51
|
Clarke LA, Hemmelgarn H, Colobong K, Thomas A, Stockler S, Casey R, Chan A, Fernoff P, Mitchell J. Longitudinal observations of serum heparin cofactor II-thrombin complex in treated Mucopolysaccharidosis I and II patients. J Inherit Metab Dis 2012; 35:355-62. [PMID: 21732093 DOI: 10.1007/s10545-011-9369-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Monitoring of therapeutic response in mucopolysaccharidosis (MPS) patients is problematic as most biomarkers are specific for either disease complications or specific organ system involvement. Recent studies have indicated that serum heparin-cofactor II-thrombin complex (HCII-T) may serve as an important biomarker in the group of MPSs where dermatan sulphate is stored. This complex forms when blood coagulates in the presence of glycosaminoglycans (GAGs) where the ultimate amount of HCII-T that forms reflects the concentration of circulating GAGs. We have studied serum HCII-T levels in 9 MPS I and 11 MPS II treated patients and have compared values to studies of urinary GAGs. In severe MPS I patients treated with either transplantation or enzyme replacement therapy (ERT), serum HCII-T levels never reach the range of normal despite normalization of uGAGs in some patients. Some attenuated MPS I patients have normalization of HCII-T but require a protracted exposure time relative to the drop in urinary GAGs. Treated MPS II patients show a clear correlation of serum HCII-T levels with the presence of antibodies to Idursulfase, with antibody positive patients showing an early drop in HCII-T levels with eventual increases in levels often to levels above those seen at baseline. This is contrasted by a robust and persistent drop in uGAGs. Antibody negative MPS II patients show a drop in HCII-T levels on treatment but levels never normalize despite normalization of uGAGs. This study highlights the utility and biologic relevance of serum HCII-T levels in monitoring therapy in these disorders.
Collapse
Affiliation(s)
- Lorne Andrew Clarke
- Department of Medical Genetics, The Child and Family Research Institute, University of British Columbia, 4500 Oak Street, RM C234, Vancouver, BC, Canada, V6H-3N1.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Clark GF, Grassi P, Pang PC, Panico M, Lafrenz D, Drobnis EZ, Baldwin MR, Morris HR, Haslam SM, Schedin-Weiss S, Sun W, Dell A. Tumor biomarker glycoproteins in the seminal plasma of healthy human males are endogenous ligands for DC-SIGN. Mol Cell Proteomics 2012; 11:M111.008730. [PMID: 21986992 PMCID: PMC3270097 DOI: 10.1074/mcp.m111.008730] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 09/06/2011] [Indexed: 01/15/2023] Open
Abstract
DC-SIGN is an immune C-type lectin that is expressed on both immature and mature dendritic cells associated with peripheral and lymphoid tissues in humans. It is a pattern recognition receptor that binds to several pathogens including HIV-1, Ebola virus, Mycobacterium tuberculosis, Candida albicans, Helicobacter pylori, and Schistosoma mansoni. Evidence is now mounting that DC-SIGN also recognizes endogenous glycoproteins, and that such interactions play a major role in maintaining immune homeostasis in humans and mice. Autoantigens (neoantigens) are produced for the first time in the human testes and other organs of the male urogenital tract under androgenic stimulus during puberty. Such antigens trigger autoimmune orchitis if the immune response is not tightly regulated within this system. Endogenous ligands for DC-SIGN could play a role in modulating such responses. Human seminal plasma glycoproteins express a high level of terminal Lewis(x) and Lewis(y) carbohydrate antigens. These epitopes react specifically with the lectin domains of DC-SIGN. However, because the expression of these sequences is necessary but not sufficient for interaction with DC-SIGN, this study was undertaken to determine if any seminal plasma glycoproteins are also endogenous ligands for DC-SIGN. Glycoproteins bearing terminal Lewis(x) and Lewis(y) sequences were initially isolated by lectin affinity chromatography. Protein sequencing established that three tumor biomarker glycoproteins (clusterin, galectin-3 binding glycoprotein, prostatic acid phosphatase) and protein C inhibitor were purified by using this affinity method. The binding of DC-SIGN to these seminal plasma glycoproteins was demonstrated in both Western blot and immunoprecipitation studies. These findings have confirmed that human seminal plasma contains endogenous glycoprotein ligands for DC-SIGN that could play a role in maintaining immune homeostasis both in the male urogenital tract and the vagina after coitus.
Collapse
Affiliation(s)
- Gary F. Clark
- From the ‡Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Paola Grassi
- §Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Poh-Choo Pang
- §Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Maria Panico
- §Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - David Lafrenz
- From the ‡Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Erma Z. Drobnis
- ¶Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Michael R. Baldwin
- ‖Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211
| | - Howard R. Morris
- §Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Stuart M. Haslam
- §Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Sophia Schedin-Weiss
- **Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wei Sun
- **Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anne Dell
- §Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
53
|
Moon PG, You S, Lee JE, Hwang D, Baek MC. Urinary exosomes and proteomics. MASS SPECTROMETRY REVIEWS 2011; 30:1185-1202. [PMID: 21544848 DOI: 10.1002/mas.20319] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
A number of highly abundant proteins in urine have been identified through proteomics approaches, and some have been considered as disease-biomarker candidates. These molecules might be clinically useful in diagnosis of various diseases. However, none has proven to be specifically indicative of perturbations of cellular processes in cells associated with urogenital diseases. Exosomes could be released into urine which flows through the kidney, ureter, bladder and urethra, with a process of filtration and reabsorption. Urinary exosomes have been recently suggested as alternative materials that offer new opportunities to identify useful biomarkers, because these exosomes secreted from epithelial cells lining the urinary track might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells. Proteomic analysis of such urinary exosomes assists the search of urinary biomarkers reflecting pathogenesis of various diseases and also helps understanding the function of urinary exosomes in urinary systems. Thus, it has been recently suggested that urinary exosomes are one of the most valuable targets for biomarker development and to understand pathophysiology of relevant diseases.
Collapse
Affiliation(s)
- Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
54
|
Wang Y, Ragg H. An unexpected link between angiotensinogen and thrombin. FEBS Lett 2011; 585:2395-9. [PMID: 21722639 DOI: 10.1016/j.febslet.2011.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 12/31/2022]
Abstract
Angiotensinogen is well known as source protein for a group of potent vasoactive hormones, however, a discrete biochemical activity of the angiotensinogen body is not known. Here we investigated angiotensinogen from the lamprey Lampetra fluviatilis (L. fluviatilis), an early-diverged vertebrate. The recombinantly produced protein showed progressive inhibitory activity towards human α-thrombin with a second-order rate constant of 2.6×10(4) M(-1) min(-1). Heparin enhanced the reaction rate >800-fold with a bell-shaped dose-response curve and a stoichiometry of inhibition (SI) of 1.3, revealing lamprey angiotensinogen as an effective α-thrombin inhibitor. Genomic, biochemical, and protein sequence data indicate that angiotensinogen and heparin cofactor II (HCII) originated from a common ancestral thrombin antagonist, thus providing insight into an early stage of thrombin control.
Collapse
Affiliation(s)
- Yunjie Wang
- Department of Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
55
|
An C, Budd A, Kanost MR, Michel K. Characterization of a regulatory unit that controls melanization and affects longevity of mosquitoes. Cell Mol Life Sci 2011; 68:1929-39. [PMID: 20953892 PMCID: PMC3070200 DOI: 10.1007/s00018-010-0543-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
Melanization is an innate immune response in arthropods that encapsulates and kills invading pathogens. One of its rate-limiting steps is the activation of prophenoloxidase (PPO), which is controlled by an extracellular proteinase cascade and serpin inhibitors. The molecular composition of this system is largely unknown in mosquitoes with the exception of serpin-2 (SRPN2), which was previously identified as a key negative regulator of melanization. Using reverse genetic and biochemical techniques, we identified the Anopheles gambiae clip-serine proteinase CLIPB9 as a PPO-activating proteinase, which is inhibited by SRPN2. Double knockdown of SRPN2 and CLIPB9 reversed the pleiotrophic phenotype induced by SRPN2 silencing. This study identifies the first inhibitory serpin-serine proteinase pair in mosquitoes and defines a regulatory unit of melanization. Additionally, the interaction of CLIPB9 and SRPN2 affects the life span of adult female mosquitoes and therefore constitutes a well-defined potential molecular target for novel late-life acting insecticides.
Collapse
Affiliation(s)
- Chunju An
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506 USA
| | - Aidan Budd
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Michael R. Kanost
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506 USA
| | - Kristin Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS 66506 USA
| |
Collapse
|
56
|
Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 2011; 11:2459-75. [PMID: 21595033 DOI: 10.1002/pmic.201000443] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
To identify biomarker candidates associated with early IgA nephropathy (IgAN) and thin basement membrane nephropathy (TBMN), the most common causes presenting isolated hematuria in childhood, a proteomic approach of urinary exosomes from early IgAN and TBMN patients was introduced. The proteomic results from the patients were compared with a normal group to understand the pathophysiological processes associated with these diseases at the protein level. The urinary exosomes, which reflect pathophysiological processes, collected from three groups of young adults (early IgAN, TBMN, and normal) were trypsin-digested using a gel-assisted protocol, and quantified by label-free LC-MS/MS, using an MS(E) mode. A total of 1877 urinary exosome proteins, including cytoplasmic, membrane, and vesicle trafficking proteins, were identified. Among the differentially expressed proteins, four proteins (aminopeptidase N, vasorin precursor, α-1-antitrypsin, and ceruloplasmin) were selected as biomarker candidates to differentiate early IgAN from TBMN. We confirmed the protein levels of the four biomarker candidates by semi-quantitative immunoblot analysis in urinary exosomes independently prepared from other patients, including older adult groups. Further clinical studies are needed to investigate the diagnostic and prognostic value of these urinary markers for early IgAN and TBMN. Taken together, this study showed the possibility of identifying biomarker candidates for human urinary diseases using urinary exosomes and might help to understand the pathophysiology of early IgAN and TBMN at the protein level.
Collapse
Affiliation(s)
- Pyong-Gon Moon
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Engineered virus-like nanoparticles reverse heparin anticoagulation more consistently than protamine in plasma from heparin-treated patients. Thromb Res 2011; 128:e9-13. [PMID: 21496885 DOI: 10.1016/j.thromres.2011.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/26/2011] [Accepted: 03/22/2011] [Indexed: 11/21/2022]
Abstract
Heparin is widely used for anticoagulation, often requiring the subsequent administration of a reversal agent. The only approved reversal agent for heparin is protamine sulfate, which induces well described adverse reactions in patients. Previously we reported a novel class of heparin antagonists based on the bacteriophage Qβ platform, displaying polyvalent cationic motifs which bind with high affinity to heparin. Here we report heparin reversal by the most effective of these virus-like particles (VLP) in samples from patients who were administered heparin during cardiac procedures or therapeutically for treatment of various thrombotic conditions. The VLP consistently reversed heparin in these samples, including those from patients that received high doses of heparin, with greater efficiency than a negative control VLP and with significantly less variability than protamine sulfate. These results provide the first step towards validation of heparin antagonist VLPs as viable alternatives to protamine.
Collapse
|
58
|
Song J, Matthews AY, Reboul CF, Kaiserman D, Pike RN, Bird PI, Whisstock JC. Predicting serpin/protease interactions. Methods Enzymol 2011; 501:237-73. [PMID: 22078538 DOI: 10.1016/b978-0-12-385950-1.00012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteases are tightly regulated by specific inhibitors, such as serpins, which are able to undergo considerable and irreversible conformational changes in order to trap their targets. There has been a considerable effort to investigate serpin structure and functions in the past few decades; however, the specific interactions between proteases and serpins remain elusive. In this chapter, we describe detailed experimental protocols to determine and characterize the extended substrate specificity of proteases based on a substrate phage display technique. We also describe how to employ a bioinformatics system to analyze the substrate specificity data obtained from this technique and predict the potential inhibitory serpin partners of a protease (in this case, the immune protease, granzyme B) in a step-by-step manner. The method described here could also be applied to other proteases for more generalized substrate specificity analysis and substrate discovery.
Collapse
Affiliation(s)
- Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
59
|
Wasinpiyamongkol L, Patramool S, Luplertlop N, Surasombatpattana P, Doucoure S, Mouchet F, Séveno M, Remoue F, Demettre E, Brizard JP, Jouin P, Biron DG, Thomas F, Missé D. Blood-feeding and immunogenic Aedes aegypti saliva proteins. Proteomics 2010; 10:1906-16. [PMID: 19882664 DOI: 10.1002/pmic.200900626] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mosquito-transmitted pathogens pass through the insect's midgut (MG) and salivary gland (SG). What occurs in these organs in response to a blood meal is poorly understood, but identifying the physiological differences between sugar-fed and blood-fed (BF) mosquitoes could shed light on factors important in pathogens transmission. We compared differential protein expression in the MGs and SGs of female Aedes aegypti mosquitoes after a sugar- or blood-based diet. No difference was observed in the MG protein expression levels but certain SG proteins were highly expressed only in BF mosquitoes. In sugar-fed mosquitoes, housekeeping proteins were highly expressed (especially those related to energy metabolism) and actin was up-regulated. The immunofluorescence assay shows that there is no disruption of the SG cytoskeletal after the blood meal. We have generated for the first time the 2-DE profiles of immunogenic Ae. aegypti SG BF-related proteins. These new data could contribute to the understanding of the physiological processes that appear during the blood meal.
Collapse
Affiliation(s)
- Ladawan Wasinpiyamongkol
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Fortenberry YM, Brandal S, Bialas RC, Church FC. Protein C inhibitor regulates both cathepsin L activity and cell-mediated tumor cell migration. Biochim Biophys Acta Gen Subj 2010; 1800:580-90. [PMID: 20230872 DOI: 10.1016/j.bbagen.2010.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Protein C inhibitor (PCI) is a plasma serine protease inhibitor (serpin) that regulates several serine proteases in coagulation including thrombin and activated protein C. However, the physiological role of PCI remains under investigation. The cysteine protease, cathepsin L, has a role in many physiological processes including cardiovascular diseases, blood vessel remodeling, and cancer. METHODS AND RESULTS We found that PCI inhibits cathepsin L with an inhibition rate (k(2)) of 3.0x10(5)M(-)(1)s(-)(1). Whereas, the PCI P1 mutant (R354A) inhibits cathepsin L at rates similar to wild-type PCI, mutating the P2 residue results in a slight decrease in the rate of inhibition. We then assessed the effect of PCI and cathepsin L on the migration of human breast cancer (MDA-MB-231) cells. Cathepsin L was expressed in both the cell lysates and conditioned media of MDA-MB-231 cells. Wound-induced and transwell migration of MDA-MB-231 cells was inhibited by exogenously administered wtPCI and PCI P1 but not PCI P14 mutant. In addition, migration of MDA-MB-231 cells expressing wtPCI was significantly decreased compared to non-expressing MDA-MB-231 cells or MDA-MB-231 cells expressing the PCI P14 mutant. Downregulation of cathepsin L by either a specific cathepsin L inhibitor or siRNA technology also resulted in a decrease in the migration of MDA-MB-231 cells. CONCLUSIONS Overall, our data show that PCI regulates tumor cell migration partly by inhibiting cathepsin L. GENERAL SIGNIFICANCE Consequently, inhibiting cathepsin L by serpins like PCI may be a new pathway of regulating hemostasis, cardiovascular and metastatic diseases.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Department of Pediatric-Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
61
|
Jackson C. Antithrombin, Heparinkofaktor II und Protein-C-Inhibitor. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
62
|
Abstract
Although proteolysis mediated by granzymes has an important role in the immune response to infection or tumours, unrestrained granzyme activity may damage normal cells. In this review, we discuss the role of serpins within the immune system, as specific regulators of granzymes. The well-characterised human granzyme B-SERPINB9 interaction highlights the cytoprotective function that serpins have in safeguarding lymphocytes from granzymes that may leak from granules. We also discuss some of the pitfalls inherent in using rodent models of granzyme-serpin interactions and the ways in which our understanding of serpins can help resolve some of the current, contentious issues in granzyme biology.
Collapse
Affiliation(s)
- D Kaiserman
- Department of Biochemistry and Molecular Biology, Monash University, Building 77, Wellington Road, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
63
|
Adams RLC, Bird RJ. Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton) 2009; 14:462-70. [PMID: 19674315 DOI: 10.1111/j.1440-1797.2009.01128.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coagulation involves the regulated sequence of proteolytic activation of a series of zymogens to achieve appropriate and timely haemostasis in an injured vessel, in an environment that overwhelmingly favours an anticoagulant state. In the non-pathological state, the inciting event involves exposure of circulating factor VII/VIIa to extravascularly expressed tissue factor, which brings into motion the series of steps which results in amplification of the initial stimulus, culminating in the conversion of fibrinogen to fibrin and clot formation. The precisely synchronized cascade of events is counter-balanced by a system of anticoagulant mechanisms, which serve to ensure that the haemostatic effect is regulated and does not extend inappropriately. Conversely, in pathological states, these events can escape normal control mechanisms, due to either inherited or acquired defects, which lead to thrombosis. Current anticoagulant therapy, although based on medications that have been in existence for upwards of 80 years, is moving towards targeted therapy for specific coagulation factors and events in the coagulation cascade, based on the current knowledge of the main triggers and key events within the series of reactions that culminates in haemostasis. It remains to be seen whether these newer medications will become first-line therapies for thrombosis in the coming decade. This review aims to elucidate the main events within the coagulation cascade as it is currently understood to operate in vivo, with a brief discussion focusing on hypercoagulable states, and also a short review of the history of anticoagulants as they relate to this model.
Collapse
Affiliation(s)
- Rebecca L C Adams
- Pathology Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | |
Collapse
|
64
|
Fucosylated chondroitin sulfate inhibits plasma thrombin generation via targeting of the factor IXa heparin-binding exosite. Blood 2009; 114:3092-100. [PMID: 19414859 DOI: 10.1182/blood-2009-02-203661] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chondroitin sulfate with antithrombin-independent antithrombotic properties. Heparin cofactor II (HCII)-dependent and -independent mechanisms for DHG inhibition of plasma thrombin generation were evaluated. When thrombin generation was initiated with 0.2 pM tissue factor (TF), the half maximal effective concentration (EC(50)) for DHG inhibition was identical in mock- or HCII-depleted plasma, suggesting a serpin-independent mechanism. In the presence of excess TF, the EC(50) for DHG was increased 13- to 27-fold, suggesting inhibition was dependent on intrinsic tenase (factor IXa-factor VIIIa) components. In factor VIII-deficient plasma supplemented with 700 pM factor VIII or VIIIa, and factor IX-deficient plasma supplemented with plasma-derived factor IX or 100 pM factor IXa, the EC(50) for DHG was similar. Thus, cofactor and zymogen activation did not contribute to DHG inhibition of thrombin generation. Factor IX-deficient plasma supplemented with mutant factor IX(a) proteins demonstrated resistance to DHG inhibition of thrombin generation [factor IX(a) R233A > R170A > WT] that inversely correlated with protease-heparin affinity. These results replicate the effect of these mutations with purified intrinsic tenase components, and establish the factor IXa heparin-binding exosite as the relevant molecular target for inhibition by DHG. Glycosaminoglycan-mediated intrinsic tenase inhibition is a novel antithrombotic mechanism with physiologic and therapeutic applications.
Collapse
|
65
|
Yang YH, Chien D, Wu M, FitzGerald J, Grossman JM, Hahn BH, Hwang KK, Chen PP. Novel autoantibodies against the activated coagulation factor IX (FIXa) in the antiphospholipid syndrome that interpose the FIXa regulation by antithrombin. THE JOURNAL OF IMMUNOLOGY 2009; 182:1674-80. [PMID: 19155517 DOI: 10.4049/jimmunol.182.3.1674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that some human antiphospholipid Abs (aPL) in patients with the antiphospholipid syndrome (APS) bind to the homologous enzymatic domains of thrombin and the activated coagulation factor X (FXa). Moreover, some of the reactive Abs are prothrombotic and interfere with inactivation of thrombin and FXa by antithrombin (AT). Considering the enzymatic domain of activated coagulation factor IX (FIXa) is homologous to those of thrombin and FXa, we hypothesized that some aPLs in APS bind to FIXa and hinder AT inactivation of FIXa. To test this hypothesis, we searched for IgG anti-FIXa Abs in APS patients. Once the concerned Abs were found, we studied the effects of the Ab on FIXa inactivation by AT. We found that 10 of 12 patient-derived monoclonal IgG aPLs bound to FIXa and that IgG anti-FIXa Abs in APS patients were significantly higher than those in normal controls (p < 0.0001). Using the mean + 3 SD of 30 normal controls as the cutoff, the IgG anti-FIXa Abs were present in 11 of 38 (28.9%) APS patients. Importantly, 4 of 10 FIXa-reactive monoclonal aPLs (including the B2 mAb generated against beta(2)-glycoprotein I significantly hindered AT inactivation of FIXa. More importantly, IgG from two positive plasma samples were found to interfere with AT inactivation of FIXa. In conclusion, IgG anti-FIXa Ab occurred in approximately 30% of APS patients and could interfere with AT inactivation of FIXa. Because FIXa is an upstream procoagulant factor, impaired AT regulation of FIXa might contribute more toward thrombosis than the dysregulation of the downstream FXa and thrombin.
Collapse
Affiliation(s)
- Yao-Hsu Yang
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Udit AK, Everett C, Gale AJ, Kyle JR, Ozkan M, Finn MG. Heparin antagonism by polyvalent display of cationic motifs on virus-like particles. Chembiochem 2009; 10:503-10. [PMID: 19156786 PMCID: PMC2751660 DOI: 10.1002/cbic.200800493] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Indexed: 11/06/2022]
Abstract
Particles to the rescue! The construction of cationic amino acid motifs on the surface of bacteriophage Qbeta by genetic engineering or chemical conjugation gives particles that are potent inhibitors of the anticoagulant action of heparin, which is a common anticlotting agent subject to clinical overdose.Polyvalent interactions allow biological structures to exploit low-affinity ligand-receptor binding events to affect physiological responses. We describe here the use of bacteriophage Qbeta as a multivalent platform for the display of polycationic motifs that act as heparin antagonists. Point mutations to the coat protein allowed us to generate capsids bearing the K16M, T18R, N10R, or D14R mutations; because 180 coat proteins form the capsid, the mutants provide a spectrum of particles differing in surface charge by as much as +540 units (K16M vs. D14R). Whereas larger poly-Arg insertions (for example, C-terminal Arg(8)) did not yield intact virions, it was possible to append chemically synthesized oligo-Arg peptides to stable wild-type (WT) and K16M platforms. Heparin antagonism by the particles was evaluated by using the activated partial thrombin time (aPTT) clotting assay; this revealed that T18R, D14R, and WT-(R(8)G(2))(95) were the most effective at disrupting heparin-mediated anticoagulation (>95 % inhibition). This activity agreed with measurements of zeta potential (ZP) and retention time on cation exchange chromatography for the genetic constructs, which distribute their added positive charge over the capsid surface (+180 and +360 for T18R and D14R relative to WT). The potent activity of WT-(R(8)G(2))(95), despite its relatively diminished overall surface charge is likely a consequence of the particle's presentation of locally concentrated regions with high positive charge density that interact with heparin's extensively sulfated domains. The engineered cationic capsids retained their ability to inhibit heparin at high concentrations and showed no anticlotting activity of the kind that limits the utility of antiheparin polycationic agents that are currently in clinical use.
Collapse
Affiliation(s)
- Andrew K. Udit
- Dr. A. K. Udit, C. Everett, Prof. M. G. Finn, Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+ 1)858-784-8850, E-mail: ,
| | - Chris Everett
- Dr. A. K. Udit, C. Everett, Prof. M. G. Finn, Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+ 1)858-784-8850, E-mail: ,
| | - Andrew J. Gale
- Prof. A. J. Gale, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Jennifer Reiber Kyle
- J. Reiber Kyle, Prof. M. Ozkan, Department of Electrical Engineering, University of California, Riverside, CA 92521 (USA)
| | - Mihri Ozkan
- J. Reiber Kyle, Prof. M. Ozkan, Department of Electrical Engineering, University of California, Riverside, CA 92521 (USA)
| | - M. G. Finn
- Dr. A. K. Udit, C. Everett, Prof. M. G. Finn, Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+ 1)858-784-8850, E-mail: ,
| |
Collapse
|
67
|
Cowan PJ, d'Apice AJF. Complement activation and coagulation in xenotransplantation. Immunol Cell Biol 2009; 87:203-8. [DOI: 10.1038/icb.2008.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital Melbourne Melbourne Victoria Australia
- Department of Medicine, University of Melbourne Melbourne Victoria Australia
| | - Anthony JF d'Apice
- Immunology Research Centre, St Vincent's Hospital Melbourne Melbourne Victoria Australia
- Department of Medicine, University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
68
|
Sun W, Eriksson AS, Schedin-Weiss S. Heparin Enhances the Inhibition of Factor Xa by Protein C Inhibitor in the Presence but Not in the Absence of Ca2+. Biochemistry 2009; 48:1094-8. [DOI: 10.1021/bi802138m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Sun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Anna S. Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Sophia Schedin-Weiss
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| |
Collapse
|
69
|
Affiliation(s)
- Hwajung Kim
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Jaeseog Yang
- Transplantation Center Seoul National, University Hospital, Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Curie Ahn
- Division of Nephrology, Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
70
|
Le Magueresse-Battistoni B. Proteases and their cognate inhibitors of the serine and metalloprotease subclasses, in testicular physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:133-53. [PMID: 19856166 DOI: 10.1007/978-0-387-09597-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
71
|
Keller KE, Aga M, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp Eye Res 2008; 88:676-82. [PMID: 19087875 DOI: 10.1016/j.exer.2008.11.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/15/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Normal homeostatic adjustment of elevated intraocular pressure (IOP) involves remodeling the extracellular matrix (ECM) of the trabecular meshwork (TM). This entails sensing elevated IOP, releasing numerous activated proteinases to degrade existing ECM and concurrent biosynthesis of replacement ECM components. To increase or decrease IOP, the quantity, physical properties and/or organization of new components should be somewhat different from those replaced in order to modify outflow resistance. ECM degradation and replacement biosynthesis in the outflow pathway must be tightly controlled and focused to retain the complex structural organization of the tissue. Recently identified podosome- or invadopodia-like structures (PILS) may aid in the focal degradation of ECM and organization of replacement components.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239-4197, USA
| | | | | | | | | |
Collapse
|
72
|
Müller J, Freitag D, Mayer G, Pötzsch B. Anticoagulant characteristics of HD1-22, a bivalent aptamer that specifically inhibits thrombin and prothrombinase. J Thromb Haemost 2008; 6:2105-12. [PMID: 18826387 DOI: 10.1111/j.1538-7836.2008.03162.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND HD1-22 is a bivalent aptamer that binds to thrombin with high affinity (K(d) = 0.65 nm) and occupies both anion binding exosites without blocking the active centre of the enzyme. HD1-22 has been developed by connecting the exosite 1 binding aptamer HD1 and the exosite 2 binding aptamer HD22 through a poly-dA linker. OBJECTIVES To characterize the anticoagulant profile of HD1-22 in comparison to the clinically established direct acting thrombin inhibitors bivalirudin and argatroban, and to test the efficacy of antidote-oligodeoxynucleotides. METHODS AND RESULTS HD1-22 prolongs clotting times of the thrombin time, activated partial thromboplastin time, ecarin clotting time, and lag-time of the tissue factor triggered thrombin generation assay in a dose-dependent manner. On a molar basis, its anticoagulant activity was nearly identical to bivalirudin and superior to argatroban. Thrombin-induced platelet aggregation was more effectively inhibited by HD1-22 than by bivalirudin. The HD1-22 aptamer retains the ability of the HD1-moiety to bind to (pro)exosite 1 of prothrombin and inhibits the prothrombinase activity nearly 2-fold better than HD1. The anticoagulant activities of HD1-22 are fully reversed by addition of antidote-oligodeoxynucleotides. CONCLUSIONS The strong thrombin-inhibiting activity, together with the availability of a rapid acting antidote strategy, makes HD1-22 an interesting anticoagulant candidate, especially for use in clinical situations where effective anticoagulation and rapid reversal of the anticoagulant effect are required. The data obtained warrant further clinical studies.
Collapse
Affiliation(s)
- J Müller
- Institute for Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Germany
| | | | | | | |
Collapse
|
73
|
Abstract
An imbalance between peptidases and their inhibitors leads to pulmonary disease. Imbalances occur in the adult and the neonate at risk for a specific set of lung pathologies. Serpins (serine peptidase inhibitors) make up the major source of antipeptidase activity in the lung. The purpose of this review is to describe the serpin mechanism of inhibition, their roles in the normal and pathological lung and their potential as therapeutic agents.
Collapse
Affiliation(s)
- D J Askew
- UPMC Newborn Medicine Program, Children's Hospital of Pittsburgh and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
74
|
|
75
|
The coagulation barrier in xenotransplantation: incompatibilities and strategies to overcome them. Curr Opin Organ Transplant 2008; 13:178-83. [PMID: 18685300 DOI: 10.1097/mot.0b013e3282f63c74] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Dysregulated coagulation is now recognized as a major contributor to graft loss in xenotransplantation. This review summarizes recent data on putative mechanisms of pathogenic coagulation in xenotransplantation and discusses progress on strategies to overcome them. RECENT FINDINGS Evidence continues to grow that the primary cause of failure of pig cardiac and renal xenografts is probably antibody-mediated injury to the endothelium, leading to development of microvascular thrombosis. Several factors that may exacerbate the problem will remain, even in the absence of a humoral response. These include molecular incompatibilities that affect the control of coagulation - in particular the failure of pig thrombomodulin to activate the primate protein C pathway - and platelet reactivity. Expression of anticoagulant and antiplatelet molecules within the graft is a potential solution that has been successfully tested in rodent models and will soon be applied to the pig-to-primate model. This strategy, in parallel with physical methods such as encasing islets in a protective layer, also holds promise for reducing the thrombogenicity of pig islet xenografts. SUMMARY Thrombosis is a barrier to long-term survival and function of porcine xenografts, which may eventually be overcome by various combinations of genetic and physical manipulation.
Collapse
|
76
|
Structural characterization and antithrombin activity of dermatan sulfate purified from marine clam Scapharca inaequivalvis. Glycobiology 2008; 19:356-67. [DOI: 10.1093/glycob/cwn140] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
77
|
de Kort M, Gianotten B, Wisse J, Bos E, Eppink M, Mattaar E, Vogel G, Dokter W, Honing M, Vonsovic S, Smit MJ, Wijkmans J, van Boeckel C. Conjugation of ATIII-Binding Pentasaccharides to Extend the Half-Life of Proteins: Long-Acting Insulin. ChemMedChem 2008; 3:1189-93. [DOI: 10.1002/cmdc.200800053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
78
|
Randall DR, Colobong KE, Hemmelgarn H, Sinclair GB, Hetty E, Thomas A, Bodamer OA, Volkmar B, Fernhoff PM, Casey R, Chan AK, Mitchell G, Stockler S, Melancon S, Rupar T, Clarke LA. Heparin cofactor II-thrombin complex: a biomarker of MPS disease. Mol Genet Metab 2008; 94:456-461. [PMID: 18511319 DOI: 10.1016/j.ymgme.2008.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 11/25/2022]
Abstract
The mucopolysaccharidoses are a group of lysosomal storage disorders caused by defects in the degradation of glycosaminoglycans. Each disorder is characterized by progressive multi-system disease with considerable clinical heterogeneity. The clinical heterogeneity of these disorders is thought to be related to the degree of the metabolic block in glycosaminoglycan degradation which in turn is related to the underlying mutation at the respective locus. There are currently no objective means other than longitudinal clinical observation, or the detection of a recurrent genetic mutation to accurately predict the clinical course for an individual patient, particularly when diagnosed early. In addition, there are no specific disease biomarkers that reflect the total body burden of disease. The lack of specific biomarkers has made monitoring treatment responses and predicting disease course difficult in these disorders. The recent introduction of enzyme replacement therapy for MPS I, II, and VI highlights the need for objective measures of disease burden and disease responsiveness. We show that serum levels of heparin cofactor II-thrombin complex is a reliable biomarker of the mucopolysaccharidoses. Untreated patients have serum levels that range from 3- to 112-fold above control values. In a series of patients with varying severity of mucopolysaccharidosis I, the serum complex concentration was reflective of disease severity. In addition, serum heparin cofactor II-thrombin levels showed responsiveness to various treatment regimens. We propose that serum levels of heparin cofactor II-thrombin complex may provide an important assessment and monitoring tool for patients with mucopolysaccharidosis.
Collapse
Affiliation(s)
- Derrick R Randall
- Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Room C234, Vancouver, BC, Canada V6H3N1
| | - Karen E Colobong
- Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Room C234, Vancouver, BC, Canada V6H3N1
| | - Harmony Hemmelgarn
- Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Room C234, Vancouver, BC, Canada V6H3N1
| | - Graham B Sinclair
- Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Room C234, Vancouver, BC, Canada V6H3N1
| | - Elly Hetty
- Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Room C234, Vancouver, BC, Canada V6H3N1
| | - Anita Thomas
- Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Room C234, Vancouver, BC, Canada V6H3N1
| | - Olaf A Bodamer
- Department of Pediatrics, University Hospital Vienna, Austria
| | - Barbara Volkmar
- Department of Pediatrics, Paracelsus Medical School Salzburg, Austria
| | - Paul M Fernhoff
- Department of Human Genetics, Emory University School of Medicine, Decatur, GA, USA
| | - Robin Casey
- Department of Medical Genetics, University of Calgary, Calgary, Alta., Canada
| | - Alicia K Chan
- Department of Medical Genetics, University of Alberta, Edmonton, Alta., Canada
| | - Grant Mitchell
- Department of Pediatrics, Université de Montréal, Montréal, Que., Canada
| | - Silvia Stockler
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Serge Melancon
- Department of Pediatrics, McGill University, Montreal, Que., Canada
| | - Tony Rupar
- Department of Biochemistry and Paediatrics, University of Western Ontario, Ont., Canada
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Room C234, Vancouver, BC, Canada V6H3N1
| |
Collapse
|
79
|
Abstract
Serine protease inhibitors (serpins) are a family of proteins that are important in the regulation of several biological processes. This mainly involves the inhibition of serine proteases, although some serpins inhibit a different class of proteases or even function without inhibitory activity. In contrast to other protease inhibitor families, serpins inhibit their target proteases by a specific mechanism, which depends on a change in conformation. This review primarily focuses on one subgroup of serpins--ovalbumin (ov)-serpins. Different than most members of the family, this group of serpins lacks secretion signal sequences and therefore, mainly functions intracellularly. In addition to expression in most normal tissues, ov-serpins can be found in multiple different cells of the immune system. Interestingly, expression of ov-serpins in these cells is tightly regulated, indicating a role for these serpins in the regulation of immune responses. The role of serpins in the immune response will be the topic of this review.
Collapse
Affiliation(s)
- Michael Bots
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
80
|
|
81
|
Segers K, Dahlbäck B, Rosing J, Nicolaes GAF. Identification of surface epitopes of human coagulation factor Va that are important for interaction with activated protein C and heparin. J Biol Chem 2008; 283:22573-81. [PMID: 18519572 DOI: 10.1074/jbc.m801724200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of factor Va (FVa) by activated protein C (APC) is a key reaction in the down-regulation of thrombin formation. FVa inactivation by APC is correlated with a loss of FXa cofactor activity as a result of three proteolytic cleavages in the FVa heavy chain at Arg306, Arg506, and Arg679. Recently, we have shown that heparin specifically inhibits the APC-mediated cleavage at Arg506 and stimulates cleavage at Arg306. Three-dimensional molecular models of APC docked at the Arg306 and Arg506 cleavage sites in FVa have identified several FVa amino acids that may be important for FVa inactivation by APC in the absence and presence of heparin. Mutagenesis of Lys320, Arg321, and Arg400 to Ala resulted in an increased inactivation rate by APC at Arg306, which indicates the importance of these residues in the FVa-APC interaction. No heparin-mediated stimulation of Arg306 cleavage was observed for these mutants, and stimulation by protein S was similar to that of wild type FVa. With this, we have now demonstrated that a cluster of basic residues in FVa comprising Lys320, Arg321, and Arg400 is required for the heparin-mediated stimulation of cleavage at Arg306 by APC. Furthermore, mutations that were introduced near the Arg506 cleavage site had a significant but modest effect on the rate of APC-catalyzed FVa inactivation, suggesting an extended interaction surface between the FVa Arg506 site and APC.
Collapse
Affiliation(s)
- Kenneth Segers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, 6200MD, The Netherlands
| | | | | | | |
Collapse
|
82
|
Plasma kallikrein is activated on dermatan sulfate and cleaves factor H. Biochem Biophys Res Commun 2008; 370:646-50. [DOI: 10.1016/j.bbrc.2008.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
|
83
|
Sun W, Parry S, Panico M, Morris HR, Kjellberg M, Engström A, Dell A, Schedin-Weiss S. N-glycans and the N terminus of protein C inhibitor affect the cofactor-enhanced rates of thrombin inhibition. J Biol Chem 2008; 283:18601-11. [PMID: 18467335 DOI: 10.1074/jbc.m800608200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein C inhibitor (PCI) is a serine protease inhibitor, displaying broad protease specificity, found in blood and other tissues. In blood, it is capable of inhibiting both procoagulant and anticoagulant proteases. Mechanisms that provide specificity to PCI remain largely unrevealed. In this study we have for the first time provided a full explanation for the marked size heterogeneity of blood-derived PCI and identified functional differences between naturally occurring PCI variants. The heterogeneity was caused by differences in N-glycan structures, N-glycosylation occupancy, and the presence of a Delta6-N-cleaved form. Bi-, tri-, and tetra-antennary complex N-glycans were identified. Fucose residues were identified both on the core GlcNAc and as parts of sialyl-Le(a/x) epitopes. Moreover, a glycan with a composition that implied a di-sialyl antenna was observed. PCI was N-glycosylated at all three potential N-glycosylation sites, Asn-230, Asn-243, and Asn-319, but a small fraction of PCI lacked the N-glycan at Asn-243. The overall removal of N-glycans affected the maximal heparin- and thrombomodulin-enhanced rates of thrombin inhibition differently in different solution conditions. In contrast, the Delta6-N-region increased both the heparin- and the thrombomodulin-enhanced rates of thrombin inhibition at all conditions examined. These results thus demonstrate that the N-linked glycans and the N-terminal region of blood-derived PCI in different ways affect the cofactor-enhanced rates of thrombin inhibition and provide information on the mechanisms by which this may be achieved. The findings are medically important, in view of the documented association of PCI with atherosclerotic plaques and the promising effect of PCI on reducing hypercoagulability states.
Collapse
Affiliation(s)
- Wei Sun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Uppsala SE-751 23, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Rahgozar S, Giannakopoulos B, Yan X, Wei J, Cheng Qi J, Gemmell R, Krilis SA. Beta2-glycoprotein I protects thrombin from inhibition by heparin cofactor II: Potentiation of this effect in the presence of anti-β2-glycoprotein I autoantibodies. ACTA ACUST UNITED AC 2008; 58:1146-55. [DOI: 10.1002/art.23387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
85
|
Gupta VK, Gowda LR. Alpha-1-proteinase inhibitor is a heparin binding serpin: molecular interactions with the Lys rich cluster of helix-F domain. Biochimie 2008; 90:749-61. [PMID: 18261994 DOI: 10.1016/j.biochi.2008.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/11/2008] [Indexed: 11/29/2022]
Abstract
Alpha-1-proteinase (alpha-1-PI) inhibitor is the major circulating serine protease inhibitor in humans. The porcine elastase and trypsin inhibitory activity of human and ovine alpha-1-PI is activated several fold in the presence of anti-coagulant heparin. The activation is allosteric and appears to be characterized by two steps of binding; a weak followed by a strong binding. The Kass for ovine and human alpha-1-PI inhibition of porcine pancreatic elastase was increased approximately 45 fold and 38 fold respectively. Using a combinatorial approach of multiple sequence alignment, surface topology, chemical modification and tryptic peptide mapping to identify the sequence of the heparin bound peptide; we demonstrate that heparin binds to the lysyl rich region of the F-helix of alpha-1-PI, which differs from that of heparin-antithrombin (AT) interactions. Molecular docking prediction using the MEDock algorithm approximates the three positively charged lysines (K154, K155, K174) of human alpha-1-PI in this interaction. This heparin alpha-1-PI interaction has been exploited to develop an affinity purification method, which can be used universally to obtain homogenous preparations of mammalian alpha-1-PIs useful for augmentation therapy. Collectively, all these findings imply that alpha-1-PI has a major role in regulating extra cellular protease activity and the physiological activator is heparin.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore 570020, India
| | | |
Collapse
|
86
|
Abstract
The mucopolysaccharidoses represent a devastating group of lysosomal storage diseases affecting approximately 1 in 25 000 individuals. Advances in biochemistry and genetics over the past 25 years have resulted in the identification of the key hydrolases underlying the mucopolysaccharidoses, with subsequent isolation and characterisation of the genes involved. Ultimately these advances have led to the recent development of specific treatment regimens for some of the mucopolysaccharidoses, in the form of direct enzyme replacement. Direct replacement of the defective gene product has been attempted for very few genetic disorders, and thus the experience gained in the lysosomal storage diseases by the development, evaluation and integration of treatment regimens into healthcare is instructive for other rare genetic disorders. This review focuses on the pathophysiology of the mucopolysaccharidoses and highlights the complex biochemical and physiological perturbations that underlie the disease phenotype.
Collapse
|
87
|
Dielis AWJH, Castoldi E, Spronk HMH, van Oerle R, Hamulyák K, Ten Cate H, Rosing J. Coagulation factors and the protein C system as determinants of thrombin generation in a normal population. J Thromb Haemost 2008; 6:125-31. [PMID: 17988231 DOI: 10.1111/j.1538-7836.2007.02824.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Thrombin generation is a powerful tool to probe overall plasma coagulability. OBJECTIVE To determine which plasma factors influence the various parameters of the thrombin generation curve, for example lag time, peak height and endogenous thrombin potential (ETP), under different experimental conditions. PATIENTS AND METHODS Plasma levels of coagulation factors and inhibitors, as well as thrombin generation at 1 pm tissue factor (TF) +/- thrombomodulin (TM) and at 13.6 pm TF +/- activated protein C (APC), were determined in plasma from 140 healthy individuals. Data were analysed by multiple regression models. RESULTS Thrombin generation increased with age and was higher in females than in males. Under all conditions, the lag time was mainly dependent on the levels of free tissue factor pathway inhibitor (TFPI), free protein S (PS), factor VII (FVII), FIX and fibrinogen. The major determinants of thrombin generation (ETP and peak height) at 1 pm TF were fibrinogen, FXII (despite inhibition of contact activation), free TFPI and antithrombin (AT), both in the absence and in the presence of TM. Thrombin generation in the presence of TM was also dependent on protein C levels. At 13.6 pm TF, thrombin generation was determined by prothrombin, AT, fibrinogen, free TFPI and FV levels in the absence of APC, and by free TFPI, free PS and FX levels in the presence of APC. CONCLUSIONS The lag time, ETP and peak height of thrombin generation depend on the levels of multiple coagulation factors and inhibitors. The specific assay determinants vary with the experimental conditions.
Collapse
Affiliation(s)
- A W J H Dielis
- Department of Internal Medicine, Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
88
|
Osborne SA, Daniel RA, Desilva K, Seymour RB. Antithrombin activity and disaccharide composition of dermatan sulfate from different bovine tissues. Glycobiology 2007; 18:225-34. [PMID: 18156656 DOI: 10.1093/glycob/cwm136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dermatan sulfate is a glycosaminoglycan that selectively inhibits the action of thrombin through interaction with heparin cofactor II. Unlike heparin it does not interact with other coagulation factors and is able to inhibit thrombin associated with clots. This property has made dermatan sulfate an attractive candidate as an antithrombotic drug. Previous studies have showed that dermatan sulfate derived from porcine/bovine intestinal mucosa/skin or marine invertebrates is capable of stimulating heparin cofactor II-mediated thrombin inhibition in vitro. This biological activity is reported for the first time in this study using dermatan sulfate derived from mammalian tissues other than intestinal mucosa or skin. Ten different bovine tissues including the aorta, diaphragm, eyes, large and small intestine, esophagus, skin, tendon, tongue, and tongue skin were used to prepare dermatan sulfate-enriched fractions by anion exchange chromatography and acetone precipitation. Heparin cofactor II/dermatan sulfate-mediated thrombin inhibition measured in vitro revealed activity comparable to or higher than the commercial standard with 2-fold differences observed between some tissues. Analysis of the extracted dermatan sulfate using fluorophore-assisted carbohydrate electrophoresis revealed significant differences in the relative percentage of all the mono-sulfated disaccharides, in particular the predominant mammalian disaccharide uronic acid-->N-acetyl-D-galactosamine-4-O-sulfate, confirming previous reports regarding variations in sulfation in dermatan sulfate from different tissues. Overall, these findings demonstrate that dermatan sulfate extracted from a range of bovine tissues exhibits in vitro antithrombin activity equivalent to or higher than that observed for porcine intestinal mucosa, identifying additional sources of dermatan sulfate as potential antithrombotic agents.
Collapse
Affiliation(s)
- Simone A Osborne
- CSIRO, Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia.
| | | | | | | |
Collapse
|
89
|
Le Magueresse-Battistoni B. Serine proteases and serine protease inhibitors in testicular physiology: the plasminogen activation system. Reproduction 2007; 134:721-9. [DOI: 10.1530/rep-07-0114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The testis is an organ in which a series of radical remodeling events occurs during development and in adult life. These events likely rely on a sophisticated network of proteases and complementary inhibitors, including the plasminogen activation system. This review summarizes our current knowledge on the testicular occurrence and expression pattern of members of the plasminogen activation system. The various predicted functions for these molecules in the establishment and maintenance of the testicular architecture and in the process of spermatogenesis are presented.
Collapse
|
90
|
Ong PC, McGowan S, Pearce MC, Irving JA, Kan WT, Grigoryev SA, Turk B, Silverman GA, Brix K, Bottomley SP, Whisstock JC, Pike RN. DNA Accelerates the Inhibition of Human Cathepsin V by Serpins. J Biol Chem 2007; 282:36980-6. [DOI: 10.1074/jbc.m706991200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
91
|
Fredenburgh JC, Stafford AR, Leslie BA, Weitz JI. Bivalent binding to gammaA/gamma'-fibrin engages both exosites of thrombin and protects it from inhibition by the antithrombin-heparin complex. J Biol Chem 2007; 283:2470-7. [PMID: 18055456 DOI: 10.1074/jbc.m707710200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin exosite 1 binds the predominant gamma(A)/gamma(A)-fibrin form with low affinity. A subpopulation of fibrin molecules, gamma(A)/gamma'-fibrin, has an extended COOH terminus gamma'-chain that binds exosite 2 of thrombin. Bivalent binding to gamma(A)/gamma'-fibrin increases the affinity of thrombin 10-fold, as determined by surface plasmon resonance. Because of its higher affinity, thrombin dissociates 7-fold more slowly from gamma(A)/gamma'-fibrin clots than from gamma(A)/gamma(A)-fibrin clots. After 24 h of washing, however, both gamma(A)/gamma'- and gamma(A)/gamma(A)-fibrin clots generate fibrinopeptide A when incubated with fibrinogen, indicating the retention of active thrombin. Previous studies demonstrated that heparin heightens the affinity of thrombin for fibrin by simultaneously binding to fibrin and exosite 2 on thrombin to generate a ternary heparin-thrombin-fibrin complex that protects thrombin from inhibition by antithrombin and heparin cofactor II. In contrast, dermatan sulfate does not promote ternary complex formation because it does not bind to fibrin. Heparin-catalyzed rates of thrombin inhibition by antithrombin were 5-fold slower in gamma(A)/gamma'-fibrin clots than they were in gamma(A)/gamma(A)-fibrin clots. This difference reflects bivalent binding of thrombin to gamma(A)/gamma'-fibrin because (a) it is abolished by addition of a gamma'-chain-directed antibody that blocks exosite 2-mediated binding of thrombin to the gamma'-chain and (b) the dermatan sulfate-catalyzed rate of thrombin inhibition by heparin cofactor II also is lower with gamma(A)/gamma'-fibrin than with gamma(A)/gamma(A)-fibrin clots. Thus, bivalent binding of thrombin to gamma(A)/gamma'-fibrin protects thrombin from inhibition, raising the possibility that gamma(A)/gamma'-fibrin serves as a reservoir of active thrombin that renders thrombi thrombogenic.
Collapse
Affiliation(s)
- James C Fredenburgh
- Henderson Research Centre and McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
92
|
Rodriguéz-Lee M, Bondjers G, Camejo G. Fatty acid-induced atherogenic changes in extracellular matrix proteoglycans. Curr Opin Lipidol 2007; 18:546-53. [PMID: 17885426 DOI: 10.1097/mol.0b013e3282ef534f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Nonesterified fatty acids change the expression and properties of the extracellular matrix proteoglycans of arterial and hepatic cells. We review how this may contribute to arterial disease in insulin resistance and type 2 diabetes. RECENT FINDINGS Elevated nonesterified fatty acids characterize the dyslipidemia of insulin resistance and type 2 diabetes. In hepatocytes high levels of fatty acids cause changes in proteoglycans leading to a matrix with decreased affinity for VLDL remnants. Furthermore, liver proteoglycans from insulin resistant hyperlipidemic Zucker rats showed alterations also associated with decreased remnant affinity. In arterial smooth muscle cells overexposure to fatty acids augmented expression of matrix proteoglycans for which LDL showed increased affinity. Fatty acids appeared to compromise insulin signaling by protein kinase C activation. The observed fatty acid-induced changes in matrix proteoglycans in liver and arteries can be an important component of the atherogenicity of the dyslipidemia of insulin resistance and type 2 diabetes. SUMMARY Overexposure to fatty acids can contribute to generate a remnant-rich dyslipidemia and to precondition the arterial intima for lipoprotein deposition via changes in expression of matrix proteoglycans. Normalizing fatty acid should be a key target in treatment of the atherogenic dyslipidemia of insulin resistance.
Collapse
Affiliation(s)
- Mariam Rodriguéz-Lee
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | | | | |
Collapse
|
93
|
Altincicek B, Vilcinskas A. Analysis of the immune-inducible transcriptome from microbial stress resistant, rat-tailed maggots of the drone fly Eristalis tenax. BMC Genomics 2007; 8:326. [PMID: 17875201 PMCID: PMC2039750 DOI: 10.1186/1471-2164-8-326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 09/17/2007] [Indexed: 12/17/2022] Open
Abstract
Background The saprophagous and coprophagous maggots of the drone fly Eristalis tenax (Insecta, Diptera) have evolved the unique ability to survive in aquatic habitats with extreme microbial stress such as drains, sewage pools, and farmyard liquid manure storage pits. Therefore, they represent suitable models for the investigation of trade-offs between the benefits resulting from colonization of habitats lacking predators, parasitoids, or competitors and the investment in immunity against microbial stress. In this study, we screened for genes in E. tenax that are induced upon septic injury. Suppression subtractive hybridization was performed to selectively amplify and identify cDNAs that are differentially expressed in response to injected crude bacterial endotoxin (LPS). Results Untreated E. tenax maggots exhibit significant antibacterial activity in the hemolymph which strongly increases upon challenge with LPS. In order to identify effector molecules contributing to this microbial defense we constructed a subtractive cDNA library using RNA samples from untreated and LPS injected maggots. Analysis of 288 cDNAs revealed induced expression of 117 cDNAs corresponding to 30 novel gene clusters in E. tenax. Among these immune-inducible transcripts we found homologues of known genes from other Diptera such as Drosophila and Anopheles that mediate pathogen recognition (e.g. peptidoglycan recognition protein) or immune-related signaling (e.g. relish). As predicted, we determined a high diversity of novel putative antimicrobial peptides including one E. tenax defensin. Conclusion We identified 30 novel genes of E. tenax that were induced in response to septic injury including novel putative antimicrobial peptides. Further analysis of these immune-related effector molecules from Eristalis may help to elucidate the interdependency of ecological adaptation and molecular evolution of the innate immunity in Diptera.
Collapse
Affiliation(s)
- Boran Altincicek
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
94
|
Krarup A, Wallis R, Presanis JS, Gál P, Sim RB. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2007; 2:e623. [PMID: 17637839 PMCID: PMC1910608 DOI: 10.1371/journal.pone.0000623] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 06/13/2007] [Indexed: 12/11/2022] Open
Abstract
The complement system is an important immune mechanism mediating both recognition and elimination of foreign bodies. The lectin pathway is one pathway of three by which the complement system is activated. The characteristic protease of this pathway is Mannan-binding lectin (MBL)-associated serine protease 2 (MASP2), which cleaves complement proteins C2 and C4. We present a novel and alternative role of MASP2 in the innate immune system. We have shown that MASP2 is capable of promoting fibrinogen turnover by cleavage of prothrombin, generating thrombin. By using a truncated active form of MASP2 as well as full-length MASP2 in complex with MBL, we have shown that the thrombin generated is active and can cleave both factor XIII and fibrinogen, forming cross-linked fibrin. To explore the biological significance of these findings we showed that fibrin was covalently bound on a bacterial surface to which MBL/MASP2 complexes were bound. These findings suggest that, as has been proposed for invertebrates, limited clotting may contribute to the innate immune response.
Collapse
Affiliation(s)
- Anders Krarup
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
95
|
Altincicek B, Vilcinskas A. Analysis of the immune-related transcriptome of a lophotrochozoan model, the marine annelid Platynereis dumerilii. Front Zool 2007; 4:18. [PMID: 17617895 PMCID: PMC1939704 DOI: 10.1186/1742-9994-4-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 07/06/2007] [Indexed: 12/18/2022] Open
Abstract
Background The marine annelid Platynereis dumerilii (Polychaeta, Nereididae) has been recognized as a slow-evolving lophotrochozoan that attracts increasing attention as a valuable model for evolutionary and developmental research. Here, we analyzed its immune-related transcriptome. For targeted identification of immune-induced genes we injected bacterial lipopolysaccharide, a commonly used elicitor of innate immune responses, and applied the suppression subtractive hybridization technique that selectively amplifies cDNAs of differentially expressed genes. Results Sequence analysis of 288 cDNAs revealed induced expression of numerous genes whose potential homologues from other animals mediate recognition of infection (e.g. complement receptor CD35), signaling (e.g. myc and SOCS), or act as effector molecules like ferritins and the bactericidal permeability-increasing protein. Interestingly, phylogenetic analyses implicate that immune-related genes identified in P. dumerilii are more related to counterparts from Deuterostomia than are those from Ecdysozoa, similarly as recently described for opsin and intron-rich genes. Conclusion Obtained results may allow for a better understanding of Platynereis immunity and support the view that P. dumerilii represents a suitable model for analyzing immune responses of Lophotrochozoa.
Collapse
Affiliation(s)
- Boran Altincicek
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
96
|
Abstract
Hemostasis and fibrinolysis, the biological processes that maintain proper blood flow, are the consequence of a complex series of cascading enzymatic reactions. Serine proteases involved in these processes are regulated by feedback loops, local cofactor molecules, and serine protease inhibitors (serpins). The delicate balance between proteolytic and inhibitory reactions in hemostasis and fibrinolysis, described by the coagulation, protein C and fibrinolytic pathways, can be disrupted, resulting in the pathological conditions of thrombosis or abnormal bleeding. Medicine capitalizes on the importance of serpins, using therapeutics to manipulate the serpin-protease reactions for the treatment and prevention of thrombosis and hemorrhage. Therefore, investigation of serpins, their cofactors, and their structure-function relationships is imperative for the development of state-of-the-art pharmaceuticals for the selective fine-tuning of hemostasis and fibrinolysis. This review describes key serpins important in the regulation of these pathways: antithrombin, heparin cofactor II, protein Z-dependent protease inhibitor, alpha(1)-protease inhibitor, protein C inhibitor, alpha(2)-antiplasmin and plasminogen activator inhibitor-1. We focus on the biological function, the important structural elements, their known non-hemostatic roles, the pathologies related to deficiencies or dysfunction, and the therapeutic roles of specific serpins.
Collapse
Affiliation(s)
- J C Rau
- Department of Pathology and Laboratory Medicine, Carolina Cardiovascular Biology Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7035, USA.
| | | | | | | |
Collapse
|
97
|
Proietta M, Pulignano I, Del Porto F, Tritapepe L, Di Giovanni C, Caronti B, Guglielmi R, Aliberti G. Antithrombin III metabolism in the pulmonary vessel endothelium. Blood Coagul Fibrinolysis 2007; 18:237-40. [PMID: 17413759 DOI: 10.1097/mbc.0b013e328040c127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In 85 patients undergoing aorto-coronary bypass for atherosclerotic coronary disease, we measured the antithrombin III activity levels and the thrombin-antithrombin III complex concentrations in blood from the pulmonary and the radial arteries, taken before the aorto-coronary bypass procedure, with the aim of investigating the role of the pulmonary endothelium in the metabolism of the inhibitor. Results showed significantly lower mean antithrombin III activity levels, expressed as a percentage of normal plasma, in blood from the radial artery with respect to levels from the pulmonary artery (0.78 +/- 0.12 versus 0.80 +/- 0.12, P<0.0001), while no significant difference was found in thrombin-antithrombin III complex concentrations. The results seem to show that the pulmonary endothelium contributes to the antithrombin III metabolism with a 0.023 breakdown rate, corresponding to about a 0.1 fraction of the reported 0.22-0.25 total body catabolic rate, as well as the pulmonary endothelial surface (50-70 m2) corresponding to about a 0.1 fraction of the peripheral vessels' endothelial surface (500-700 m2). The data support the hypothesis of a main endothelial catabolism of antithrombin III.
Collapse
Affiliation(s)
- Maria Proietta
- Reparto di Medicina Interna della II Facoltà di Medicina e Chirurgia, Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Moore DF, Krokhin OV, Beavis RC, Ries M, Robinson C, Goldin E, Brady RO, Wilkins JA, Schiffmann R. Proteomics of specific treatment-related alterations in Fabry disease: a strategy to identify biological abnormalities. Proc Natl Acad Sci U S A 2007; 104:2873-8. [PMID: 17301227 PMCID: PMC1797627 DOI: 10.1073/pnas.0611315104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fabry disease is inherited as an X-linked disorder secondary to deficiency of alpha-galactosidase A, resulting in abnormal metabolism of substances containing alpha-d-galactosyl moieties. As a consequence, a multisystem disorder develops, culminating in strokes, progressive renal, and cardiac dysfunction. Signs and symptoms of Fabry disease become manifest in childhood, but diagnosis is often delayed. Thirteen children with Fabry disease (age range, 6.5-17 years) were studied as part of a 6-month open-label study of enzyme replacement therapy (ERT) with agalsidase alfa. Paired serum samples were drawn at the start of the study and after 6 months of ERT. Global protein changes in paired samples were compared by using differential stable isotope labeling of peptide lysine residues with O-methylisourea and subsequent nanoHPLC-tandem MS. Statistically significant decreases were observed for five proteins following ERT: alpha(2)-HS glycoprotein, vitamin D-binding protein, transferrin, Ig-alpha-2 C chain, and alpha-2-antiplasmin. The presence of low levels of alpha-2-antiplasmin and plasminogen was confirmed by alternate means in 34 consecutive patients, including four of five ERT-naïve subjects. Decreased alpha-2-antiplasmin was associated with a parallel increase in circulating VEGF. Soluble VEGF receptor-2 was significantly elevated in plasma of patients compared with pediatric controls and decreased with ERT. These results suggest previously unknown abnormalities of fibrinolysis and angiogenesis factors in Fabry disease. We demonstrated the feasibility of identifying treatment-specific alterations in a small number of subjects that point to previously unsuspected disease-related biological abnormalities.
Collapse
Affiliation(s)
- David F. Moore
- *Section of Neurology and Section of Proteomics and System Biology, and
| | - Oleg V. Krokhin
- Manitoba Center for Proteomics and System Biology, University of Manitoba, Winnipeg, ON, Canada R3C 4J5; and
| | - Ronald C. Beavis
- Manitoba Center for Proteomics and System Biology, University of Manitoba, Winnipeg, ON, Canada R3C 4J5; and
| | - Markus Ries
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1260
| | - Chevalia Robinson
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1260
| | - Ehud Goldin
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1260
| | - Roscoe O. Brady
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1260
- To whom correspondence should be addressed. E-mail:
| | - John A. Wilkins
- Manitoba Center for Proteomics and System Biology, University of Manitoba, Winnipeg, ON, Canada R3C 4J5; and
| | - Raphael Schiffmann
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1260
| |
Collapse
|
99
|
Abstract
Acute humoral rejection remains the major barrier to long-term pig-to-primate xenograft survival, and microvascular thrombosis is a critical element of the rejection process. It appears that persistent endothelial cell activation and injury, by even low levels of anti-graft antibodies, eventually overwhelm the cellular anticoagulant defences and promote the development of thrombotic microangiopathy. Porcine endothelium may be particularly vulnerable because of cross-species molecular incompatibilities affecting the function of thrombomodulin and possibly TFPI. Recent data from small animal models suggest that transgenic overexpression of anti-thrombotic molecules on xenograft endothelium is capable of inhibiting intravascular thrombosis and preventing acute humoral rejection. In conjunction with existing genetic modifications (e.g. Gal KO, hDAF), this is a promising strategy to move xenotransplantation to the clinic.
Collapse
Affiliation(s)
- Peter J Cowan
- Immunology Research Centre, St Vincent's Health, Department of Medicine, University of Melbourne, Melbourne, Vic., Australia.
| |
Collapse
|
100
|
Kretz CA, Stafford AR, Fredenburgh JC, Weitz JI. HD1, a thrombin-directed aptamer, binds exosite 1 on prothrombin with high affinity and inhibits its activation by prothrombinase. J Biol Chem 2006; 281:37477-85. [PMID: 17046833 DOI: 10.1074/jbc.m607359200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incorporation of prothrombin into the prothrombinase complex is essential for rapid thrombin generation at sites of vascular injury. Prothrombin binds directly to anionic phospholipid membrane surfaces where it interacts with the enzyme, factor Xa, and its cofactor, factor Va. We demonstrate that HD1, a thrombin-directed aptamer, binds prothrombin and thrombin with similar affinities (K(d) values of 86 and 34 nm, respectively) and attenuates prothrombin activation by prothrombinase by over 90% without altering the activation pathway. HD1-mediated inhibition of prothrombin activation by prothrombinase is factor Va-dependent because (a) the inhibitory activity of HD1 is lost if factor Va is omitted from the prothrombinase complex and (b) prothrombin binding to immobilized HD1 is reduced by factor Va. These data suggest that HD1 competes with factor Va for prothrombin binding. Kinetic analyses reveal that HD1 produces a 2-fold reduction in the k(cat) for prothrombin activation by prothrombinase and a 6-fold increase in the K(m), highlighting the contribution of the factor Va-prothrombin interaction to prothrombin activation. As a high affinity, prothrombin exosite 1-directed ligand, HD1 inhibits prothrombin activation more efficiently than Hir(54-65)(SO(3)(-)). These findings suggest that exosite 1 on prothrombin exists as a proexosite only for ligands whose primary target is thrombin rather than prothrombin.
Collapse
Affiliation(s)
- Colin A Kretz
- Department of Medicine, McMaster University, and Henderson Research Centre, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | |
Collapse
|