51
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
52
|
Abstract
Currently, due to uprising concerns about wound infections, healing agents have been regarded as one of the major solutions in the treatment of different skin lesions. The usage of temporary barriers can be an effective way to protect wounds or ulcers from dangerous agents and, using these carriers can not only improve the healing process but also they can minimize the scarring and the pain suffered by the human. To cope with this demand, researchers struggled to develop wound dressing agents that could mimic the structural and properties of native skin with the capability to inhibit bacterial growth. Hence, asymmetric membranes that can impair bacterial penetration and avoid exudate accumulation as well as wound dehydration have been introduced. In general, synthetic implants and tissue grafts are expensive, hard to handle (due to their fragile nature and poor mechanical properties) and their production process is very time consuming, while the asymmetric membranes are affordable and their production process is easier than previous epidermal substitutes. Motivated by this, here we will cover different topics, first, the comprehensive research developments of asymmetric membranes are reviewed and second, general properties and different preparation methods of asymmetric membranes are summarized. In the two last parts, the role of chitosan based-asymmetric membranes and electrospun asymmetric membranes in hastening the healing process are mentioned respectively. The aforementioned membranes are inexpensive and possess high antibacterial and satisfactory mechanical properties. It is concluded that, despite the promising current investigations, much effort is still required to be done in asymmetric membranes.
Collapse
|
53
|
Gefen A. The bioengineering theory of the key modes of action of a cyanoacrylate liquid skin protectant. Int Wound J 2020; 17:1396-1404. [PMID: 32488944 DOI: 10.1111/iwj.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of this article is to formulate a new bioengineering theoretical framework for modelling the biomechanical efficacy of cyanoacrylate skin protectants, with specific focus on the Marathon technology (Medline Industries, Inc., Northfield, Illinois) and its modes of action. This work details the bioengineering and mathematical formulations of the theory, which is based on the classic engineering theories of flexural stiffness of coated elements and deformation friction. Based on the relevant skin anatomy and physiology, this paper demonstrates: (a) the contribution of the polymerised cyanoacrylate coating to flexural skin stiffness, which facilitates protection from non-axial (eg, compressive) localised mechanical forces; and (b) the contribution of the aforementioned coating to reduction in frictional forces and surface shear stresses applied by contacting objects such as medical devices. The present theoretical framework establishes that application of the cyanoacrylate coating provides considerable biomechanical protection to skin and subdermally, by shielding skin from both compressive and frictional (shearing) forces. Moreover, these analyses indicate that the prophylactic effects of the studied cyanoacrylate coating become particularly strong where the skin is thin or fragile (typically less than ~0.7 mm thick), which is characteristic to old age, post-neural injuries, neuromuscular diseases, and in disuse-induced tissue atrophy conditions.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
54
|
Suzuki M, Motooka F, Takahashi T, Aoyagi S. Development of Microneedle Puncture Device that Prevents Buckling of Needle by Delivery Operation. JOURNAL OF ROBOTICS AND MECHATRONICS 2020. [DOI: 10.20965/jrm.2020.p0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein, using the micromachining technology, we propose a microneedle delivery mechanism that is similar to the lead delivery mechanism for a mechanical pencil. This mechanism involves three parts: a needle grasping part, a needle advancing part, and a needle retainer. This mechanism advances the needle by repeating the following steps: 1) fix the needle in the grasping part; 2) simultaneously advance the grasping part and the needle using the advancing part; 3) release the needle from the grasping part; 4) retreat the grasping and the advancing parts to their initial positions. This operation advances the needle very slowly, thereby allowing the needle to puncture the skin without buckling, even if the needle has a narrow diameter. Each component of the puncture device was cut from a plastic plate using a femtosecond laser. We evaluated the performance of the device for a stainless steel needle of φ100 μm, and were successful in delivering the needle at approximately 100 μm/cycle under a no-load condition. We also succeeded in puncturing the same needle into a hydrogel (Young’s modulus of ∼0.08 MPa) using this device.
Collapse
|
55
|
Friction properties of in vivo human skin from visualized friction testing. J Mech Behav Biomed Mater 2020; 104:103692. [PMID: 32174436 DOI: 10.1016/j.jmbbm.2020.103692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/14/2019] [Accepted: 02/09/2020] [Indexed: 11/21/2022]
Abstract
Investigations on mechanical behaviors of intravital human skin are of significance in various fields. However, due to the great complexity and the individual variation of human skin, traditional experimental mechanics often fails to work in such research objects. In this study, the friction property considering the skin-uplift effect of human skin was in vivo studied experimentally and theoretically. An in situ and noninvasive friction experiment was performed in vivo on human skin, where the projected contact morphology was captured through a novel specially developed optical system. According to the contact morphology, a model taking uplift resistance into account is proposed based on Greenwood model, in which the contact area was depicted as a combination of two ellipses to better characterize the skin deformation. Moreover, since the model degrades into Greenwood model in small deformation, it can be considered as an extension from the perspective of small deformation to large deformation. Based on the model, the adhesion friction and deformation friction have been separated according to the ratio of indentation depth to probe radius. The results show that the friction property of skin varies with the indentation depth changing, and the deformation friction is positively correlated with the ratio of indentation depth to probe radius.
Collapse
|
56
|
Heraud S, Delalleau A, Houcine A, Guiraud B, Bacqueville D, Payre B, Delisle MB, Bessou-Touya S, Damour O. Structural and Biomechanical Characterization of a Scaffold-Free Skin Equivalent Model via Biophysical Methods. Skin Pharmacol Physiol 2019; 33:17-29. [PMID: 31852002 DOI: 10.1159/000503154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
Abstract
AIMS Among in vitro skin models, the scaffold-free skin equivalent (SFSE), without exogenous material, is interesting for pharmacotoxicological studies. Our aim was to adapt in vivo biophysical methods to study the structure, thickness, and extracellular matrix of our in vitro model without any chemical fixation needed as for histology. METHODS We evaluated 3 batches of SFSE and characterized them by histology, transmission electron microscopy (TEM), and immunofluorescence. In parallel, we investigated 3 biophysical methods classically used for in vivo evaluation, optical coherence tomography (OCT), and laser scanning microscopy (LSM) imaging devices as well as the cutometer suction to study the biomechanical properties. RESULTS OCT allowed the evaluation of SFSE total thickness and its different compartments. LSM has a greater resolution enabling an evaluation at the cell scale and the orientation of collagen fibers. The viscoelasticity measurement by cutometry was possible on our thin skin model and might be linked with mature collagen bundles visible in TEM and LSM and with elastic fibers seen in immunofluorescence. CONCLUSION Our data demonstrated the simplicity and sensitivity of these different in vivo biophysical devices on our thin skin model. These noninvasive tools allow to study the morphology and the biomechanics of in vitro models.
Collapse
Affiliation(s)
- Sandrine Heraud
- Banque de Tissus et Cellules, Hospices Civils de Lyon and LBTI, UMR 5305, Lyon, France, .,Pierre Fabre, R&D PFDC, Département Pharmacologie, Toulouse, France,
| | | | - Audrey Houcine
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France
| | - Béatrice Guiraud
- Pierre Fabre, R&D PFDC, Département Pharmacologie, Toulouse, France
| | | | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France
| | - Marie-Bernadette Delisle
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France.,CHU Toulouse and INSERM U 1037, Toulouse, France
| | | | - Odile Damour
- Banque de Tissus et Cellules, Hospices Civils de Lyon and LBTI, UMR 5305, Lyon, France
| |
Collapse
|
57
|
Marusina AI, Merleev AA, Luna JI, Olney L, Haigh NE, Yoon D, Guo C, Ovadia EM, Shimoda M, Luxardi G, Boddu S, Lal NN, Takada Y, Lam KS, Liu R, Isseroff RR, Le S, Nolta JA, Kloxin AM, Maverakis E. Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing. Stem Cells 2019; 38:231-245. [PMID: 31648388 DOI: 10.1002/stem.3105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Therapeutic applications for mesenchymal stem/stromal cells (MSCs) are growing; however, the successful implementation of these therapies requires the development of appropriate MSC delivery systems. Hydrogels are ideally suited to cultivate MSCs but tuning hydrogel properties to match their specific in vivo applications remains a challenge. Thus, further characterization of how hydrogel-based delivery vehicles broadly influence MSC function and fate will help lead to the next generation of more intelligently designed delivery vehicles. To date, few attempts have been made to comprehensively characterize hydrogel impact on the MSC transcriptome. Herein, we have synthesized cell-degradable hydrogels based on bio-inert poly(ethylene glycol) tethered with specific integrin-binding small molecules and have characterized their resulting effect on the MSC transcriptome when compared with 2D cultured and untethered 3D hydrogel cultured MSCs. The 3D culture systems resulted in alterations in the MSC transcriptome, as is evident by the differential expression of genes related to extracellular matrix production, glycosylation, metabolism, signal transduction, gene epigenetic regulation, and development. For example, genes important for osteogenic differentiation were upregulated in 3D hydrogel cultures, and the expression of these genes could be partially suppressed by tethering an integrin-binding RGD peptide within the hydrogel. Highlighting the utility of tunable hydrogels, when applied to ex vivo human wounds the RGD-tethered hydrogel was able to support wound re-epithelialization, possibly due to its ability to increase PDGF expression and decrease IL-6 expression. These results will aid in future hydrogel design for a broad range of applications.
Collapse
Affiliation(s)
- Alina I Marusina
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Alexander A Merleev
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Jesus I Luna
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Laura Olney
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Nathan E Haigh
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Daniel Yoon
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Chen Guo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Elisa M Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Michiko Shimoda
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Guillaume Luxardi
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Sucharita Boddu
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Nelvish N Lal
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Yoshikazu Takada
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - R Rivkah Isseroff
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Stephanie Le
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| | - Jan A Nolta
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, California
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
58
|
Wang S, Li Q, Feng S, Lv Y, Zhang T. A water-retaining, self-healing hydrogel as ionic skin with a highly pressure sensitive properties. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
59
|
Bou Haidar N, Marais S, Dé E, Schaumann A, Barreau M, Feuilloley MGJ, Duncan AC. Chronic wound healing: A specific antibiofilm protein-asymmetric release system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110130. [PMID: 31753364 DOI: 10.1016/j.msec.2019.110130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
Chronic infection is a major cause of delayed wound-healing. It is recognized to be associated with infectious bacterial communities called biofilms. Currently used conventional antibiotics alone often reveal themselves ineffective, since they do not specifically target the wound biofilm. Here, we report a new conceptual tool aimed at overcoming this drawback: an antibiofilm drug delivery system targeting the bacterial biofilm as a whole, by inhibiting its formation and/or disrupting it once it is formed. The system consists of a micro/nanostructured poly(butylene-succinate-co-adipate) (PBSA)-based asymmetric membrane (AM) with controlled porosity. By the incorporation of hydrophilic porogen agents, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), we were able to obtain AMs with high levels of porosity, exhibiting interconnections between pores. The PBSA-PEG membrane presented a dense upper layer with pores small enough to block bacteria penetration. Upon using such porogen agents, under dry and wet conditions, membrane's integrity and mechanical properties were maintained. Using bovine serum albumin (BSA) as a model protein, we demonstrated that protein loading and release from PBSA membranes were affected by the membrane structure (porosity) and the presence of residual porogen. Furthermore, the release curve profile consisted of a fast initial slope followed by a second slow phase approaching a plateau within 24 h. This can be highly beneficial for the promotion of wound healing. Cross-sectional confocal laser scanning microscopy (CLSM) images revealed a heterogeneous distribution of fluorescein isothiocyanate (FITC) labeled BSA throughout the entire membrane. PBSA membranes were loaded with dispersin B (DB), a specific antibiofilm matrix enzyme. Studies using a Staphylococcus epidermidis model, indicate significant efficiency in both inhibiting or dispersing preformed biofilm (up to 80 % eradication). The asymmetric PBSA membrane prepared with the PVP porogen (PBSA-PVP) displayed highest antibiofilm activity. Moreover, in vitro cytotoxicity assays using HaCaT and reconstructed human epidermis (RHE) models revealed that unloaded and DB-loaded PBSA-PVP membranes had excellent biocompatibility suitable for wound dressing applications.
Collapse
Affiliation(s)
- Naila Bou Haidar
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Stéphane Marais
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Emmanuelle Dé
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Annick Schaumann
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Magalie Barreau
- Normandie Univ, UNIRouen Normandie, LMSM EA4312, 27000 Evreux, France
| | | | - Anthony C Duncan
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| |
Collapse
|
60
|
Substrate softness promotes terminal differentiation of human keratinocytes without altering their ability to proliferate back into a rigid environment. Arch Dermatol Res 2019; 311:741-751. [DOI: 10.1007/s00403-019-01962-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/13/2019] [Accepted: 06/15/2019] [Indexed: 12/20/2022]
|
61
|
Torossian K, Benayoun S, Ottenio M, Brulez AC. Guidelines for designing a realistic peripheral venous catheter insertion simulator: A literature review. Proc Inst Mech Eng H 2019; 233:963-978. [DOI: 10.1177/0954411919864786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A literature review was conducted to develop more realistic medical simulators that better prepare aspiring health professionals to perform a medical procedure in vivo. Thus, this review proposes an approach that might assist researchers design improved medical simulators, particularly new materials that would enhance the sensation of touch for skin substitutes. By targeting the current needs in the field of simulation learning, we concluded that peripheral venous catheter insertion simulators lack realistic haptic feedback. Enhanced peripheral venous catheter insertion simulators will accelerate the mastery of the medical procedure, thus decreasing the number of failures in patients and costs related to this procedure.
Collapse
Affiliation(s)
- Kevin Torossian
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, Écully, France
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| | - Stéphane Benayoun
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, Écully, France
| | - Mélanie Ottenio
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| | - Anne-Catherine Brulez
- Laboratoire de Génie de la Fonctionnalisation des Matériaux Polymères, Institut Textile et Chimique de Lyon, Écully, France
| |
Collapse
|
62
|
Chen J, Yang H, Li J, Chen J, Zhang Y, Zeng X. The development of an artificial skin model and its frictional interaction with wound dressings. J Mech Behav Biomed Mater 2019; 94:308-316. [PMID: 30953911 DOI: 10.1016/j.jmbbm.2019.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/30/2019] [Accepted: 03/15/2019] [Indexed: 01/25/2023]
Abstract
Human skin interacts with various materials in our daily life. The interaction between human skin and contacting materials is very important for the development of skin contacting products. Owing to the ethic and different testing results because of the using of in vivo or ex vivo skin, it is important to develop an artificial skin model (ASM) for the study. Therefore, an ASM mimicking the deformation and friction behavior of in vivo human skin was designed based on the evaluation of in vivo human skin behavior, and its frictional interaction with wound dressings was studied. The ASM was prepared by the combination of hydrophilic network carboxyl chitosan (CC) and hydrophobic network polydimethylsiloxane (PDMS). The influence of ingredient ratio, including PDMS/CC and curing agent/PDMS ratio, on the mechanical property of ASM was determined firstly. By adjusting the curing agent/PDMS ratio, the water absorption swelling rate (WASR) of ASM could be controlled to mimic different hydration status of human skin. With the changing of ingredient ratio and hydration level, the elastic modulus and viscoelasticity of ASM can be tailored to be similar to that of in vivo human skin. When the PDMS/CC ratio was 7:3, and PDMS/curing agent ratio was smaller than 1:30, the elastic modulus of ASM was in the range of in vivo inner forearm, and with the increasing of indentation depth, the elastic modulus decreased. Based on the ASM, the frictional interaction between skin/wound dressing/mattress was studied. It was found that although the friction using ASM was slightly higher than that using in vivo inner forearm, but the friction decreasing trend was the same for different kinds of wound dressings. In addition, the friction tested with ASM was less fluctuation, more reliable and reproducible than that tested with in vivo skin, indicating that the ASM was suitable to be used for the studying of frictional interaction between skin and product, such as wound dressings.
Collapse
Affiliation(s)
- Jingmin Chen
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongmei Yang
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiusheng Li
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jinyang Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yadong Zhang
- Department of Orthopedics, South Campus of Shanghai Sixth People's Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 220120, China; Fengxian District Central Hospital affiliated to Southern Medical University, Shanghai 220120, China.
| | - Xiangqiong Zeng
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
63
|
Kadhum M, Lee MH, Czernuszka J, Lavy C. An Analysis of the Mechanical Properties of the Ponseti Method in Clubfoot Treatment. Appl Bionics Biomech 2019; 2019:4308462. [PMID: 31019550 PMCID: PMC6452541 DOI: 10.1155/2019/4308462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022] Open
Abstract
Congenital clubfoot is a complex pediatric foot deformity, occurring in approximately 1 in 1000 live births and resulting in significant disability, deformity, and pain if left untreated. The Ponseti method of manipulation is widely recognized as the gold standard treatment for congenital clubfoot; however, its mechanical aspects have not yet been fully explored. During the multiple manipulation-casting cycles, the tendons and ligaments on the medial and posterior aspect of the foot and ankle, which are identified as the rate-limiting tissues, usually undergo weekly sequential stretches, with a plaster of Paris cast applied after the stretch to maintain the length gained. This triggers extracellular matrix remodeling and tissue growth, but due to the viscoelastic properties of tendons and ligaments, the initial strain size, rate, and loading history will affect the relaxation behavior and mechanical strength of the tissue. To increase the efficiency of the Ponseti treatment, we discuss the theoretical possibilities of decreasing the size of the strain step and interval of casting and/or increasing the overall number of casts. This modification may provide more tensile stimuli, allow more time for remodeling, and preserve the mechanical integrity of the soft tissues.
Collapse
Affiliation(s)
- Murtaza Kadhum
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Oxford University, UK
| | - Mu-Huan Lee
- Department of Materials, Oxford University, UK
| | | | - Chris Lavy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Oxford University, UK
| |
Collapse
|
64
|
Parker MD, Babarenda Gamage TP, HajiRassouliha A, Taberner AJ, Nash MP, Nielsen PMF. Surface deformation tracking and modelling of soft materials. Biomech Model Mechanobiol 2019; 18:1031-1045. [PMID: 30778884 DOI: 10.1007/s10237-019-01127-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/09/2019] [Indexed: 11/27/2022]
Abstract
Many computer vision algorithms have been presented to track surface deformations, but few have provided a direct comparison of measurements with other stereoscopic approaches and physics-based models. We have previously developed a phase-based cross-correlation algorithm to track dense distributions of displacements over three-dimensional surfaces. In the present work, we compare this algorithm with one that uses an independent tracking system, derived from an array of fluorescent microspheres. A smooth bicubic Hermite mesh was fitted to deformations obtained from the phase-based cross-correlation data. This mesh was then used to estimate the microsphere locations, which were compared to stereo reconstructions of the microsphere positions. The method was applied to a 35 mm × 35 mm × 35 mm soft silicone gel cube under indentation, with three square bands of microspheres placed around the indenter tip. At an indentation depth of 4.5 mm, the root-mean-square (RMS) differences between the reconstructed positions of the microspheres and their identified positions for the inner, middle, and outer bands were 60 µm, 20 µm, and 19 µm, respectively. The usefulness of the strain-tracking data for physics-based finite element modelling of large deformation mechanics was then demonstrated by estimating a neo-Hookean stiffness parameter for the gel. At the optimal constitutive parameter estimate, the RMS difference between the measured microsphere positions and their finite element model-predicted locations was 143 µm.
Collapse
Affiliation(s)
- Matthew D Parker
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Amir HajiRassouliha
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- Department of Engineering Science, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
65
|
Savary G, Gilbert L, Grisel M, Picard C. Instrumental and sensory methodologies to characterize the residual film of topical products applied to skin. Skin Res Technol 2019; 25:415-423. [DOI: 10.1111/srt.12667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
| | - Laura Gilbert
- Normandie UnivUNILEHAVREFR 3032CNRSURCOM EA3221 Le Havre France
| | - Michel Grisel
- Normandie UnivUNILEHAVREFR 3032CNRSURCOM EA3221 Le Havre France
| | - Céline Picard
- Normandie UnivUNILEHAVREFR 3032CNRSURCOM EA3221 Le Havre France
| |
Collapse
|
66
|
Miguel SP, Moreira AF, Correia IJ. Chitosan based-asymmetric membranes for wound healing: A review. Int J Biol Macromol 2019; 127:460-475. [PMID: 30660567 DOI: 10.1016/j.ijbiomac.2019.01.072] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
The wound healing process involves highly complex and dynamic events that allow the re-establishment of skin's structural integrity. To further improve or to overcome the drawbacks associated with this process, researchers have been focused on the development of new therapeutics. Among them, asymmetric membranes are currently one of the most promising approaches to be used in wound healing due to its structural similarities with the epidermal and dermal layers of the native skin. The outer layer of asymmetric membranes provides a barrier that protects the wound from external damages (e.g. microorganisms and chemical agents), whereas the interior porous layer acts as template for supporting cell adhesion, migration and proliferation. Among the different materials used to produce these distinct layers, the chitosan arises as one of the preeminent materials due to its inherent biocompatibility, antibacterial, hemostatic, and healing properties. Therefore, in this review, it is provided an overview of the different chitosan-based asymmetric membranes developed for wound dressing applications. Further, the chitosan modifications to enhance its bioactivity as well as the asymmetric membranes general properties and production techniques are also described.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
67
|
Schwartz D, Magen YK, Levy A, Gefen A. Effects of humidity on skin friction against medical textiles as related to prevention of pressure injuries. Int Wound J 2018; 15:866-874. [PMID: 29797409 PMCID: PMC7949509 DOI: 10.1111/iwj.12937] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/24/2018] [Indexed: 11/27/2022] Open
Abstract
Sustained pressure, shear forces, and friction, as well as elevated humidity/moisture, are decisive physical factors in the development of pressure injuries (PIs). To date, further research is needed in order to understand the influence of humidity and moisture on the coefficient of friction (COF) of skin against different types of medical textiles. The aim of this work was to investigate the effects of moisture caused by sweat, urine, or saline on the resulting COF of skin against different textiles used in the medical setting in the context of PI prevention. For that purpose, we performed physical measurements of static COFs of porcine skin followed by finite element (FE) computational modelling in order to illustrate the effect of increased COF at the skin on the resulting strains and stresses deep within the soft tissues of the buttocks. The COF of dry skin obtained for the 3 textiles varied between 0.59 (adult diaper) and 0.91 (polyurethane dressing). In addition, the COF increased with the added moisture in all of the tested cases. The results of the FE simulations further showed that increased COF results in elevated strain energy density and shear strain values in the skin and deeper tissues and, hence, in an increased risk for PI development. We conclude that moisture may accelerate PI formation by increasing the COF between the skin and the medical textile, regardless of the type of the liquid that is present. Hence, reduction of the wetness/moisture between the skin and fabrics in patients at a high risk of developing PIs is a key measure in PI prevention.
Collapse
Affiliation(s)
- Danit Schwartz
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| | - Yana Katsman Magen
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| | - Ayelet Levy
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
68
|
Adeli H, Khorasani MT, Parvazinia M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 2018; 122:238-254. [PMID: 30342125 DOI: 10.1016/j.ijbiomac.2018.10.115] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/16/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022]
Abstract
Electrospun nanofibrous mats based on biopolymers have been widely investigated for tissue engineering in recent years, primarily due to remarkable morphological similarity to the natural extracellular matrix (ECM). In this research, electrospun PVA/Chitosan/Starch nanofibrous mats were fabricated using electrospinning method for wound dressing application. The prepared nanofibrous mats were then cross-linked to enhanced the water resistance and also optimize the biodegradation rate followed by characterization and evaluation of their properties as wound dressings. The morphological studies performed by SEM and AFM showed that uniform bead-free electrospun nanofibrous mats were formed. The structural properties of the fabricated mats were characterized by FTIR. The proper porosity and balanced water absorption and water vapor transmission rate (WVTR) of obtained dressings, demonstrate their ability in providing suitable moist environment for wound, result in the appropriate wound breathing and simultaneously efficient handling of wound exudates. Suitable mechanical properties of nanofibrous dressing in both dry and wet states confirm the capability of fabricated wound dressing to protect wound area against the external forces during the healing process. Antibacterial test revealed excellent antibacterial activity of nanofibrous mats against both gram negative and gram positive bacteria. Furthermore, the in vitro cytotoxicity evaluated by MTT assay, proved appropriate cytocompatibility and cell viability of the developed nanofibrous mats which were also verified with in vitro wound healing analysis performed by scratch assay, confirming the remarkable potential of the investigated nanofibrous mats for wound dressing application.
Collapse
Affiliation(s)
- Hassan Adeli
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | | | - Mahmoud Parvazinia
- Department of Polymerization Engineering, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
69
|
Kang MJ, Kim BS, Hwang S, Yoo HH. Experimentally derived viscoelastic properties of human skin and muscle in vitro. Med Eng Phys 2018; 61:25-31. [PMID: 30131279 DOI: 10.1016/j.medengphy.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/24/2018] [Accepted: 08/05/2018] [Indexed: 11/25/2022]
Abstract
Measurement of the mechanical properties of human skin in vivo is challenging. Moreover, those with regard to excitation frequency have been rarely reported thus far. In this study, a vibration-based experimental method was employed to measure the viscoelastic properties with regard to the excitation frequency. Pieces of human skin and skeletal muscle excised from cadavers immediately post mortem were stored in a sealed container. As the experiment began, they were removed from the container and used to measure the viscoelastic properties as time elapsed. Young's moduli of the samples of human skin tissue that were immediately removed from the container were found to be similar to those obtained with in-vivo indentation methods. They were also found to be approximately one-third of those of human skeletal muscles. The viscoelastic properties of human skin were found to remain almost constant within the frequency range up to 120 Hz and are similar to those of porcine tissue. Young's moduli of the human skin and skeletal muscle were also found to reach the maximum values approximately five days post mortem. However, the loss factor of the human skin did not vary significantly as time elapses.
Collapse
Affiliation(s)
- Moon Jeong Kang
- School of Mechanical Engineering, Hanyang University, Wangshimni-ro 222, Seongdong-gu, Seoul 04763, South Korea.
| | - Bo-Seung Kim
- School of Mechanical Engineering, Hanyang University, Wangshimni-ro 222, Seongdong-gu, Seoul 04763, South Korea.
| | - Sejin Hwang
- Department of Anatomy, College of Medicine, Hanyang University, Wangshimni-ro 222, Seongdong-gu, Seoul 04763, South Korea.
| | - Hong Hee Yoo
- School of Mechanical Engineering, Hanyang University, Wangshimni-ro 222, Seongdong-gu, Seoul 04763, South Korea.
| |
Collapse
|
70
|
Dai A, Wang S, Zhou L, Wei H, Wang Z, He W. In vivo mechanical characterization of human facial skin combining curved surface imaging and indentation techniques. Skin Res Technol 2018; 25:142-149. [DOI: 10.1111/srt.12623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Dai
- Department of MechanicsTianjin University Tianjin China
| | - Shibin Wang
- Department of MechanicsTianjin University Tianjin China
| | - Lei Zhou
- Department of MechanicsTianjin University Tianjin China
| | - Huixin Wei
- Department of MechanicsTianjin University Tianjin China
| | - Zhiyong Wang
- Department of MechanicsTianjin University Tianjin China
| | - Wei He
- AMLDepartment of Engineering MechanicsTsinghua University Beijing China
| |
Collapse
|
71
|
Louzao I, Koch B, Taresco V, Ruiz-Cantu L, Irvine DJ, Roberts CJ, Tuck C, Alexander C, Hague R, Wildman R, Alexander MR. Identification of Novel "Inks" for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6841-6848. [PMID: 29322768 DOI: 10.1021/acsami.7b15677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A robust methodology is presented to identify novel biomaterials suitable for three-dimensional (3D) printing. Currently, the application of additive manufacturing is limited by the availability of functional inks, especially in the area of biomaterials; this is the first time when this method is used to tackle this problem, allowing hundreds of formulations to be readily assessed. Several functional properties, including the release of an antidepressive drug (paroxetine), cytotoxicity, and printability, are screened for 253 new ink formulations in a high-throughput format as well as mechanical properties. The selected candidates with the desirable properties are successfully scaled up using 3D printing into a range of object architectures. A full drug release study and degradability and tensile modulus experiments are presented on a simple architecture to validating the suitability of this methodology to identify printable inks for 3D printing devices with bespoke properties.
Collapse
Affiliation(s)
- Iria Louzao
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Britta Koch
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Vincenzo Taresco
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Laura Ruiz-Cantu
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Derek J Irvine
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Clive J Roberts
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Christopher Tuck
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Cameron Alexander
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Richard Hague
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Ricky Wildman
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Morgan R Alexander
- School of Pharmacy and ‡Faculty of Engineering, University of Nottingham , Nottingham NG7 2RD, U.K
| |
Collapse
|
72
|
Zhang X. A noninvasive surface wave technique for measuring finger's skin stiffness. J Biomech 2018; 68:115-119. [PMID: 29279194 DOI: 10.1016/j.jbiomech.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/21/2017] [Accepted: 12/10/2017] [Indexed: 01/03/2023]
Abstract
The purpose of this work was to develop a compact surface wave elastography (CSWE) device for measuring finger's skin stiffness. The motivation was to develop a noninvasive technique for assessing limited cutaneous systemic sclerosis (lcSSc) in accordance with new ACR/EULAR clarification criteria. Currently, the Modified Rodnan Skin Score (MRSS) is widely used for assessing systemic sclerosis but is challenging for assessing patients with lcSSc. The novelty of CSWE is to develop a noninvasive technique to measure the elastic properties of skin of fingers. In the CSWE device, a local harmonic vibration was generated on the finger's skin. The surface wave speed on the finger's skin was measured without contact using a compact optical probe. The CSWE device was first validated with an ultrasound-based surface wave elastography (USWE) device on a phantom. The CSWE device was then validated with the USWE device on both the dorsal and ventral arms of a volunteer. The CSWE device was evaluated to measure the surface wave speed of four fingers for the volunteer. The CSWE device may be useful for measuring skin stiffness over multiple areas of fingers and hands for assessing lcSSc.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
73
|
Hara Y, Ogura Y, Yamashita T, Furukawa D, Saeki S. Visualization of viscoelastic behavior in skin equivalent using optical coherence tomography-based straingraphy. Skin Res Technol 2018; 24:334-339. [PMID: 29368351 DOI: 10.1111/srt.12435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE The relationships between the skin components and these mechanical roles are still unclear. To clarify these relationships, we investigated spatial mapping of the mechanical behavior of cultured skin equivalents (SEs) using optical coherence tomography (OCT)-based straingraphy. METHODS We built a strain relaxation test system combined with OCT and developed an algorithm that could visualize a time-dependent strain distribution, named dynamic-optical coherence straingraphy (D-OCSA). Using this system, we analyzed how the spatial mechanical changes in the SEs depended on the culture duration. For quantitative analysis of viscoelastic behavior, we defined a relaxation attenuation coefficient of strain rate, which indicates the ratio of viscosity and elasticity in the Klevin-Voight model. RESULTS By culturing for 4 days in comparison to culturing for 1 day, the strain relaxation attenuation coefficient of the whole skin, especially at the region of the dermal-epidermal junction (DEJ), significantly increased in the negative direction. In tissue slices taken for microscopy, several cracks were observed in the SEs cultured for 4 days. CONCLUSION This study is the first to provide quantified evidence that the DEJ is a dynamically specialized region. An OCT-based straingraphy system (D-OCSA) would be beneficial for evaluating the quality of SEs, as well as functional analysis of their mechanics.
Collapse
Affiliation(s)
- Y Hara
- Shiseido Research Center, Kanagawa, Japan.,Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Y Ogura
- Shiseido Research Center, Kanagawa, Japan
| | | | - D Furukawa
- Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - S Saeki
- Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
74
|
Peñuela L, Negro C, Massa M, Repaci E, Cozzani E, Parodi A, Scaglione S, Quarto R, Raiteri R. Atomic force microscopy for biomechanical and structural analysis of human dermis: A complementary tool for medical diagnosis and therapy monitoring. Exp Dermatol 2018; 27:150-155. [DOI: 10.1111/exd.13468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Leonardo Peñuela
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Carola Negro
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Michela Massa
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Erica Repaci
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Emanuele Cozzani
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Aurora Parodi
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Silvia Scaglione
- Research National Council; IEIIT Institute (CNR-IEIIT) Genoa; Genoa Italy
| | - Rodolfo Quarto
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| |
Collapse
|
75
|
Parker MD, Jones LA, Hunter IW, Taberner AJ, Nash MP, Nielsen PMF. Multidirectional In Vivo Characterization of Skin Using Wiener Nonlinear Stochastic System Identification Techniques. J Biomech Eng 2017; 139:2571658. [PMID: 27760249 DOI: 10.1115/1.4034993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/08/2022]
Abstract
A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.
Collapse
Affiliation(s)
- Matthew D Parker
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand e-mail:
| | - Lynette A Jones
- BioInstrumentation Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 e-mail:
| | - Ian W Hunter
- BioInstrumentation Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 e-mail:
| | - A J Taberner
- Department of Engineering Science, Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand e-mail:
| | - M P Nash
- Department of Engineering Science, Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand e-mail:
| | - P M F Nielsen
- Department of Engineering Science, Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand e-mail:
| |
Collapse
|
76
|
Butz K, Spurlock C, Roy R, Bell C, Barrett P, Ward A, Xiao X, Shirley A, Welch C, Lister K. Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading. STAPP CAR CRASH JOURNAL 2017; 61:175-209. [PMID: 29394439 DOI: 10.4271/2017-22-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Improving injury prediction accuracy and fidelity for mounted Warfighters has become an area of focus for the U.S. military in response to improvised explosive device (IED) use in both Iraq and Afghanistan. Although the Hybrid III anthropomorphic test device (ATD) has historically been used for crew injury analysis, it is only capable of predicting a few select skeletal injuries. The Computational Anthropomorphic Virtual Experiment Man (CAVEMAN) human body model is being developed to expand the injury analysis capability to both skeletal and soft tissues. The CAVEMAN model is built upon the Zygote 50th percentile male human CAD model and uses a finite element modeling approach developed for high performance computing (HPC). The lower extremity subset of the CAVEMAN human body model presented herein includes: 28 bones, 26 muscles, 40 ligaments, fascia, cartilage and skin. Sensitivity studies have been conducted with the CAVEMAN lower extremity model to determine the structures critical for load transmission through the leg in the underbody blast (UBB) environment. An evaluation of the CAVEMAN lower extremity biofidelity was also carried out using 14 unique data sets derived by the Warrior Injury Assessment Manikin (WIAMan) program cadaveric lower leg testing. Extension of the CAVEMAN lower extremity model into anatomical tissue failure will provide additional injury prediction capabilities, beyond what is currently achievable using ATDs, to improve occupant survivability analyses within military vehicles.
Collapse
|
77
|
Dąbrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol 2017; 24:165-174. [PMID: 29057509 DOI: 10.1111/srt.12424] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. OBJECTIVES This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. METHODS There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. RESULTS Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. CONCLUSIONS Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked.
Collapse
Affiliation(s)
- A K Dąbrowska
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - F Spano
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - S Derler
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - C Adlhart
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, ZHAW, Wädenswil, Switzerland
| | - N D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - R M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
78
|
Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J Colloid Interface Sci 2017; 509:275-284. [PMID: 28915485 DOI: 10.1016/j.jcis.2017.08.092] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022]
Abstract
Trimethoxysilylpropyl octadecyldimethyl ammonium chloride (QAS), which forms facile bonds with hydroxyl groups, acts asa cationic antibacterial agent. In this work, QAS was introduced into a polycaprolactone (PCL)/gelatin hybrid in increasing concentrations to fabricate a long-acting and broad-spectrum antimicrobial micro/nanofiber membrane as a novel wound dressing. The physical interactions and chemical bonding between QAS/PCL and QAS/gelatin were demonstrated by infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS. Measured water contact angle between the PCL-gelatin/QAS (PG-Q) nanofiber membranes suggested a hydrophobic surface, which has been shown to aid in removal of wound dressings. The mechanical strength of the membranes was sufficient to meet the clinical requirements. Furthermore, the 15% QAS (PG-Q15) and 20% QAS (PG-Q20) formulated nanofiber membranes showed a considerable increase in their bacteriostatic activity towards Staphylococcus aureus (gram-positive) and Pseudomonas aeruginosa (gram-negative) bacteria, suggesting a broad-spectrum bactericidal effect by the PG-Q membranes. The PG-Q membranes with various QAS formulations demonstrated little cytotoxicity. Therefore, the long-acting and broad-spectrum antimicrobial electrospun PG-Q micro/nanofibers membrane demonstrate potential efficacy asan antibacterial wound dressing.
Collapse
|
79
|
Interstitial fluid flow-induced growth potential and hyaluronan synthesis of fibroblasts in a fibroblast-populated stretched collagen gel culture. Biochim Biophys Acta Gen Subj 2017; 1861:2261-2273. [PMID: 28668298 DOI: 10.1016/j.bbagen.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/16/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tensioned collagen gels with dermal fibroblasts (DFs) as a dermis model are usually utilized in a static culture (SC) that lacks medium flowing. To make the model closer to its in vivo state, we created a device to perfuse the model with media flowing at a physiological velocity and examined the effects of medium flow (MF) on the cultures. METHODS We constructed a medium perfusion device for human DF-embedded stretched collagen gels (human dermis model), exposed the model to media that flows upwardly at ~1mL/day, and examined water retention of the gels, cells' growth ability, metabolic activity, expression profiles of nine extracellular matrix (ECM)-related genes. The obtained data were compared with those from the model in SC. RESULTS MF increases the gels' water retention and cells' growth potential but had little effect on their metabolic activities. MF robustly enhanced hyaluronan synthase 2 (HAS2) and matrix metalloprotease 1 (MMP1) gene expressions but not of the other genes (MMP2, HYAL1, HYAL2, HYAL3, COL1A1, COL3A1, and CD44). MF significantly increased the amounts of cellular hyaluronan and adenosine triphosphate. CONCLUSIONS The MF at a physiological speed significantly influences the nature of ECMs and their resident fibroblasts and remodels ECMs by regulating hyaluronan metabolism. GENERAL SIGNIFICANCE Fibroblasts in tensioned collagen gels altered their phenotypes in a MF rate-dependent manner. Collagen gel culture with tension and MF could be utilized as an appropriate in vitro model of interstitial connective tissues to evaluate the pathophysiological significance of mechanosignals generated by fluid flow and cellular/extracellular tension.
Collapse
|
80
|
Bootsma K, Fitzgerald MM, Free B, Dimbath E, Conjerti J, Reese G, Konkolewicz D, Berberich JA, Sparks JL. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. J Mech Behav Biomed Mater 2017; 70:84-94. [DOI: 10.1016/j.jmbbm.2016.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
|
81
|
Miguel SP, Ribeiro MP, Coutinho P, Correia IJ. Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofibrous Asymmetric Membranes Aimed for Wound Healing Applications. Polymers (Basel) 2017; 9:E183. [PMID: 30970863 PMCID: PMC6432098 DOI: 10.3390/polym9050183] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Today, none of the wound dressings available on the market is fully capable of reproducing all the features of native skin. Herein, an asymmetric electrospun membrane was produced to mimic both layers of skin. It comprises a top dense layer (manufactured with polycaprolactone) that was designed to provide mechanical support to the wound and a bottom porous layer (composed of chitosan and Aloe Vera) aimed to improve the bactericidal activity of the membrane and ultimately the healing process. The results obtained revealed that the produced asymmetric membranes displayed a porosity, wettability, as well as mechanical properties similar to those presented by the native skin. Fibroblast cells were able to adhere, spread, and proliferate on the surface of the membranes and the intrinsic structure of the two layers of the membrane is capable of avoiding the invasion of microorganisms while conferring bioactive properties. Such data reveals the potential of these asymmetric membranes, in the near future, to be applied as wound dressings.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Maximiano P Ribeiro
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Paula Coutinho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Ilídio J Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
82
|
Pensalfini M, Ehret AE, Stüdeli S, Marino D, Kaech A, Reichmann E, Mazza E. Factors affecting the mechanical behavior of collagen hydrogels for skin tissue engineering. J Mech Behav Biomed Mater 2017; 69:85-97. [DOI: 10.1016/j.jmbbm.2016.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
|
83
|
Garcia-Gonzalez D, Jayamohan J, Sotiropoulos S, Yoon SH, Cook J, Siviour C, Arias A, Jérusalem A. On the mechanical behaviour of PEEK and HA cranial implants under impact loading. J Mech Behav Biomed Mater 2017; 69:342-354. [DOI: 10.1016/j.jmbbm.2017.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
|
84
|
Kelmansky R, McAlvin BJ, Nyska A, Dohlman JC, Chiang HH, Hashimoto M, Kohane DS, Mizrahi B. Strong tissue glue with tunable elasticity. Acta Biomater 2017; 53:93-99. [PMID: 28189813 DOI: 10.1016/j.actbio.2017.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 12/18/2022]
Abstract
Many bio-adhesive materials adhere weakly to tissue due to their high water content and weak structural integrity. Others provide desirable adhesive strength but suffer from rigid structure and lack of elasticity after administration. We have developed two water-free, liquid four-armed PEG pre-polymers modified with NHS or with NH2 end groups which upon mixing changed from liquids to an elastic solid. The sealant and adhesive properties increased with the amount of the %v/v PEG4-NHS pre-polymer, and achieved adhesive properties comparable to those of cyanoacrylate glues. All mixtures showed minimal cytotoxicity in vitro. Mixtures of 90%v/v PEG4-NHS were retained in the subcutaneous space in vivo for up to 14days with minimal inflammation. This material's combination of desirable mechanical properties and biocompatibility has potential in numerous biomedical applications. STATEMENT OF SIGNIFICANCE Many bio-adhesive materials adhere weakly to tissue (e.g. hydrogels) due to their high water content and weak structural integrity. Others provide desirable mechanical properties but suffer from poor biocompatibility (e.g. cyanoacrylates). This study proposes a new concept for the formation of super strong and tunable tissue glues. Our bio-materials' enhanced performance is the product of new neat (without water or other solvents) liquid polymers that solidify after administration while allowing interactions with the tissue. Moreover, the elastic modulus of these materials could easily be tuned without compromising biocompatibility. This system could be an attractive alternative to sutures and staples since it can be applied more quickly, causes less pain and may require less equipment while maintaining the desired adhesion strength.
Collapse
|
85
|
Meliga SC, Coffey JW, Crichton ML, Flaim C, Veidt M, Kendall MA. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model. Acta Biomater 2017; 48:341-356. [PMID: 27746361 DOI: 10.1016/j.actbio.2016.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022]
Abstract
In-depth understanding of skin elastic and rupture behavior is fundamental to enable next-generation biomedical devices to directly access areas rich in cells and biomolecules. However, the paucity of skin mechanical characterization and lack of established fracture models limits their rational design. We present an experimental and numerical study of skin mechanics during dynamic interaction with individual and arrays of micro-penetrators. Initially, micro-indentation of individual skin strata revealed hyperelastic moduli were dramatically rate-dependent, enabling extrapolation of stiffness properties at high velocity regimes (>1ms-1). A layered finite-element model satisfactorily predicted the penetration of micro-penetrators using characteristic fracture energies (∼10pJμm-2) significantly lower than previously reported (≫100pJμm-2). Interestingly, with our standard application conditions (∼2ms-1, 35gpistonmass), ∼95% of the application kinetic energy was transferred to the backing support rather than the skin ∼5% (murine ear model). At higher velocities (∼10ms-1) strain energy accumulated in the top skin layers, initiating fracture before stress waves transmitted deformation to the backing material, increasing energy transfer efficiency to 55%. Thus, the tools developed provide guidelines to rationally engineer skin penetrators to increase depth targeting consistency and payload delivery across patients whilst minimizing penetration energy to control skin inflammation, tolerability and acceptability. STATEMENT OF SIGNIFICANCE The mechanics of skin penetration by dynamically-applied microscopic tips is investigated using a combined experimental-computational approach. A FE model of skin is parameterized using indentation tests and a ductile-failure implementation validated against penetration assays. The simulations shed light on skin elastic and fracture properties, and elucidate the interaction with microprojection arrays for vaccine delivery allowing rational design of next-generation devices.
Collapse
|
86
|
Leyva-Mendivil MF, Lengiewicz J, Page A, Bressloff NW, Limbert G. Skin Microstructure is a Key Contributor to Its Friction Behaviour. TRIBOLOGY LETTERS 2017; 65:12. [PMID: 32009774 PMCID: PMC6961497 DOI: 10.1007/s11249-016-0794-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/21/2016] [Indexed: 05/06/2023]
Abstract
Due to its multifactorial nature, skin friction remains a multiphysics and multiscale phenomenon poorly understood despite its relevance for many biomedical and engineering applications (from superficial pressure ulcers, through shaving and cosmetics, to automotive safety and sports equipment). For example, it is unclear whether, and in which measure, the skin microscopic surface topography, internal microstructure and associated nonlinear mechanics can condition and modulate skin friction. This study addressed this question through the development of a parametric finite element contact homogenisation procedure which was used to study and quantify the effect of the skin microstructure on the macroscopic skin frictional response. An anatomically realistic two-dimensional image-based multilayer finite element model of human skin was used to simulate the sliding of rigid indenters of various sizes over the skin surface. A corresponding structurally idealised multilayer skin model was also built for comparison purposes. Microscopic friction specified at skin asperity or microrelief level was an input to the finite element computations. From the contact reaction force measured at the sliding indenter, a homogenised (or apparent) macroscopic friction was calculated. Results demonstrated that the naturally complex geometry of the skin microstructure and surface topography alone can play as significant role in modulating the deformation component of macroscopic friction and can significantly increase it. This effect is further amplified as the ground-state Young's modulus of the stratum corneum is increased (for example, as a result of a dryer environment). In these conditions, the skin microstructure is a dominant factor in the deformation component of macroscopic friction, regardless of indenter size or specified local friction properties. When the skin is assumed to be an assembly of nominally flat layers, the resulting global coefficient of friction is reduced with respect to the local one. This seemingly counter-intuitive effect had already been demonstrated in a recent computational study found in the literature. Results also suggest that care should be taken when assigning a coefficient of friction in computer simulations, as it might not reflect the conditions of microscopic and macroscopic friction one intends to represent. The modelling methodology and simulation tools developed in this study go beyond what current analytical models of skin friction can offer: the ability to accommodate arbitrary kinematics (i.e. finite deformations), nonlinear constitutive properties and the complex geometry of the skin microstructural constituents. It was demonstrated how this approach offered a new level of mechanistic insight into plausible friction mechanisms associated with purely structural effects operating at the microscopic scale; the methodology should be viewed as complementary to physical experimental protocols characterising skin friction as it may facilitate the interpretation of observations and measurements and/or could also assist in the design of new experimental quantitative assays.
Collapse
Affiliation(s)
- Maria F. Leyva-Mendivil
- National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK
- Bioengineering Science Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK
| | - Jakub Lengiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN), ul. Pawinskiego 5B, 02-106 Warsaw, Poland
| | - Anton Page
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YDJ UK
| | - Neil W. Bressloff
- Computational Engineering and Design Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK
| | - Georges Limbert
- National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK
- Bioengineering Science Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ UK
- Laboratory of Biomechanics and Mechanobiology, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7935 South Africa
| |
Collapse
|
87
|
Moronkeji K, Todd S, Dawidowska I, Barrett SD, Akhtar R. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin. J Control Release 2016; 265:102-112. [PMID: 27838272 DOI: 10.1016/j.jconrel.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 12/28/2022]
Abstract
There has been growing interest in the mechanical behaviour of skin due to the rapid development of microneedle devices for drug delivery applications into skin. However, most in vitro experimentation studies that are used to evaluate microneedle performance do not consider the biomechanical properties of skin or that of the subcutaneous layers. In this study, a representative experimental model of skin was developed which was comprised of subcutaneous and muscle mimics. Neonatal porcine skin from the abdominal and back regions was used, with gelatine gels of differing water content (67, 80, 88 and 96%) to represent the subcutaneous tissue, and a type of ballistic gelatine, Perma-Gel®, as a muscle mimic. Dynamic nanoindentation was used to characterize the mechanical properties of each of these layers. A custom-developed impact test rig was used to apply dense polymethylmethacrylate (PMMA) microneedles to the skin models in a controlled and repeatable way with quantification of the insertion force and velocity. Image analysis methods were used to measure penetration depth and area of the breach caused by microneedle penetration following staining and optical imaging. The nanoindentation tests demonstrated that the tissue mimics matched expected values for subcutaneous and muscle tissue, and that the compliance of the subcutaneous mimics increased linearly with water content. The abdominal skin was thinner and less stiff as compared to back skin. The maximum force decreased with gel water content in the abdominal skin but not in the back skin. Overall, larger and deeper perforations were found in the skin models with increasing water content. These data demonstrate the importance of subcutaneous tissue on microneedle performance and the need for representative skin models in microneedle technology development.
Collapse
Affiliation(s)
- K Moronkeji
- Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH, United Kingdom
| | - S Todd
- Renephra Ltd., MedTech Centre, Manchester Science Park, Pencroft Way, M15 6JJ, United Kingdom
| | - I Dawidowska
- Renephra Ltd., MedTech Centre, Manchester Science Park, Pencroft Way, M15 6JJ, United Kingdom
| | - S D Barrett
- Department of Physics, University of Liverpool, L69 7ZE, United Kingdom
| | - R Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH, United Kingdom.
| |
Collapse
|
88
|
Maiti R, Gerhardt LC, Lee ZS, Byers RA, Woods D, Sanz-Herrera JA, Franklin SE, Lewis R, Matcher SJ, Carré MJ. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching. J Mech Behav Biomed Mater 2016; 62:556-569. [DOI: 10.1016/j.jmbbm.2016.05.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 11/29/2022]
|
89
|
Kearney EM, Messaraa C, Grennan G, Koeller G, Mavon A, Merinville E. Evaluation of skin firmness by the DynaSKIN, a novel non-contact compression device, and its use in revealing the efficacy of a skincare regimen featuring a novel anti-ageing ingredient, acetyl aspartic acid. Skin Res Technol 2016; 23:155-168. [DOI: 10.1111/srt.12314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
Affiliation(s)
- E. M. Kearney
- Oriflame Research and Development Ltd; Bray Co. Wicklow Ireland
| | - C. Messaraa
- Oriflame Research and Development Ltd; Bray Co. Wicklow Ireland
| | - G. Grennan
- Oriflame Research and Development Ltd; Bray Co. Wicklow Ireland
| | | | - A. Mavon
- Oriflame Research and Development Ltd; Bray Co. Wicklow Ireland
| | - E. Merinville
- Oriflame Research and Development Ltd; Bray Co. Wicklow Ireland
| |
Collapse
|
90
|
Wang Y, Guan A, Isayeva I, Vorvolakos K, Das S, Li Z, Phillips KS. Interactions of Staphylococcus aureus with ultrasoft hydrogel biomaterials. Biomaterials 2016; 95:74-85. [DOI: 10.1016/j.biomaterials.2016.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
|
91
|
Population pharmacokinetic/pharmacodynamic modeling of histamine response measured by histamine iontophoresis laser Doppler. J Pharmacokinet Pharmacodyn 2016; 43:385-93. [PMID: 27307292 DOI: 10.1007/s10928-016-9478-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
The epicutaneous histamine (EH) test is the current gold standard method for the clinical evaluation of allergic conditions. However, the EH method is limited in providing an objective and qualitative assessment of histamine pharmacodynamic response. The histamine iontophoresis with laser Doppler (HILD) monitoring method, an alternative method, allows a fixed dose of histamine to be delivered and provides an objective, continuous, and dynamic measurement of histamine epicutaneous response in children and adults. However, due to the high sampling frequency (up to 40 Hz), the output files are usually too cumbersome to be directly used for further analysis. In this study, we developed an averaging algorithm that efficiently reduces the HILD data in size. The reduced data was further analyzed and a population linked effect pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the local histamine response. The model consisted of a one-compartment PK model and a direct-response fractional maximum effect (Emax) model. The parameter estimates were obtained as follows: absorption rate constant (ka), 0.094/min; absorption lag time (Tlag), 2.72 min; partitioning clearance from local depot to systemic circulation (CLpar), 0.0006 L/min; baseline effect (E0), 13.1 flux unit; Emax, 13.4; concentration at half maximum effect (EC50) 31.1 mg/L. Covariate analysis indicated that age and race had significant influence on Tlag and EC50, respectively.
Collapse
|
92
|
Morales Hurtado M, de Vries EG, Zeng X, van der Heide E. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model. J Mech Behav Biomed Mater 2016; 62:319-332. [PMID: 27236420 DOI: 10.1016/j.jmbbm.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023]
Abstract
Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin.
Collapse
Affiliation(s)
- M Morales Hurtado
- Surface Technology and Tribology Group, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - E G de Vries
- Surface Technology and Tribology Group, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - X Zeng
- Surface Technology and Tribology Group, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; Advanced lubricating Materials Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Haike Road 100, Pudong, Shanghai, China
| | - E van der Heide
- Surface Technology and Tribology Group, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; TU Delft, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
93
|
Tupin S, Molimard J, Cenizo V, Hoc T, Sohm B, Zahouani H. Multiscale Approach to Characterize Mechanical Properties of Tissue Engineered Skin. Ann Biomed Eng 2016; 44:2851-62. [PMID: 26942585 DOI: 10.1007/s10439-016-1576-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
Tissue engineered skin usually consist of a multi-layered visco-elastic material composed of a fibrillar matrix and cells. The complete mechanical characterization of these tissues has not yet been accomplished. The purpose of this study was to develop a multiscale approach to perform this characterization in order to link the development process of a cultured skin to the mechanical properties. As a proof-of-concept, tissue engineered skin samples were characterized at different stages of manufacturing (acellular matrix, reconstructed dermis and reconstructed skin) for two different aging models (using cells from an 18- and a 61-year-old man). To assess structural variations, bi-photonic confocal microscopy was used. To characterize mechanical properties at a macroscopic scale, a light-load micro-mechanical device that performs indentation and relaxation tests was designed. Finally, images of the internal network of the samples under stretching were acquired by combining confocal microscopy with a tensile device. Mechanical properties at microscopic scale were assessed. Results revealed that adding cells during manufacturing induced structural changes, which provided higher elastic modulus and viscosity. Moreover, senescence models exhibited lower elastic modulus and viscosity. This multiscale approach was efficient to characterize and compare skin equivalent samples and permitted the first experimental assessment of the Poisson's ratio for such tissues.
Collapse
Affiliation(s)
- S Tupin
- Laboratoire de Tribologie et Dynamique des Systèmes (LTDS, CNRS UMR5513), Université de Lyon, Ecole Centrale de Lyon, ENISE, 69134, Ecully, France
| | - J Molimard
- Ecole Nationale Supérieure des Mines, CIS-EMSE, INSERM UMR1059, SAINBIOSE, 42023, Saint-Etienne, France
| | - V Cenizo
- BASF Beauty Care Solutions France S.A.S, 69366, Lyon Cedex 07, France
| | - T Hoc
- Laboratoire de Tribologie et Dynamique des Systèmes (LTDS, CNRS UMR5513), Université de Lyon, Ecole Centrale de Lyon, ENISE, 69134, Ecully, France
| | - B Sohm
- BASF Beauty Care Solutions France S.A.S, 69366, Lyon Cedex 07, France
| | - H Zahouani
- Laboratoire de Tribologie et Dynamique des Systèmes (LTDS, CNRS UMR5513), Université de Lyon, Ecole Centrale de Lyon, ENISE, 69134, Ecully, France.
| |
Collapse
|
94
|
Kao AP, Connelly JT, Barber AH. 3D nanomechanical evaluations of dermal structures in skin. J Mech Behav Biomed Mater 2015; 57:14-23. [PMID: 26703362 DOI: 10.1016/j.jmbbm.2015.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
Skin is a multilayered multiscale composite material with a range of mechanical and biochemical functions. The mechanical properties of dermis are important to understand in order to improve and compare on-going in vitro experiments to physiological conditions, especially as the mechanical properties of the dermis can play a crucial role in determining cell behaviour. Spatial and isotropy variations in dermal mechanics are thus critical in such understanding of complex skin structures. Atomic force microscopy (AFM) based indentation was used in this study to quantify the three dimensional mechanical properties of skin at nanoscale resolution over micrometre length scales. A range of preparation methods was examined and a mechanically non-evasive freeze sectioning followed by thawing method was found to be suitable for the AFM studies. Subsequent mechanical evaluations established macroscale isotropy of the dermis with the ground substance of the dermis dominating the mechanical response. Mechanical analysis was extended to show significant variation in the elastic modulus of the dermis between anatomical locations that suggest changes in the physiological environment influence local mechanical properties. Our results highlight dependence between an isotropic mechanical response of the dermal microenvironment at the nanoscale and anatomical location that define the variable mechanical behaviour of the dermis.
Collapse
Affiliation(s)
- Alexander P Kao
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT UK
| | - Asa H Barber
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, UK; School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK.
| |
Collapse
|
95
|
Houcine A, Delalleau A, Heraud S, Guiraud B, Payre B, Duplan H, Delisle MB, Damour O, Bessou-Touya S. How biophysicalin vivotesting techniques can be used to characterize full thickness skin equivalents. Skin Res Technol 2015; 22:284-94. [PMID: 26508353 DOI: 10.1111/srt.12259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- A. Houcine
- Centre de Microscopie Electronique Appliquée à la Biologie; Faculté de Médecine Rangueil; Toulouse III; Université P. Sabatier; Toulouse France
| | | | - S. Heraud
- Banque de tissus et cellules; Laboratoire des substituts cutanés; Hospices Civils de Lyon and LBTI, UMR 5305; Lyon France
| | - B. Guiraud
- Département Pharmacologie; Pierre Fabre, R&D PFDC; Toulouse Cedex France
| | - B. Payre
- Centre de Microscopie Electronique Appliquée à la Biologie; Faculté de Médecine Rangueil; Toulouse III; Université P. Sabatier; Toulouse France
| | - H. Duplan
- Département Pharmacologie; Pierre Fabre, R&D PFDC; Toulouse Cedex France
| | - M.-B. Delisle
- Centre de Microscopie Electronique Appliquée à la Biologie; Faculté de Médecine Rangueil; Toulouse III; Université P. Sabatier; Toulouse France
- CHU Toulouse et INSERM U 1037; Toulouse Cedex France
| | - O. Damour
- Banque de tissus et cellules; Laboratoire des substituts cutanés; Hospices Civils de Lyon and LBTI, UMR 5305; Lyon France
| | - S. Bessou-Touya
- Département Pharmacologie; Pierre Fabre, R&D PFDC; Toulouse Cedex France
| |
Collapse
|
96
|
Watarai A, Schirmer L, Thönes S, Freudenberg U, Werner C, Simon JC, Anderegg U. TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation. Acta Biomater 2015. [PMID: 26219861 DOI: 10.1016/j.actbio.2015.07.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrogels are promising biomaterials that can adapt easily to complex tissue entities. Furthermore, chemical modifications enable these hydrogels to become an instructive biomaterial to a variety of cell types. Human dermal fibroblasts play a pivotal role during wound healing, especially for the synthesis of novel dermal tissue replacing the primary fibrin clot. Thus, the control of growth and differentiation of dermal fibroblasts is important to modulate wound healing. In here, we utilized a versatile starPEG-heparin hydrogel platform that can be independently adjusted with respect to mechanical and biochemical properties for cultivating human dermal fibroblasts. Cell-based remodeling of the artificial matrix was ensured by using matrix metalloprotease (MMP) cleavable crosslinker peptides. Attachment and proliferation of fibroblasts on starPEG-heparin hydrogels of differing stiffness, density of pro-adhesive RGD peptides and MMP cleavable peptide linkers were tested. Binding and release of human TGFβ1 as well as biological effect of the pre-adsorbed growth factor on fibroblast gene expression and myofibroblast differentiation were investigated. Hydrogels containing RGD peptides supported fibroblast attachment, spreading, proliferation matrix deposition and remodeling compared to hydrogels without any modifications. Reversibly conjugated TGFβ1 was demonstrated to be constantly released from starPEG-heparin hydrogels for several days and capable of inducing myofibroblast differentiation of fibroblasts as determined by induction of collagen type I, ED-A-Fibronectin expression and incorporation of alpha smooth muscle actin and palladin into F-actin stress fibers. Taken together, customized starPEG-heparin hydrogels could be of value to promote dermal wound healing by stimulating growth and differentiation of human dermal fibroblasts. STATEMENT OF SIGNIFICANCE The increasing number of people of advanced age within the population results in an increasing demand for the treatment of non-healing wounds. Hydrogels are promising biomaterials for the temporary closure of large tissue defects: They can adapt to complex tissue geometry and can be engineered for specific tissue needs. We used a starPEG-heparin hydrogel platform that can be independently adjusted to mechanical and biochemical characteristics. We investigated how these hydrogels can support attachment, proliferation and differentiation of dermal fibroblasts. After introducing adhesive peptides these hydrogels support cell attachment and proliferation. Moreover, TGFβ - an essential growth and differentiation factor for fibroblasts - can be immobilized reversibly and functionally on these hydrogels. Thus, starPEG-heparin hydrogels could be developed to bioactive temporary wound dressings.
Collapse
|
97
|
Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.04.064] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
98
|
Luo CC, Qian LX, Li GY, Jiang Y, Liang S, Cao Y. Determining thein vivoelastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Med Phys 2015; 42:4106-15. [DOI: 10.1118/1.4922133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
99
|
Yardley R, Fan A, Masters J, Mascaro S. Haptic characterization of human skin in vivo in response to shower gels using a magnetic levitation device. Skin Res Technol 2015; 22:115-27. [PMID: 26037842 DOI: 10.1111/srt.12238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE Skin products such as shower gels have a direct impact on skin health and wellness. Although qualitative haptic characterization through explicit, verbal measures in consumer studies are often sufficient for general comparison on consumer perceived skin feel, a quantitative approach is desired to characterize minute changes in skin condition in response to various skin products. Prior research has sought to characterize the haptic properties of human skin in vitro and in vivo, but very few studies have compared the haptic effects of commercial skin products having relatively similar formulations. In addition, related studies have typically utilized simple, low-precision devices and fixtures. The purpose of this study was to use a precision magnetic levitation haptic device to characterize the frictional properties of human skin in vivo before, during, and after treatment with commercially available shower gels, to capture the entire cycle of consumer experience on skin feel. METHODS A hybrid force-position control algorithm was used to control a precision magnetic levitation haptic device with silicone tactor to stroke the human skin (on the volar forearm) in vivo. Position and force data were collected from 32 human subjects using eight different commercially available shower gels, while stroking the skin before, during, and after treatment. The data were analyzed to produce coefficients of friction and viscous damping constant, which were used as metrics for comparing the effects of each shower gel type. Other factors investigated include skin test location, order, and subject age and gender. RESULTS Results showed significant differences between the effects of eight various shower gels, especially after accounting for variance between subjects. Most notably, Shower Gel four with high level of petrolatum, along with Shower Gels five and six with low levels of castoryl maleate (a skin lipid analog), as well as Shower Gel two with high levels of vegetable oils yielded higher skin coefficients of friction 20 min after treatment, indicating higher levels of skin hydration than other shower gels without either high levels of skin beneficial agents or low levels of castoryl maleate. Conversely, Shower Gel eight treatment yielded the lowest skin coefficient of friction both immediately after rinsing and 20 min after treatment. In addition, when applied to the skin as un-lathered gels, Shower Gels six and seven with acrylate polymers yielded viscous damping constants twice that of other gels, while Shower Gel three yielded the lowest. When lathered into foam on skin, Shower Gel eight yielded the highest viscous damping constant, while Shower Gel three, along with Shower Gels one and five yielded lower values than others. CONCLUSION The results of this study show that different shower gels do have significant measurable differences in their effects on skin properties, and that using a high-precision haptic device can be a useful tool for quantifying the haptic properties of skin in vivo.
Collapse
Affiliation(s)
- R Yardley
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - A Fan
- Colgate-Palmolive Company, Piscataway, NJ, USA
| | - J Masters
- Colgate-Palmolive Company, Piscataway, NJ, USA
| | - S Mascaro
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
100
|
Morales-Hurtado M, Zeng X, Gonzalez-Rodriguez P, Ten Elshof J, van der Heide E. A new water absorbable mechanical Epidermal skin equivalent: The combination of hydrophobic PDMS and hydrophilic PVA hydrogel. J Mech Behav Biomed Mater 2015; 46:305-17. [DOI: 10.1016/j.jmbbm.2015.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/19/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|