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Sternberg-Simon
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Gitit Shahaf
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), INSERM-CNRS, Lyon, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm U1104, CNRS UMR7280, Marseille, France
- Service d'Immunologie, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Ramit Mehr
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
80
|
Eggenhofer E, Sabet-Rashedi M, Lantow M, Renner P, Rovira J, Koehl GE, Schlitt HJ, Geissler EK, Kroemer A. RORγt(+) IL-22-producing NKp46(+) cells protect from hepatic ischemia reperfusion injury in mice. J Hepatol 2016; 64:128-34. [PMID: 26341825 DOI: 10.1016/j.jhep.2015.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS NKp46(+) cells are major effector cells in the pathogenesis of hepatic ischemia reperfusion injury (IRI). Nevertheless, the precise role of unconventional subsets like the IL-22-producing NKp46(+) cells (NK22) remains unknown. The purpose of this study was to examine the role of NK22 cells in IRI in transplantation, particularly with respect to regulation by the transcription factor ROR-gamma-t (RORγt). METHODS To explore the role of NK22 cells in IRI in the absence of adaptive immunity, B6.RORγt-(gfp/wt)-reporter and B6.RORγt-(gfp/gfp)-knockout (KO) mice on a Rag KO background underwent 90min partial warm ischemia, followed by 24h of reperfusion. RESULTS Rag KO mice that possess fully functional NKp46(+) cells, and Rag-common-γ-chain-double-KO (Rag-γc-DKO) mice that lack T, B and NKp46(+) cells, were used as controls. We found that Rag-γc-DKO mice lacking NK22 cells show more severe levels of hepatocellular damage (GPT, histological injury) when compared to both Rag-RORγt-reporter and Rag KO mice that possess NK22 cells. Importantly, Rag-RORγt-reporter and Rag KO mice undergoing IRI expressed high protein levels of both IL-22 and GFP (RORγt), suggesting a protective role for RORγt(+) NK22 cells in IRI. Therefore, we tested the hypothesis that RORγt critically protects from IRI through the induction of hepatic NK22 cells by studying Rag-Rorγt-DKO mice under IRI conditions. We found that the lack of RORγt(+) NK22 cells in Rag-Rorγt-DKO mice significantly enhanced IR-induced hepatocellular injury, a phenotype that could be reversed upon adoptive transfer of Rag-Rorγt-reporter NK22 cells into DKO mice. CONCLUSIONS RORγt(+) NK22 cells play an important protective role in IRI in mice.
Collapse
Affiliation(s)
- Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany.
| | | | - Margareta Lantow
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Renner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jordi Rovira
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gudrun E Koehl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Kroemer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany; MedStar Georgetown Transplant Institute, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
81
|
Identification and Analysis of Natural Killer Cells in Murine Nasal Passages. PLoS One 2015; 10:e0142920. [PMID: 26575399 PMCID: PMC4648567 DOI: 10.1371/journal.pone.0142920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 10/28/2015] [Indexed: 01/02/2023] Open
Abstract
Background Natural killer (NK) cells in the upper respiratory airways are not well characterized. In the current study, we sought to characterize and functionally assess murine nasal NK cells. Methods Using immunohistochemistry and flow cytometry, we compared the nasal NK cells of Ncr1GFP/+ knock-in mice, whose NK cells produced green fluorescent protein, with their splenic and pulmonary counterparts. In addition, we functionally analyzed the nasal NK cells of these mice in vitro. To assess the in vivo functions of nasal NK cells, C57BL/6 mice depleted of NK cells after treatment with PK136 antibody were nasally infected with influenza virus PR8. Results Immunohistochemical analysis confirmed the presence of NK cells in the lamina propria of nasal mucosa, and flow cytometry showed that these cells were of NK cell lineage. The expression patterns of Ly49 receptor, CD11b/CD27, CD62L and CD69 revealed that nasal NK cells had an immature and activated phenotype compared with that of their splenic and pulmonary counterparts. Effector functions including degranulation and IFN(interferon)-γ production after in vitro stimulation with phorbol 12-myristate-13-acetate plus ionomycin or IL(interleukin)-12 plus IL-18 were dampened in nasal NK cells, and the depletion of NK cells led to an increased influenza virus titer in nasal passages. Conclusions The NK cells of the murine nasal passage belong to the conventional NK cell linage and characteristically demonstrate an immature and activated phenotype. Despite their hyporesponsiveness in vitro, nasal NK cells play important roles in the host defense against nasal influenza virus infection.
Collapse
|
82
|
Ponzetta A, Benigni G, Antonangeli F, Sciumè G, Sanseviero E, Zingoni A, Ricciardi MR, Petrucci MT, Santoni A, Bernardini G. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Res 2015; 75:4766-77. [PMID: 26438594 DOI: 10.1158/0008-5472.can-15-1320] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.
Collapse
Affiliation(s)
- Andrea Ponzetta
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giorgia Benigni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Antonangeli
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Emilio Sanseviero
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Ricciardi
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy. IRCCS, Neuromed, Pozzilli, IS, Italy.
| | - Giovanni Bernardini
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy. IRCCS, Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
83
|
Natural killer cells in the innate immunity network of atherosclerosis. Immunol Lett 2015; 168:51-7. [DOI: 10.1016/j.imlet.2015.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
|
84
|
Krasnova Y, Putz EM, Smyth MJ, Souza-Fonseca-Guimaraes F. Bench to bedside: NK cells and control of metastasis. Clin Immunol 2015; 177:50-59. [PMID: 26476139 DOI: 10.1016/j.clim.2015.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a critical role in host immune responses against tumor growth and metastasis. The numerous mechanisms used by NK cells to regulate and control cancer metastasis include interactions with tumor cells via specific receptors and ligands as well as direct cytotoxicity and cytokine-induced effector mechanisms. NK cells also play a role in tumor immunosurveillance and inhibition of metastases formation by recognition and killing of tumor cells. In this review, we provide an overview of the molecular mechanisms of NK cell responses against tumor metastases and discuss multiple strategies by which tumors evade NK cell-mediated surveillance. With an increasing understanding of the molecular mechanisms driving NK cell activity, there is a growing potential for the development of new cancer immunotherapies. Here we provide a historical background on NK cell-based therapies and discuss the implications of recent and ongoing clinical trials using novel NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Yelena Krasnova
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| | - Eva Maria Putz
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia.
| |
Collapse
|
85
|
Seillet C, Belz GT. Differentiation and diversity of subsets in group 1 innate lymphoid cells. Int Immunol 2015; 28:3-11. [PMID: 26346810 DOI: 10.1093/intimm/dxv051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 02/04/2023] Open
Abstract
NK cells were first identified in 1975 and represent the prototypical group 1 innate lymphoid cell (ILC). More recently, the discovery of new members of the ILC family has highlighted the complexity of this innate lymphoid lineage. Importantly, it has been recognized that different subsets exist within the group 1 ILC, which have potential roles in mediating immune protection and immunosurveillance, and in regulating tissue homeostasis and inflammation. Here, we review the developmental relationships between the different group 1 ILC, which have been identified to date and discuss how heterogeneity within this expanding family may have arisen.
Collapse
Affiliation(s)
- Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
86
|
Mattiola I, Pesant M, Tentorio PF, Molgora M, Marcenaro E, Lugli E, Locati M, Mavilio D. Priming of Human Resting NK Cells by Autologous M1 Macrophages via the Engagement of IL-1β, IFN-β, and IL-15 Pathways. THE JOURNAL OF IMMUNOLOGY 2015; 195:2818-28. [PMID: 26276870 DOI: 10.4049/jimmunol.1500325] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/19/2015] [Indexed: 12/30/2022]
Abstract
The cross talk between NK cells and macrophages is emerging as a major line of defense against microbial infections and tumors. This study reveals a complex network of soluble mediators and cell-to-cell interactions allowing human classically activated (M1) macrophages, but not resting (M0) or alternatively activated (M2) macrophages, to prime resting autologous NK cells. In this article, we show that M1 increase NK cell cytotoxicity by IL-23 and IFN-β-dependent upregulation of NKG2D, IL-1β-dependent upregulation of NKp44, and trans-presentation of IL-15. Moreover, both IFN-β-dependent cis-presentation of IL-15 on NK cells and engagement of the 2B4-CD48 pathway are used by M1 to trigger NK cell production of IFN-γ. The disclosure of these synergic cellular mechanisms regulating the M1-NK cell cross talk provides novel insights to better understand the role of innate immune responses in the physiopathology of tumor biology and microbial infections.
Collapse
Affiliation(s)
- Irene Mattiola
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| | - Matthieu Pesant
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy
| | - Paolo F Tentorio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy
| | - Martina Molgora
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, I-16132 Genoa, Italy
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy
| | - Massimo Locati
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| |
Collapse
|
87
|
Wilensky A, Chaushu S, Shapira L. The role of natural killer cells in periodontitis. Periodontol 2000 2015; 69:128-41. [DOI: 10.1111/prd.12092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
|
88
|
Zamora AE, Grossenbacher SK, Aguilar EG, Murphy WJ. Models to Study NK Cell Biology and Possible Clinical Application. ACTA ACUST UNITED AC 2015; 110:14.37.1-14.37.14. [PMID: 26237009 DOI: 10.1002/0471142735.im1437s110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anthony E Zamora
- Department of Dermatology, University of California, Davis, Sacramento, California
| | | | - Ethan G Aguilar
- Department of Dermatology, University of California, Davis, Sacramento, California
| | - William J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, California.,Department of Internal Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
89
|
Guo Y, Luan L, Rabacal W, Bohannon JK, Fensterheim BA, Hernandez A, Sherwood ER. IL-15 Superagonist-Mediated Immunotoxicity: Role of NK Cells and IFN-γ. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26216888 DOI: 10.4049/jimmunol.1500300] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8(+) T (mCD8(+) T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8(+) T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8(+) T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA-induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA-mediated immunotoxicity.
Collapse
Affiliation(s)
- Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Whitney Rabacal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Edward R Sherwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
90
|
CD27low natural killer cells prolong allograft survival in mice by controlling alloreactive CD8+ T cells in a T-bet-dependent manner. Transplantation 2015; 99:391-9. [PMID: 25606781 DOI: 10.1097/tp.0000000000000585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Natural killer (NK) cells play a dichotomous role in alloimmune responses because they are known to promote both allograft survival and rejection. The aim of this study was to investigate the role of functionally distinct NK cell subsets in alloimmunity with the hypothesis that this dichotomy is explained by the functional heterogeneity of distinct NK cell subsets. METHODS Because T-bet controls thematuration of NK cells from CD27high to terminally differentiated CD27low NK cells, we used Rag−/−T-bet−/− mice that lackmature CD27low NK cells to study the distinct roles of CD27low versus CD27high NK cells in a model of Tcell–mediated skin transplant rejection under costimulatory blockade conditions. RESULTS We found that T cell–reconstituted Rag1−/− recipients (possessing CD27low NK cells) show significantly prolonged allograft survival on costimulatory blockade when compared to Rag1−/−T-bet−/− mice (lacking CD27low NK cells), indicating that CD27low but not CD27high NK cells enhance allograft survival. Critically, Rag1−/−T-bet−/− recipients showed strikingly increased alloreactive memory CD8+ Tcell responses, as indicated by increased CD8+ Tcell proliferation and interferon-γ production. Therefore, we speculated that CD27low NK cells directly regulate alloreactive CD8+ Tcell responses under costimulatory blockade conditions. To test this, we adoptively transferred CD27low NK cells into Rag1−/−T-bet−/− skin transplant recipients and found that the CD27low NK cells restore better allograft survival by inhibiting the proliferation of alloreactive interferon-γ+CD8+ T cells. CONCLUSIONS In summary, mature CD27low NK cells promote allograft survival under costimulatory blockade conditions by regulating alloreactive memory CD8+ T-cell responses.
Collapse
|
91
|
Activated NKT cells imprint NK-cell differentiation, functionality and education. Eur J Immunol 2015; 45:1794-807. [DOI: 10.1002/eji.201445209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/05/2015] [Accepted: 03/19/2015] [Indexed: 11/07/2022]
|
92
|
Martinet L, Ferrari De Andrade L, Guillerey C, Lee JS, Liu J, Souza-Fonseca-Guimaraes F, Hutchinson DS, Kolesnik TB, Nicholson SE, Huntington ND, Smyth MJ. DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep 2015; 11:85-97. [PMID: 25818301 DOI: 10.1016/j.celrep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/31/2014] [Accepted: 02/27/2015] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226) identifies two distinct NK cell functional subsets: DNAM-1(+) and DNAM-1(-) NK cells. DNAM-1(+) NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1(-) NK cells that differentiate from DNAM-1(+) NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.
Collapse
Affiliation(s)
- Ludovic Martinet
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse 31000, France
| | - Lucas Ferrari De Andrade
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Células Inflamatórias e Neoplásicas group, Universidade Federal do Paraná, Curitiba, Paraná 81530-001, Brazil
| | - Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jing Liu
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | | | - Dana S Hutchinson
- Department of Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical, Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Tatiana B Kolesnik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
93
|
Yu P, Bamford RN, Waldmann TA. IL-15-dependent CD8+ CD122+ T cells ameliorate experimental autoimmune encephalomyelitis by modulating IL-17 production by CD4+ T cells. Eur J Immunol 2015; 44:3330-41. [PMID: 25142300 DOI: 10.1002/eji.201444675] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/01/2014] [Accepted: 08/15/2014] [Indexed: 11/09/2022]
Abstract
Interleukin-15 (IL-15) is an inflammatory cytokine whose role in autoimmune diseases has not been fully elucidated. Th17 cells have been shown to play critical roles in experimental autoimmune encephalomyelitis (EAE) models. In this study, we demonstrate that blockade of IL-15 signaling by TMβ-1 mAb treatment aggravated EAE severity. The key mechanism was not NK-cell depletion but depletion of CD8+ CD122+ T cells. Adoptive transfer of exogenous CD8+ CD122+ T cells to TMβ-1-treated mice rescued animals from severe disease. Moreover, transfer of preactivated CD8+ CD122+ T cells prevented EAE development and significantly reduced IL-17 secretion. Naïve effector CD4+ CD25- T cells cultured with either CD8+ CD122+ T cells from wild-type mice or IL-15 transgenic mice displayed lower frequencies of IL-17A production with lower amounts of IL-17 in the supernatants when compared with production by effector CD4+ CD25- T cells cultured alone. Addition of a neutralizing antibody to IL-10 led to recovery of IL-17A production in Th17 cultures. Furthermore, coculture of CD8+ CD122+ T cells with effector CD4+ T cells inhibited their proliferation significantly, suggesting a regulatory function for IL-15 dependent CD8+ CD122+ T cells. Taken together, these observations suggest that IL-15, acting through CD8+ CD122+ T cells, has a negative regulatory role in reducing IL-17 production and Th17-mediated EAE inflammation.
Collapse
Affiliation(s)
- Ping Yu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | |
Collapse
|
94
|
Meinhardt K, Kroeger I, Bauer R, Ganss F, Ovsiy I, Rothamer J, Büttner M, Atreya I, Waldner M, Bittrich M, Lehmann CH, Rieger MA, Beilhack A, Zeiser R, Edinger M, Dudziak D, Mackensen A, Rehli M, Ullrich E. Identification and characterization of the specific murine NK cell subset supporting graft- versus-leukemia- and reducing graft- versus-host-effects. Oncoimmunology 2015; 4:e981483. [PMID: 25949862 PMCID: PMC4368119 DOI: 10.4161/2162402x.2014.981483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022] Open
Abstract
Clinical studies investigating the impact of natural killer (NK) cells in allogeneic hematopoietic stem cell transplantation settings have yielded promising results. However, NK cells are a functionally and phenotypically heterogeneous population. Therefore, we addressed the functional relevance of specific NK cell subsets distinguished by expression of CD117, CD27 and CD11b surface markers in graft-versus-leukemia (GVL)-reaction and graft-versus-host-disease (GVHD). Our results clearly demonstrate that the subset of c-Kit−CD27−CD11b+ NK cells expressed multiple cytotoxic pathway genes and provided optimal graft-versus-leukemia-effects, while significantly reducing T cell proliferation induced by allogeneic dendritic cells. Furthermore, these NK cells migrated to inflamed intestinal tissues where graft-versus-host-colitis was efficiently mitigated. For the first time, we identified the c-Kit−CD27−CD11b+ NK cell population as the specific effector NK cell subset capable of significantly diminishing GVHD in fully mismatched bone marrow transplantation settings. In conclusion, the subset of c-Kit−CD27−CD11b+ NK cells not only supports GVL, but also plays a unique role in the protection against GVHD by migrating to the peripheral GVHD target organs where they exert efficient immunoregulatory activities. These new insights demonstrate the importance of selecting the optimal NK cell subset for cellular immunotherapy following allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Kathrin Meinhardt
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany ; Childrens Hospital; Department of Pediatric Hematology and Oncology; Johann Wolfgang Goethe University ; Frankfurt, Germany ; LOEWE Center for Cell and Gene Therapy; Johann Wolfgang Goethe University ; Frankfurt, Germany
| | - Irena Kroeger
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Ruth Bauer
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany ; Childrens Hospital; Department of Pediatric Hematology and Oncology; Johann Wolfgang Goethe University ; Frankfurt, Germany ; LOEWE Center for Cell and Gene Therapy; Johann Wolfgang Goethe University ; Frankfurt, Germany
| | - Franziska Ganss
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany ; Childrens Hospital; Department of Pediatric Hematology and Oncology; Johann Wolfgang Goethe University ; Frankfurt, Germany ; LOEWE Center for Cell and Gene Therapy; Johann Wolfgang Goethe University ; Frankfurt, Germany
| | - Ilja Ovsiy
- Childrens Hospital; Department of Pediatric Hematology and Oncology; Johann Wolfgang Goethe University ; Frankfurt, Germany ; LOEWE Center for Cell and Gene Therapy; Johann Wolfgang Goethe University ; Frankfurt, Germany
| | - Johanna Rothamer
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany ; Childrens Hospital; Department of Pediatric Hematology and Oncology; Johann Wolfgang Goethe University ; Frankfurt, Germany ; LOEWE Center for Cell and Gene Therapy; Johann Wolfgang Goethe University ; Frankfurt, Germany
| | - Maike Büttner
- Department of Nephropathology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Imke Atreya
- Department of Internal Medicine 1; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Maximilian Waldner
- Department of Internal Medicine 1; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Max Bittrich
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Christian Hk Lehmann
- Department of Dermatology; Laboratory of Dendritic Cell Biology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy; Johann Wolfgang Goethe University ; Frankfurt, Germany ; Department of Hematology/Oncology; Johann Wolfgang Goethe University ; Frankfurt, Germany
| | - Andreas Beilhack
- IZKF Research Group for Experimental Stem Cell Transplantation; Department of Medicine II; University Hospital ; Würzburg, Germany
| | - Robert Zeiser
- Division of Hematology and Oncology; Department of Medicine; Freiburg University Medical Center; Albert-Ludwigs-University ; Freiburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine 3; University Hospital Regensburg ; Regensburg; Germany ; Regensburg Center for Interventional Immunology (RCI); University Regensburg ; Regensburg, Germany
| | - Diana Dudziak
- Department of Dermatology; Laboratory of Dendritic Cell Biology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany
| | - Michael Rehli
- Department of Internal Medicine 3; University Hospital Regensburg ; Regensburg; Germany ; Regensburg Center for Interventional Immunology (RCI); University Regensburg ; Regensburg, Germany
| | - Evelyn Ullrich
- Department of Internal Medicine 5; Hematology and Oncology; Friedrich-Alexander Universität Erlangen-Nürnberg; University Hospital Erlangen ; Erlangen, Germany ; Childrens Hospital; Department of Pediatric Hematology and Oncology; Johann Wolfgang Goethe University ; Frankfurt, Germany ; LOEWE Center for Cell and Gene Therapy; Johann Wolfgang Goethe University ; Frankfurt, Germany
| |
Collapse
|
95
|
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia.,School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia. .,School of Medicine, University of Queensland, Herston, QLD, Australia.
| |
Collapse
|
96
|
NK cell development in bone marrow and liver: site matters. Genes Immun 2014; 15:584-7. [PMID: 25319498 DOI: 10.1038/gene.2014.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 12/30/2022]
Abstract
The NKp46 protein is found on resting and activated natural killer (NK) cells and is involved in the recognition of malignant and infected cells. The expression of NKp46 is believed to precede that of DX5 in early NK cell development. We show that this is not the case in the bone marrow (BM). Here, NKp46 is predominantly expressed after DX5, whereas the liver harbors a subpopulation that expresses NKp46 but not DX5. NK cell precursors in the liver show much lower levels of Eomesodermin than NK cell precursors in the BM, although they express higher levels of granzymes and unlike the NK cell precursors in the BM are fully able to degranulate and produce interferon gamma (IFN-γ). The development of NK cells thus differs between the two organs. This needs to be considered when using NKp46 and DX5 as NK cell markers and when performing NK cell-specific gene deletion in Ncr1 transgenic mice.
Collapse
|
97
|
Holmes ML, Huntington ND, Thong RPL, Brady J, Hayakawa Y, Andoniou CE, Fleming P, Shi W, Smyth GK, Degli-Esposti MA, Belz GT, Kallies A, Carotta S, Smyth MJ, Nutt SL. Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J 2014; 33:2721-34. [PMID: 25319415 DOI: 10.15252/embj.201487900] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells are an innate lymphoid cell lineage characterized by their capacity to provide rapid effector functions, including cytokine production and cytotoxicity. Here, we identify the Ikaros family member, Aiolos, as a regulator of NK-cell maturation. Aiolos expression is initiated at the point of lineage commitment and maintained throughout NK-cell ontogeny. Analysis of cell surface markers representative of distinct stages of peripheral NK-cell maturation revealed that Aiolos was required for the maturation in the spleen of CD11b(high)CD27(-) NK cells. The differentiation block was intrinsic to the NK-cell lineage and resembled that found in mice lacking either T-bet or Blimp1; however, genetic analysis revealed that Aiolos acted independently of all other known regulators of NK-cell differentiation. NK cells lacking Aiolos were strongly hyper-reactive to a variety of NK-cell-mediated tumor models, yet impaired in controlling viral infection, suggesting a regulatory function for CD27(-) NK cells in balancing these two arms of the immune response. These data place Aiolos in the emerging gene regulatory network controlling NK-cell maturation and function.
Collapse
Affiliation(s)
- Melissa L Holmes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Rebecca P L Thong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Jason Brady
- Cancer Immunology Program, The Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Peter Fleming
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia Department of Computing and Information Systems, University of Melbourne, Parkville, Vic., Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia The Department of Mathematics and Statistics, University of Melbourne, Parkville, Vic., Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia School of Medicine, University of Queensland, Herston, Qld, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
98
|
Kasamatsu J, Azuma M, Oshiumi H, Morioka Y, Okabe M, Ebihara T, Matsumoto M, Seya T. INAM plays a critical role in IFN-γ production by NK cells interacting with polyinosinic-polycytidylic acid-stimulated accessory cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5199-207. [PMID: 25320282 DOI: 10.4049/jimmunol.1400924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyinosinic-polycytidylic acid strongly promotes the antitumor activity of NK cells via TLR3/Toll/IL-1R domain-containing adaptor molecule 1 and melanoma differentiation-associated protein-5/mitochondrial antiviral signaling protein pathways. Polyinosinic-polycytidylic acid acts on accessory cells such as dendritic cells (DCs) and macrophages (Mφs) to secondarily activate NK cells. In a previous study in this context, we identified a novel NK-activating molecule, named IFN regulatory factor 3-dependent NK-activating molecule (INAM), a tetraspanin-like membrane glycoprotein (also called Fam26F). In the current study, we generated INAM-deficient mice and investigated the in vivo function of INAM. We found that cytotoxicity against NK cell-sensitive tumor cell lines was barely decreased in Inam(-/-) mice, whereas the number of IFN-γ-producing cells was markedly decreased in the early phase. Notably, deficiency of INAM in NK and accessory cells, such as CD8α(+) conventional DCs and Mφs, led to a robust decrease in IFN-γ production. In conformity with this phenotype, INAM effectively suppressed lung metastasis of B16F10 melanoma cells, which is controlled by NK1.1(+) cells and IFN-γ. These results suggest that INAM plays a critical role in NK-CD8α(+) conventional DC (and Mφ) interaction leading to IFN-γ production from NK cells in vivo. INAM could therefore be a novel target molecule for cancer immunotherapy against IFN-γ-suppressible metastasis.
Collapse
Affiliation(s)
- Jun Kasamatsu
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuka Morioka
- Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masaru Okabe
- Research Institute for Microbial Disease, Osaka University, Osaka 565-0871, Japan
| | - Takashi Ebihara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| |
Collapse
|
99
|
Abstract
Our understanding of NK biology has expanded immensely since the initial discovery of natural killer cells in 1975. New studies have uncovered various levels of immune regulation both on and by unique subsets of NK cells, which go well beyond simple receptor-ligand interactions between NK cells and target cancer cells. Distinct suppressor and effector populations of NK cells have been delineated in both viral and tumor models. Interactions between NK cells and dendritic cells, T cells, and B cells also dramatically alter the overall immune response to cancer. To exploit the diverse functional abilities of NK cell subsets for cancer immunotherapies, it is important to understand NK cell biology and NK regulator mechanisms.
Collapse
Affiliation(s)
- Can M Sungur
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817
| | - William J Murphy
- Department of Dermatology, Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
100
|
Lysakova-Devine T, O'Farrelly C. Tissue-specific NK cell populations and their origin. J Leukoc Biol 2014; 96:981-90. [DOI: 10.1189/jlb.1ru0514-241r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|