51
|
Cortelli SC, Costa FO, Rodrigues E, Cota LOM, Cortelli JR. Periodontal Therapy Effects on Nitrite Related to Oral Bacteria: A 6-Month Randomized Clinical Trial. J Periodontol 2015; 86:984-94. [PMID: 25811847 DOI: 10.1902/jop.2015.140678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nitrite is a biologic factor relevant to oral and systemic homeostasis. Through an oral bacteria reduction process, it was suggested that periodontal therapy and chlorhexidine (CHX) rinse could affect nitrite levels, leading to negative effects, such as an increase in blood pressure. This 6-month randomized clinical trial evaluated the effects of periodontal therapeutic protocols on salivary nitrite and its relation to subgingival bacteria. METHODS One hundred patients with periodontitis were allocated randomly to debridement procedures in four weekly sections (quadrant scaling [QS]) or within 24 hours (full-mouth scaling [FMS]) in conjunction with a 60-day CHX (QS + CHX and FMS + CHX), placebo (QS + placebo and FMS + placebo), or no mouthrinse (QS + none and FMS + none) use. Real-time polymerase chain reaction determined total bacterial, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Streptococcus oralis, and Actinomyces naeslundii levels. Salivary nitrite concentration was determined with Griess reagent. Data were analyzed statistically at baseline and 3 and 6 months by analysis of variance, Kruskal-Wallis, Mann-Whitney U, and Spearman correlation tests (P <0.05). RESULTS Nitrite concentrations did not tend to change over time. Regarding CHX use, there was a negative correlation between nitrite and total bacterial load at 6 months (FMS + CHX) and one positive correlation between P. gingivalis and nitrite at baseline (QS + CHX). Independently of rinse type, in the FMS group, nitrite correlated negatively with several microbial parameters and also with a higher percentage of deep periodontal pockets. CONCLUSIONS The relationship between nitrite and bacterial levels appears weak. Short-term scaling exhibited a greater influence on nitrite concentrations then long-term CHX use.
Collapse
Affiliation(s)
- Sheila C Cortelli
- Nucleus of Periodontal Research, Dental School, University of Taubaté, Taubaté, São Paulo, Brazil.,Dental School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando O Costa
- Periodontal Department, Dental School, Federal University of Minas Gerais
| | - Edson Rodrigues
- Biochemistry Department, Institute of Biosciences, University of Taubaté
| | - Luis O M Cota
- Periodontal Department, Dental School, Federal University of Minas Gerais
| | - Jose R Cortelli
- Nucleus of Periodontal Research, Dental School, University of Taubaté, Taubaté, São Paulo, Brazil
| |
Collapse
|
52
|
Ishii Y, Imamura K, Kikuchi Y, Miyagawa S, Hamada R, Sekino J, Sugito H, Ishihara K, Saito A. Point-of-care detection of Tannerella forsythia using an antigen-antibody assisted dielectrophoretic impedance measurement method. Microb Pathog 2015; 82:37-42. [PMID: 25812473 DOI: 10.1016/j.micpath.2015.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED The importance of periodontal treatment planning based on diagnosis with clinical detection of periodontal pathogens has been well recognized. However, reliable detection and quantification methods that can be conveniently used at chair-side have yet to be developed. This study aimed to evaluate the clinical use of a novel apparatus which uses an antigen-antibody reaction assisted dielectrophoretic impedance measurement (AA-DEPIM) for the detection of a prominent periodontal pathogen, Tannerella forsythia. A total of 15 patients with a clinical diagnosis of chronic periodontitis, three periodontally healthy volunteers and two with gingivitis were subjected to clinical and microbiological examinations. Saliva samples were analyzed for the presence of T. forsythia using AA-DEPIM, PCR-Invader and real-time PCR methods. The measurement values for total bacteria and T. forsythia using the prototype AA-DEPIM apparatus were significantly greater in periodontitis group than those in healthy/gingivitis group. Using the AA-DEPIM apparatus with tentative cut-off values, T. forsythia was detected for 14 (12 with periodontitis and 2 either healthy or with gingivitis) out of 20 individuals. The measurement for the detection of T. forsythia by the AA-DEPIM method showed a significant positive correlation with the detection by PCR-Invader (r = 0.541, p = 0.01) and the real-time PCR method (r = 0.834, p = 0.01). When the PCR-Invader method was used as a reference, the sensitivity and specificity of the AA-DEPIM method were 76.5% and 100%, respectively. The results suggested that the AA-DEPIM method has potential to be used for clinically evaluating salivary presence of T. forsythia at chair-side. TRIAL REGISTRATION UMIN Clinical Trials Registry (UMIN-CTR) UMIN000012181.
Collapse
Affiliation(s)
- Yoshihito Ishii
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Satoshi Miyagawa
- Panasonic Healthcare, 2-38-5 Nishishinbashi, Minato-ku, Tokyo 105-8433, Japan
| | - Ryo Hamada
- Panasonic Healthcare, 2-38-5 Nishishinbashi, Minato-ku, Tokyo 105-8433, Japan
| | - Jin Sekino
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Hiroki Sugito
- Department of Clinical Oral Health Science, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan.
| |
Collapse
|
53
|
A rare cause of gingival recession: morphea with intra-oral involvement. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119:e257-64. [PMID: 25864825 DOI: 10.1016/j.oooo.2015.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022]
Abstract
Morphea is an inflammatory disorder of the skin and underlying tissues characterized by an overabundance of collagen leading to fibrosis. The prevalence of this disease is estimated at around 0.4-2.7/100,000 people. When the process occurs in the gingival tissues, it induces traction, which can cause gingival recession. A 19-year-old woman was referred to the clinic for a progressive recession on teeth 11 and 12. A pale, atrophic, linear region extending from her nose to her upper lip on the right-hand side of her face was diagnosed as morphea en coup de sabre. Cone beam computed tomography, quantitative polymerase chain reaction and histologic evaluation were used to assess the pathology. Treatment with methotrexate was conducted. After 12 months, no progression of the recession could be observed.
Collapse
|
54
|
Śmiga M, Bielecki M, Olczak M, Smalley JW, Olczak T. Anti-HmuY antibodies specifically recognize Porphyromonas gingivalis HmuY protein but not homologous proteins in other periodontopathogens. PLoS One 2015; 10:e0117508. [PMID: 25658942 PMCID: PMC4320075 DOI: 10.1371/journal.pone.0117508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022] Open
Abstract
Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins) and T. forsythia (Tfo protein) and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Marcin Bielecki
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - John W. Smalley
- School of Dentistry, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
- * E-mail:
| |
Collapse
|
55
|
Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota. BIOMED RESEARCH INTERNATIONAL 2014; 2014:180323. [PMID: 25485279 PMCID: PMC4251647 DOI: 10.1155/2014/180323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 02/05/2023]
Abstract
A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.
Collapse
|
56
|
Saraiva L, Rebeis ES, Martins EDS, Sekiguchi RT, Ando-Suguimoto ES, Mafra CES, Holzhausen M, Romito GA, Mayer MPA. IgG sera levels against a subset of periodontopathogens and severity of disease in aggressive periodontitis patients: a cross-sectional study of selected pocket sites. J Clin Periodontol 2014; 41:943-51. [DOI: 10.1111/jcpe.12296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Luciana Saraiva
- Department of Periodontology; Dental School; University of São Paulo; São Paulo SP Brazil
| | - Estela S. Rebeis
- Department of Periodontology; Dental School; University of São Paulo; São Paulo SP Brazil
| | - Eder de S. Martins
- Department of Periodontology; Dental School; University of São Paulo; São Paulo SP Brazil
| | - Ricardo T. Sekiguchi
- Department of Periodontology; Dental School; University of São Paulo; São Paulo SP Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| | | | - Marinella Holzhausen
- Department of Periodontology; Dental School; University of São Paulo; São Paulo SP Brazil
| | - Giuseppe A. Romito
- Department of Periodontology; Dental School; University of São Paulo; São Paulo SP Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology; Institute of Biomedical Sciences; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|
57
|
Pérez-Chaparro PJ, Gonçalves C, Figueiredo LC, Faveri M, Lobão E, Tamashiro N, Duarte P, Feres M. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res 2014; 93:846-58. [PMID: 25074492 DOI: 10.1177/0022034514542468] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
There is substantial evidence supporting the role of certain oral bacteria species in the onset and progression of periodontitis. Nevertheless, results of independent-culture diagnostic methods introduced about a decade ago have pointed to the existence of new periodontal pathogens. However, the data of these studies have not been evaluated together, which may generate some misunderstanding on the actual role of these microorganisms in the etiology of periodontitis. The aim of this systematic review was to determine the current weight of evidence for newly identified periodontal pathogens based on the results of "association" studies. This review was conducted and reported in accordance with the PRISMA statement. The MEDLINE, EMBASE, and Cochrane databases were searched up to September 2013 for studies (1) comparing microbial data of subgingival plaque samples collected from subjects with periodontitis and periodontal health and (2) evaluating at least 1 microorganism other than the already-known periodontal pathogens. From 1,450 papers identified, 41 studies were eligible. The data were extracted and registered in predefined piloted forms. The results suggested that there is moderate evidence in the literature to support the association of 17 species or phylotypes from the phyla Bacteroidetes, Candidatus Saccharibacteria, Firmicutes, Proteobacteria, Spirochaetes, and Synergistetes. The phylum Candidatus Saccharibacteria and the Archaea domain also seem to have an association with disease. These data point out the importance of previously unidentified species in the etiology of periodontitis and might guide future investigations on the actual role of these suspected new pathogens in the onset and progression of this infection.
Collapse
Affiliation(s)
- P J Pérez-Chaparro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - C Gonçalves
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - L C Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - M Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - E Lobão
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - N Tamashiro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - P Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - M Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|
58
|
Yong X, Chen Y, Tao R, Zeng Q, Liu Z, Jiang L, Ye L, Lin X. Periodontopathogens and human β-defensin-2 expression in gingival crevicular fluid from patients with periodontal disease in Guangxi, China. J Periodontal Res 2014; 50:403-10. [DOI: 10.1111/jre.12220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Affiliation(s)
- X. Yong
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| | - Y. Chen
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| | - R. Tao
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| | - Q. Zeng
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| | - Z. Liu
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| | - L. Jiang
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| | - L. Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment; School of Public Health; Guangxi Medical University; Nanning Guangxi China
| | - X. Lin
- Department of Periodontics and Oral Medicine; College of Stomatology; Guangxi Medical University; Nanning Guangxi China
| |
Collapse
|
59
|
Bankur PK, Nayak A, Bhat K, Bankur R, Naik R, Rajpoot N. Comparison of culture and polymerase chain reaction techniques in the identification of Tannerella forsythia in periodontal health and disease, an in vitro study. J Indian Soc Periodontol 2014; 18:155-60. [PMID: 24872621 PMCID: PMC4033879 DOI: 10.4103/0972-124x.131312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/28/2013] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives: Various bacterial species from subgingival biofilm have demonstrated aetiological relevance in the initiation and progression of periodontitis. The aim of this study was to detect the presence of Tannerella forsythia (Tf) in subgingival plaque of periodontally healthy subjects and chronic periodontitis patients by using both culture and PCR technique and compare the two techniques. Materials and Methods: Pooled subgingival plaque samples were taken using sterile curettes from predetermined sites in 50 periodontally healthy subjects and from 50 periodontitis subjects. Samples were analyzed for the presence of T. forsythia using both techniques. Statistical analysis of the results was done using Chi-square test, sensitivity, and specificity tests. Results: Both techniques could detect T. forsythia in subgingival plaque samples from healthy and periodontitis subjects. Periodontally healthy individuals and individuals with chronic periodontitis using the culture technique showed the presence of T. forsythia in 14 and 34%, respectively. PCR technique showed the presence of T. forsythia in 20% healthy and 40% chronic periodontitis patients. T. forsythia detection in the periodontitis group was statistically significantly higher when compared to the healthy group by both culture and PCR technique (P = 0.019 and P = 0.029). PCR demonstrated high sensitivity and low specificity when compared to the culture technique. Conclusion: The results indicated that T. forsythia was more prevalent in periodontitis patients when compared with healthy subjects. The PCR was found to be more sensitive than culture technique for detection of T. forsythia from the subgingival plaque samples.
Collapse
Affiliation(s)
- Praveen Kumar Bankur
- Department of Periodontology, Guru Gobind Singh College of Dental Sciences and Research Centre, Burhanpur, Madhya Pradesh, India
| | - Aarati Nayak
- Department of Periodontology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Bangalore, Karnataka, India
| | - Kishore Bhat
- Department of Periodontology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Bangalore, Karnataka, India
| | - Rashmi Bankur
- Department of Oral Pathology, M. R. Ambedkar Dental College and Hospital, Bangalore, Karnataka, India
| | - Reshma Naik
- Department of Oral Pathology, Sathyadeep Dental Clinic, Bangalore, Karnataka, India
| | - Nami Rajpoot
- Department of Periodontology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Bangalore, Karnataka, India
| |
Collapse
|
60
|
Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics 2014; 15:311. [PMID: 24767457 PMCID: PMC4234424 DOI: 10.1186/1471-2164-15-311] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 04/10/2014] [Indexed: 02/06/2023] Open
Abstract
Background Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Results Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. Conclusions The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be associated to dental health.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Oral Microbiome Group - Department of Health and Genomics, Center for Advanced Research in Public Health (CSISP-FISABIO), Avda, Catalunya 21, 46020 Valencia, Spain.
| | | | | | | |
Collapse
|
61
|
Teles R, Teles F, Frias-Lopez J, Paster B, Haffajee A. Lessons learned and unlearned in periodontal microbiology. Periodontol 2000 2014; 62:95-162. [PMID: 23574465 PMCID: PMC3912758 DOI: 10.1111/prd.12010] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Periodontal diseases are initiated by bacterial species living in polymicrobial biofilms at or below the gingival margin and progress largely as a result of the inflammation elicited by specific subgingival species. In the past few decades, efforts to understand the periodontal microbiota have led to an exponential increase in information about biofilms associated with periodontal health and disease. In fact, the oral microbiota is one of the best-characterized microbiomes that colonize the human body. Despite this increased knowledge, one has to ask if our fundamental concepts of the etiology and pathogenesis of periodontal diseases have really changed. In this article we will review how our comprehension of the structure and function of the subgingival microbiota has evolved over the years in search of lessons learned and unlearned in periodontal microbiology. More specifically, this review focuses on: (i) how the data obtained through molecular techniques have impacted our knowledge of the etiology of periodontal infections; (ii) the potential role of viruses in the etiopathogenesis of periodontal diseases; (iii) how concepts of microbial ecology have expanded our understanding of host-microbe interactions that might lead to periodontal diseases; (iv) the role of inflammation in the pathogenesis of periodontal diseases; and (v) the impact of these evolving concepts on therapeutic and preventive strategies to periodontal infections. We will conclude by reviewing how novel systems-biology approaches promise to unravel new details of the pathogenesis of periodontal diseases and hopefully lead to a better understanding of their mechanisms.
Collapse
|
62
|
Wolff B, Berger T, Frese C, Max R, Blank N, Lorenz HM, Wolff D. Oral status in patients with early rheumatoid arthritis: a prospective, case-control study. Rheumatology (Oxford) 2013; 53:526-31. [DOI: 10.1093/rheumatology/ket362] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
63
|
Gmiterek A, Wójtowicz H, Mackiewicz P, Radwan-Oczko M, Kantorowicz M, Chomyszyn-Gajewska M, Frąszczak M, Bielecki M, Olczak M, Olczak T. The unique hmuY gene sequence as a specific marker of Porphyromonas gingivalis. PLoS One 2013; 8:e67719. [PMID: 23844074 PMCID: PMC3699645 DOI: 10.1371/journal.pone.0067719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022] Open
Abstract
Porphyromonas gingivalis, a major etiological agent of chronic periodontitis, acquires heme from host hemoproteins using the HmuY hemophore. The aim of this study was to develop a specific P. gingivalis marker based on a hmuY gene sequence. Subgingival samples were collected from 66 patients with chronic periodontitis and 40 healthy subjects and the entire hmuY gene was analyzed in positive samples. Phylogenetic analyses demonstrated that both the amino acid sequence of the HmuY protein and the nucleotide sequence of the hmuY gene are unique among P. gingivalis strains/isolates and show low identity to sequences found in other species (below 50 and 56%, respectively). In agreement with these findings, a set of hmuY gene-based primers and standard/real-time PCR with SYBR Green chemistry allowed us to specifically detect P. gingivalis in patients with chronic periodontitis (77.3%) and healthy subjects (20%), the latter possessing lower number of P. gingivalis cells and total bacterial cells. Isolates from healthy subjects possess the hmuY gene-based nucleotide sequence pattern occurring in W83/W50/A7436 (n = 4), 381/ATCC 33277 (n = 3) or TDC60 (n = 1) strains, whereas those from patients typically have TDC60 (n = 21), W83/W50/A7436 (n = 17) and 381/ATCC 33277 (n = 13) strains. We observed a significant correlation between periodontal index of risk of infectiousness (PIRI) and the presence/absence of P. gingivalis (regardless of the hmuY gene-based sequence pattern of the isolate identified [r = 0.43; P = 0.0002] and considering particular isolate pattern [r = 0.38; P = 0.0012]). In conclusion, we demonstrated that the hmuY gene sequence or its fragments may be used as one of the molecular markers of P. gingivalis.
Collapse
Affiliation(s)
- Anna Gmiterek
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Halina Wójtowicz
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Małgorzata Radwan-Oczko
- Department of Periodontology, Unit of Oral Pathology, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Kantorowicz
- Department of Periodontology and Oral Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Magdalena Frąszczak
- Institute of Genetics, University of Environmental and Life Sciences, Wrocław, Poland
| | - Marcin Bielecki
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
64
|
Colombo AV, Barbosa GM, Higashi D, di Micheli G, Rodrigues PH, Simionato MRL. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with periodontitis and periodontal health. J Med Microbiol 2013; 62:1592-1600. [PMID: 23800598 DOI: 10.1099/jmm.0.055830-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial cells in oral cavities can be considered reservoirs for a variety of bacterial species. A polymicrobial intracellular flora associated with periodontal disease has been demonstrated in buccal cells. Important aetiological agents of systemic and nosocomial infections have been detected in the microbiota of subgingival biofilm, especially in individuals with periodontal disease. However, non-oral pathogens internalized in oral epithelial cells and their relationship with periodontal status are poorly understood. The purpose of this study was to detect opportunistic species within buccal and gingival crevice epithelial cells collected from subjects with periodontitis or individuals with good periodontal health, and to associate their prevalence with periodontal clinical status. Quantitative detection of total bacteria and Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis in oral epithelial cells was determined by quantitative real-time PCR using universal and species-specific primer sets. Intracellular bacteria were visualized by confocal microscopy and fluorescence in situ hybridization. Overall, 33% of cell samples from patients with periodontitis contained at least one opportunistic species, compared with 15% of samples from healthy individuals. E. faecalis was the most prevalent species found in oral epithelial cells (detected in 20.6% of patients with periodontitis, P = 0.03 versus healthy individuals) and was detected only in cells from patients with periodontitis. Quantitative real-time PCR showed that high levels of P. aeruginosa and S. aureus were present in both the periodontitis and healthy groups. However, the proportion of these species was significantly higher in epithelial cells of subjects with periodontitis compared with healthy individuals (P = 0.016 for P. aeruginosa and P = 0.047 for S. aureus). Although E. faecalis and P. aeruginosa were detected in 57% and 50% of patients, respectively, with probing depth and clinical attachment level ≥6 mm, no correlation was found with age, sex, bleeding on probing or the presence of supragingival biofilm. The prevalence of these pathogens in epithelial cells is correlated with the state of periodontal disease.
Collapse
Affiliation(s)
- Andrea V Colombo
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Graziela M Barbosa
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Daniela Higashi
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Giorgio di Micheli
- School of Dentistry, Department of Periodontology, University of São Paulo, São Paulo, Brazil
| | - Paulo H Rodrigues
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Maria Regina L Simionato
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
65
|
Binding of Streptococcus gordonii to oral epithelial monolayers increases paracellular barrier function. Microb Pathog 2013; 56:53-9. [DOI: 10.1016/j.micpath.2012.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/25/2012] [Accepted: 11/08/2012] [Indexed: 11/22/2022]
|
66
|
Dilsiz A, Canakci V, Aydin T. Clinical Effects of Potassium–Titanyl–Phosphate Laser and Photodynamic Therapy on Outcomes of Treatment of Chronic Periodontitis: A Randomized Controlled Clinical Trial. J Periodontol 2013; 84:278-86. [DOI: 10.1902/jop.2012.120096] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
67
|
Fuse H, Fukamachi H, Inoue M, Igarashi T. Identification and functional analysis of the gene cluster for fructan utilization in Prevotella intermedia. Gene 2013; 515:291-7. [DOI: 10.1016/j.gene.2012.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
68
|
Nguyen-Hieu T, Khelaifia S, Aboudharam G, Drancourt M. Methanogenic archaea in subgingival sites: a review. APMIS 2012; 121:467-77. [PMID: 23078250 DOI: 10.1111/apm.12015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/20/2012] [Indexed: 02/06/2023]
Abstract
Archaea are non-bacterial prokaryotes associated with oral microbiota in humans, but their roles in oral pathologies remain controversial. Several studies reported the molecular detection of methanogenic archaea from periodontitis, but the significance of this association has not been confirmed yet. An electronic search was therefore conducted in MEDLINE-Pubmed to identify all papers published in English connecting archaea and periodontal infections. Data analysis of the selected studies showed that five genera of methanogenic archaea have been detected in the subgingival microbiota, Methanobrevibacter oralis being the most frequently detected species in 41% of periodontitis patients and 55% of periodontal pockets compared to 6% of healthy subjects and 5% of periodontally-healthy sites (p < 10(-5) , Chi-squared test). Based on the five determination-criteria proposed by Socransky (association with disease, elimination of the organism, host response, animal pathogenicity and mechanisms of pathogenicity), M. oralis is a periodontal pathogen. The methanogenic archaea load correlating with periodontitis severity further supports the pathogenic role of methanogenic archaea in periodontitis. Therefore, detection and quantification of M. oralis in periodontal pockets could help the laboratory diagnosis and follow-up of periodontitis. Determining the origin, diversity and pathogenesis of archaea in periodontal infections warrants further investigations.
Collapse
Affiliation(s)
- Tung Nguyen-Hieu
- URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
69
|
Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012; 27:409-19. [PMID: 23134607 DOI: 10.1111/j.2041-1014.2012.00663.x] [Citation(s) in RCA: 820] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
Recent advancements in the periodontal research field are consistent with a new model of pathogenesis according to which periodontitis is initiated by a synergistic and dysbiotic microbial community rather than by select 'periopathogens', such as the 'red complex'. In this polymicrobial synergy, different members or specific gene combinations within the community fulfill distinct roles that converge to shape and stabilize a disease-provoking microbiota. One of the core requirements for a potentially pathogenic community to arise involves the capacity of certain species, termed 'keystone pathogens', to modulate the host response in ways that impair immune surveillance and tip the balance from homeostasis to dysbiosis. Keystone pathogens also elevate the virulence of the entire microbial community through interactive communication with accessory pathogens. Other important core functions for pathogenicity require the expression of diverse molecules (e.g. appropriate adhesins, cognate receptors, proteolytic enzymes and proinflammatory surface structures/ligands), which in combination act as community virulence factors to nutritionally sustain a heterotypic, compatible and proinflammatory microbial community that elicits a non-resolving and tissue-destructive host response. On the basis of the fundamental concepts underlying this model of periodontal pathogenesis, that is, polymicrobial synergy and dysbiosis, we term it the PSD model.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
70
|
Zainal-Abidin Z, Veith PD, Dashper SG, Zhu Y, Catmull DV, Chen YY, Heryanto DC, Chen D, Pyke JS, Tan K, Mitchell HL, Reynolds EC. Differential proteomic analysis of a polymicrobial biofilm. J Proteome Res 2012; 11:4449-64. [PMID: 22808953 DOI: 10.1021/pr300201c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H₂¹⁶O/H₂¹⁸O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Zamirah Zainal-Abidin
- Oral Health CRC, Melbourne Dental School and the Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tanner ACR, Sonis AL, Lif Holgerson P, Starr JR, Nunez Y, Kressirer CA, Paster BJ, Johansson I. White-spot lesions and gingivitis microbiotas in orthodontic patients. J Dent Res 2012; 91:853-8. [PMID: 22837552 DOI: 10.1177/0022034512455031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
White-spot lesions (WSL) associated with orthodontic appliances are a cosmetic problem and increase risk for cavities. We characterized the microbiota of WSL, accounting for confounding due to gingivitis. Participants were 60 children with fixed appliances, aged between 10 and 19 yrs, half with WSL. Plaque samples were assayed by a 16S rRNA-based microarray (HOMIM) and by PCR. Mean gingival index was positively associated with WSL (p = 0.018). Taxa associated with WSL by microarray included Granulicatella elegans (p = 0.01), Veillonellaceae sp. HOT 155 (p < 0.01), and Bifidobacterium Cluster 1 (p = 0.11), and by qPCR, Streptococcus mutans (p = 0.008) and Scardovia wiggsiae (p = 0.04) Taxa associated with gingivitis by microarray included: Gemella sanguinis (p = 0.002), Actinomyces sp. HOT 448 (p = 0.003), Prevotella cluster IV (p = 0.021), and Streptococcus sp. HOT 071/070 (p = 0.023); and levels of S. mutans (p = 0.02) and Bifidobacteriaceae (p = 0.012) by qPCR. Species' associations with WSL were minimally changed with adjustment for gingivitis level. Partial least-squares discriminant analysis yielded good discrimination between children with and those without WSL. Granulicatella, Veillonellaceae and Bifidobacteriaceae, in addition to S. mutans and S. wiggsiae, were associated with the presence of WSL in adolescents undergoing orthodontic treatment. Many taxa showed a stronger association with gingivitis than with WSL.
Collapse
Affiliation(s)
- A C R Tanner
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Suzuki N, Fukamachi H, Arimoto T, Yamamoto M, Igarashi T. Contribution of hly homologs to the hemolytic activity of Prevotella intermedia. Anaerobe 2012; 18:350-6. [PMID: 22554902 DOI: 10.1016/j.anaerobe.2012.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism.
Collapse
Affiliation(s)
- Naoko Suzuki
- Department of Periodontology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
73
|
Quantification of subgingival bacterial pathogens at different stages of periodontal diseases. Curr Microbiol 2012; 65:22-7. [PMID: 22526568 DOI: 10.1007/s00284-012-0121-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/26/2012] [Indexed: 01/22/2023]
Abstract
Anaerobic gram-negative oral bacteria such as Treponema denticola, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Campylobacter rectus, and Fusobacterium nucleatum are closely associated with periodontal diseases. We measured the relative population (bacterial levels) of these oral pathogens in subgingival tissues of patients at different stages of Korean chronic periodontal diseases. We divided the individuals into those with chronic gingivitis (G), moderate periodontitis (P1), severe periodontitis (P2), and normal individuals (N) (n = 20 for each group) and subgingival tissue samples were collected. We used real-time PCR with TaqMan probes to evaluate the change of periodontal pathogens among different stages of periodontitis. Bacterial levels of A. actinomycetemcomitans and C. rectus are significantly increased in individuals with chronic gingivitis and moderate periodontitis, but unchanged in severe periodontitis patients. These results suggest that analyzing certain bacterial levels among total oral pathogens may facilitate understanding of the role of periodontal bacteria in the early stages of periodontitis.
Collapse
|
74
|
Cuadra-Saenz G, Rao DL, Underwood AJ, Belapure SA, Campagna SR, Sun Z, Tammariello S, Rickard AH. Autoinducer-2 influences interactions amongst pioneer colonizing streptococci in oral biofilms. MICROBIOLOGY-SGM 2012; 158:1783-1795. [PMID: 22493304 DOI: 10.1099/mic.0.057182-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Streptococcus gordonii and Streptococcus oralis are among the first bacterial species to colonize clean tooth surfaces. Both produce autoinducer-2 (AI-2): a family of inter-convertible cell-cell signal molecules synthesized by the LuxS enzyme. The overall aim of this work was to determine whether AI-2 alters interspecies interactions between S. gordonii DL1 and S. oralis 34 within dual-species biofilms in flowing human saliva. Based upon AI-2 bioluminescence assays, S. gordonii DL1 produced more AI-2 activity than S. oralis 34 in batch culture, and both were able to remove AI-2 activity from solution. In single-species, saliva-fed flowcell systems, S. oralis 34 formed scant biofilms that were similar to the luxS mutant. Conversely, S. gordonii DL1 formed confluent biofilms while the luxS mutant formed architecturally distinct biofilms that possessed twofold greater biovolume than the wild-type. Supplementing saliva with 0.1-10 nM chemically synthesized AI-2 (csAI-2) restored the S. gordonii DL1 luxS biofilm phenotype to that which was similar to the wild-type; above or below this concentration range, biofilms were architecturally similar to that formed by the luxS mutant. In dual-species biofilms, S. gordonii DL1 was always more abundant than S. oralis 34. Compared with dual-species, wild-type biofilms, the biovolume occupied by S. oralis 34 was reduced by greater than sevenfold when neither species produced AI-2. The addition of 1 nM csAI-2 to the dual-species luxS-luxS mutant biofilms re-established the biofilm phenotype to resemble that of the wild-type pair. Thus, this work demonstrates that AI-2 can alter the biofilm structure and composition of pioneering oral streptococcal biofilms. This may influence the subsequent succession of other species into oral biofilms and the ecology of dental plaque.
Collapse
Affiliation(s)
| | - Dhana L Rao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Adam J Underwood
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Sneha A Belapure
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Zhichao Sun
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Steven Tammariello
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
75
|
Abstract
Bacterial infection associated with the use of medical or dental devices is a serious concern. Although devices made of ethylene vinyl acetate (EVA) are often used in the oral cavity, there are no established standards for their storage. We investigated bacterial survival on EVA sheets under various storage conditions to establish a standard for hygienic storage of such dental devices. Bacterial counts were evaluated, which showed a significant decrease after washing with sterilized water, mechanical brushing and rinsing, and using Mouthguard Cleaner as compared to untreated samples. In addition, no bacteria were detected on samples stored 2 days or longer in a ventilated environment, whereas they were detected for up to 14 days on samples without any cleaning stored in a closed environment. Bacterial counts for the untreated samples gradually declined, while surviving bacteria on samples treated with sterilized water and mechanical brushing showed a rapid decrease. Additionally, bacterial identification using polymerase chain reaction (PCR) revealed that Streptococcus oralis was dominantly detected on salivary samples after 14 days of storage among both two subjects. For effective hygienic storage of dental devices made of EVA, washing with sterilized water is important to remove absorbed salivary compounds along with storage in a ventilated environment.
Collapse
|
76
|
Connective tissue graft plus resin-modified glass ionomer restoration for the treatment of gingival recession associated with non-carious cervical lesions: microbiological and immunological results. Clin Oral Investig 2012; 17:67-77. [DOI: 10.1007/s00784-012-0690-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
|
77
|
Ito Y, Sato T, Yamaki K, Mayanagi G, Hashimoto K, Shimauchi H, Takahashi N. Microflora profiling of infected root canal before and after treatment using culture-independent methods. J Microbiol 2012; 50:58-62. [PMID: 22367938 DOI: 10.1007/s12275-012-0459-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 10/12/2011] [Indexed: 11/26/2022]
Abstract
This study aimed to profile the microflora in infected root canals before and after root canal treatment using culture-independent methods. Six infected root canals in single-rooted teeth with periapical lesions from five subjects were included. Quantification of total bacteria was performed by real-time PCR with primers targeting 16S rRNA genes. PCR products with universal 16S rRNA gene primers were cloned and partially sequenced, and bacterial identification at the species level was performed by comparative analysis with the GenBank database. The concentration of extracted DNA before treatment was higher than that after root canal treatment, although the difference was not statistically significant. Sequence analysis revealed that oral bacteria such as Fusobacterium, Streptococcus, Olsenella, and Pseudoramibacter detected in cases before root canal treatment disappeared after treatment. These results suggest that the root canal microflora are distinct before and after root canal treatment, and that treatment changes the microflora in both quantity and quality.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
78
|
Masuo Y, Suzuki N, Yoneda M, Naito T, Hirofuji T. Salivary β-galactosidase activity affects physiological oral malodour. Arch Oral Biol 2012; 57:87-93. [DOI: 10.1016/j.archoralbio.2011.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 11/25/2022]
|
79
|
Yakob M, Kari K, Tervahartiala T, Sorsa T, Söder PÖ, Meurman JH, Söder B. Associations of periodontal microorganisms with salivary proteins and MMP-8 in gingival crevicular fluid. J Clin Periodontol 2011; 39:256-63. [PMID: 22103335 DOI: 10.1111/j.1600-051x.2011.01813.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2011] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigated in subjects with and without periodontitis, the levels of certain salivary proteins and matrix metalloproteinase-8 (MMP-8) in gingival crevicular fluid (GCF), in relation to the presence of specific periodontal pathogens. METHODS Clinical parameters were recorded at baseline, in 1985 and in 2009 from 99 subjects; 56 with and 43 without periodontitis (mean age 59.2 ± SD 2.9). Saliva samples collected in 2009 were analysed for salivary albumin, total protein and immunoglobulins A, G and M. GCF was collected for analysis of MMP-8 levels and for the PCR-analysis of the microorganisms Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Treponema denticola and Tannerella forsythia. RESULTS Periodontitis patients were more often infected by P. gingivalis (p < 0.05), P. intermedia and T. denticola (p = 0.01) than controls. Salivary albumin and protein concentrations were significantly higher in subjects with T. denticola (p < 0.05). MMP-8 levels were significantly higher in subjects with T. denticola (p < 0.001) and T. forsythia (p < 0.01). No corresponding results were found in salivary immunoglobulin concentrations. CONCLUSION The presence of T. denticola seemed to increase salivary albumin and total protein concentrations, and GCF levels of MMP-8. Both T. denticola and T. forsythia seemed to induce a cascade of host response with increased MMP-8 in GCF.
Collapse
Affiliation(s)
- Maha Yakob
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
81
|
|
82
|
Tanner ACR, Kent RL, Holgerson PL, Hughes CV, Loo CY, Kanasi E, Chalmers NI, Johansson I. Microbiota of severe early childhood caries before and after therapy. J Dent Res 2011; 90:1298-305. [PMID: 21868693 DOI: 10.1177/0022034511421201] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Severe early childhood caries (ECC) is difficult to treat successfully. This study aimed to characterize the microbiota of severe ECC and evaluate whether baseline or follow-up microbiotas are associated with new lesions post-treatment. Plaque samples from 2- to 6-year-old children were analyzed by a 16S rRNA-based microarray and by PCR for selected taxa. Severe-ECC children were monitored for 12 months post-therapy. By microarray, species associated with severe-ECC (n = 53) compared with caries-free (n = 32) children included Slackia exigua (p = 0.002), Streptococcus parasanguinis (p = 0.013), and Prevotella species (p < 0.02). By PCR, severe-ECC-associated taxa included Bifidobacteriaceae (p < 0.001), Scardovia wiggsiae (p = 0.003), Streptococcus mutans with bifidobacteria (p < 0.001), and S. mutans with S. wiggsiae (p = 0.001). In follow-up, children without new lesions (n = 36) showed lower detection of taxa including S. mutans, changes not observed in children with follow-up lesions (n = 17). Partial least-squares modeling separated the children into caries-free and two severe-ECC groups with either a stronger bacterial or a stronger dietary component. We conclude that several species, including S. wiggsiae and S. exigua, are associated with the ecology of advanced caries, that successful treatment is accompanied by a change in the microbiota, and that severe ECC is diverse, with influences from selected bacteria or from diet.
Collapse
Affiliation(s)
- A C R Tanner
- Department of Molecular Genetics, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Lif Holgerson P, Harnevik L, Hernell O, Tanner ACR, Johansson I. Mode of birth delivery affects oral microbiota in infants. J Dent Res 2011; 90:1183-8. [PMID: 21828355 DOI: 10.1177/0022034511418973] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Establishment of the microbiota of the gut has been shown to differ between infants delivered by Caesarian section (C-section) and those delivered vaginally. The aim of the present study was to compare the oral microbiota in infants delivered by these different routes. The oral biofilm was assayed by the Human Oral Microbe Identification Microarray (HOMIM) in healthy three-month-old infants, 38 infants born by C-section, and 25 infants delivered vaginally. Among over 300 bacterial taxa targeted by the HOMIM microarray, Slackia exigua was detected only in infants delivered by C-section. Further, significantly more bacterial taxa were detected in the infants delivered vaginally (79 species/species clusters) compared with infants delivered by C-section (54 species/species clusters). Multivariate modeling revealed a strong model that separated the microbiota of C-section and vaginally delivered infants into two distinct colonization patterns. In conclusion, our study indicated differences in the oral microbiota in infants due to mode of delivery, with vaginally delivered infants having a higher number of taxa detected by the HOMIM microarray.
Collapse
Affiliation(s)
- P Lif Holgerson
- Department of Odontology, Cariology Section, Umeå University, 901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
84
|
Ahn J, Yang L, Paster BJ, Ganly I, Morris L, Pei Z, Hayes RB. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One 2011; 6:e22788. [PMID: 21829515 PMCID: PMC3146496 DOI: 10.1371/journal.pone.0022788] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/06/2011] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The human oral microbiome is potentially related to diverse health conditions and high-throughput technology provides the possibility of surveying microbial community structure at high resolution. We compared two oral microbiome survey methods: broad-based microbiome identification by 16S rRNA gene sequencing and targeted characterization of microbes by custom DNA microarray. METHODS Oral wash samples were collected from 20 individuals at Memorial Sloan-Kettering Cancer Center. 16S rRNA gene survey was performed by 454 pyrosequencing of the V3-V5 region (450 bp). Targeted identification by DNA microarray was carried out with the Human Oral Microbe Identification Microarray (HOMIM). Correlations and relative abundance were compared at phylum and genus level, between 16S rRNA sequence read ratio and HOMIM hybridization intensity. RESULTS The major phyla, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were identified with high correlation by the two methods (r = 0.70∼0.86). 16S rRNA gene pyrosequencing identified 77 genera and HOMIM identified 49, with 37 genera detected by both methods; more than 98% of classified bacteria were assigned in these 37 genera. Concordance by the two assays (presence/absence) and correlations were high for common genera (Streptococcus, Veillonella, Leptotrichia, Prevotella, and Haemophilus; Correlation = 0.70-0.84). CONCLUSION Microbiome community profiles assessed by 16S rRNA pyrosequencing and HOMIM were highly correlated at the phylum level and, when comparing the more commonly detected taxa, also at the genus level. Both methods are currently suitable for high-throughput epidemiologic investigations relating identified and more common oral microbial taxa to disease risk; yet, pyrosequencing may provide a broader spectrum of taxa identification, a distinct sequence-read record, and greater detection sensitivity.
Collapse
Affiliation(s)
- Jiyoung Ahn
- Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
85
|
Passariello C, Puttini M, Virga A, Gigola P. Microbiological and host factors are involved in promoting the periodontal failure of metaloceramic crowns. Clin Oral Investig 2011; 16:987-95. [PMID: 21720749 DOI: 10.1007/s00784-011-0585-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 06/16/2011] [Indexed: 11/27/2022]
Abstract
This study was aimed at looking into the microbiological/inflammatory parameters predicting the periodontal success/failure of fixed prostheses. Microbiological and inflammatory patterns were studied at 102 sites having metaloceramic crowns in place from 3 to 6 years and divided in healthy sites (HS), gingivitis affected (MG), and periodontitis affected (PB). Total bacterial flora and selected indicator species in subgingival plaque were quantified by quantitative real-time PCR. The concentrations of IL-1β, IL-6, and TNF-α were determined in gingival crevicular fluid (GCF) by enzyme-linked immunosorbent assays. The experimental sites showed no significant difference with respect to the age and gender of the patients and to the position of the crown margins. Poor marginal adaptation was significantly higher in MG and PB. The total amounts of bacteria per probing depth showed no significant differences among the three groups and their controls, while both MG and PB sites showed altered patterns in the distribution of specific bacteria. Both MG and PB sites showed significantly higher levels of inflammatory cytokines in GCF. The control teeth of PB subjects showed significantly higher levels of IL-1β as compared to other control sites. Data confirm that the application of metaloceramic crowns is a factor of risk for the development of gingival/periodontal inflammation. This risk is possibly associated with microbiological and host factors that predispose to the onset of periodontal alterations at sites reconstructed with metaloceramic crowns. These factors, once their role is confirmed by longitudinal studies, could be used to set up rapid tests to early predict the onset of periodontal disease at reconstructed sites.
Collapse
Affiliation(s)
- Claudio Passariello
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
86
|
Liu D, Zhou Y, Li C, Li Y, Jiang Y, Huang Z, Liang J, Shu R. Denaturing gradient gel electrophoresis analysis with different primers of subgingival bacterial communities under mechanical debridement. Microbiol Immunol 2011; 54:702-6. [PMID: 21155359 DOI: 10.1111/j.1348-0421.2010.00261.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DGGE of 16S rDNA is one of the most frequently used methods to study microbial communities. In this study, the DGGE profiles of different 16S rDNA regions of the periodontal pathogens Porphyromonas gingivalis, Fusobacterium nucleatum, and Prevotella nigrescens were investigated. The results suggested that V3-V5 and V6-V8 fragments may be suitable for community analysis of subgingival bacteria. Further analysis of subgingival samples with V3-V5 and V6-V8 regions as target fragments suggested that, in chronic periodontitis, re-colonization by periodontal bacteria with a population very similar to the baseline may occur by 6 weeks after mechanical debridement.
Collapse
Affiliation(s)
- Dali Liu
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | | | | | | | | | | | | | | |
Collapse
|