51
|
Gui Q, Hoffman PS, Lewis JP. Amixicile targets anaerobic bacteria within the oral microbiome. J Oral Biosci 2019; 61:226-235. [PMID: 31706024 PMCID: PMC7550198 DOI: 10.1016/j.job.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Anaerobic bacteria are the major causative agents of periodontal disease. However, so far, targeted therapy aimed at reducing those pathogens has not been widely implemented. We have previously reported on a novel antimicrobial, amixicile, that targets anaerobic bacteria through inhibition of the function of the major anaerobic metabolic enzyme pyruvate ferredoxin oxidoreductase (PFOR), while not affecting aerotolerant organisms. It effectively inhibited the growth of oral anaerobes both in monocultures as well as in mixed in vitro mixed cultured however, amixicile's activity in in vivo-like conditions remained to be established. METHODS Here, we expand our study using an ex vivo oral microbiome combined with metagenomic sequencing to determine the effect of amixicile treatment on the composition of the microbiome and compare it to that of metronidazole. RESULTS Our results show that in the complex microbiomes, anaerobic bacteria are selectively inhibited, while the growth of aerotolerant ones, such as Streptococcus, Klebsiella, Neisseria, and Rothia is unaffected. Veillonella was the most abundant anaerobic genus in our ex vivo microbiome, and we observed complete inhibition of its growth. In addition, growth of other anaerobes, Fusobacterium and Prevotella, was significantly inhibited. It is noteworthy that a change in abundance of bacteriophages, such as Siphoviridae and Myoviridae, associated with the oral microbiome was observed. CONCLUSIONS Collectively, our data expand on the so far reported inhibitory spectrum of amixicile and demonstrates that it inhibits anaerobic bacteria, including both clinical isolates and laboratory strains.
Collapse
Affiliation(s)
- Qin Gui
- Philips Institute of Oral Health Research, Richmond, VA, USA
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Janina P Lewis
- Philips Institute of Oral Health Research, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
52
|
Abstract
This article summarizes the microbiological findings at dental implants, drawing distinctions between the peri-implant microbiome and the periodontal microbiome, and summarizes what is known regarding biofilm as a risk factor for specific stages of implant treatment. Targeted microbial analysis is reviewed as well as the latest results from open-ended sequencing of the peri-implant flora. At this time there remains a lack of consensus for a specific microbial profile that is associated with peri-implantitis, suggesting that there may be other factors which influence the microbiome such as titanium surface dissolution. Therapeutic interventions to address the biofilm are presented at the preoperative, perioperative, and postoperative stages. Evidence supports that perioperative chlorhexidine reduces biofilm-related implant complications and failure. Regular maintenance for dental implants is also shown to reduce peri-implant mucositis and implant failure. Maintenance procedures should aim to disrupt the biofilm without damaging the titanium dioxide surface layer in an effort to prevent further oxidation. Evidence supports the use of glycine powder air polishing as a valuable adjunct to conventional therapies for use at implant maintenance visits. For the treatment of peri-implantitis, nonsurgical therapy has not been shown to be effective, and while surgical intervention is not always predictable, it has been shown to be superior to nonsurgical treatment for decontamination of the implant surface that is not covered by bone.
Collapse
Affiliation(s)
- Diane M Daubert
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Bradley F Weinstein
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
53
|
Nambu T, Wang D, Mashimo C, Maruyama H, Kashiwagi K, Yoshikawa K, Yamamoto K, Okinaga T. Nitric Oxide Donor Modulates a Multispecies Oral Bacterial Community-An In Vitro Study. Microorganisms 2019; 7:microorganisms7090353. [PMID: 31540050 PMCID: PMC6780529 DOI: 10.3390/microorganisms7090353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
The deterioration of human oral microbiota is known to not only cause oral diseases but also to affect systemic health. Various environmental factors are thought to influence the disruption and restoration of the oral ecosystem. In this study, we focused on the effect of nitric oxide (NO) produced by denitrification and NO synthase enzymes on dental plaque microbiota. Interdental plaques collected from 10 subjects were exposed to NO donor sodium nitroprusside (SNP) and then cultured in a specialized growth medium. Depending on the concentration of exposed SNP, a decrease in α-diversity and a continuous change in β-diversity in the dental plaque community were shown by sequencing bacterial 16S rRNA genes. We also identified eight operational taxonomic units that were significantly altered by NO exposure. Among them, the exposure of NO donors to Fusobacterium nucleatum cells showed a decrease in survival rate consistent with the results of microbiota analysis. Meanwhile, in addition to NO tolerance, an increase in the tetrazolium salt-reducing activity of Campylobacter concisus cells was confirmed by exposure to SNP. This study provides an overview of how oral plaque microbiota shifts with exposure to NO and may contribute to the development of a method for adjusting the balance of the oral microbiome.
Collapse
Affiliation(s)
- Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Dan Wang
- Department of Operative Dentistry, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kosuke Kashiwagi
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
54
|
Ratka C, Weigl P, Henrich D, Koch F, Schlee M, Zipprich H. The Effect of In Vitro Electrolytic Cleaning on Biofilm-Contaminated Implant Surfaces. J Clin Med 2019; 8:jcm8091397. [PMID: 31500093 PMCID: PMC6780638 DOI: 10.3390/jcm8091397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Purpose: Bacterial biofilms are a major problem in the treatment of infected dental and orthopedic implants. The purpose of this study is to investigate the cleaning effect of an electrolytic approach (EC) compared to a powder-spray system (PSS) on titanium surfaces. Materials and Methods: The tested implants (different surfaces and alloys) were collated into six groups and treated ether with EC or PSS. After a mature biofilm was established, the implants were treated, immersed in a nutritional solution, and streaked on Columbia agar. Colony-forming units (CFUs) were counted after breeding and testing (EC), and control (PSS) groups were compared using a paired sample t-test. Results: No bacterial growth was observed in the EC groups. After thinning to 1:1,000,000, 258.1 ± 19.9 (group 2), 264.4 ± 36.5 (group 4), and 245.3 ± 40.7 (group 6) CFUs could be counted in the PSS groups. The difference between the electrolytic approach (test groups 1, 3, and 5) and PSS (control groups 2, 4, and 6) was statistically extremely significant (p-value < 2.2 × 10−16). Conclusion: Only EC inactivated the bacterial biofilm, and PSS left reproducible bacteria behind. Within the limits of this in vitro test, clinical relevance could be demonstrated.
Collapse
Affiliation(s)
- Christoph Ratka
- Department of Prosthodontics, Goethe University, 60590 Frankfurt am Main, Germany.
| | - Paul Weigl
- Department of Prosthodontics, Goethe University, 60590 Frankfurt am Main, Germany.
| | - Dirk Henrich
- Department of Trauma, Hand & Reconstructive Surgery, Goethe University, 60590 Frankfurt am Main, Germany.
| | - Felix Koch
- Private Practice, and Department of Maxillofacial Surgery, Goethe University, 60590 Frankfurt am Main, Germany.
| | - Markus Schlee
- Private Practice, and Department of Maxillofacial Surgery, Goethe University, 60590 Frankfurt am Main, Germany.
| | - Holger Zipprich
- Department of Prosthodontics, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
55
|
Chen Y, Agnello M, Dinis M, Chien KC, Wang J, Hu W, Shi W, He X, Zou J. Lollipop containing Glycyrrhiza uralensis extract reduces Streptococcus mutans colonization and maintains oral microbial diversity in Chinese preschool children. PLoS One 2019; 14:e0221756. [PMID: 31442287 PMCID: PMC6707631 DOI: 10.1371/journal.pone.0221756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
The anticariogenic activity of the extract of Glycyrrhiza uralensis (licorice) has been well documented. We recently developed an herbal lollipop containing licorice extracts with Glycyrrhizol A, the compound displaying strong antimicrobial activity against Streptococcus mutans. Preliminary testing showed that the herbal lollipop reduced salivary S. mutans counts in vivo. In this study, we aimed to further test the efficacy of this herbal lollipop for reducing salivary S. mutans levels, and investigate its impact on salivary microbiome. Using a well-established in vitro oral microbiome model, we showed that licorice extract displays targeted killing against S. mutans without affecting the biodiversity of the community. In vivo study corroborated in vitro findings, showing for high caries-risk children aged 3–6 with salivary S. mutans levels >5x105 cells/ml, daily use of 2 licorice-containing lollipops for 3 weeks significantly reduced salivary S. mutans levels compared to the control group. Salivary microbiome analysis showed either no change or even increase in phylogenetic diversity of the oral community following herbal lollipop usage. Although further study with longer term observation is needed, these results suggest that use of licorice extract-containing lollipops can be as a simple and effective way to reduce the risk of dental caries in children.
Collapse
Affiliation(s)
- Yandi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Melissa Agnello
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Márcia Dinis
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kenneth C. Chien
- School of Dentistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Jing Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Hu
- State Key Lab of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Xuesong He
- The Forsyth Institute, Cambridge, Massachusetts, United States of America
- * E-mail: (JZ); (XH)
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (JZ); (XH)
| |
Collapse
|
56
|
Lima BP, Hu LI, Vreeman GW, Weibel DB, Lux R. The Oral Bacterium Fusobacterium nucleatum Binds Staphylococcus aureus and Alters Expression of the Staphylococcal Accessory Regulator sarA. MICROBIAL ECOLOGY 2019; 78:336-347. [PMID: 30474730 PMCID: PMC11796435 DOI: 10.1007/s00248-018-1291-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Staphylococcus aureus, an opportunistic pathogen member of the nasal and skin microbiota, can also be found in human oral samples and has been linked to infectious diseases of the oral cavity. As the nasal and oral cavities are anatomically connected, it is currently unclear whether S. aureus can colonize the oral cavity and become part of the oral microbiota, or if its presence in the oral cavity is simply transient. To start addressing this question, we assessed S. aureus ability to directly bind selected members of the oral microbiota as well as its ability to integrate into a human-derived complex oral microbial community in vitro. Our data show that S. aureus forms aggregates with Fusobacterium nucleatum and Porphyromonas gingivalis and that it can incorporate into the human-derived in vitro oral community. Further analysis of the F. nucleatum-S. aureus interaction revealed that the outer-membrane adhesin RadD is partially involved in aggregate formation and that the RadD-mediated interaction leads to an increase in expression of the staphylococcal global regulator gene sarA. Our findings lend support to the notion that S. aureus can become part of the complex microbiota of the human mouth, which could serve as a reservoir for S. aureus. Furthermore, direct interaction with key members of the oral microbiota could affect S. aureus pathogenicity contributing to the development of several S. aureus associated oral infections.
Collapse
Affiliation(s)
- Bruno P Lima
- Division of Constitutive and Regenerative Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, Universit of Minnesota, Minneapolis, MN, USA
| | - Linda I Hu
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gerrit W Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, Universit of Minnesota, Minneapolis, MN, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, USA
| | - Renate Lux
- Division of Constitutive and Regenerative Sciences, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
57
|
Hall JW, Lima BP, Herbomel GG, Gopinath T, McDonald L, Shyne MT, Lee JK, Kreth J, Ross KF, Veglia G, Herzberg MC. An intramembrane sensory circuit monitors sortase A-mediated processing of streptococcal adhesins. Sci Signal 2019; 12:12/580/eaas9941. [PMID: 31064885 DOI: 10.1126/scisignal.aas9941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial adhesins mediate adhesion to substrates and biofilm formation. Adhesins of the LPXTG family are posttranslationally processed by the cell membrane-localized peptidase sortase A, which cleaves the LPXTG motif. This generates a short C-terminal peptide (C-pep) that remains in the cell membrane, whereas the mature adhesin is incorporated into the cell wall. Genes encoding adhesins of the oral bacterium Streptococcus gordonii were differentially expressed depending on whether the bacteria were isolated from saliva or dental plaque and appeared to be coordinately regulated. Deletion of sspA and sspB (sspAB), both of which encode LPXTG-containing adhesins, unexpectedly enhanced adhesion and biofilm formation. C-peps produced from a model LPXTG-containing adhesin localized to the cell membrane and bound to and inhibited the intramembrane sensor histidine kinase SGO_1180, thus preventing activation of the cognate response regulator SGO_1181. The absence of SspAB C-peps induced the expression of the scaCBA operon encoding the lipoprotein adhesin ScaA, which was sufficient to preserve and even enhance biofilm formation. This C-pep-driven regulatory circuit also exists in pathogenic streptococci and is likely conserved among Gram-positive bacteria. This quality control mechanism ensures that the bacteria can form biofilms under diverse environmental conditions and may play a role in optimizing adhesion and biofilm formation.
Collapse
Affiliation(s)
- Jeffrey W Hall
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruno P Lima
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - LeAnna McDonald
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael T Shyne
- Biostatistical Design and Analysis Center (BDAC), Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - John K Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Karen F Ross
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C Herzberg
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
58
|
Bor B, Bedree JK, Shi W, McLean JS, He X. Saccharibacteria (TM7) in the Human Oral Microbiome. J Dent Res 2019; 98:500-509. [PMID: 30894042 DOI: 10.1177/0022034519831671] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria from the Saccharibacteria phylum (formerly known as TM7) are ubiquitous members of the human oral microbiome and are part of the Candidate Phyla Radiation. Recent studies have revealed remarkable 16S rRNA diversity in environmental and mammalian host-associated members across this phylum, and their association with oral mucosal infectious diseases has been reported. However, due to their recalcitrance to conventional cultivation, TM7's physiology, lifestyle, and role in health and diseases remain elusive. The recent cultivation and characterization of Nanosynbacter lyticus type strain TM7x (HMT_952)-the first Saccharibacteria strain coisolated as an ultrasmall obligate parasite with its bacterial host from the human oral cavity-provide a rare glimpse into the novel symbiotic lifestyle of these enigmatic human-associated bacteria. TM7x is unique among all bacteria: it has an ultrasmall size and lives on the surface of its host bacterium. With a highly reduced genome, it lacks the ability to synthesize any of its own amino acids, vitamins, or cell wall precursors and must parasitize other oral bacteria. TM7x displays a highly dynamic interaction with its bacterial hosts, as reflected by the reciprocal morphologic and physiologic changes in both partners. Furthermore, depending on environmental conditions, TM7x can exhibit virulent killing of its host bacterium. Thus, Saccharibacteria potentially affect oral microbial ecology by modulating the oral microbiome structure hierarchy and functionality through affecting the bacterial host's physiology, inhibiting the host's growth dynamics, or affecting the relative abundance of the host via direct killing. At this time, several other uncharacterized members of this phylum have been detected in various human body sites at high prevalence. In the oral cavity alone, at least 6 distinct groups vary widely in relative abundance across anatomic sites. Here, we review the current knowledge on the diversity and unique biology of this recently uncovered group of ultrasmall bacteria.
Collapse
Affiliation(s)
- B Bor
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - J K Bedree
- 1 The Forsyth Institute, Cambridge, MA, USA.,3 Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - W Shi
- 1 The Forsyth Institute, Cambridge, MA, USA
| | - J S McLean
- 4 Department of Periodontics, University of Washington, Seattle, WA, USA
| | - X He
- 1 The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
59
|
Edlund A, Yang Y, Yooseph S, He X, Shi W, McLean JS. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. MICROBIOME 2018; 6:217. [PMID: 30522530 PMCID: PMC6284299 DOI: 10.1186/s40168-018-0591-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/06/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Dental plaque is composed of hundreds of bacterial taxonomic units and represents one of the most diverse and stable microbial ecosystems associated with the human body. Taxonomic composition and functional capacity of mature plaque is gradually shaped during several stages of community assembly via processes such as co-aggregation, competition for space and resources, and by bacterially produced reactive agents. Knowledge on the dynamics of assembly within complex communities is very limited and derives mainly from studies composed of a limited number of bacterial species. To fill current knowledge gaps, we applied parallel metagenomic and metatranscriptomic analyses during assembly and maturation of an in vitro oral biofilm. This model system has previously demonstrated remarkable reproducibility in taxonomic composition across replicate samples during maturation. RESULTS Time course analysis of the biofilm maturation was performed by parallel sampling every 2-3 h for 24 h for both DNA and RNA. Metagenomic analyses revealed that community taxonomy changed most dramatically between three and six hours of growth when pH dropped from 6.5 to 5.5. By applying comparative metatranscriptome analysis we could identify major shifts in overall community activities between six and nine hours of growth when pH dropped below 5.5, as 29,015 genes were significantly up- or down- expressed. Several of the differentially expressed genes showed unique activities for individual bacterial genomes and were associated with pyruvate and lactate metabolism, two-component signaling pathways, production of antibacterial molecules, iron sequestration, pH neutralization, protein hydrolysis, and surface attachment. Our analysis also revealed several mechanisms responsible for the niche expansion of the cariogenic pathogen Lactobacillus fermentum. CONCLUSION It is highly regarded that acidic conditions in dental plaque cause a net loss of enamel from teeth. Here, as pH drops below 5.5 pH to 4.7, we observe blooms of cariogenic lactobacilli, and a transition point of many bacterial gene expression activities within the community. To our knowledge, this represents the first study of the assembly and maturation of a complex oral bacterial biofilm community that addresses gene level functional responses over time.
Collapse
Affiliation(s)
- Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92137, USA.
| | - Youngik Yang
- National Marine Biodiversity Institute of Korea, 75, Jansang-ro 101beon-gil, Janghang-eup, Seocheon-gun, Chungcheongnam-do, 33662, Korea
| | - Shibu Yooseph
- Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, FL, 32816, USA
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
60
|
Cieplik F, Zaura E, Brandt BW, Buijs MJ, Buchalla W, Crielaard W, Laine ML, Deng DM, Exterkate RAM. Microcosm biofilms cultured from different oral niches in periodontitis patients. J Oral Microbiol 2018; 11:1551596. [PMID: 30598734 PMCID: PMC6263112 DOI: 10.1080/20022727.2018.1551596] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Periodontal diseases are triggered by dysbiotic microbial biofilms. Therefore, it is essential to develop appropriate biofilm models. Aim of the present study was to culture microcosm biofilms inoculated from different niches in periodontitis patients and compare their microbial composition to those inoculated from subgingival plaque. Methods: Saliva, subgingival plaque, tongue and tonsils were sampled in five periodontitis patients to serve as inocula for culturing biofilms in vitro in an active attachment model. Biofilms were grown for 14 or 28 d and analyzed for their microbial composition by 16S rDNA sequencing. Results: As classified by HOMD, all biofilms were dominated by periodontitis-associated taxa, irrespective which niche had been used for inoculation. There was a low similarity between 14 d biofilms and their respective inocula (Bray-Curtis similarity 0.26), while biofilms cultured for 14 and 28 d shared high similarity (0.69). Principal components analysis showed much stronger clustering per patient than per niche indicating that the choice of patients may be more crucial than choice of the respective niches in these patients. Conclusion: Saliva, tongue scrapings or tonsil swabs may represent sufficient alternative inocula for growing microcosm biofilms resembling periodontitis-associated microbial communities in cases when sampling subgingival plaque is not possible.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dong Mei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob A M Exterkate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
61
|
Neyraud E, Morzel M. Biological films adhering to the oral soft tissues: Structure, composition, and potential impact on taste perception. J Texture Stud 2018; 50:19-26. [PMID: 30226267 DOI: 10.1111/jtxs.12363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
The role of free-flowing saliva in taste perception is increasingly recognized, but saliva is also present in the mouth as films intimately associated to soft or hard tissues. On mucosal surfaces, particularly on the tongue, the structure and composition of such films (including its microbial constitutive part) may play a particular role in the sense of taste due to their proximity with the taste anatomical structures. This review compiles the current knowledge on the structure of biological films adhering to oral mucosae and on their biochemical and microbiological composition, before presenting possible implications for taste perception. PRACTICAL APPLICATIONS: The understanding of the role of oral biological films on taste perception may provide new avenues of research and development for the industry or academia interested broadly in chemosensation.
Collapse
Affiliation(s)
- Eric Neyraud
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
62
|
Research on oral microbiota of monozygotic twins with discordant caries experience - in vitro and in vivo study. Sci Rep 2018; 8:7267. [PMID: 29740156 PMCID: PMC5940813 DOI: 10.1038/s41598-018-25636-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/18/2018] [Indexed: 02/05/2023] Open
Abstract
Oral microbiome is potentially correlated with many diseases, such as dental caries, periodontitis, oral cancer and some systemic diseases. Twin model, as an effective method for studying human microbiota, is widely used in research of relationship between oral microbiota and dental caries. However, there were few researches focusing on caries discordant twins. In this study, in vitro assays were conducted combined with 16S rRNA sequencing analysis on oral microbiota sampled from twins who presented discordant caries experience and mice model was developed as well. Results showed that oral microbiota from caries-active twin possessed higher metabolic activity and produced more lactic production. 16S rRNA sequencing analysis showed that more than 80% of family taxa could be transferred into gnotobiotic-mice. Key caries-associated genera were significantly different between twins and the same difference in genus level could be found in mice as well (p < 0.05). This study suggested that oral microbiota of twins could be distinguished from each other despite the similarities in genetic make-up, living environment, and lifestyle. The difference in microbiota was applied to develop a mice model which may facilitate the investigation of core microbiota of dental caries.
Collapse
|
63
|
Yang Y, Reipa V, Liu G, Meng Y, Wang X, Mineart KP, Prabhu VM, Shi W, Lin NJ, He X, Sun J. pH-Sensitive Compounds for Selective Inhibition of Acid-Producing Bacteria. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8566-8573. [PMID: 29436821 PMCID: PMC6852659 DOI: 10.1021/acsami.8b01089] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Stimuli-responsive compounds that provide on-site, controlled antimicrobial activity promise an effective approach to prevent infections, reducing the need for systemic antibiotics. We present a novel pH-sensitive quaternary pyridinium salt (QPS), whose antibacterial activity is boosted by low pH and controlled by adjusting the pH between 4 and 8. Particularly, this compound selectively inhibits growth of acid-producing bacteria within a multispecies community. The successful antibacterial action of this QPS maintains the environmental pH above 5.5, a threshold pH, below which demineralization/erosion takes place. The design, synthesis, and characterization of this QPS and its short-chain analogue are discussed. In addition, their pH-sensitive physicochemical properties in aqueous and organic solutions are evaluated by UV-vis spectroscopy, dynamic light scattering, and NMR spectroscopy. Furthermore, the mechanism of action reveals a switchable assembly that is triggered by acid-base interaction and formed by tightly stacked π-conjugated systems and base moieties. Finally, a model is proposed to recognize the correlated but different mechanisms of pH sensitivity and acid-induced, pH-controlled antibacterial efficacy. We anticipate that successful application of these QPSs and their derivatives will provide protections against infection and erosion through targeted treatments to acid-producing bacteria and modulation of environmental pH.
Collapse
Affiliation(s)
- Yin Yang
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Guo Liu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuan Meng
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Kenneth P. Mineart
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Vivek M. Prabhu
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Wenyuan Shi
- Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142, USA
| | - Nancy J. Lin
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Xuesong He
- Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142, USA
- Corresponding Author and
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
- Corresponding Author and
| |
Collapse
|
64
|
Byrne SJ, Butler CA, Reynolds EC, Dashper SG. Taxonomy of Oral Bacteria. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Anti-Bacteria and Microecosystem-Regulating Effects of Dental Implant Coated with Dimethylaminododecyl Methacrylate. Molecules 2017; 22:molecules22112013. [PMID: 29156630 PMCID: PMC6150392 DOI: 10.3390/molecules22112013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
The effects of dimethylaminododecyl methacrylate (DMADDM) modified titanium implants on bacterial activity and microbial ecosystem of saliva-derived biofilm were investigated for the first time. Titanium discs were coated with DMADDM solutions at mass fractions of 0 mg/mL (control), 1, 5 and 10 mg/mL, respectively. Biomass accumulation and metabolic activity of biofilms were tested using crystal violet assay and MTT (3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 16S rRNA gene sequencing was performed to measure the microbial community. Live/dead staining and scanning electron microscopy (SEM) were used to value the structure of biofilm. The results showed that the higher mass fraction of DMADDM the coating solution had, the significantly lower the values of metabolic activity and accumulated biofilms got, as well as fewer live cells and less extracellular matrix. Moreover, 5 mg/mL of DMADDM was the most effective concentration, as well as 10 mg/mL. In microecosystem-regulation, the DMADDM modified titanium implant decreased the relative abundance of Neisseria and Actinomyces and increased the relative abundance of Lactobacillus, a probiotic for peri-implant diseases. In conclusion, via inhibiting growth and regulating microecosystem of biofilm, this novel titanium implant coating with DMADDM was promising in preventing peri-implant disease in an ‘ecological manner’.
Collapse
|
66
|
Effect of titanium and zirconia dental implant abutments on a cultivable polymicrobial saliva community. J Prosthet Dent 2017; 118:481-487. [DOI: 10.1016/j.prosdent.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
|
67
|
Zheng X, He J, Wang L, Zhou S, Peng X, Huang S, Zheng L, Cheng L, Hao Y, Li J, Xu J, Xu X, Zhou X. Ecological Effect of Arginine on Oral Microbiota. Sci Rep 2017; 7:7206. [PMID: 28775282 PMCID: PMC5543048 DOI: 10.1038/s41598-017-07042-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023] Open
Abstract
Dental caries is closely associated with the microbial dybiosis between acidogenic/aciduric pathogens and alkali-generating commensal bacteria colonized in the oral cavity. Our recent studies have shown that arginine may represent a promising anti-caries agent by modulating microbial composition in an in vitro consortium. However, the effect of arginine on the oral microbiota has yet to be comprehensively delineated in either clinical cohort or in vitro biofilm models that better represent the microbial diversity of oral cavity. Here, by employing a clinical cohort and a saliva-derived biofilm model, we demonstrated that arginine treatment could favorably modulate the oral microbiota of caries-active individuals. Specifically, treatment with arginine-containing dentifrice normalized the oral microbiota of caries-active individuals similar to that of caries-free controls in terms of microbial structure, abundance of typical species, enzymatic activities of glycolysis and alkali-generation related enzymes and their corresponding transcripts. Moreover, we found that combinatory use of arginine with fluoride could better enrich alkali-generating Streptococcus sanguinis and suppress acidogenic/aciduric Streptococcus mutans, and thus significantly retard the demineralizing capability of saliva-derived oral biofilm. Hence, we propose that fluoride and arginine have a potential synergistic effect in maintaining an eco-friendly oral microbial equilibrium in favor of better caries management.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shuangshuang Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi Huang
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
68
|
Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules. mSystems 2017; 2:mSystems00058-17. [PMID: 28761934 PMCID: PMC5516222 DOI: 10.1128/msystems.00058-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. Recent research indicates that the human microbiota play key roles in maintaining health by providing essential nutrients, providing immune education, and preventing pathogen expansion. Processes underlying the transition from a healthy human microbiome to a disease-associated microbiome are poorly understood, partially because of the potential influences from a wide diversity of bacterium-derived compounds that are illy defined. Here, we present the analysis of peptidic small molecules (SMs) secreted from bacteria and viewed from a temporal perspective. Through comparative analysis of mass spectral profiles from a collection of cultured oral isolates and an established in vitro multispecies oral community, we found that the production of SMs both delineates a temporal expression pattern and allows discrimination between bacterial isolates at the species level. Importantly, the majority of the identified molecules were of unknown identity, and only ~2.2% could be annotated and classified. The catalogue of bacterially produced SMs we obtained in this study reveals an undiscovered molecular world for which compound isolation and ecosystem testing will facilitate a better understanding of their roles in human health and disease. IMPORTANCE Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. Author Video: An author video summary of this article is available.
Collapse
|
69
|
Li B, Zhou X, Zhou X, Wu P, Li M, Feng M, Peng X, Ren B, Cheng L. Effects of different substrates/growth media on microbial community of saliva-derived biofilm. FEMS Microbiol Lett 2017; 364:3906679. [PMID: 28854684 DOI: 10.1093/femsle/fnx123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Affiliation(s)
- Bolei Li
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, China
| | - Ping Wu
- Shanghai Majorbio Bio-pharm Technology Co., Ltd, 200120 Shanghai, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, 610041 Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, China
| |
Collapse
|
70
|
Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D. The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol 2017; 44:212-229. [PMID: 28562180 DOI: 10.1080/1040841x.2017.1332003] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The numbers and diversity of microbes in ecosystems within and around us is unmatched, yet most of these microorganisms remain recalcitrant to in vitro cultivation. Various high-throughput molecular techniques, collectively termed multi-omics, provide insights into the genomic structure and metabolic potential as well as activity of complex microbial communities. Nonetheless, pure or defined cultures are needed to (1) decipher microbial physiology and thus test multi-omics-based ecological hypotheses, (2) curate and improve database annotations and (3) realize novel applications in biotechnology. Cultivation thus provides context. In turn, we here argue that multi-omics information awaits integration into the development of novel cultivation strategies. This can build the foundation for a new era of omics information-guided microbial cultivation technology and reduce the inherent trial-and-error search space. This review discusses how information that can be extracted from multi-omics data can be applied for the cultivation of hitherto uncultured microorganisms. Furthermore, we summarize groundbreaking studies that successfully translated information derived from multi-omics into specific media formulations, screening techniques and selective enrichments in order to obtain novel targeted microbial isolates. By integrating these examples, we conclude with a proposed workflow to facilitate future omics-aided cultivation strategies that are inspired by the microbial complexity of the environment.
Collapse
Affiliation(s)
- Johanna Gutleben
- a Laboratory of Microbiology , Wageningen University & Research , Wageningen , The Netherlands
| | - Maryam Chaib De Mares
- b Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES) , Rijksuniversiteit Groningen , Groningen , The Netherlands
| | - Jan Dirk van Elsas
- b Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES) , Rijksuniversiteit Groningen , Groningen , The Netherlands
| | - Hauke Smidt
- a Laboratory of Microbiology , Wageningen University & Research , Wageningen , The Netherlands
| | - Jörg Overmann
- c Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen , Braunschweig , Germany
| | - Detmer Sipkema
- a Laboratory of Microbiology , Wageningen University & Research , Wageningen , The Netherlands
| |
Collapse
|
71
|
Herbst-Kralovetz MM, Pyles RB, Ratner AJ, Sycuro LK, Mitchell C. New Systems for Studying Intercellular Interactions in Bacterial Vaginosis. J Infect Dis 2017; 214 Suppl 1:S6-S13. [PMID: 27449872 DOI: 10.1093/infdis/jiw130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial vaginosis (BV) affects almost a quarter of US women, making it a condition of major public health relevance. Key questions remain regarding the etiology of BV, mechanisms for its association with poor reproductive health outcomes, and reasons for high rates of treatment failure. New model systems are required to answer these remaining questions, elucidate the complex host-microbe and microbe-microbe interactions, and develop new, effective interventions. In this review, we cover the strengths and limitations of in vitro and in vivo model systems to study these complex intercellular interactions. Furthermore, we discuss advancements needed to maximize the translational utility of the model systems. As no single model can recapitulate all of the complex physiological and environmental conditions of the human vaginal microenvironment, we conclude that combinatorial approaches using in vitro and in vivo model systems will be required to address the remaining fundamental questions surrounding the enigma that is BV.
Collapse
Affiliation(s)
| | - Richard B Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston
| | - Adam J Ratner
- Departments of Pediatrics and Microbiology, New York University School of Medicine, New York
| | - Laura K Sycuro
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Caroline Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston
| |
Collapse
|
72
|
Agnello M, Cen L, Tran NC, Shi W, McLean JS, He X. Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation. J Dent Res 2017; 96:924-930. [PMID: 28486080 DOI: 10.1177/0022034517707512] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dental caries can be described as a dysbiosis of the oral microbial community, in which acidogenic, aciduric, and acid-adapted bacterial species promote a pathogenic environment, leading to demineralization. Alkali generation by oral microbes, specifically via arginine catabolic pathways, is an essential factor in maintaining plaque pH homeostasis. There is evidence that the use of arginine in dentifrices helps protect against caries. The aim of the current study was to investigate the mechanistic and ecological effect of arginine treatment on the oral microbiome and its regulation of pH dynamics, using an in vitro multispecies oral biofilm model that was previously shown to be highly reflective of the in vivo oral microbiome. Pooled saliva from 6 healthy subjects was used to generate overnight biofilms, reflecting early stages of biofilm maturation. First, we investigated the uptake of arginine by the cells of the biofilm as well as the metabolites generated. We next explored the effect of arginine on pH dynamics by pretreating biofilms with 75 mM arginine, followed by the addition of sucrose (15 mM) after 0, 6, 20, or 48 h. pH was measured at each time point and biofilms were collected for 16S sequencing and targeted arginine quantification, and supernatants were prepared for metabolomic analysis. Treatment with only sucrose led to a sustained pH drop from 7 to 4.5, while biofilms treated with sucrose after 6, 20, or 48 h of preincubation with arginine exhibited a recovery to higher pH. Arginine was detected within the cells of the biofilms, indicating active uptake, and arginine catabolites citrulline, ornithine, and putrescine were detected in supernatants, indicating active metabolism. Sequencing analysis revealed a shift in the microbial community structure in arginine-treated biofilms as well as increased species diversity. Overall, we show that arginine improved pH homeostasis through a remodeling of the oral microbial community.
Collapse
Affiliation(s)
- M Agnello
- 1 School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - L Cen
- 1 School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - N C Tran
- 1 School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - W Shi
- 1 School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - J S McLean
- 2 School of Dentistry, Department of Periodontics, University of Washington, Seattle, WA, USA
| | - X He
- 1 School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
73
|
Draft Genome Sequence of Tannerella forsythia Clinical Isolate 9610. GENOME ANNOUNCEMENTS 2017; 5:5/12/e00024-17. [PMID: 28336586 PMCID: PMC5364211 DOI: 10.1128/genomea.00024-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here the draft genome sequence of Tannerella forsythia 9610, a clinical isolate obtained from a periodontitis patient. The genome is composed of 79 scaffolds with 82 contigs, for a length of 3,201,941 bp and a G+C of 47.3%.
Collapse
|
74
|
Lima BP, Shi W, Lux R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen 2017; 6. [PMID: 28173636 PMCID: PMC5458471 DOI: 10.1002/mbo3.444] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022] Open
Abstract
To successfully colonize the oral cavity, bacteria must directly or indirectly adhere to available oral surfaces. Fusobacterium nucleatum plays an important role in oral biofilm community development due to its broad adherence abilities, serving as a bridge between members of the oral biofilm that cannot directly bind to each other. In our efforts to characterize the molecular mechanisms utilized by F. nucleatum to physically bind to key members of the oral community, we investigated the involvement of F. nucleatum outer membrane proteins in its ability to bind to the pioneer biofilm colonizer, Streptococcus gordonii. Here, we present evidence that in addition to the previously characterized fusobacterial adhesin RadD, the interaction between F. nucleatum ATCC 23726 and S. gordonii V288 involves a second outer membrane protein, which we named coaggregation mediating protein A (CmpA). We also characterized the role of CmpA in dual‐species biofilm formation with S. gordonii V288, evaluated growth‐phase‐dependent as well as biofilm expression profiles of radD and cmpA, and confirmed an important role for CmpA, especially under biofilm growth conditions. Our findings underscore the complex set of specific interactions involved in physical binding and thus community integration of interacting bacterial species. This complex set of interactions could have critical implications for the formation and maturation of the oral biofilms in vivo, and could provide clues to the mechanism behind the distribution of organisms inside the human oral cavity.
Collapse
Affiliation(s)
- Bruno P Lima
- Division of Constitutive and Regenerative Sciences, University of California School of Dentistry, Los Angeles, CA, USA
| | - Wenyuan Shi
- Division of Oral Biology and Medicine, University of California School of Dentistry, Los Angeles, CA, USA
| | - Renate Lux
- Division of Constitutive and Regenerative Sciences, University of California School of Dentistry, Los Angeles, CA, USA.,Division of Oral Biology and Medicine, University of California School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
75
|
Koopman JE, Buijs MJ, Brandt BW, Keijser BJF, Crielaard W, Zaura E. Nitrate and the Origin of Saliva Influence Composition and Short Chain Fatty Acid Production of Oral Microcosms. MICROBIAL ECOLOGY 2016; 72:479-92. [PMID: 27155967 PMCID: PMC4937104 DOI: 10.1007/s00248-016-0775-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Nitrate is emerging as a possible health benefactor. Especially the microbial conversion of nitrate to nitrite in the oral cavity and the subsequent conversion to nitric oxide in the stomach are of interest in this regard. Yet, how nitrate influences the composition and biochemistry of the oral ecosystem is not fully understood. To investigate the effect of nitrate on oral ecology, we performed a 4-week experiment using the multiplaque artificial mouth (MAM) biofilm model. This model was inoculated with stimulated saliva of two healthy donors. Half of the microcosms (n = 4) received a constant supply of nitrate, while the other half functioned as control (n = 4). Additionally, all microcosms received a nitrate and sucrose pulse, each week, on separate days to measure nitrate reduction and acid formation. The bacterial composition of the microcosms was determined by 16S rDNA sequencing. The origin of the saliva (i.e., donor) showed to be the strongest determinant for the development of the microcosms. The supplementation of nitrate was related to a relatively high abundance of Neisseria in the microcosms of both donors, while Veillonella was highly abundant in the nitrate-supplemented microcosms of only one of the donors. The lactate concentration after sucrose addition was similarly high in all microcosms, irrespective of treatment or donor, while the concentration of butyrate was lower after nitrate addition in the nitrate-receiving microcosms. In conclusion, nitrate influences the composition and biochemistry of oral microcosms, although the result is strongly dependent on the inoculum.
Collapse
Affiliation(s)
- Jessica E Koopman
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Bart J F Keijser
- Research Group Microbiology and Systems Biology, TNO Earth, Life and Social Sciences, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
76
|
He Z, Huang Z, Zhou W, Tang Z, Ma R, Liang J. Anti-biofilm Activities from Resveratrol against Fusobacterium nucleatum. Front Microbiol 2016; 7:1065. [PMID: 27458454 PMCID: PMC4932316 DOI: 10.3389/fmicb.2016.01065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022] Open
Abstract
Fusobacterium nucleatum is a Gram-negative, anaerobic bacterium that plays an important role in dental plaque biofilm formation. In this study, we evaluate the effect of resveratrol, a phytoalexin compound, on F. nucleatum biofilm formation. The effects of different concentrations of resveratrol on biofilms formed on 96-well microtiter plates at different time points were determined by the MTT assay. The structures and thicknesses of the biofilm were observed by confocal laser scanning microscopy (CLSM), and gene expression was investigated by real-time PCR. The results showed that resveratrol at sub-MIC levels can significantly decrease biofilm formation, whereas it does not affect the bacterial growth rate. It was observed by CLSM images that the biofilm was visually decreased with increasing concentrations of resveratrol. Gene expression was down regulated in the biofilm in the presence of resveratrol. Our results revealed that resveratrol can effectively inhibit biofilm formation.
Collapse
Affiliation(s)
- Zhiyan He
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Wei Zhou
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Jingping Liang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| |
Collapse
|
77
|
Solden L, Lloyd K, Wrighton K. The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr Opin Microbiol 2016; 31:217-226. [PMID: 27196505 DOI: 10.1016/j.mib.2016.04.020] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022]
Abstract
Microorganisms are the most diverse and abundant life forms on Earth. Yet, in many environments, only 0.1-1% of them have been cultivated greatly hindering our understanding of the microbial world. However, today cultivation is no longer a requirement for gaining access to information from the uncultivated majority. New genomic information from metagenomics and single cell genomics has provided insights into microbial metabolic cooperation and dependence, generating new avenues for cultivation efforts. Here we summarize recent advances from uncultivated phyla and discuss how this knowledge has influenced our understanding of the topology of the tree of life and metabolic diversity.
Collapse
Affiliation(s)
- Lindsey Solden
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Karen Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Kelly Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
78
|
Edlund A, Yang Y, Yooseph S, Hall AP, Nguyen DD, Dorrestein PC, Nelson KE, He X, Lux R, Shi W, McLean JS. Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism. THE ISME JOURNAL 2015; 9:2605-19. [PMID: 26023872 PMCID: PMC4817640 DOI: 10.1038/ismej.2015.72] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 01/15/2023]
Abstract
Dental caries, one of the most globally widespread infectious diseases, is intimately linked to pH dynamics. In supragingival plaque, after the addition of a carbohydrate source, bacterial metabolism decreases the pH which then subsequently recovers. Molecular mechanisms supporting this important homeostasis are poorly characterized in part due to the fact that there are hundreds of active species in dental plaque. Only a few mechanisms (for example, lactate fermentation, the arginine deiminase system) have been identified and studied in detail. Here, we conducted what is to our knowledge, the first full transcriptome and metabolome analysis of a diverse oral plaque community by using a functionally and taxonomically robust in vitro model system greater than 100 species. Differential gene expression analyses from the complete transcriptome of 14 key community members revealed highly varied regulation of both known and previously unassociated pH-neutralizing pathways as a response to the pH drop. Unique expression and metabolite signatures from 400 detected metabolites were found for each stage along the pH curve suggesting it may be possible to define healthy and diseased states of activity. Importantly, for the maintenance of healthy plaque pH, gene transcription activity of known and previously unrecognized pH-neutralizing pathways was associated with the genera Lactobacillus, Veillonella and Streptococcus during the pH recovery phase. Our in vitro study provides a baseline for defining healthy and disease-like states and highlights the power of moving beyond single and dual species applications to capture key players and their orchestrated metabolic activities within a complex human oral microbiome model.
Collapse
Affiliation(s)
- Anna Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Youngik Yang
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
| | - Shibu Yooseph
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
| | - Adam P Hall
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
| | - Don D Nguyen
- Departments of Chemistry and Biochemistry, Pharmacology, and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Departments of Chemistry and Biochemistry, Pharmacology, and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Karen E Nelson
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Human Genomic Medicine, J. Craig Venter Institute, Rockville, MD, USA
| | - Xuesong He
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Renate Lux
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Wenyuan Shi
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Periodontics, University of Washington, Seattle, WA, USA
| |
Collapse
|
79
|
de Avila ED, Lima BP, Sekiya T, Torii Y, Ogawa T, Shi W, Lux R. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials 2015. [PMID: 26210175 DOI: 10.1016/j.biomaterials.2015.07.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial biofilm infections remain prevalent reasons for implant failure. Dental implant placement occurs in the oral environment, which harbors a plethora of biofilm-forming bacteria. Due to its trans-mucosal placement, part of the implant structure is exposed to oral cavity and there is no effective measure to prevent bacterial attachment to implant materials. Here, we demonstrated that UV treatment of titanium immediately prior to use (photofunctionalization) affects the ability of human polymicrobial oral biofilm communities to colonize in the presence of salivary and blood components. UV-treatment of machined titanium transformed the surface from hydrophobic to superhydrophilic. UV-treated surfaces exhibited a significant reduction in bacterial attachment as well as subsequent biofilm formation compared to untreated ones, even though overall bacterial viability was not affected. The function of reducing bacterial colonization was maintained on UV-treated titanium that had been stored in a liquid environment before use. Denaturing gradient gel-electrophoresis (DGGE) and DNA sequencing analyses revealed that while bacterial community profiles appeared different between UV-treated and untreated titanium in the initial attachment phase, this difference vanished as biofilm formation progressed. Our findings confirm that UV-photofunctionalization of titanium has a strong potential to improve outcome of implant placement by creating and maintaining antimicrobial surfaces.
Collapse
Affiliation(s)
- Erica Dorigatti de Avila
- Division of Oral Biology and Medicine, University of California - School of Dentistry, Los Angeles, CA, USA; Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Bruno P Lima
- Division of Oral Biology and Medicine, University of California - School of Dentistry, Los Angeles, CA, USA
| | - Takeo Sekiya
- Division of Advanced Prosthodontics and Weintraub Center for Reconstructive Biotechnology, University of California - School of Dentistry, Los Angeles, CA, USA
| | - Yasuyoshi Torii
- Division of Advanced Prosthodontics and Weintraub Center for Reconstructive Biotechnology, University of California - School of Dentistry, Los Angeles, CA, USA
| | - Takahiro Ogawa
- Division of Advanced Prosthodontics and Weintraub Center for Reconstructive Biotechnology, University of California - School of Dentistry, Los Angeles, CA, USA
| | - Wenyuan Shi
- Division of Oral Biology and Medicine, University of California - School of Dentistry, Los Angeles, CA, USA
| | - Renate Lux
- Division of Oral Biology and Medicine, University of California - School of Dentistry, Los Angeles, CA, USA; Division of Constitutive and Regenerative Sciences, University of California - School of Dentistry, Los Angeles, CA, USA.
| |
Collapse
|
80
|
Zhang F, He S, Jin J, Dong G, Wu H. Exploring salivary microbiota in AIDS patients with different periodontal statuses using 454 GS-FLX Titanium pyrosequencing. Front Cell Infect Microbiol 2015; 5:55. [PMID: 26191508 PMCID: PMC4488753 DOI: 10.3389/fcimb.2015.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/19/2015] [Indexed: 10/28/2022] Open
Abstract
Patients with acquired immunodeficiency syndrome (AIDS) are at high risk of opportunistic infections. Oral manifestations have been associated with the level of immunosuppression, these include periodontal diseases, and understanding the microbial populations in the oral cavity is crucial for clinical management. The aim of this study was to examine the salivary bacterial diversity in patients newly admitted to the AIDS ward of the Public Health Clinical Center (China). Saliva samples were collected from 15 patients with AIDS who were randomly recruited between December 2013 and March 2014. Extracted DNA was used as template to amplify bacterial 16S rRNA. Sequencing of the amplicon library was performed using a 454 GS-FLX Titanium sequencing platform. Reads were optimized and clustered into operational taxonomic units for further analysis. A total of 10 bacterial phyla (106 genera) were detected. Firmicutes, Bacteroidetes, and Proteobacteria were preponderant in the salivary microbiota in AIDS patients. The pathogen, Capnocytophaga sp., and others not considered pathogenic such as Neisseria elongata, Streptococcus mitis, and Mycoplasma salivarium but which may be opportunistic infective agents were detected. Dialister pneumosintes, Eubacterium infirmum, Rothia mucilaginosa, and Treponema parvum were preponderant in AIDS patients with periodontitis. Patients with necrotic periodontitis had a distinct salivary bacterial profile from those with chronic periodontitis. This is the first study using advanced sequencing techniques focused on hospitalized AIDS patients showing the diversity of their salivary microbiota.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University Chengdu, China
| | - Shenghua He
- Public Health Clinical Center of Chengdu Chengdu, China
| | - Jieqi Jin
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University Chengdu, China
| | - Guangyan Dong
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University Chengdu, China
| | - Hongkun Wu
- Department of Geriatric Dentistry, West China College of Stomatology, Sichuan University Chengdu, China
| |
Collapse
|
81
|
Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity. Appl Environ Microbiol 2015; 81:5471-6. [PMID: 26048943 DOI: 10.1128/aem.01180-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 11/20/2022] Open
Abstract
Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva.
Collapse
|
82
|
Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A 2015; 112:7569-74. [PMID: 26034276 DOI: 10.1073/pnas.1506207112] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One major challenge to studying human microbiome and its associated diseases is the lack of effective tools to achieve targeted modulation of individual species and study its ecological function within multispecies communities. Here, we show that C16G2, a specifically targeted antimicrobial peptide, was able to selectively kill cariogenic pathogen Streptococcus mutans with high efficacy within a human saliva-derived in vitro oral multispecies community. Importantly, a significant shift in the overall microbial structure of the C16G2-treated community was revealed after a 24-h recovery period: several bacterial species with metabolic dependency or physical interactions with S. mutans suffered drastic reduction in their abundance, whereas S. mutans' natural competitors, including health-associated Streptococci, became dominant. This study demonstrates the use of targeted antimicrobials to modulate the microbiome structure allowing insights into the key community role of specific bacterial species and also indicates the therapeutic potential of C16G2 to achieve a healthy oral microbiome.
Collapse
|
83
|
Muñoz-González C, Cueva C, Ángeles Pozo-Bayón M, Victoria Moreno-Arribas M. Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors. Food Chem 2015; 187:112-9. [PMID: 25977005 DOI: 10.1016/j.foodchem.2015.04.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 11/29/2022]
Abstract
Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability.
Collapse
Affiliation(s)
- Carolina Muñoz-González
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Carolina Cueva
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - M Ángeles Pozo-Bayón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC, C/ Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
84
|
Koopman JE, Röling WFM, Buijs MJ, Sissons CH, ten Cate JM, Keijser BJF, Crielaard W, Zaura E. Stability and resilience of oral microcosms toward acidification and Candida outgrowth by arginine supplementation. MICROBIAL ECOLOGY 2015; 69:422-433. [PMID: 25433583 DOI: 10.1007/s00248-014-0535-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
Dysbiosis induced by low pH in the oral ecosystem can lead to caries, a prevalent bacterial disease in humans. The amino acid arginine is one of the pH-elevating agents in the oral cavity. To obtain insights into the effect of arginine on oral microbial ecology, a multi-plaque "artificial mouth" (MAM) biofilm model was inoculated with saliva from a healthy volunteer and microcosms were grown for 4 weeks with 1.6 % (w/v) arginine supplement (Arginine) or without (Control), samples were taken at several time-points. A cariogenic environment was mimicked by sucrose pulsing. The bacterial composition was determined by 16S rRNA gene amplicon sequencing, the presence and amount of Candida and arginine deiminase system genes arcA and sagP by qPCR. Additionally, ammonium and short-chain fatty acid concentrations were determined. The Arginine microcosms were dominated by Streptococcus, Veillonella, and Neisseria and remained stable in time, while the composition of the Control microcosms diverged significantly in time, partially due to the presence of Megasphaera. The percentage of Candida increased 100-fold in the Control microcosms compared to the Arginine microcosms. The pH-raising effect of arginine was confirmed by the pH and ammonium results. The abundances of sagP and arcA were highest in the Arginine microcosms, while the concentration of butyrate was higher in the Control microcosms. We demonstrate that supplementation with arginine serves a health-promoting function; it enhances microcosm resilience toward acidification and suppresses outgrowth of the opportunistic pathogen Candida. Arginine facilitates stability of oral microbial communities and prevents them from becoming cariogenic.
Collapse
Affiliation(s)
- Jessica E Koopman
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci U S A 2015; 112:244-9. [PMID: 25535390 PMCID: PMC4291631 DOI: 10.1073/pnas.1419038112] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The candidate phylum TM7 is globally distributed and often associated with human inflammatory mucosal diseases. Despite its prevalence, the TM7 phylum remains recalcitrant to cultivation, making it one of the most enigmatic phyla known. In this study, we cultivated a TM7 phylotype (TM7x) from the human oral cavity. This extremely small coccus (200-300 nm) has a distinctive lifestyle not previously observed in human-associated microbes. It is an obligate epibiont of an Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase, thereby killing its host. This first completed genome (705 kb) for a human-associated TM7 phylotype revealed a complete lack of amino acid biosynthetic capacity. Comparative genomics analyses with uncultivated environmental TM7 assemblies show remarkable conserved gene synteny and only minimal gene loss/gain that may have occurred as TM7x adapted to conditions within the human host. Transcriptomic and metabolomic profiles provided the first indications, to our knowledge, that there is signaling interaction between TM7x and XH001. Furthermore, the induction of TNF-α production in macrophages by XH001 was repressed in the presence of TM7x, suggesting its potential immune suppression ability. Overall, our data provide intriguing insights into the uncultivability, pathogenicity, and unique lifestyle of this previously uncharacterized oral TM7 phylotype.
Collapse
|
86
|
Davis IJ, Bull C, Horsfall A, Morley I, Harris S. The Unculturables: targeted isolation of bacterial species associated with canine periodontal health or disease from dental plaque. BMC Microbiol 2014; 14:196. [PMID: 25085267 PMCID: PMC4236526 DOI: 10.1186/1471-2180-14-196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background The current inability to culture the entirety of observed bacteria is well known and with the advent of ever more powerful molecular tools, that can survey bacterial communities at previously unattainable depth, the gap in our capacity to culture and define all of these species increases exponentially. This gap has essentially become the rate limiting step in determining how the knowledge of which species are present in a sample can be applied to understand the role of these species in an ecosystem or disease process. A case in point is periodontal disease, which is the most widespread oral disease in dogs. If untreated the disease results in significant pain, eventual loss of the dentition and potentially an increased risk of systemic diseases. Previous molecular based studies have identified the bacterial species associated with periodontal disease in dogs; however without cultured strains from many of these species it has not been possible to study whether they play a role in the disease process. Results Using a quantitative polymerase chain reaction (qPCR) directed approach a range of microbiological media were screened and optimized to enrich for previously uncultivated target species. A systematic screening methodology was then employed to isolate the species of interest. In cases where the target species were not cultivable in isolation, helper strains grown underneath a nitrocellulose membrane were used to provide the necessary growth factors. This guided media optimization approach enabled the purification of 14 species, 8 of which we had previously been unable to cultivate in isolation. It is also applicable to the targeted isolation of isolates from species that have previously been cultured (for example to study intra-species variation) as demonstrated by the successful isolation of 6 targeted isolates of already cultured species. Conclusions To our knowledge this is the first time this combination of qPCR guided media optimization, strategic screening and helper strain support has been used successfully to isolate previously uncultured bacteria. This approach can be applied to any uncultured bacterial species where knowledge of their nutritional requirements or low relative abundance impedes their isolation.
Collapse
Affiliation(s)
- Ian J Davis
- The WALTHAM® Centre for Pet Nutrition, Mars Petcare, Leicestershire, UK.
| | | | | | | | | |
Collapse
|
87
|
McLean JS. Advancements toward a systems level understanding of the human oral microbiome. Front Cell Infect Microbiol 2014; 4:98. [PMID: 25120956 PMCID: PMC4114298 DOI: 10.3389/fcimb.2014.00098] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/05/2014] [Indexed: 12/18/2022] Open
Abstract
Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last 80 years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell-cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them.
Collapse
Affiliation(s)
- Jeffrey S McLean
- Department of Microbial and Environmental Genomics, The J Craig Venter Institute San Diego, CA, USA ; Department of Periodontics, School of Dentistry, University of Washington Seattle, WA, USA
| |
Collapse
|
88
|
Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. MICROBIOME 2013; 1:25. [PMID: 24451062 PMCID: PMC3971625 DOI: 10.1186/2049-2618-1-25] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/17/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Our knowledge of microbial diversity in the human oral cavity has vastly expanded during the last two decades of research. However, much of what is known about the behavior of oral species to date derives from pure culture approaches and the studies combining several cultivated species, which likely does not fully reflect their function in complex microbial communities. It has been shown in studies with a limited number of cultivated species that early oral biofilm development occurs in a successional manner and that continuous low pH can lead to an enrichment of aciduric species. Observations that in vitro grown plaque biofilm microcosms can maintain similar pH profiles in response to carbohydrate addition as plaque in vivo suggests a complex microbial community can be established in the laboratory. In light of this, our primary goal was to develop a robust in vitro biofilm-model system from a pooled saliva inoculum in order to study the stability, reproducibility, and development of the oral microbiome, and its dynamic response to environmental changes from the community to the molecular level. RESULTS Comparative metagenomic analyses confirmed a high similarity of metabolic potential in biofilms to recently available oral metagenomes from healthy subjects as part of the Human Microbiome Project. A time-series metagenomic analysis of the taxonomic community composition in biofilms revealed that the proportions of major species at 3 hours of growth are maintained during 48 hours of biofilm development. By employing deep pyrosequencing of the 16S rRNA gene to investigate this biofilm model with regards to bacterial taxonomic diversity, we show a high reproducibility of the taxonomic carriage and proportions between: 1) individual biofilm samples; 2) biofilm batches grown at different dates; 3) DNA extraction techniques and 4) research laboratories. CONCLUSIONS Our study demonstrates that we now have the capability to grow stable oral microbial in vitro biofilms containing more than one hundred operational taxonomic units (OTU) which represent 60-80% of the original inoculum OTU richness. Previously uncultivated Human Oral Taxa (HOT) were identified in the biofilms and contributed to approximately one-third of the totally captured 16S rRNA gene diversity. To our knowledge, this represents the highest oral bacterial diversity reported for an in vitro model system so far. This robust model will help investigate currently uncultivated species and the known virulence properties for many oral pathogens not solely restricted to pure culture systems, but within multi-species biofilms.
Collapse
Affiliation(s)
- Anna Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Youngik Yang
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Adam P Hall
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Lihong Guo
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Renate Lux
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Xuesong He
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Karen E Nelson
- Department of Human Genomic Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kenneth H Nealson
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- Department of Earth Sciences, USC, ZHS 117, Los Angeles, CA 90089, USA
| | - Shibu Yooseph
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| |
Collapse
|
89
|
Rudney JD, Chen R, Lenton P, Li J, Li Y, Jones RS, Reilly C, Fok AS, Aparicio C. A reproducible oral microcosm biofilm model for testing dental materials. J Appl Microbiol 2012; 113:1540-53. [PMID: 22925110 DOI: 10.1111/j.1365-2672.2012.05439.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 12/28/2022]
Abstract
AIMS Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. METHODS AND RESULTS Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together. CONCLUSIONS This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.
Collapse
Affiliation(s)
- J D Rudney
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Wang R, Kaplan A, Guo L, Shi W, Zhou X, Lux R, He X. The influence of iron availability on human salivary microbial community composition. MICROBIAL ECOLOGY 2012; 64:152-61. [PMID: 22318873 PMCID: PMC3376180 DOI: 10.1007/s00248-012-0013-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/17/2012] [Indexed: 05/09/2023]
Abstract
It is a well-recognized fact that the composition of human salivary microbial community is greatly affected by its nutritional environment. However, most studies are currently focused on major carbon or nitrogen sources with limited attention to trace elements like essential mineral ions. In this study, we examined the effect of iron availability on the bacterial profiles of an in vitro human salivary microbial community as iron is an essential trace element for the survival and proliferation of virtually all microorganisms. Analysis via a combination of PCR with denaturing gradient gel electrophoresis demonstrated a drastic change in species composition of an in vitro human salivary microbiota when iron was scavenged from the culture medium by addition of the iron chelator 2,2'-bipyridyl. This shift in community profile was prevented by the presence of excessive ferrous iron (Fe(2+)). Most interestingly, under iron deficiency, the in vitro grown salivary microbial community became dominated by several hemolytic bacterial species, including Streptococcus spp., Gemella spp., and Granulicatella spp. all of which have been implicated in infective endocarditis. These data provide evidence that iron availability can modulate host-associated oral microbial communities, resulting in a microbiota with potential clinical impact.
Collapse
Affiliation(s)
- Renke Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Aida Kaplan
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Lihong Guo
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Renate Lux
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Xuesong He
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Corresponding author. UCLA School of Dentistry, 10833 Le Conte Avenue, CHS 20-118 Los Angeles, CA 90095-1668. Phone: (310) 825-9748. FAX: (310) 794-7109.
| |
Collapse
|
91
|
He X, Hu W, Kaplan CW, Guo L, Shi W, Lux R. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. MICROBIAL ECOLOGY 2012; 63:532-42. [PMID: 22202886 PMCID: PMC3313671 DOI: 10.1007/s00248-011-9989-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/25/2011] [Indexed: 05/10/2023]
Abstract
The development of multispecies oral microbial communities involves complex intra- and interspecies interactions at various levels. The ability to adhere to the resident bacteria or the biofilm matrix and overcome community resistance are among the key factors that determine whether a bacterium can integrate into a community. Fusobacterium nucleatum is a prevalent Gram-negative oral bacterial species that is able to adhere to a variety of oral microbes and has been implicated in playing an important role in the establishment of multispecies oral microbial community. However, the majority of experiments thus far has focused on the physical adherence between two species as measured by in vitro co-aggregation assays, while the community-based effects on the integration of F. nucleatum into multispecies microbial community remains to be investigated. In this study, we focus on community integration of F. nucleatum. We demonstrated using an established in vitro mice oral microbiota (O-mix) that the viability of F. nucleatum was significantly reduced upon addition to the O-mix due to cell contact-dependent induction of hydrogen peroxide (H(2)O(2)) production by oral community. Interestingly, this inhibitory effect was significantly alleviated when F. nucleatum was allowed to adhere to its known interacting partner species (such as Streptococcus sanguinis) prior to addition. Furthermore, this aggregate formation-dependent protection was absent in the F. nucleatum mutant strain ΔFn1526 that is unable to bind to a number of Gram-positive species. More importantly, this protective effect was also observed during integration of F. nucleatum into a human salivary microbial community (S-mix). These results suggest that by adhering to other oral microbes, F. nucleatum is able to mask the surface components that are recognized by H(2)O(2) producing oral community members. This evasion strategy prevents detection by antagonistic oral bacteria and allows integration into the developing oral microbial community.
Collapse
Affiliation(s)
- Xuesong He
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Wei Hu
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong 250100, China
| | | | - Lihong Guo
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- C3 Jian Inc., Inglewood, CA, USA
| | - Renate Lux
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Corresponding author. UCLA School of Dentistry, 10833 Le Conte Avenue, CHS 20-114 Los Angeles, CA 90095-1668. Phone: (310) 206-5660. FAX: (310) 794-7109.
| |
Collapse
|
92
|
He X, Hu W, He J, Guo L, Lux R, Shi W. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm. Mol Oral Microbiol 2011; 26:337-52. [PMID: 22053962 PMCID: PMC3327514 DOI: 10.1111/j.2041-1014.2011.00622.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As part of the human gastrointestinal tract, the oral cavity represents a complex biological system and harbors diverse bacterial species. Unlike the gut microbiota, which is often considered a health asset, studies of the oral commensal microbiota have been largely limited to their implication in oral conditions such as dental caries and periodontal disease. Less emphasis has been given to their potential beneficial roles, especially the protective effects against oral colonization by foreign or pathogenic bacteria. In this study, we used salivary microbiota derived from healthy human subjects to investigate protective effects against colonization and integration of Pseudomonas aeruginosa, an opportunistic bacterial pathogen, into developing or pre-formed salivary biofilms. When co-cultivated in saliva medium, P. aeruginosa persisted in the planktonic phase, but failed to integrate into the salivary microbial community during biofilm formation. Furthermore, in saliva medium supplemented with sucrose, the oral microbiota inhibited the growth of P. aeruginosa by producing lactic acid. More interestingly, while pre-formed salivary biofilms were able to prevent P. aeruginosa colonization, the same biofilms recovered from mild chlorhexidine gluconate treatment displayed a shift in microbial composition and showed a drastic reduction in protection. Our study indicates that normal oral communities with balanced microbial compositions could be important in effectively preventing the integration of foreign or pathogenic bacterial species, such as P. aeruginosa.
Collapse
Affiliation(s)
- Xuesong He
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Wei Hu
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong 250100, China
| | - Jian He
- C3 Jian Inc., Inglewood, CA, USA
| | - Lihong Guo
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Renate Lux
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- C3 Jian Inc., Inglewood, CA, USA
| |
Collapse
|
93
|
Chugal N, Wang JK, Wang R, He X, Kang M, Li J, Zhou X, Shi W, Lux R. Molecular characterization of the microbial flora residing at the apical portion of infected root canals of human teeth. J Endod 2011; 37:1359-64. [PMID: 21924182 DOI: 10.1016/j.joen.2011.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022]
Abstract
INTRODUCTION This study investigated the bacterial communities residing in the apical portion of human teeth with apical periodontitis in primary and secondary infections by using a culture-independent molecular biology approach. METHODS Root canal samples from the apical root segments of extracted teeth were collected from 18 teeth with necrotic pulp and 8 teeth with previous endodontic treatment. Samples were processed for amplification via polymerase chain reaction and separated with denaturing gradient gel electrophoresis. Selected bands were excised from the gel and sequenced for identification. RESULTS Comparable to previous studies of entire root canals, the apical bacterial communities in primary infections were significantly more diverse than in secondary infections (P = .0003). Interpatient and intrapatient comparisons exhibited similar variations in profiles. Different roots of the same teeth with secondary infections displayed low similarity in bacterial composition, whereas an equivalent sample collected from primary infection contained almost identical populations. Sequencing revealed a high prevalence of Fusobacteria, Actinomyces species, and oral Anaeroglobus geminatus in both types of infection. Many secondary infections contained Burkholderiales or Pseudomonas species, both of which represent opportunistic environmental pathogens. CONCLUSIONS Certain microorganisms exhibit similar prevalence in primary and secondary infection, indicating that they are likely not eradicated during endodontic treatment. The presence of Burkholderiales and Pseudomonas species underscores the problem of environmental contamination. Treatment appears to affect the various root canals of multirooted teeth differently, resulting in local changes of the microbiota.
Collapse
Affiliation(s)
- Nadia Chugal
- Section of Endodontics, UCLA School of Dentistry, UCLA School of Medicine, Los Angeles, California 90095-1668, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
van Reenen CA, Dicks LMT. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Arch Microbiol 2010; 193:157-68. [DOI: 10.1007/s00203-010-0668-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 01/12/2023]
|