51
|
The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nat Immunol 2013; 14:756-63. [PMID: 23708252 PMCID: PMC4961471 DOI: 10.1038/ni.2615] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
Abstract
Understanding how differentiation programs originate from within the gene expression landscape of hematopoietic stem cells (HSC) is crucial to develop new clinical therapies. We mapped the transcriptional dynamics underlying the first steps of commitment by tracking transcriptome changes in human HSC and eight early progenitor populations. Transcriptional programs are extensively shared, extend across lineage-potential boundaries, and are not strictly lineage-affiliated. Elements of stem, lymphoid and myeloid programs are retained in multi-lymphoid progenitors (MLP), reflecting a hybrid transcriptional state. Based on functional single cell analysis, BCL11A, SOX4 and TEAD1 governed transcriptional networks within MLPs, leading to B cell specification. Overall, we show that integrated transcriptome approaches can identify novel regulators of multipotency and uncover additional complexity in lymphoid commitment.
Collapse
|
52
|
Görgens A, Radtke S, Möllmann M, Cross M, Dürig J, Horn PA, Giebel B. Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep 2013; 3:1539-52. [PMID: 23707063 DOI: 10.1016/j.celrep.2013.04.025] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/18/2013] [Accepted: 04/25/2013] [Indexed: 12/11/2022] Open
Abstract
The classical model of hematopoiesis predicts a dichotomous lineage restriction of multipotent hematopoietic progenitors (MPPs) into common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). However, this idea has been challenged by the identification of lymphoid progenitors retaining partial myeloid potential (e.g., LMPPs), implying that granulocytes can arise within both the classical lymphoid and the myeloid branches. Here, we resolve this issue by using cell-surface CD133 expression to discriminate functional progenitor populations. We show that eosinophilic and basophilic granulocytes as well as erythrocytes and megakaryocytes derive from a common erythro-myeloid progenitor (EMP), whereas neutrophilic granulocytes arise independently within a lympho-myeloid branch with long-term progenitor function. These findings challenge the concept of a CMP and restore dichotomy to the classical hematopoietic model.
Collapse
Affiliation(s)
- André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Abraham BJ, Cui K, Tang Q, Zhao K. Dynamic regulation of epigenomic landscapes during hematopoiesis. BMC Genomics 2013; 14:193. [PMID: 23510235 PMCID: PMC3636055 DOI: 10.1186/1471-2164-14-193] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/07/2013] [Indexed: 12/24/2022] Open
Abstract
Background Human blood develops from self-renewing hematopoietic stem cells to terminal lineages and necessitates regulator and effector gene expression changes; each cell type specifically expresses a subset of genes to carry out a specific function. Gene expression changes coincide with histone modification, histone variant deposition, and recruitment of transcription-related enzymes to specific genetic loci. Transcriptional regulation has been mostly studied using in vitro systems while epigenetic changes occurring during in vivo development remain poorly understood. Results By integrating previously published and novel global expression profiles from human CD34+/CD133+ hematopoietic stem and progenitor cells (HSPCs), in vivo differentiated human CD4+ T-cells and CD19+ B-cells, and in vitro differentiated CD36+ erythrocyte precursors, we identified hundreds of transcripts specifically expressed in each cell type. To relate concurrent epigenomic changes to expression, we examined genome-wide distributions of H3K4me1, H3K4me3, H3K27me1, H3K27me3, histone variant H2A.Z, ATP-dependent chromatin remodeler BRG1, and RNA Polymerase II in these cell types, as well as embryonic stem cells. These datasets revealed that numerous differentiation genes are primed for subsequent downstream expression by BRG1 and PolII binding in HSPCs, as well as the bivalent H3K4me3 and H3K27me3 modifications in the HSPCs prior to their expression in downstream, differentiated cell types; much HSPC bivalency is retained from embryonic stem cells. After differentiation, bivalency resolves to active chromatin configuration in the specific lineage, while it remains in parallel differentiated lineages. PolII and BRG1 are lost in closer lineages; bivalency resolves to silent monovalency in more distant lineages. Correlation of expression with epigenomic changes predicts tens of thousands of potential common and tissue-specific enhancers, which may contribute to expression patterns and differentiation pathways. Conclusions Several crucial lineage factors are bivalently prepared for their eventual expression or repression. Bivalency is not only resolved during differentiation but is also established in a step-wise manner in differentiated cell types. We note a progressive, specific silencing of alternate lineage genes in certain cell types coinciding with H3K27me3 enrichment, though expression silencing is maintained in its absence. Globally, the expression of type-specific genes across many cell types correlates strongly with their epigenetic profiles. These epigenomic data appear useful for further understanding mechanisms of differentiation and function of human blood lineages.
Collapse
Affiliation(s)
- Brian J Abraham
- Systems Biology Center, NHLBI, NIH, Rockville Pike, Bethesda, MD, USA
| | | | | | | |
Collapse
|
54
|
Manesso E, Teles J, Bryder D, Peterson C. Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation. J R Soc Interface 2013; 10:20120817. [PMID: 23256190 DOI: 10.1098/rsif.2012.0817] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A very high number of different types of blood cells must be generated daily through a process called haematopoiesis in order to meet the physiological requirements of the organism. All blood cells originate from a population of relatively few haematopoietic stem cells residing in the bone marrow, which give rise to specific progenitors through different lineages. Steady-state dynamics are governed by cell division and commitment rates as well as by population sizes, while feedback components guarantee the restoration of steady-state conditions. In this study, all parameters governing these processes were estimated in a computational model to describe the haematopoietic hierarchy in adult mice. The model consisted of ordinary differential equations and included negative feedback regulation. A combination of literature data, a novel divide et impera approach for steady-state calculations and stochastic optimization allowed one to reduce possible configurations of the system. The model was able to recapitulate the fundamental steady-state features of haematopoiesis and simulate the re-establishment of steady-state conditions after haemorrhage and bone marrow transplantation. This computational approach to the haematopoietic system is novel and provides insight into the dynamics and the nature of possible solutions, with potential applications in both fundamental and clinical research.
Collapse
Affiliation(s)
- Erica Manesso
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
55
|
Zweier-Renn LA, Riz I, Hawley TS, Hawley RG. The DN2 Myeloid-T (DN2mt) Progenitor is a Target Cell for Leukemic Transformation by the TLX1 Oncogene. JOURNAL OF BONE MARROW RESEARCH 2013; 1:105. [PMID: 25309961 PMCID: PMC4191823 DOI: 10.4172/2329-8820.1000105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Inappropriate activation of the TLX1 (T-cell leukemia homeobox 1) gene by chromosomal translocation is a recurrent event in human T-cell Acute Lymphoblastic Leukemia (T-ALL). Ectopic expression of TLX1 in murine bone marrow progenitor cells using a conventional retroviral vector efficiently yields immortalized cell lines and induces T-ALL-like tumors in mice after long latency. METHODS To eliminate a potential contribution of retroviral insertional mutagenesis to TLX1 immortalizing and transforming function, we incorporated the TLX1 gene into an insulated self-inactivating retroviral vector. RESULTS Retrovirally transduced TLX1-expressing murine bone marrow progenitor cells had a growth/survival advantage and readily gave rise to immortalized cell lines. Extensive characterization of 15 newly established cell lines failed to reveal a common retroviral integration site. This comprehensive analysis greatly extends our previous study involving a limited number of cell lines, providing additional support for the view that constitutive TLX1 expression is sufficient to initiate the series of events culminating in hematopoietic progenitor cell immortalization. When TLX1-immortalized cells were co-cultured on OP9-DL1 monolayers under conditions permissive for T-cell differentiation, a latent T-lineage potential was revealed. However, the cells were unable to transit the DN2 myeloid-T (DN2mt)-DN2 T-lineage determined (DN2t) commitment step. The differentiation block coincided with failure to upregulate the zinc finger transcription factor gene Bcl11b, the human ortholog of which was shown to be a direct transcriptional target of TLX1 downregulated in the TLX1+ T-ALL cell line ALL-SIL. Other studies have described the ability of TLX1 to promote bypass of mitotic checkpoint arrest, leading to aneuploidy. We likewise found that diploid TLX1-expressing DN2mt cells treated with the mitotic inhibitor paclitaxel bypassed the mitotic checkpoint and displayed chromosomal instability. This was associated with elevated expression of TLX1 transcriptional targets involved in DNA replication and mitosis, including Ccna2 (cyclin A2), Ccnb1 (cyclin B1), Ccnb2 (cyclin B2) and Top2a (topoisomerase IIα). Notably, enforced expression of BCL11B in ALL-SIL T-ALL cells conferred resistance to the topoisomerase IIα poison etoposide. CONCLUSION Taken together with previous findings, the data reinforce a mechanism of TLX1 oncogenic activity linked to chromosomal instability resulting from dysregulated expression of target genes involved in mitotic processes. We speculate that repression of BCL11B expression may provide part of the explanation for the observation that aneuploid DNA content in TLX1+ leukemic T cells does not necessarily portend an unfavorable prognosis. This TLX1 hematopoietic progenitor cell immortalization/T-cell differentiation assay should help further our understanding of the mechanisms of TLX1-mediated evolution to malignancy and has the potential to be a useful predictor of disease response to novel therapeutic agents in TLX1+ T-ALL.
Collapse
Affiliation(s)
- Lynnsey A Zweier-Renn
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Graduate Program in Biochemistry and Molecular Genetics, George Washington University, Washington, DC, USA
| | - Irene Riz
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Sino-US Joint Laboratory of Translational Medicine, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
56
|
Nguyen T, Rich A, Dahl R. MiR-24 promotes the survival of hematopoietic cells. PLoS One 2013; 8:e55406. [PMID: 23383180 PMCID: PMC3559586 DOI: 10.1371/journal.pone.0055406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24's affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24's effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24's pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24's impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells.
Collapse
Affiliation(s)
- Tan Nguyen
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Audrey Rich
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
57
|
Abstract
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.
Collapse
Affiliation(s)
- Michael A Rieger
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt (Main), Germany
| | | |
Collapse
|
58
|
Abstract
Despite its complexity, blood is probably the best understood developmental system, largely due to seminal experimentation in the mouse. Clinically, hematopoietic stem cell (HSC) transplantation represents the most widely deployed regenerative therapy, but human HSCs have only been characterized relatively recently. The discovery that immune-deficient mice could be engrafted with human cells provided a powerful approach for studying HSCs. We highlight 2 decades of studies focusing on isolation and molecular regulation of human HSCs, therapeutic applications, and early lineage commitment steps, and compare mouse and humanized models to identify both conserved and species-specific mechanisms that will aid future preclinical research.
Collapse
Affiliation(s)
- Sergei Doulatov
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada
| | | | | | | |
Collapse
|
59
|
Brown G, Hughes PJ, Ceredig R, Michell RH. Versatility and nuances of the architecture of haematopoiesis – Implications for the nature of leukaemia. Leuk Res 2012; 36:14-22. [DOI: 10.1016/j.leukres.2011.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/16/2011] [Accepted: 10/10/2011] [Indexed: 12/11/2022]
|
60
|
Abstract
T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
61
|
|