51
|
Li Z, You M, Che X, Dai Y, Xu Y, Wang Y. Perinatal exposure to BDE-47 exacerbated autistic-like behaviors and impairments of dendritic development in a valproic acid-induced rat model of autism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112000. [PMID: 33550075 DOI: 10.1016/j.ecoenv.2021.112000] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 05/05/2023]
Abstract
Perinatal exposure to polybrominated diphenyl ethers (PBDEs) may be a potential risk factor for autism spectrum disorders (ASD). BDE-47 is one of the most common PBDEs and poses serious health hazards on the central nervous system (CNS). However, effects of perinatal exposure to BDE-47 on social behaviors and the potential mechanisms are largely unexplored. Thus, we aimed to investigate whether BDE-47 exposure during gestation and lactation led to autistic-like behaviors in offspring rats in the present study. Valproic acid (VPA), which is widely used to establish animal model of ASD, was also adopted to induce autistic-like behaviors. A battery of tests was conducted to evaluate social and repetitive behaviors in offspring rats. We found that perinatal exposure to BDE-47 caused mild autistic-like behaviors in offspring, which were similar but less severe to those observed in pups maternally exposed to VPA. Moreover, perinatal exposure to BDE-47 aggravated the autistic-like behaviors in pups maternally exposed to VPA. Abnormal dendritic development is known to be deeply associated with autistic-like behaviors. Golgi-Cox staining was used to observe the morphological characteristics of dendrites in the prefrontal cortex of pups. We found perinatal exposure to BDE-47 reduced dendritic length and complexity of branching pattern, and spine density in the offspring prefrontal cortex, which may contribute to autistic-like behaviors observed in the present study. Perinatal exposure to BDE-47 also exacerbated the impairments of dendritic development in pups maternally exposed to VPA. Besides, our study also provided the evidence that the inhibition of BDNF-CREB signaling, a key regulator of dendritic development, may be involved in the dendritic impairments induced by perinatal exposure to BDE-47 and/or VPA, and the consequent autistic-like behaviors.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaoyu Che
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yufeng Dai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
52
|
Alterations in Tau Protein Level and Phosphorylation State in the Brain of the Autistic-Like Rats Induced by Prenatal Exposure to Valproic Acid. Int J Mol Sci 2021; 22:ijms22063209. [PMID: 33809910 PMCID: PMC8004207 DOI: 10.3390/ijms22063209] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/β-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA induces: (1) decrease the level of α/β-tubulin along with Tau accumulation in the hippocampus and cerebral cortex; (2) excessive Tau phosphorylation and activation of Tau-kinases: CDK5, ERK1/2, and p70S6K in the cerebral cortex; (3) up-regulation of mTOR kinase-dependent signalling in the hippocampus and cerebral cortex of adolescent rat offspring. Moreover, immunohistochemical staining showed histopathological changes in neurons (chromatolysis) in both analysed brain structures of rats prenatally exposed to VPA. The observed changes in Tau protein together with an excessive decrease in α/β-tubulin level may suggest destabilization and thus dysfunction of the MT cytoskeleton network, which in consequence may lead to the disturbance in synaptic plasticity and the development of autistic-like behaviours.
Collapse
|
53
|
Puig-Lagunes ÁA, Rocha L, Morgado-Valle C, BeltrÁn-Parrazal L, LÓpez-Meraz ML. Brain and plasma amino acid concentration in infant rats prenatally exposed to valproic acid. AN ACAD BRAS CIENC 2021; 93:e20190861. [PMID: 33729379 DOI: 10.1590/0001-3765202120190861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/19/2019] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder is associated with alterations in GABAergic and glutamatergic neurotransmission. Here, we aimed to determine the concentration of GABA, glutamate, glutamine, aspartate, taurine, and glycine in brain tissue and plasma of rats prenatally exposed to valproic acid (VPA), a well-characterized experimental model of autism. Pregnant rats were injected with VPA (600mg/Kg) during the twelfth-embryonic-day. Control rats were injected with saline. On the fourteen-postnatal-day, rats from both groups (males and females) were anesthetized, euthanized by decapitation and their brain dissected out. The frontal cortex, hippocampus, amygdala, brain stem and cerebellum were dissected and homogenized. Homogenates were centrifuged and supernatants were used to quantify amino acid concentrations by HPLC coupled with fluorometric detection. Blood samples were obtained by a cardiac puncture; plasma was separated and deproteinized to quantify amino acid concentration by HPLC. We found that, in VPA rats, glutamate and glutamine concentrations were increased in hippocampus and glycine concentration was increased in cortex. We did not find changes in other regions or in plasma amino acid concentration in the VPA group with respect to control group. Our results suggest that VPA exposure in utero may impair inhibitory and excitatory amino acid transmission in the infant brain.
Collapse
Affiliation(s)
- Ángel Alberto Puig-Lagunes
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios, 235, 14330 Col. Granjas Coapa, Ciudad de México, México
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Luis BeltrÁn-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - MarÍa-Leonor LÓpez-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| |
Collapse
|
54
|
Traetta ME, Codagnone MG, Uccelli NA, Ramos AJ, Zárate S, Reinés A. Hippocampal neurons isolated from rats subjected to the valproic acid model mimic in vivo synaptic pattern: evidence of neuronal priming during early development in autism spectrum disorders. Mol Autism 2021; 12:23. [PMID: 33676530 PMCID: PMC7937248 DOI: 10.1186/s13229-021-00428-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are synaptopathies characterized by area-specific synaptic alterations and neuroinflammation. Structural and adhesive features of hippocampal synapses have been described in the valproic acid (VPA) model. However, neuronal and microglial contribution to hippocampal synaptic pattern and its time-course of appearance is still unknown. METHODS Male pups born from pregnant rats injected at embryonic day 10.5 with VPA (450 mg/kg, i.p.) or saline (control) were used. Maturation, exploratory activity and social interaction were assessed as autistic-like traits. Synaptic, cell adhesion and microglial markers were evaluated in the CA3 hippocampal region at postnatal day (PND) 3 and 35. Primary cultures of hippocampal neurons from control and VPA animals were used to study synaptic features and glutamate-induced structural remodeling. Basal and stimuli-mediated reactivity was assessed on microglia primary cultures isolated from control and VPA animals. RESULTS At PND3, before VPA behavioral deficits were evident, synaptophysin immunoreactivity and the balance between the neuronal cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) were preserved in the hippocampus of VPA animals along with the absence of microgliosis. At PND35, concomitantly with the establishment of behavioral deficits, the hippocampus of VPA rats showed fewer excitatory synapses and increased NCAM/PSA-NCAM balance without microgliosis. Hippocampal neurons from VPA animals in culture exhibited a preserved synaptic puncta number at the beginning of the synaptogenic period in vitro but showed fewer excitatory synapses as well as increased NCAM/PSA-NCAM balance and resistance to glutamate-induced structural synaptic remodeling after active synaptogenesis. Microglial cells isolated from VPA animals and cultured in the absence of neurons showed similar basal and stimuli-induced reactivity to the control group. Results indicate that in the absence of glia, hippocampal neurons from VPA animals mirrored the in vivo synaptic pattern and suggest that while neurons are primed during the prenatal period, hippocampal microglia are not intrinsically altered. CONCLUSIONS Our study suggests microglial role is not determinant for developing neuronal alterations or counteracting neuronal outcome in the hippocampus and highlights the crucial role of hippocampal neurons and structural plasticity in the establishment of the synaptic alterations in the VPA rat model.
Collapse
Affiliation(s)
- Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Gabriel Codagnone
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nonthué Alejandra Uccelli
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Zárate
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Reinés
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
55
|
Arkhipov AY, Samigullin DV, Semina II, Malomouzh AI. Functional Assessment of Peripheral
Cholinergic Neurotransmission in Rats with Fetal Valproate Syndrome. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
57
|
Yang JQ, Yang CH, Yin BQ. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Behav Brain Res 2021; 403:113094. [PMID: 33359845 DOI: 10.1016/j.bbr.2020.113094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. In this study, we employed prenatally exposed to valproic acid (VPA) to establish a validated ASD mouse model and found impaired inhibitory gamma-aminobutyric acid (GABAergic) neurotransmission through a presynaptic mechanism in these model mice, which was accompanied with decreased GABA release and GABA-A and GABA-B receptor subunits expression. And acute administration of individual GABA-A or GABA-B receptor agonists partially reversed autistic-like behaviors in the model mice. Furthermore, acute administration of the combined GABA-A and GABA-B receptor agonists palliated sociability deficits, anxiety and repetitive behaviors in the animal model of autistic-like behaviors, demonstrating the therapeutic potential of above cocktail in the treatment of ASD.
Collapse
Affiliation(s)
- Jian-Quan Yang
- Department of Children Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Hua Yang
- Department of Children Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bao-Qi Yin
- Department of Children Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
58
|
Di Y, Li Z, Li J, Cheng Q, Zheng Q, Zhai C, Kang M, Wei C, Lan J, Fan J, Ren W, Tian Y. Maternal folic acid supplementation prevents autistic behaviors in a rat model induced by prenatal exposure to valproic acid. Food Funct 2021; 12:4544-4555. [DOI: 10.1039/d0fo02926b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maternal FA supplementation at 4 mg kg−1 rescued the development delay, anxiety and core autism-like behaviors, and restored the abnormal synaptic spine morphology and synaptic protein expression in mPFC in the male offspring prenatally exposed to VPA.
Collapse
|
59
|
Wang X, Ding R, Song Y, Wang J, Zhang C, Han S, Han J, Zhang R. Transcutaneous Electrical Acupoint Stimulation in Early Life Changes Synaptic Plasticity and Improves Symptoms in a Valproic Acid-Induced Rat Model of Autism. Neural Plast 2020; 2020:8832694. [PMID: 33456456 PMCID: PMC7787794 DOI: 10.1155/2020/8832694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/12/2020] [Indexed: 01/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by social behavior deficit in childhood without satisfactory medical intervention. Transcutaneous electrical acupoint stimulation (TEAS) is a noninvasive technique derived from acupuncture and has been shown to have similar therapeutic effects in many diseases. Valproic acid- (VPA-) induced ASD is a known model of ASD in rats. The therapeutic efficacy of TEAS was evaluated in the VPA model of ASD in the present study. The offspring of a VPA-treated rat received TEAS in the early life stage followed by a series of examinations conducted in their adolescence. The results show that following TEAS treatment in early life, the social and cognitive ability in adolescence of the offspring of a VPA rat were significantly improved. In addition, the abnormal pain threshold was significantly corrected. Additional studies demonstrated that the dendritic spine density of the primary sensory cortex was decreased with Golgi staining. Results of the transcriptomic study showed that expression of some transcription factors such as the neurotrophic factor were downregulated in the hypothalamus of the VPA model of ASD. The reduced gene expression was reversed following TEAS. These results suggest that TEAS in the early life stage may mitigate disorders of social and recognition ability and normalize the pain threshold of the ASD rat model. The mechanism involved may be related to improvement of synaptic plasticity.
Collapse
Affiliation(s)
- Xiaoxi Wang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Rui Ding
- Department of Bioinformatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yayue Song
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Juan Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Songping Han
- Wuxi HANS Health Medical Technology Co., Ltd., Wuxi, China
| | - Jisheng Han
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
60
|
Gzielo K, Potasiewicz A, Hołuj M, Litwa E, Popik P, Nikiforuk A. Valproic acid exposure impairs ultrasonic communication in infant, adolescent and adult rats. Eur Neuropsychopharmacol 2020; 41:52-62. [PMID: 32978035 DOI: 10.1016/j.euroneuro.2020.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Persistent deficits of social communication are a hallmark of autism spectrum disorders (ASD). Communication disabilities can be experimentally modeled using rodents' ultrasonic vocalizations (USVs). Although prenatal exposure to valproic acid (VPA) is one of the most widely used animal models of ASD, little is known about communication impairments in this model. We performed a longitudinal study to characterize VPA-induced socio-communicative deficits in male and female rats. USVs were recorded in neonatal rats during maternal separation, in adolescent rats during social play, and in adult rats during social interactions. VPA male and female pups emitted a reduced number of USVs. Their calls were shorter and of an elevated peak frequency. Although social play deficits in adolescent rats were restricted to males only, both males and females demonstrated quantitative and qualitative changes in USVs. Altered vocalization also accompanied deficient social interactions in adult VPA males. In contrast to the adolescents, however, these differences were limited to a reduced number of USVs, but not to the call's structure. Present data suggest that ultrasonic vocalization measurement is a useful tool in detecting lifelong communicative disability in a VPA exposure-induced ASD model. We postulate that USV assessment in female rats may be a more sensitive indicator of juvenile autistic-like disturbances than other behavioral measures.
Collapse
Affiliation(s)
- Kinga Gzielo
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Agnieszka Potasiewicz
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Małgorzata Hołuj
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Ewa Litwa
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| |
Collapse
|
61
|
Bass JS, Tuo AH, Ton LT, Jankovic MJ, Kapadia PK, Schirmer C, Krishnan V. On the Digital Psychopharmacology of Valproic Acid in Mice. Front Neurosci 2020; 14:594612. [PMID: 33240040 PMCID: PMC7677503 DOI: 10.3389/fnins.2020.594612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antiepileptic drugs (AEDs) require daily ingestion for maximal seizure prophylaxis. Adverse psychiatric consequences of AEDs present as: (i) reversible changes in mood, anxiety, anger and/or irritability that often necessitate drug discontinuation, and (ii) autism and/or cognitive/psychomotor delays following fetal exposure. Technical advances in quantifying naturalistic rodent behaviors may provide sensitive preclinical estimates of AED psychiatric tolerability and neuropsychiatric teratogenicity. In this study, we applied instrumented home-cage monitoring to assess how valproic acid (VPA, dissolved in sweetened drinking water) alters home-cage behavior in adult C57BL/6J mice and in the adult offspring of VPA-exposed breeder pairs. Through a pup open field assay, we also examined how prenatal VPA exposure impacts early spontaneous exploratory behavior. At 500-600 mg/kg/d, chronic VPA produced hyperphagia and increased wheel-running without impacting sleep, activity and measures of risk aversion. When applied to breeder pairs of mice throughout gestation, VPA prolonged the latency to viable litters without affecting litter size. Two-weeks old VPA-exposed pups displayed open field hypoactivity without alterations in thigmotaxis. As adults, prenatal VPA-exposed mice displayed active state fragmentation, hypophagia and increased wheel running, together with subtle alterations in home-cage dyadic behavior. Together, these data illustrate how automated home-cage assessments of spontaneous behavior capture an ethologically centered psychopharmacological profile of enterally administered VPA that is aligned with human clinical experience. By characterizing the effects of pangestational VPA exposure, we discover novel murine expressions of pervasive neurodevelopment. Incorporating such rigorous assessments of psychological tolerability may inform the design of future AEDs with improved neuropsychiatric safety profiles, both for patients and their offspring.
Collapse
Affiliation(s)
- John Samuel Bass
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Anney H. Tuo
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Linh T. Ton
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Paarth K. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Catharina Schirmer
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Departments of Neuroscience, Psychiatry and Behavioral Sciences, Baylor Comprehensive Epilepsy Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
62
|
Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H, Mamo J. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Dev Neurosci 2020; 42:12-48. [DOI: 10.1159/000509109] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
|
63
|
Chatterjee M, Singh P, Xu J, Lombroso PJ, Kurup PK. Inhibition of striatal-enriched protein tyrosine phosphatase (STEP) activity reverses behavioral deficits in a rodent model of autism. Behav Brain Res 2020; 391:112713. [PMID: 32461127 PMCID: PMC7346720 DOI: 10.1016/j.bbr.2020.112713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASDs) are highly prevalent childhood illnesses characterized by impairments in communication, social behavior, and repetitive behaviors. Studies have found aberrant synaptic plasticity and neuronal connectivity during the early stages of brain development and have suggested that these contribute to an increased risk for ASD. STEP is a protein tyrosine phosphatase that regulates synaptic plasticity and is implicated in several cognitive disorders. Here we test the hypothesis that STEP may contribute to some of the aberrant behaviors present in the VPA-induced mouse model of ASD. In utero VPA exposure of pregnant dams results in autistic-like behavior in the pups, which is associated with a significant increase in the STEP expression in the prefrontal cortex. The elevated STEP protein levels are correlated with increased dephosphorylation of STEP substrates GluN2B, Pyk2 and ERK, suggesting upregulated STEP activity. Moreover, pharmacological inhibition of STEP rescues the sociability, repetitive and abnormal anxiety phenotypes commonly associated with ASD. These data suggest that STEP may play a role in the VPA model of ASD and STEP inhibition may have a potential therapeutic benefit in this model.
Collapse
Affiliation(s)
- Manavi Chatterjee
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| | - Priya Singh
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States
| | - Jian Xu
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Paul J Lombroso
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States; Department of Neuroscience, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Pradeep K Kurup
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Surgery, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL 35233, United States.
| |
Collapse
|
64
|
Hughes EM, Thornton AM, Kerr DM, Smith K, Sanchez C, Kelly JP, Finn DP, Roche M. Kappa Opioid Receptor-mediated Modulation of Social Responding in Adolescent Rats and in Rats Prenatally Exposed to Valproic Acid. Neuroscience 2020; 444:9-18. [PMID: 32763285 DOI: 10.1016/j.neuroscience.2020.07.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022]
Abstract
The kappa opioid receptor (KOP) system modulates social play responding, however a paucity of studies have examined effects on social motivation and cognition in the absence of play. Prenatal exposure to the anti-epileptic and mood stabiliser valproic acid (VPA) is associated with impaired social responding and altered gene expression of KOP (oprk1) and dynorphin (pdyn) in several brain regions. The present study examined if pharmacological modulation of KOP altered social motivation and cognition, immediate early gene (IEG) and oprk1-pdyn expression in adolescent male rats and rats prenatally exposed to VPA. In control rats, the KOP antagonist DIPPA enhanced sociability, while both DIPPA and the KOP agonist U50488 decreased social novelty preference. In rats exposed prenatally to VPA, neither U50488 nor DIPPA altered sociability or social novelty preference. Analysis of IEG expression revealed that DIPPA reduced expression of egr-1 expression in the prefrontal cortex of control rats and U50488 increased junb expression in the PFC of both control and VPA-exposed rats. VPA-exposed rats exhibited increased expression of oprk1 and pdyn in the prefrontal cortex and amygdala compared with control rats. DIPPA and U50488 increased oprk1 expression in the amygdala of control rats and decreased oprk1 expression in the prefrontal cortex of VPA-exposed rats. Taken together, these data demonstrate that pharmacological modulation of the KOP system alters social motivation and cognition in control rats, an effect not observed in rats prenatally exposed to VPA. These data provide support that prenatal exposure to VPA is associated with alterations in the expression and functionality of KOP system.
Collapse
Affiliation(s)
- Edel M Hughes
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Aoife M Thornton
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | - John P Kelly
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
65
|
Wu M, Di Y, Diao Z, Yao L, Qian Z, Wei C, Zheng Q, Liu Y, Han J, Liu Z, Fan J, Tian Y, Ren W. Abnormal reinforcement learning in a mice model of autism induced by prenatal exposure to valproic acid. Behav Brain Res 2020; 395:112836. [PMID: 32745663 DOI: 10.1016/j.bbr.2020.112836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/03/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
Individuals with autism spectrum disorder (ASD) display dysfunction in learning from environmental stimulus that have positive or negative emotional values, posing obstacles to their everyday life. Unfortunately, mechanisms of the dysfunction are still unclear. Although early intervention for ASD victims based on reinforcement learning are commonly used, the mechanisms and characteristics of the improvement are also unknown. By using a mice model of ASD produced by prenatal exposure to valproic acid (VPA), the present work discovered a delayed response-reinforcer forming, and an impaired habit forming in a negative reinforcement learning paradigm in VPA exposure male offspring. But the extinction of the learned skills was found to become faster than normal male animals. Since escape action of nosepoking and the motility remain unchanged in the VPA male offspring, the impaired learning and the accelerated extinction are caused by deficits in higher brain functions underlying association between the animals' behavioral responses and the outcomes of such responses. The results further suggest that the rodent ASD model produced by prenatal exposure to VPA reproduces the deficits in reasoning or building the contingency between one's own behaviors and the consequent outcomes of the behavior seen in ASD patients.
Collapse
Affiliation(s)
- Meilin Wu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Yuanyuan Di
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhijun Diao
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Li Yao
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhaoqiang Qian
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Chunling Wei
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Qiaohua Zheng
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Yihui Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China
| | - Juan Fan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yingfang Tian
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
66
|
Scheggi S, Guzzi F, Braccagni G, De Montis MG, Parenti M, Gambarana C. Targeting PPARα in the rat valproic acid model of autism: focus on social motivational impairment and sex-related differences. Mol Autism 2020; 11:62. [PMID: 32718349 PMCID: PMC7385875 DOI: 10.1186/s13229-020-00358-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The social motivational theory of autism spectrum disorder (ASD) focuses on social anhedonia as key causal feature of the impaired peer relationships that characterize ASD patients. ASD prevalence is higher in boys, but increasing evidence suggests underdiagnosis and undertreatment in girls. We showed that stress-induced motivational anhedonia is relieved by repeated treatment with fenofibrate (FBR), a peroxisome proliferator-activated receptor α (PPARα) agonist. Here, we used the valproic acid (VPA) model of ASD in rats to examine male and female phenotypes and assess whether FBR administration from weaning to young adulthood relieved social impairments. METHODS Male and female rats exposed to saline or VPA at gestational day 12.5 received standard or FBR-enriched diet from postnatal day 21 to 48-53, when behavioral tests and ex vivo neurochemical analyses were performed. Phosphorylation levels of DARPP-32 in response to social and nonsocial cues, as index of dopamine D1 receptor activation, levels of expression of PPARα, vesicular glutamatergic and GABAergic transporters, and postsynaptic density protein PSD-95 were analyzed by immunoblotting in selected brain regions. RESULTS FBR administration relieved social impairment and perseverative behavior in VPA-exposed male and female rats, but it was only effective on female stereotypies. Dopamine D1 receptor signaling triggered by social interaction in the nucleus accumbens shell was blunted in VPA-exposed rats, and it was rescued by FBR treatment only in males. VPA-exposed rats of both sexes exhibited an increased ratio of striatal excitatory over inhibitory synaptic markers that was normalized by FBR treatment. LIMITATIONS This study did not directly address the extent of motivational deficit in VPA-exposed rats and whether FBR administration restored the likely decreased motivation to operate for social reward. Future studies using operant behavior protocols will address this relevant issue. CONCLUSIONS The results support the involvement of impaired motivational mechanisms in ASD-like social deficits and suggest the rationale for a possible pharmacological treatment. Moreover, the study highlights sex-related differences in the expression of ASD-like symptoms and their differential responses to FBR treatment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy.
| | - Francesca Guzzi
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Braccagni
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Maria Graziella De Montis
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Marco Parenti
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carla Gambarana
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| |
Collapse
|
67
|
Shamsi Meymandi M, Sepehri G, Moslemizadeh A, Vakili Shahrbabaki S, Bashiri H. Prenatal pregabalin is associated with sex-dependent alterations in some behavioral parameters in valproic acid-induced autism in rat offspring. Int J Dev Neurosci 2020; 80:500-511. [PMID: 32588482 DOI: 10.1002/jdn.10046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
This study was performed to evaluate the effects of prenatal exposure to pregabalin (PGB) on behavioral changes of rat offspring in an animal model of valproic acid (VPA)-induced autism-like symptoms. Pregnant rats received VPA (600 mg/kg/i.p.) once at 12.5 gestational days for autism-like symptom induction in offspring. After the delivery single male and single female offspring from each mother were randomly selected for behavioral test (anxiety, pain response, pleasure, and motor function) at 60th day adulthood (n = 7). Offspring received prenatal PGB (15 & 30 mg/kg/i.p.) during gestational days 9.5 to 15.5 either alone or in combination with VPA (PGB15, PGB30, PGB15 + VPA, and PGB30 + VPA). Control offspring received normal saline during the same period. The result showed that prenatal VPA exposure was associated with autism-like behaviors in rat offspring. PGB treatment during the gestational period revealed significant reduction in sucrose preference test and anxiety in elevated plus maze and open field test in offspring. Also, PGB treatments exhibited a dose-dependent increase in pain threshold in prenatally VPA exposed rats in tail-flick and hot plate test. Also, there was a sex-related significant impairment in motor function in beam balance and open field test, and male rats were affected more than females. However, no significant sex differences in sucrose preference and pain sensitivity were observed in prenatal PGB-treated rat offspring. In conclusion, prenatal exposure to VPA increased the risk of autism-like behaviors in the offspring rats, and PGB treatment during the gestational period was associated with some beneficial effects, including anxiety reduction and motor impairment in autism-like symptoms in rat offspring.
Collapse
Affiliation(s)
- Manzumeh Shamsi Meymandi
- Pathology and Stem Cells Research Center, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Hamideh Bashiri
- Physiology Research Center, Department of Physiology and Pharmacology, Medical School, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
68
|
Lenart J, Augustyniak J, Lazarewicz JW, Zieminska E. Altered expression of glutamatergic and GABAergic genes in the valproic acid-induced rat model of autism: A screening test. Toxicology 2020; 440:152500. [DOI: 10.1016/j.tox.2020.152500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
|
69
|
Gąssowska-Dobrowolska M, Cieślik M, Czapski GA, Jęśko H, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Polowy R, Filipkowski RK, Babiec L, Adamczyk A. Prenatal Exposure to Valproic Acid Affects Microglia and Synaptic Ultrastructure in a Brain-Region-Specific Manner in Young-Adult Male Rats: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21103576. [PMID: 32443651 PMCID: PMC7279050 DOI: 10.3390/ijms21103576] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions categorized as synaptopathies. Environmental risk factors contribute to ASD aetiology. In particular, prenatal exposure to the anti-epileptic drug valproic acid (VPA) may increase the risk of autism. In the present study, we investigated the effect of prenatal exposure to VPA on the synaptic morphology and expression of key synaptic proteins in the hippocampus and cerebral cortex of young-adult male offspring. To characterize the VPA-induced autism model, behavioural outcomes, microglia-related neuroinflammation, and oxidative stress were analysed. Our data showed that prenatal exposure to VPA impaired communication in neonatal rats, reduced their exploratory activity, and led to anxiety-like and repetitive behaviours in the young-adult animals. VPA-induced pathological alterations in the ultrastructures of synapses accompanied by deregulation of key pre- and postsynaptic structural and functional proteins. Moreover, VPA exposure altered the redox status and expression of proinflammatory genes in a brain region-specific manner. The disruption of synaptic structure and plasticity may be the primary insult responsible for autism-related behaviour in the offspring. The vulnerability of specific synaptic proteins to the epigenetic effects of VPA may highlight the potential mechanisms by which prenatal VPA exposure generates behavioural changes.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
- Correspondence: (M.G.-D.); (A.A.); Tel.: +48-22-6086420 (M.G-D.); +48-22-6086572 (A.A.)
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Grzegorz Arkadiusz Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.F.-B.); (M.G.)
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.F.-B.); (M.G.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
- Correspondence: (M.G.-D.); (A.A.); Tel.: +48-22-6086420 (M.G-D.); +48-22-6086572 (A.A.)
| |
Collapse
|
70
|
The role of neuroglia in autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:301-330. [PMID: 32711814 DOI: 10.1016/bs.pmbts.2020.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroglia are a large class of neural cells of ectodermal (astroglia, oligodendroglia, and peripheral glial cells) and mesodermal (microglia) origin. Neuroglial cells provide homeostatic support, protection, and defense to the nervous tissue. Pathological potential of neuroglia has been acknowledged since their discovery. Research of the recent decade has shown the key role of all classes of glial cells in autism spectrum disorders (ASD), although molecular mechanisms defining glial contribution to ASD are yet to be fully characterized. This narrative conceptualizes recent findings of the broader roles of glial cells, including their active participation in the control of cerebral environment and regulation of synaptic development and scaling, highlighting their putative involvement in the etiopathogenesis of ASD.
Collapse
|
71
|
Pelsőczi P, Kelemen K, Csölle C, Nagy G, Lendvai B, Román V, Lévay G. Disrupted Social Hierarchy in Prenatally Valproate-Exposed Autistic-Like Rats. Front Behav Neurosci 2020; 13:295. [PMID: 32009915 PMCID: PMC6974458 DOI: 10.3389/fnbeh.2019.00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired socio-communicational function, repetitive and restricted behaviors. Valproic acid (VPA) was reported to increase the prevalence of ASD in humans as a consequence of its use during pregnancy. VPA treatment also induces autistic-like behaviors in the offspring of rats after prenatal exposure; hence it is a preclinical disease model with high translational value. In the present study, our aim was to characterize ASD relevant behaviors of socially housed, individually identified male rats in automated home cages. The natural behavior of rats was assessed by monitoring their visits to drinking bottles in an environment without human influence aiming at reducing interventional stress. Although rodents normally tend to explore their new environment, prenatally VPA-treated rats showed a drastic impairment in initial and long-term exploratory behavior throughout their stay in the automated cage. Furthermore, VPA rats displayed psychogenic polydipsia (PPD) as well as altered circadian activity. In the competitive situation of strict water deprivation controls switched to an uneven resource sharing and only a few dominant animals had access to water. In VPA animals similar hierarchy-related changes were completely absent. While the control rats secured their chance to drink with frequent reentering visits, thereby “guarding” the water resource, VPA animals did not switch to uneven sharing and displayed no evidence of guarding behavior.
Collapse
Affiliation(s)
- Péter Pelsőczi
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary.,Faculty of Pharmaceutical Sciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Kristóf Kelemen
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Cecília Csölle
- Laboratory of Neurodevelopmental Biology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Nagy
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Viktor Román
- Laboratory of Neurodevelopmental Biology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - György Lévay
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary.,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
72
|
Wilkinson CL, Gabard-Durnam LJ, Kapur K, Tager-Flusberg H, Levin AR, Nelson CA. Use of longitudinal EEG measures in estimating language development in infants with and without familial risk for autism spectrum disorder. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:33-53. [PMID: 32656537 PMCID: PMC7351149 DOI: 10.1162/nol_a_00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Language development in children with autism spectrum disorder (ASD) varies greatly among affected individuals and is a strong predictor of later outcomes. Younger siblings of children with ASD have increased risk of ASD, but also language delay. Identifying neural markers of language outcomes in infant siblings could facilitate earlier intervention and improved outcomes. This study aimed to determine whether EEG measures from the first 2-years of life can explain heterogeneity in language development in children at low- and high-risk for ASD, and to determine whether associations between EEG measures and language development are different depending on ASD risk status or later ASD diagnosis. In this prospective longitudinal study EEG measures collected between 3-24 months were used in a multivariate linear regression model to estimate participants' 24-month language development. Individual baseline longitudinal EEG measures included (1) the slope of EEG power across 3-12 months or 3-24 months of life for 6 canonical frequency bands, (2) estimated EEG power at age 6-months for the same frequency bands, and (3) terms representing the interaction between ASD risk status and EEG power measures. Modeled 24-month language scores using EEG data from either the first 2-years (Pearson R = 0.70, 95% CI 0.595-0.783, P=1x10-18) or the first year of life (Pearson R=0.66, 95% CI 0.540-0.761, P=2.5x10-14) were highly correlated with observed scores. All models included significant interaction effects of risk on EEG measures, suggesting that EEG-language associations are different depending on risk status, and that different brain mechanisms effect language development in low-versus high-risk infants.
Collapse
Affiliation(s)
| | | | - Kush Kapur
- Department of Neurology, Boston Children’s Hospital, Boston, MA
| | | | - April R. Levin
- Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Charles A. Nelson
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
73
|
Sex-specific effects of prenatal valproic acid exposure on sociability and neuroinflammation: Relevance for susceptibility and resilience in autism. Psychoneuroendocrinology 2019; 110:104441. [PMID: 31541913 DOI: 10.1016/j.psyneuen.2019.104441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with an incidence four times higher in boys than in girls. By analyzing the effect of sex in a mouse model of ASD, we were able to identify immune alterations that could underlie this sex bias. Pregnant mice were injected subcutaneously with 600 mg/kg of valproic acid (VPA) or saline at gestational day 12.5. Their male and female offspring were evaluated in a social interaction test at adulthood, and only male VPA mice showed reduced sociability levels and a lack of preference for the social stimulus over a novel object. We then analyzed the corticosterone (CORT) response to an inflammatory stimulus, as a measure of the hypothalamus-pituitary-adrenal (HPA) function, and the neuroinflammatory state in adult and young animals. Adult VPA males exhibited increased basal CORT levels, while VPA females showed levels comparable to controls. As male mice showed a blunted CORT response at PD21 when compared to female mice, we propose that this early dimorphism could explain the different effects of VPA on HPA function. In addition, prenatal VPA exposure resulted in altered astroglial and microglial cell density levels in the cerebellum and dentate gyrus of adult mice. These neuroinflammatory effects were more pronounced in females than males, and appeared at early developmental stages. Hence, these postnatal glial density differences could underlie the behavioral alterations observed in adulthood, when only males show a social deficit. Our work contributes to the understanding of biological mechanisms affected by VPA on male and female rodents and shed light on the study of possible resilience mechanisms in the female population and/or susceptibility to ASD in boys.
Collapse
|
74
|
Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2019; 159:107477. [DOI: 10.1016/j.neuropharm.2018.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
75
|
Schiavi S, Iezzi D, Manduca A, Leone S, Melancia F, Carbone C, Petrella M, Mannaioni G, Masi A, Trezza V. Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid. Front Cell Neurosci 2019; 13:479. [PMID: 31708750 PMCID: PMC6824319 DOI: 10.3389/fncel.2019.00479] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prenatal exposure to the antiepileptic drug valproic acid (VPA) induces autism spectrum disorder (ASD) in humans and autistic-like behaviors in rodents, which makes it a good model to study the neural underpinnings of ASD. Rats prenatally exposed to VPA show profound deficits in the social domain. The altered social behavior displayed by VPA-exposed rats may be due to either a deficit in social reward processing or to a more general inability to properly understand and respond to social signals. To address this issue, we performed behavioral, electrophysiological and neurochemical experiments and tested the involvement of the brain reward system in the social dysfunctions displayed by rats prenatally exposed to VPA (500 mg/kg). We found that, compared to control animals, VPA-exposed rats showed reduced play responsiveness together with impaired sociability in the three-chamber test and altered social discrimination abilities. In addition, VPA-exposed rats showed altered expression of dopamine receptors together with inherent hyperexcitability of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). However, when tested for socially-induced conditioned place preference, locomotor response to amphetamine and sucrose preference, control and VPA-exposed rats performed similarly, indicating normal responses to social, drug and food rewards. On the basis of the results obtained, we hypothesize that social dysfunctions displayed by VPA-exposed rats are more likely caused by alterations in cognitive aspects of the social interaction, such as the interpretation and reciprocation of social stimuli and/or the ability to adjust the social behavior of the individual to the changing circumstances in the social and physical environment, rather than to inability to enjoy the pleasurable aspects of the social interaction. The observed neurochemical and electrophysiological alterations in the NAc may contribute to the inability of VPA-exposed rats to process and respond to social cues, or, alternatively, represent a compensatory mechanism towards VPA-induced neurodevelopmental insults.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Daniela Iezzi
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy
| | - Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Stefano Leone
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Francesca Melancia
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Carmen Carbone
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy
| | | | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy.,School of Pharmacy, University of Camerino, Camerino, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
76
|
Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl Psychiatry 2019; 9:267. [PMID: 31636273 PMCID: PMC6803711 DOI: 10.1038/s41398-019-0608-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Despite the substantial progress made in identifying genetic defects in autism spectrum disorder (ASD), the etiology for majority of ASD individuals remains elusive. Maternal exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug during pregnancy in human, has long been considered a risk factor to contribute to ASD susceptibility in offspring from epidemiological studies in humans. The similar exposures in murine models have provided tentative evidence to support the finding from human epidemiology. However, the apparent difference between rodent and human poses a significant challenge to extrapolate the findings from rodent models to humans. Here we report for the first time the neurodevelopmental and behavioral outcomes of maternal VPA exposure in non-human primates. Monkey offspring from the early maternal VPA exposure have significantly reduced NeuN-positive mature neurons in prefrontal cortex (PFC) and cerebellum and the Ki67-positive proliferating neuronal precursors in the cerebellar external granular layer, but increased GFAP-positive astrocytes in PFC. Transcriptome analyses revealed that maternal VPA exposure disrupted the expression of genes associated with neurodevelopment in embryonic brain in offspring. VPA-exposed juvenile offspring have variable presentations of impaired social interaction, pronounced stereotypies, and more attention on nonsocial stimuli by eye tracking analysis. Our findings in non-human primates provide the best evidence so far to support causal link between maternal VPA exposure and neurodevelopmental defects and ASD susceptibility in humans.
Collapse
|
77
|
Kinjo T, Ito M, Seki T, Fukuhara T, Bolati K, Arai H, Suzuki T. Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res 2019; 1723:146403. [PMID: 31446017 DOI: 10.1016/j.brainres.2019.146403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
In pregnant women with epilepsy, it is imperative to balance the safety of the mother and the potential teratogenicity of anticonvulsants, which could cause impairments such as intellectual disability and cleft lip. In this study, we examined behavioral and hippocampal neurogenesis alterations in male offspring of rats exposed to valproic acid (VPA) during pregnancy. Pregnant Wistar rats received daily intraperitoneal injections of VPA (100 mg/kg/day or 200 mg/kg/day) from embryonic day 12.5 until birth. At postnatal day 29, animals received an injection of bromodeoxyuridine (BrdU). At postnatal day 30, animals underwent the open field (OF), elevated plus-maze, and Y-maze tests. After behavioral testing, animals were decapitated, and their brains were dissected for immunohistochemistry. Of the offspring of the VPA200 mothers, 66.6% showed a malformation. In the OF test, these animals showed locomotor hyperactivity. In the elevated plus-maze, offspring of VPA-treated mothers spent significantly more time in the open arms, irrespective of the treatment dose. The number of BrdU-positive cells in the dentate gyrus of the offspring of VPA-treated mothers increased significantly in a dose-dependent manner compared with the control. A significant positive correlation between spontaneous locomotor activity in the OF and BrdU-positive cell counts was observed across groups. In conclusion, VPA administration during pregnancy results in malformations and attention-deficit/hyperactivity disorder-like behavioral abnormalities in the offspring. An increase in cell proliferation in the hippocampus may underlie the behavioral changes observed. Repeated use of high doses of VPA during pregnancy may increase the risk of neurodevelopmental abnormalities dose dependently and should be carefully considered.
Collapse
Affiliation(s)
- Tomoya Kinjo
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Masanobu Ito
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 1608421, Japan.
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Kuerban Bolati
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Heii Arai
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Toshihito Suzuki
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| |
Collapse
|
78
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
79
|
Gene-environment interaction counterbalances social impairment in mouse models of autism. Sci Rep 2019; 9:11490. [PMID: 31391512 PMCID: PMC6686010 DOI: 10.1038/s41598-019-47680-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/17/2019] [Indexed: 11/08/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and repetitive/restricted behaviors. Although gene-environment interactions may explain the heterogeneous etiology of ASD, it is still largely unknown how the gene-environment interaction affects behavioral symptoms and pathophysiology in ASD. To address these questions, we used Cntnap2 knockout mice (genetic factor, G) exposed to valproic acid during embryonic development (environmental factor, E) as a gene-environment interaction (G × E) model. Paradoxically, the social deficits observed in the respective G and E models were improved in the G × E model; however, the high seizure susceptibility was more severe in the G × E -model than in the G and E models. Repetitive self-grooming and hyperactivity did not differ among the three models. The amplitudes of miniature excitatory postsynaptic currents in layer 2/3 pyramidal neurons of the medial prefrontal cortex were aberrant and similar in the G × E model when compared to the control group. Our findings suggest that the interaction of two risk factors does not always aggravate ASD symptoms but can also alleviate them, which may be key to understanding individual differences in behavioral phenotypes and symptom intensity.
Collapse
|
80
|
Wang H, Zhao P, Huang Q, Chi Y, Dong S, Fan J. Bisphenol-A induces neurodegeneration through disturbance of intracellular calcium homeostasis in human embryonic stem cells-derived cortical neurons. CHEMOSPHERE 2019; 229:618-630. [PMID: 31102917 DOI: 10.1016/j.chemosphere.2019.04.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol-A (BPA) is a representative exogenous endocrine disruptor, which is extensively composed in plastic products. Due to the capability of passing through the blood-brain barrier, evidence has linked BPA exposure with multiple neuropsychological dysfunctions, neurobehavioral disorders and neurodegenerative diseases. However, the underlying mechanism by which BPA induces neurodegeneration still remains unclear. Our study used human embryonic stem cells-derived human cortical neurons (hCNs) as a cellular model to investigate the adverse neurotoxic effects of BPA. hCNs were treated with 0, 0.1, 1 and 10 μM BPA for 14 days. Impacts of BPA exposure on cell morphology, cell viability and neural marker (MAP2) were measured for evaluating the neurodegeneration. The intracellular calcium homeostasis, reactive oxygen species (ROS) generation and organelle functions were also taken into consideration. Results revealed that chronic exposure of BPA damaged the neural morphology, induced neuronal apoptosis and decreased MAP2 expression at the level of both transcription and translation. The intracellular calcium levels were elevated in hCNs after BPA exposure through NMDARs-nNOS-PSD-95 mediating. Meanwhile, BPA led to oxidative stress by raising the ROS generation and attenuating the antioxidant defense in hCNs. Furthermore, BPA triggered ER stress and increased cytochrome c release by impairing the mitochondrial function. Ultimately, BPA triggered the cell apoptosis by regulating Bcl-2 family and caspase-dependent signaling pathway. Taken together, BPA exerted neurotoxic effects on hCNs by eliciting apoptosis, which might due to the intracellular calcium homeostasis perturbation and cell organellar dysfunction.
Collapse
Affiliation(s)
- Hongou Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiqiang Zhao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yulang Chi
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
81
|
Wilkinson CL, Levin AR, Gabard-Durnam LJ, Tager-Flusberg H, Nelson CA. Reduced frontal gamma power at 24 months is associated with better expressive language in toddlers at risk for autism. Autism Res 2019; 12:1211-1224. [PMID: 31119899 PMCID: PMC7771228 DOI: 10.1002/aur.2131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/20/2019] [Indexed: 01/31/2023]
Abstract
Frontal gamma power has been associated with early language development in typically developing toddlers, and gamma band abnormalities have been observed in individuals with autism spectrum disorder (ASD), as well as high-risk infant siblings (those having an older sibling with ASD), as early as 6 months of age. The current study investigated differences in baseline frontal gamma power and its association with language development in toddlers at high versus low familial risk for autism. Electroencephalography recordings as well as cognitive and behavioral assessments were acquired at 24 months as part of prospective, longitudinal study of infant siblings of children with and without autism. Diagnosis of autism was determined at 24-36 months, and data were analyzed across three outcome groups-low-risk without ASD (n = 43), high-risk without ASD (n = 42), and high-risk with ASD (n = 16). High-risk toddlers without ASD had reduced baseline frontal gamma power (30-50 Hz) compared to low-risk toddlers. Among high-risk toddlers increased frontal gamma was only marginally associated with ASD diagnosis (P = 0.06), but significantly associated with reduced expressive language ability (P = 0.007). No association between gamma power and language was present in the low-risk group. These findings suggest that differences in gamma oscillations in high-risk toddlers may represent compensatory mechanisms associated with improved developmental outcomes. Autism Res 2019, 12: 1211-1224. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study looked at differences in neural activity in the gamma range and its association with language in toddlers with and without increased risk for ASD. At 2 years of age, gamma power was lower in high-risk toddlers without ASD compared to a low-risk comparison group. Among high-risk toddlers both with and without later ASD, reduced gamma power was also associated with better language outcomes, suggesting that gamma power may be a marker of language development in high-risk children.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - April R Levin
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
82
|
Ohtani-Kaneko R. Crmp4-KO Mice as an Animal Model for Investigating Certain Phenotypes of Autism Spectrum Disorders. Int J Mol Sci 2019; 20:E2485. [PMID: 31137494 PMCID: PMC6566569 DOI: 10.3390/ijms20102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Previous research has demonstrated that the collapsin response mediator protein (CRMP) family is involved in the formation of neural networks. A recent whole-exome sequencing study identified a de novo variant (S541Y) of collapsin response mediator protein 4 (CRMP4) in a male patient with autism spectrum disorder (ASD). In addition, Crmp4-knockout (KO) mice show some phenotypes similar to those observed in human patients with ASD. For example, compared with wild-type mice, Crmp4-KO mice exhibit impaired social interaction, abnormal sensory sensitivities, broader distribution of activated (c-Fos expressing) neurons, altered dendritic formation, and aberrant patterns of neural gene expressions, most of which have sex differences. This review summarizes current knowledge regarding the role of CRMP4 during brain development and discusses the possible contribution of CRMP4 deficiencies or abnormalities to the pathogenesis of ASD. Crmp4-KO mice represent an appropriate animal model for investigating the mechanisms underlying some ASD phenotypes, such as impaired social behavior, abnormal sensory sensitivities, and sex-based differences, and other neurodevelopmental disorders associated with sensory processing disorders.
Collapse
Affiliation(s)
- Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura 374-0193, Japan.
| |
Collapse
|
83
|
Guimarães-Souza EM, Joselevitch C, Britto LRG, Chiavegatto S. Retinal alterations in a pre-clinical model of an autism spectrum disorder. Mol Autism 2019; 10:19. [PMID: 31011411 PMCID: PMC6466731 DOI: 10.1186/s13229-019-0270-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 11/22/2022] Open
Abstract
Background Autism spectrum disorders (ASD) affect around 1.5% of people worldwide. Symptoms start around age 2, when children fail to maintain eye contact and to develop speech and other forms of communication. Disturbances in glutamatergic and GABAergic signaling that lead to synaptic changes and alter the balance between excitation and inhibition in the developing brain are consistently found in ASD. One of the hallmarks of these disorders is hypersensitivity to sensory stimuli; however, little is known about its underlying causes. Since the retina is the part of the CNS that converts light into a neuronal signal, we set out to study how it is affected in adolescent mice prenatally exposed to valproic acid (VPA), a useful tool to study ASD endophenotypes. Methods Pregnant female mice received VPA (600 mg/kg, ip) or saline at gestational day 11. Their male adolescent pups (P29–35) were behaviorally tested for anxiety and social interaction. Proteins known to be related with ASD were quantified and visualized in their retinas by immunoassays, and retinal function was assessed by full-field scotopic electroretinograms (ERGs). Results Early adolescent mice prenatally exposed to VPA displayed impaired social interest and increased anxiety-like behaviors consistent with an ASD phenotype. The expression of GABA, GAD, synapsin-1, and FMRP proteins were reduced in their retinas, while mGluR5 was increased. The a-wave amplitudes of VPA-exposed were smaller than those of CTR animals, whereas the b-wave and oscillatory potentials were normal. Conclusions This study establishes that adolescent male mice of the VPA-induced ASD model have alterations in retinal function and protein expression compatible with those found in several brain areas of other autism models. These results support the view that synaptic disturbances with excitatory/inhibitory imbalance early in life are associated with ASD and point to the retina as a window to understand their subjacent mechanisms. Electronic supplementary material The online version of this article (10.1186/s13229-019-0270-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Maria Guimarães-Souza
- 1Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP 05508-000 Brazil
| | - Christina Joselevitch
- 2Department of Experimental Psychology, Psychology Institute, University of São Paulo, Av. Prof. Mello Moraes, 1721, São Paulo, SP 05508-030 Brazil
| | - Luiz Roberto G Britto
- 1Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP 05508-000 Brazil
| | - Silvana Chiavegatto
- 3Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP 05508-000 Brazil.,4Department and Institute of Psychiatry, Clinics Hospital (HCFMUSP), University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, SP 05403-903 Brazil
| |
Collapse
|
84
|
Hajisoltani R, Karimi SA, Rahdar M, Davoudi S, Borjkhani M, Hosseinmardi N, Behzadi G, Janahmadi M. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current. Brain Res 2019; 1708:188-199. [DOI: 10.1016/j.brainres.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
|
85
|
Consequences of prenatal exposure to valproic acid in the socially monogamous prairie voles. Sci Rep 2019; 9:2453. [PMID: 30792426 PMCID: PMC6385222 DOI: 10.1038/s41598-019-39014-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/10/2019] [Indexed: 12/03/2022] Open
Abstract
Environmental risk factors contribute to autism spectrum disorders (ASD) etiology. In particular, prenatal exposure to the highly teratogenic anticonvulsant valproic acid (VPA) significantly increases ASD prevalence. Although significant discoveries on the embryopathology of VPA have been reported, its effects on the ability to form enduring social attachment—characteristic of ASD but uncommonly displayed by rats and mice—remains unknown. We aimed to examine the effects of prenatal VPA exposure in the social, monogamous prairie voles (Microtus ochrogaster). Compared to prenatal vehicle-exposed controls, prenatal VPA-exposed prairie voles had lower body weight throughout postnatal development, engaged in fewer social affiliative behaviors in a familial context, exhibited less social interactions with novel conspecifics, and showed enhanced anxiety-like behavior. Along these behavioral deficits, prenatal VPA exposure downregulated prefrontal cortex vasopressin receptor (V1aR) and methyl CpG-binding protein 2 (MeCP2) mRNA expression, but did not alter spine density in adults. Remarkably, adult social bonding behaviors, such as partner preference formation and selective aggression, were not disrupted by prenatal VPA exposure. Collectively, these studies suggest that, in this animal model, VPA alters only certain behavioral domains such as sex-naive anxiety and affiliative behaviors, but does not alter other domains such as social bonding with opposite sex individuals.
Collapse
|
86
|
Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 2019; 44:314-323. [PMID: 29899405 PMCID: PMC6300529 DOI: 10.1038/s41386-018-0098-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, featuring social communication deficit and repetitive/restricted behaviors as common symptoms. Its prevalence has continuously increased, but, till now, there are no therapeutic approaches to relieve the core symptoms, particularly social deficit. In previous studies, abnormal function of the glutamatergic neural system has been proposed as a critical mediator and therapeutic target of ASD-associated symptoms. Here, we investigated the possible roles of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in autism symptoms using two well-known autistic animal models, Cntnap2 knockout (KO) mice and in utero valproic acid-exposed ICR (VPA) mice. We found that Cntnap2 KO mice displayed decreased glutamate receptor expression and transmission. Contrarily, VPA mice exhibited increased glutamate receptor expression and transmission. Next, we investigated whether AMPAR modulators (positive-allosteric-modulator for Cntnap2 KO mice and antagonist for VPA mice) can improve autistic symptoms by normalizing the aberrant excitatory transmission in the respective animal models. Interestingly, the AMPAR modulation specifically ameliorated social deficits in both animal models. These results indicated that AMPAR-derived excitatory neural transmission changes can affect normal social behavior. To validate this, we injected an AMPAR agonist or antagonist in control ICR mice and, interestingly, these treatments impaired only the social behavior, without affecting the repetitive and hyperactive behaviors. Collectively, these results provide insight into the role of AMPARs in the underlying pathophysiological mechanisms of ASD, and demonstrate that modulation of AMPAR can be a potential target for the treatment of social behavior deficits associated with ASD.
Collapse
|
87
|
Ornoy A, Weinstein-Fudim L, Tfilin M, Ergaz Z, Yanai J, Szyf M, Turgeman G. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice. Neurotoxicol Teratol 2019; 71:64-74. [DOI: 10.1016/j.ntt.2018.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/21/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
88
|
Schiavi S, Iezzi D, Manduca A, Leone S, Melancia F, Carbone C, Petrella M, Mannaioni G, Masi A, Trezza V. Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid. Front Cell Neurosci 2019; 13:479. [PMID: 31708750 DOI: 10.3389/fncel.2019.00479/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/10/2019] [Indexed: 05/20/2023] Open
Abstract
Prenatal exposure to the antiepileptic drug valproic acid (VPA) induces autism spectrum disorder (ASD) in humans and autistic-like behaviors in rodents, which makes it a good model to study the neural underpinnings of ASD. Rats prenatally exposed to VPA show profound deficits in the social domain. The altered social behavior displayed by VPA-exposed rats may be due to either a deficit in social reward processing or to a more general inability to properly understand and respond to social signals. To address this issue, we performed behavioral, electrophysiological and neurochemical experiments and tested the involvement of the brain reward system in the social dysfunctions displayed by rats prenatally exposed to VPA (500 mg/kg). We found that, compared to control animals, VPA-exposed rats showed reduced play responsiveness together with impaired sociability in the three-chamber test and altered social discrimination abilities. In addition, VPA-exposed rats showed altered expression of dopamine receptors together with inherent hyperexcitability of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). However, when tested for socially-induced conditioned place preference, locomotor response to amphetamine and sucrose preference, control and VPA-exposed rats performed similarly, indicating normal responses to social, drug and food rewards. On the basis of the results obtained, we hypothesize that social dysfunctions displayed by VPA-exposed rats are more likely caused by alterations in cognitive aspects of the social interaction, such as the interpretation and reciprocation of social stimuli and/or the ability to adjust the social behavior of the individual to the changing circumstances in the social and physical environment, rather than to inability to enjoy the pleasurable aspects of the social interaction. The observed neurochemical and electrophysiological alterations in the NAc may contribute to the inability of VPA-exposed rats to process and respond to social cues, or, alternatively, represent a compensatory mechanism towards VPA-induced neurodevelopmental insults.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Daniela Iezzi
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy
| | - Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Stefano Leone
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Francesca Melancia
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Carmen Carbone
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy
| | | | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health -NEUROFARBA-, Section of Pharmacology and Toxicology, School of Psychology, University of Florence, Florence, Italy
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
89
|
Bronzuoli MR, Facchinetti R, Ingrassia D, Sarvadio M, Schiavi S, Steardo L, Verkhratsky A, Trezza V, Scuderi C. Neuroglia in the autistic brain: evidence from a preclinical model. Mol Autism 2018; 9:66. [PMID: 30603062 PMCID: PMC6307226 DOI: 10.1186/s13229-018-0254-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Background Neuroglial cells that provide homeostatic support and form defence of the nervous system contribute to all neurological disorders. We analyzed three major types of neuroglia, astrocytes, oligodendrocytes, and microglia in the brains of an animal model of autism spectrum disorder, in which rats were exposed prenatally to antiepileptic and mood stabilizer drug valproic acid; this model being of acknowledged clinical relevance. Methods We tested the autistic-like behaviors of valproic acid-prenatally exposed male rats by performing isolation-induced ultrasonic vocalizations, the three-chamber test, and the hole board test. To account for human infancy, adolescence, and adulthood, such tasks were performed at postnatal day 13, postnatal day 35, and postnatal day 90, respectively. After sacrifice, we examined gene and protein expression of specific markers of neuroglia in hippocampus, prefrontal cortex, and cerebellum, these brain regions being associated with autism spectrum disorder pathogenesis. Results Infant offspring of VPA-exposed dams emitted less ultrasonic vocalizations when isolated from their mothers and siblings and, in adolescence and adulthood, they showed altered sociability in the three chamber test and increased stereotypic behavior in the hole board test. Molecular analyses indicate that prenatal valproic acid exposure affects all types of neuroglia, mainly causing transcriptional modifications. The most prominent changes occur in prefrontal cortex and in the hippocampus of autistic-like animals; these changes are particularly evident during infancy and adolescence, while they appear to be mitigated in adulthood. Conclusions Neuroglial pathological phenotype in autism spectrum disorder rat model appears to be rather mild with little signs of widespread and chronic neuroinflammation.
Collapse
Affiliation(s)
- Maria Rosanna Bronzuoli
- 1Department of Physiology and Pharmacology, "Vittorio Erspamer" SAPIENZA University of Rome, 00185 Rome, Italy
| | - Roberta Facchinetti
- 1Department of Physiology and Pharmacology, "Vittorio Erspamer" SAPIENZA University of Rome, 00185 Rome, Italy
| | - Davide Ingrassia
- 1Department of Physiology and Pharmacology, "Vittorio Erspamer" SAPIENZA University of Rome, 00185 Rome, Italy
| | - Michela Sarvadio
- 2Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", 00154 Rome, Italy
| | - Sara Schiavi
- 2Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", 00154 Rome, Italy
| | - Luca Steardo
- 1Department of Physiology and Pharmacology, "Vittorio Erspamer" SAPIENZA University of Rome, 00185 Rome, Italy
| | - Alexei Verkhratsky
- 3Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT UK.,4Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,5Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Viviana Trezza
- 2Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", 00154 Rome, Italy
| | - Caterina Scuderi
- 1Department of Physiology and Pharmacology, "Vittorio Erspamer" SAPIENZA University of Rome, 00185 Rome, Italy
| |
Collapse
|
90
|
Win-Shwe TT, Nway NC, Imai M, Lwin TT, Mar O, Watanabe H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J Toxicol Sci 2018; 43:631-643. [PMID: 30404997 DOI: 10.2131/jts.43.631] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autism is a complex neurodevelopmental disorder characterized by impaired social communication and social interactions, and repetitive behaviors. The etiology of autism remains unknown and its molecular basis is not yet well understood. Pregnant Sprague-Dawley (SD) rats were administered 600 mg/kg of valproic acid (VPA) by intraperitoneal injection on day 12.5 of gestation. Both 11- to 13-week-old male and female rat models of VPA-induced autism showed impaired sociability and impaired preference for social novelty as compared to the corresponding control SD rats. Significantly reduced mRNA expressions of social behavior-related genes, such as those encoding the serotonin receptor, brain-derived neurotrophic factor and neuroligin3, and significantly increased expression levels of proinflammatory cytokines, such as interleukin-1 β and tumor necrosis factor-α, were noted in the hippocampi of both male and female rats exposed to VPA in utero. The hippocampal expression level of gamma amino butyric acid (GABA) enzyme glutamic acid decarboxylase (GAD) 67 protein was reduced in both male and female VPA-exposed rats as compared to the corresponding control animals. Our results indicate that developmental exposure to VPA affects the social behavior in rats by modulating the expression levels of social behavior-related genes and inflammatory mediators accompanied with changes in GABA enzyme in the hippocampus.
Collapse
Affiliation(s)
| | | | - Motoki Imai
- Graduate School of Medical Sciences, Kitasato University, Japan
| | - Thet-Thet Lwin
- Graduate School of Medical Sciences, Kitasato University, Japan
| | - Ohn Mar
- University of Medicine 1, Myanmar
| | | |
Collapse
|
91
|
Hodges TE, Louth EL, Bailey CDC, McCormick CM. Adolescent social instability stress alters markers of synaptic plasticity and dendritic structure in the medial amygdala and lateral septum in male rats. Brain Struct Funct 2018; 224:643-659. [DOI: 10.1007/s00429-018-1789-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
|
92
|
Jeon SJ, Gonzales EL, Mabunga DFN, Valencia ST, Kim DG, Kim Y, Adil KJL, Shin D, Park D, Shin CY. Sex-specific Behavioral Features of Rodent Models of Autism Spectrum Disorder. Exp Neurobiol 2018; 27:321-343. [PMID: 30429643 PMCID: PMC6221834 DOI: 10.5607/en.2018.27.5.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Sex is an important factor in understanding the clinical presentation, management, and developmental trajectory of children with neuropsychiatric disorders. While much is known about the clinical and neurobehavioral profiles of males with neuropsychiatric disorders, surprisingly little is known about females in this respect. Animal models may provide detailed mechanistic information about sex differences in autism spectrum disorder (ASD) in terms of manifestation, disease progression, and development of therapeutic options. This review aims to widen our understanding of the role of sex in autism spectrum disorder, by summarizing and comparing behavioral characteristics of animal models. Our current understanding of how differences emerge in boys and girls with neuropsychiatric disorders is limited: Information derived from animal studies will stimulate future research on the role of biological maturation rates, sex hormones, sex-selective protective (or aggravating) factors and psychosocial factors, which are essential to devise sex precision medicine and to improve diagnostic accuracy. Moreover, there is a strong need of novel strategies to elucidate the major mechanisms leading to sex-specific autism features, as well as novel models or methods to examine these sex differences.
Collapse
Affiliation(s)
- Se Jin Jeon
- Center for Neuroscience, Korea Institute of Science & Technology, Seoul 02792, Korea.,Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Edson Luck Gonzales
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Darine Froy N Mabunga
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Schley T Valencia
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Do Gyeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Yujeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Keremkleroo Jym L Adil
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Dongpil Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Donghyun Park
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea.,KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
93
|
Cartocci V, Tonini C, Di Pippo T, Vuono F, Schiavi S, Marino M, Trezza V, Pallottini V. Prenatal exposure to valproate induces sex-, age-, and tissue-dependent alterations of cholesterol metabolism: Potential implications on autism. J Cell Physiol 2018; 234:4362-4374. [PMID: 30341891 DOI: 10.1002/jcp.27218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Here, we investigated the protein network regulating cholesterol metabolism in the liver and brain of adolescent and adult male and female rats prenatally exposed to valproate (VPA), a well validated experimental model of autism spectrum disorders (ASD). We were aimed at studying whether prenatal VPA exposure affected the proteins involved in cholesterol homeostasis in a sex-dependent manner. To this aim the protein network of cholesterol metabolism, in term of synthesis and plasma membrane trafficking, was analyzed by western blot in the liver and different brain areas (amygdala, cerebellum, cortex, hippocampus, nucleus accumbens, and dorsal striatum) of adolescent and adult male and female rats prenatally exposed to VPA. Our results show that physiological sex-dependent differences are present both in the liver and in brain of rats. Interestingly, VPA affects specifically the brain in an age- and region-specific manner; indeed, cerebellum, cortex, hippocampus and nucleus accumbens are affected in a sex-dependent way, while this does not occur in amygdala and dorsal striatum. Overall, we demonstrate that each brain area responds differently to the same external stimulus and males and females respond in a different way, suggesting that this could be related to the diverse incidences, between the sexes, of some neurodevelopmental pathologies such as autism, which displays a 3:1 male to female ratio.
Collapse
Affiliation(s)
- Veronica Cartocci
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Claudia Tonini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Tiziana Di Pippo
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Florenzia Vuono
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Maria Marino
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre,", Rome, Italy
| |
Collapse
|
94
|
Wang R, Hausknecht K, Shen RY, Haj-Dahmane S. Potentiation of Glutamatergic Synaptic Transmission Onto Dorsal Raphe Serotonergic Neurons in the Valproic Acid Model of Autism. Front Pharmacol 2018; 9:1185. [PMID: 30459605 PMCID: PMC6232663 DOI: 10.3389/fphar.2018.01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social and communicative impairments and increased repetitive behaviors. These symptoms are often comorbid with increased anxiety. Prenatal exposure to valproic acid (VPA), an anti-seizure and mood stabilizer medication, is a major environmental risk factor of ASD. Given the important role of the serotonergic (5-HT) system in anxiety, we examined the impact of prenatal VPA exposure on the function of dorsal raphe nucleus (DRn) 5-HT neurons. We found that male rats prenatally exposed to VPA exhibited increased anxiety-like behaviors revealed by a decreased time spent on the open arms of the elevated plus maze. Prenatal VPA exposed rats also exhibited a stereotypic behavior as indicated by excessive self-grooming in a novel environment. These behavioral phenotypes were associated with increased electrical activity of putative DRn 5-HT neurons recorded in vitro. Examination of underlying mechanisms revealed that prenatal VPA exposure increased excitation/inhibition ratio in synapses onto these neurons. The effect was mainly mediated by enhanced glutamate but not GABA release. We found reduced paired-pulse ratio (PPR) of evoked excitatory postsynaptic currents (EPSCs) and increased frequency but not amplitude of miniature EPSCs in VPA exposed rats. On the other hand, presynaptic GABA release did not change in VPA exposed rats, as the PPR of evoked inhibitory postsynaptic currents was unaltered. Furthermore, the spike-timing-dependent long-term potentiation at the glutamatergic synapses was occluded, indicating glutamatergic synaptic transmission is maximized. Lastly, VPA exposure did not alter the intrinsic membrane properties of DRn 5-HT neurons. Taken together, these results indicate that prenatal VPA exposure profoundly enhances glutamatergic synaptic transmission in the DRn and increases spontaneous firing in DRn 5-HT neurons, which could lead to increased serotonergic tone and underlie the increased anxiety and stereotypy after prenatal VPA exposure.
Collapse
Affiliation(s)
- Ruixiang Wang
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kathryn Hausknecht
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Roh-Yu Shen
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Pharmacology and Toxicology, The Jacob School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Samir Haj-Dahmane
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Pharmacology and Toxicology, The Jacob School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
95
|
Varman DR, Soria-Ortíz MB, Martínez-Torres A, Reyes-Haro D. GABAρ3 expression in lobule X of the cerebellum is reduced in the valproate model of autism. Neurosci Lett 2018; 687:158-163. [PMID: 30261230 DOI: 10.1016/j.neulet.2018.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Autism spectrum disorder (ASD) is a group of developmental disorders characterized by social interaction deficits, communication impairments, and stereotyped and repetitive behaviors. Additionally, impairments in the GABAergic circuitry have been associated with ASD. Several studies have shown that dysfunction of the cerebellum is a hallmark of ASD, and postmortem studies in humans reported a reduced density of Purkinje cells (PCs) together with an abnormal expression of GABAA subunits, among which GABAρ3 is expressed in early postnatal development, forms homomeric receptors with high affinity to the agonist (GABA EC50 ∼ 3 μM) and desensitize very little upon activation. Thus, we tested if the expression of GABAρ3 was modified by prenatal exposure to valproate (VPA), a well-known murine model of autism. The latency to find the nest increased in VPA-treated mice when compared to controls at postnatal day 8 (P8). Immunofluorescence studies showed a reduced expression of GABAρ3 in Purkinje cells (PCs) and ependymal glial cells (EGCs) from lobule X of VPA-treated mice. Finally, the expression of GABAρ3 increases linearly throughout normal development of the cerebellum, but this pattern is disrupted in the VPA model of autism. We conclude that the expression of GABAρ3 is reduced in PCs and EGCs from lobule X of the cerebellum in the VPA model of autism. Thus, GABAρ3 may be a relevant marker for ASD etiology.
Collapse
Affiliation(s)
- D R Varman
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México
| | - M B Soria-Ortíz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México
| | - A Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México
| | - D Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México.
| |
Collapse
|
96
|
Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S. A Developmental Study of Abnormal Behaviors and Altered GABAergic Signaling in the VPA-Treated Rat Model of Autism. Front Behav Neurosci 2018; 12:182. [PMID: 30186123 PMCID: PMC6110947 DOI: 10.3389/fnbeh.2018.00182] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Although studies have investigated the role of gamma-aminobutyric acid (GABA)ergic signaling in rodent neural development and behaviors relevant to autism, behavioral ontogeny, as underlain by the changes in GABAergic system, is poorly characterized in different brain regions. Here, we employed a valproic acid (VPA) rat model of autism to investigate the autism-like behaviors and GABAergic glutamic acid decarboxylase 67 (GAD67) expression underlying these altered behaviors in multiple brain areas at different developmental stages from birth to adulthood. We found that VPA-treated rats exhibited behavioral abnormalities relevant to autism, including delayed nervous reflex development, altered motor coordination, delayed sensory development, autistic-like and anxiety behaviors and impaired spatial learning and memory. We also found that VPA rats had the decreased expression of GAD67 in the hippocampus (HC) and cerebellum from childhood to adulthood, while decreased GAD67 expression of the temporal cortex (TC) was only observed in adulthood. Conversely, GAD67 expression was increased in the prefrontal cortex (PFC) from adolescence to adulthood. The dysregulated GAD67 expression could alter the excitatory-inhibitory balance in the cerebral cortex, HC and cerebellum. Our findings indicate an impaired GABAergic system could be a major etiological factor occurring in the cerebral cortex, HC and cerebellum of human cases of autism, which suggests enhancement of GABA signaling would be a promising therapeutic target for its treatment.
Collapse
Affiliation(s)
- Qianling Hou
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yingbo Li
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Di Chen
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Feng Yang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, MD, United States
| | - Shali Wang
- Cerebrovascular Disease Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
97
|
Melancia F, Schiavi S, Servadio M, Cartocci V, Campolongo P, Palmery M, Pallottini V, Trezza V. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br J Pharmacol 2018; 175:3699-3712. [PMID: 29968249 DOI: 10.1111/bph.14435] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorder (ASD) is more commonly diagnosed in males than in females. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is an environmental risk factor of ASD. Male rats prenatally exposed to VPA show socio-emotional autistic-like dysfunctions that have been related to changes in the activity of the endocannabinoid anandamide. Here, we have investigated if prenatal VPA induced sex-specific autistic endophenotypes involving anandamide signalling. EXPERIMENTAL APPROACH We studied sex-specific differences in the ASD-like socio-emotional, cognitive and repetitive symptoms displayed during development of Wistar rats of both sexes, prenatally exposed to VPA. The involvement of anandamide was followed by Western blotting of cannabinoid CB1 receptors and by inhibiting its metabolism. KEY RESULTS Female rats were less vulnerable to the deleterious effects of prenatal VPA exposure on social communication, emotional reactivity and cognitive performance than male rats. Conversely, as observed in male rats, prenatal VPA exposure induced selective deficits in social play behaviour and stereotypies in the female rat offspring. At the neurochemical level, prenatal VPA exposure altered phosphorylation of CB1 receptors in a sex-specific, age-specific and tissue-specific manner. Enhancing anandamide signalling through inhibition of its degradation reversed the behavioural deficits displayed by VPA-exposed animals of both sexes. CONCLUSIONS AND IMPLICATIONS These findings highlight sexually dimorphic consequences of prenatal VPA exposure that may be related to sex-specific effects of VPA on endocannabinoid neurotransmission in the course of development and introduce a new therapeutic target for reversing autistic-like symptoms in both sexes.
Collapse
Affiliation(s)
- Francesca Melancia
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Michela Servadio
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Veronica Cartocci
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| |
Collapse
|
98
|
Ruhela RK, Sarma P, Soni S, Prakash A, Medhi B. Congenital malformation and autism spectrum disorder: Insight from a rat model of autism spectrum disorder. Indian J Pharmacol 2018; 49:243-249. [PMID: 29033484 PMCID: PMC5637135 DOI: 10.4103/ijp.ijp_183_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIMS AND OBJECTIVES: The primary aim was an evaluation of the pattern of gross congenital malformations in a rat model of autism spectrum disorder (ASD) and the secondary aim was characterization of the most common gross malformation observed. MATERIALS AND METHODS: In females, the late pro-oestrous phase was identified by vaginal smear cytology, and then, they were allowed to mate at 1:3 ratio (male: female). Pregnancy was confirmed by the presence of sperm plug in the vagina and presence of sperm in the vaginal smear. In the ASD group, ASD was induced by injecting valproic acid 600 mg/kg (i.p.) to pregnant female rats (n = 18) on day 12.5 (single injection). Only vehicle (normal saline) was given in the control group (n = 12). After delivery, pups were grossly observed for congenital malformations until the time of sacrifice (3 months) and different types of malformations and their frequency were noted and characterized. RESULTS: In the ASD group, congenital malformation was present in 69.9% of the pups, whereas in the control group, it was 0%. Male pups were most commonly affected (90% in males vs. only 39.72% in female pups). The tail deformity was the most common malformation found affecting 61.2% pups in the ASD group. Other malformations observed were dental malformation (3.82%), genital malformation (3.28%) and paw malformation (1.1%). Hind limb paralysis was observed in one pup. The tail anomalies were characterized as per gross appearance and location of the malformation. CONCLUSION: In this well-validated rat model of ASD, congenital malformation was quite common. It seems screening of congenital malformations should be an integral part of the management of ASD, or the case may be vice versa, i.e., in the case of a baby born with a congenital deformity, they should be screened for ASD.
Collapse
Affiliation(s)
| | - Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
99
|
Campolongo M, Kazlauskas N, Falasco G, Urrutia L, Salgueiro N, Höcht C, Depino AM. Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment. Mol Autism 2018; 9:36. [PMID: 29946415 PMCID: PMC6001054 DOI: 10.1186/s13229-018-0221-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/31/2018] [Indexed: 12/28/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by impaired social interactions and repetitive patterns of behavior. Symptoms appear in early life and persist throughout adulthood. Early social stimulation can help reverse some of the symptoms, but the biological mechanisms of these therapies are unknown. By analyzing the effects of early social stimulation on ASD-related behavior in the mouse, we aimed to identify brain structures that contribute to these behaviors. Methods We injected pregnant mice with 600-mg/kg valproic acid (VPA) or saline (SAL) at gestational day 12.5 and evaluated the effect of weaning their offspring in cages containing only VPA animals, only SAL animals, or mixed. We analyzed juvenile play at PD21 and performed a battery of behavioral tests in adulthood. We then used preclinical PET imaging for an unbiased analysis of the whole brain of these mice and studied the function of the piriform cortex by c-Fos immunoreactivity and HPLC. Results Compared to control animals, VPA-exposed animals play less as juveniles and exhibit a lower frequency of social interaction in adulthood when reared with other VPA mice. In addition, these animals were less likely to investigate social odors in the habituation/dishabituation olfactory test. However, when VPA animals were weaned with control animals, these behavioral alterations were not observed. Interestingly, repetitive behaviors and depression-related behaviors were not affected by social enrichment. We also found that VPA animals present high levels of glucose metabolism bilaterally in the piriform cortex (Pir), a region known to be involved in social behaviors. Moreover, we found alterations in the somatosensory, motor, and insular cortices. Remarkably, these effects were mostly reversed after social stimulation. To evaluate if changes in glucose metabolism in the Pir correlated with changes in neuronal activity, we measured c-Fos immunoreactivity in the Pir and found it increased in animals prenatally exposed to VPA. We further found increased dopamine turnover in the Pir. Both alterations were largely reversed by social enrichment. Conclusions We show that early social enrichment can specifically rescue social deficits in a mouse model of ASD. Our results identified the Pir as a structure affected by VPA-exposure and social enrichment, suggesting that it could be a key component of the social brain circuitry. Electronic supplementary material The online version of this article (10.1186/s13229-018-0221-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcos Campolongo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,2CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Nadia Kazlauskas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,2CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - German Falasco
- 3FLENI, Centro de Imágenes Moleculares, Laboratorio de Imágenes Preclínicas, Buenos Aires, Argentina
| | - Leandro Urrutia
- 3FLENI, Centro de Imágenes Moleculares, Laboratorio de Imágenes Preclínicas, Buenos Aires, Argentina
| | - Natalí Salgueiro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,2CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Christian Höcht
- 4Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,2CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.,5UBA-CONICET, Ciudad Universitaria, Int. Guiraldes 2160, Pabellon 2, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
100
|
Wickens MM, Bangasser DA, Briand LA. Sex Differences in Psychiatric Disease: A Focus on the Glutamate System. Front Mol Neurosci 2018; 11:197. [PMID: 29922129 PMCID: PMC5996114 DOI: 10.3389/fnmol.2018.00197] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alterations in glutamate, the primary excitatory neurotransmitter in the brain, are implicated in several psychiatric diseases. Many of these psychiatric diseases display epidemiological sex differences, with either males or females exhibiting different symptoms or disease prevalence. However, little work has considered the interaction of disrupted glutamatergic transmission and sex on disease states. This review describes the clinical and preclinical evidence for these sex differences with a focus on two conditions that are more prevalent in women: Alzheimer's disease and major depressive disorder, and three conditions that are more prevalent in men: schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. These studies reveal sex differences at multiple levels in the glutamate system including metabolic markers, receptor levels, genetic interactions, and therapeutic responses to glutamatergic drugs. Our survey of the current literature revealed a considerable need for more evaluations of sex differences in future studies examining the role of the glutamate system in psychiatric disease. Gaining a more thorough understanding of how sex differences in the glutamate system contribute to psychiatric disease could provide novel avenues for the development of sex-specific pharmacotherapies.
Collapse
Affiliation(s)
- Megan M Wickens
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Lisa A Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|