51
|
Roast MJ, Hidalgo Aranzamendi N, Teunissen N, Fan M, Verhulst S, Peters A. No Evidence for Constitutive Innate Immune Senescence in a Longitudinal Study of a Wild Bird. Physiol Biochem Zool 2021; 95:54-65. [PMID: 34870562 DOI: 10.1086/717937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAging is associated with declines in physiological performance; declining immune defenses particularly could have consequences for age-related fitness and survival. In aging vertebrates, adaptive (memory-based) immune responses typically become impaired, innate (nonspecific) responses undergo lesser declines, and inflammation increases. Longitudinal studies of immune functions in wild animals are rare, yet they are needed to understand immunosenescence under evolutionarily relevant conditions. Using longitudinal data from a tropical passerine (Malurus coronatus) population, we investigate how population trends emerge from within-individual changes and between-individual heterogeneity (e.g., selective disappearance) in immune status. We quantified constitutive immune indexes (haptoglobin [inflammation associated], natural antibodies, complement [lytic] activity, and heterophil-lymphocyte ratio; n=505-631) in individuals sampled one to seven times over 5 yr. Unexpectedly, longitudinal analyses showed no age-related change within individuals in any immune index, despite sufficient power to detect within-individual change. Between individuals, we found age-related declines in natural antibodies and increases in heterophil-lymphocyte ratios. However, selective disappearance could not adequately explain between-individual age effects, and longitudinal models could not explain our data better than cross-sectional analyses. The lack of clear within-individual immunosenescence is itself notable. Persistent levels of haptoglobin, complement activity, and natural antibodies into old age suggests that these immune components are maintained, potentially with adaptive significance.
Collapse
|
52
|
Spießberger M, Hoelzl F, Smith S, Vetter S, Ruf T, Nowack J. The tarnished silver spoon? Trade-off between prenatal growth and telomere length in wild boar. J Evol Biol 2021; 35:81-90. [PMID: 34687577 PMCID: PMC9298079 DOI: 10.1111/jeb.13954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022]
Abstract
Life-history theory predicts a trade-off between growth rates and lifespan, which is reflected by telomere length, a biomarker of somatic state. We investigated the correlation between telomere length and early-life growth of wild boar piglets, Sus scrofa, kept under semi-natural conditions with high food availability to examine our hypothesis that increased pre- and postnatal growth will lead to telomere length attrition, but that a high supply of nutrient may provide the possibility to compensate telomere loss via telomere repair mechanisms. As predicted, our data showed a clear negative correlation between birth body mass and initial telomere length: heavier neonates had shorter telomeres at birth, and we did not find an influence of the mother on initial telomere length. Body mass at birth correlated with body mass later in life and postnatal growth rate did not affect telomere length. We observed an increase in telomere length during postnatal development, suggesting that high food availability allowed piglets to invest into both, growth and telomere restoration. The increase in telomere length over the duration of the study was not accompanied by telomerase activity; thus, telomere elongation was caused either by alternative mechanisms or by short pulses of telomerase activity that we missed. Taken together, this study suggests a trade-off between investment into growth and telomere maintenance even before birth and the possibility to compensate telomere attrition during growth under high amounts of available energy.
Collapse
Affiliation(s)
- Magdalena Spießberger
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria.,Institute of Zoology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franz Hoelzl
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Sebastian Vetter
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Julia Nowack
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
53
|
Bertucci EM, Mason MW, Rhodes OE, Parrott BB. Exposure to ionizing radiation disrupts normal epigenetic aging in Japanese medaka. Aging (Albany NY) 2021; 13:22752-22771. [PMID: 34644261 PMCID: PMC8544305 DOI: 10.18632/aging.203624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the epigenome are a hallmark of biological aging and age-dependent patterning of the DNA methylome ("epigenetic aging") can be modeled to produce epigenetic age predictors. Rates of epigenetic aging vary amongst individuals and correlate to the onset of age-related disease and all-cause mortality. Yet, the origins of epigenetic-to-chronological age discordance are not empirically resolved. Here, we investigate the relationship between aging, DNA methylation, and environmental exposures in Japanese medaka (Oryzias latipes). We find age-associated DNA methylation patterning enriched in genomic regions of low CpG density and that, similar to mammals, most age-related changes occur during early life. We construct an epigenetic clock capable of predicting chronological age with a mean error of 61.1 days (~8.4% of average lifespan). To test the role of environmental factors in driving epigenetic age variation, we exposed medaka to chronic, environmentally relevant doses of ionizing radiation. Because most organisms share an evolutionary history with ionizing radiation, we hypothesized that exposure would reveal fundamental insights into environment-by-epigenetic aging interactions. Radiation exposure disrupted epigenetic aging by accelerating and decelerating normal age-associated patterning and was most pronounced in cytosines that were moderately associated with age. These findings empirically demonstrate the role of DNA methylation in integrating environmental factors into aging trajectories.
Collapse
Affiliation(s)
- Emily M. Bertucci
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Marilyn W. Mason
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Olin E. Rhodes
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Benjamin B. Parrott
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| |
Collapse
|
54
|
Buddhachat K, Brown JL, Kaewkool M, Poommouang A, Kaewmong P, Kittiwattanawong K, Nganvongpanit K. Life Expectancy in Marine Mammals Is Unrelated to Telomere Length but Is Associated With Body Size. Front Genet 2021; 12:737860. [PMID: 34630527 PMCID: PMC8498114 DOI: 10.3389/fgene.2021.737860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Marine mammals vary greatly in size and lifespan across species. This study determined whether measures of adult body weight, length and relative telomere length were related to lifespan. Skin tissue samples (n = 338) were obtained from 23 marine mammal species, including four Mysticeti, 19 Odontoceti and one dugong species, and the DNA extracted to measure relative telomere length using real-time PCR. Life span, adult body weight, and adult body length of each species were retrieved from existing databases. The phylogenetic signal analysis revealed that body length might be a significant factor for shaping evolutionary processes of cetacean species through time, especially for genus Balaenoptera that have an enormous size. Further, our study found correlations between lifespan and adult body weight (R2 = 0.6465, p < 0.001) and adult body length (R2 = 0.6142, p ≤0.001), but no correlations with relative telomere length (R2 = −0.0476, p = 0.9826). While data support our hypothesis that larger marine mammals live longer, relative telomere length is not a good predictor of species longevity.
Collapse
Affiliation(s)
- Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, Front Royal, VA, United States
| | - Manthanee Kaewkool
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anocha Poommouang
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Korakot Nganvongpanit
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
55
|
Zane L, Ensminger DC, Vázquez-Medina JP. Short-term elevations in glucocorticoids do not alter telomere lengths: A systematic review and meta-analysis of non-primate vertebrate studies. PLoS One 2021; 16:e0257370. [PMID: 34597314 PMCID: PMC8486123 DOI: 10.1371/journal.pone.0257370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background The neuroendocrine stress response allows vertebrates to cope with stressors via the activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis, which ultimately results in the secretion of glucocorticoids (GCs). Glucocorticoids have pleiotropic effects on behavior and physiology, and might influence telomere length dynamics. During a stress event, GCs mobilize energy towards survival mechanisms rather than to telomere maintenance. Additionally, reactive oxygen species produced in response to increased GC levels can damage telomeres, also leading to telomere shortening. In our systematic review and meta-analysis, we tested whether GC levels impact telomere length and if this relationship differs among time frame, life history stage, or stressor type. We hypothesized that elevated GC levels are linked to a decrease in telomere length. Methods We conducted a literature search for studies investigating the relationship between telomere length and GCs in non-human vertebrates using four search engines: Web of Science, Google Scholar, Pubmed and Scopus, last searched on September 27th, 2020. This review identified 31 studies examining the relationship between GCs and telomere length. We pooled the data using Fisher’s Z for 15 of these studies. All quantitative studies underwent a risk of bias assessment. This systematic review study was registered in the Open Science Framework Registry (https://osf.io/rqve6). Results The pooled effect size from fifteen studies and 1066 study organisms shows no relationship between GCs and telomere length (Fisher’s Z = 0.1042, 95% CI = 0.0235; 0.1836). Our meta-analysis synthesizes results from 15 different taxa from the mammalian, avian, amphibian groups. While these results support some previous findings, other studies have found a direct relationship between GCs and telomere dynamics, suggesting underlying mechanisms or concepts that were not taken into account in our analysis. The risk of bias assessment revealed an overall low risk of bias with occasional instances of bias from missing outcome data or bias in the reported result. Conclusion We highlight the need for more targeted experiments to understand how conditions, such as experimental timeframes, stressor(s), and stressor magnitudes can drive a relationship between the neuroendocrine stress response and telomere length.
Collapse
Affiliation(s)
- Lauren Zane
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- * E-mail:
| | - David C. Ensminger
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | | |
Collapse
|
56
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
57
|
Heidinger BJ, Kucera AC, Kittilson JD, Westneat DF. Longer telomeres during early life predict higher lifetime reproductive success in females but not males. Proc Biol Sci 2021; 288:20210560. [PMID: 34034512 PMCID: PMC8150037 DOI: 10.1098/rspb.2021.0560] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations. We examined the relationships between telomere length beginning in early life, telomere loss into adulthood and lifetime reproductive success in free-living house sparrows (Passer domesticus). We found that females, but not males, with longer telomeres during early life had higher lifetime reproductive success, owing to associations with longevity and not reproduction per year or attempt. Telomeres decreased with age in both sexes, but telomere loss was not associated with lifetime reproductive success. In this species, telomeres may reflect differences in quality or condition rather than the pace of life, but only in females. Sexually discordant selection on telomeres is expected to influence the stability and maintenance of within population variation in telomere dynamics and suggests that any role telomeres play in mediating life-history trade-offs may be sex specific.
Collapse
Affiliation(s)
- Britt J. Heidinger
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Aurelia C. Kucera
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Jeff D. Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | | |
Collapse
|
58
|
Quque M, Paquet M, Zahn S, Théron F, Faivre B, Sueur C, Criscuolo F, Doutrelant C, Covas R. Contrasting associations between nestling telomere length and pre and postnatal helpers' presence in a cooperatively breeding bird. Oecologia 2021; 196:37-51. [PMID: 33864121 DOI: 10.1007/s00442-021-04917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
Studies on cooperative breeders have addressed the effects of non-breeding 'helpers' on reproduction and parental care, but the consequences for offspring physiology and long-term survival are less understood. Helpers are expected to benefit offspring, but their presence can also lead to decreased pre- or post-natal parental reproductive effort. To examine whether prenatal and postnatal helpers influence offspring condition, we conducted a whole-clutch cross-fostering experiment in sociable weavers (Philetairus socius) that altered the nestlings' social environment (presence/absence of helpers). We tested whether relative telomere length (rTL), an indicator of somatic maintenance, was influenced by prenatal and/or postnatal presence of helpers 9 and 17 days after hatching, and whether rTL predicted long-term survival. Nine days after hatching, we found an overall positive effect of postnatal helpers on rTL: for nestlings with prenatal helpers, a reduction in the number of helpers post-hatch was associated with shorter telomeres, while nestlings swapped from nests without helpers to nests with helpers had a larger rTL. However, when prenatal helpers were present, an increased number of helpers after hatching led to shorter telomeres. Nine-day old chicks with longer rTL tended to be more likely to survive over the 5 years following hatching. However, close to fledging, there was no detectable effect of the experiment on rTL and no link between rTL and survival. This experimental study of a wild cooperative breeder, therefore, presents partial support for the importance of the presence of helpers for offspring rTL and the link between early-life telomere length and long-term survival.
Collapse
Affiliation(s)
- Martin Quque
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France.
| | - Matthieu Paquet
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Sandrine Zahn
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Frank Théron
- CNRS, CEFE UMR 5175, Université de Montpellier, Montpellier, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, Dijon, France
| | - Cédric Sueur
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France.,Institut Universitaire de France, Paris, France
| | | | - Claire Doutrelant
- CNRS, CEFE UMR 5175, Université de Montpellier, Montpellier, France.,Research Centre On Biodiversity and Genetic Resources, CIBIO-InBio, University of Porto, Porto, Portugal
| | - Rita Covas
- Research Centre On Biodiversity and Genetic Resources, CIBIO-InBio, University of Porto, Porto, Portugal.,Fitzpatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
59
|
Wei B, Shao Y, Liang J, Tang P, Mo M, Liu B, Huang H, Tan HJJ, Huang D, Liu S, Qiu X. Maternal overweight but not paternal overweight before pregnancy is associated with shorter newborn telomere length: evidence from Guangxi Zhuang birth cohort in China. BMC Pregnancy Childbirth 2021; 21:283. [PMID: 33836691 PMCID: PMC8033662 DOI: 10.1186/s12884-021-03757-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Telomere length (TL) is variable at birth and is inversely associated with body mass index (BMI) in adulthood. A growing number of evidences suggested that a higher maternal pre-pregnancy BMI results in adverse offspring health outcomes, especially shorter newborn TL. However, a newborn’s genetic endowment is equally derived from both parents, the association between parental pre-pregnancy BMI and newborn TL has been rarely discussed. We aimed to determine the association between parental pre-pregnancy BMI and newborn TL. Methods A total of 1082 parent-newborn pairs were recruited from the Guangxi Zhuang Birth Cohort (GZBC). TL in cord blood was measured using quantitative real-time polymerase chain reaction (qPCR) and expressed as the ratio of telomere copy number to single-copy gene number (T/S). A series of linear regressions were performed to assess the associations between parental pre-pregnancy BMI and newborn TL. Results Mothers who were overweight before pregnancy had significantly shorter cord blood telomere length in their newborns than those who were normal weight before pregnancy [percentage change: − 7.96% (95% CI: − 14.49 to − 0.69%; P = 0.032)]. Further analysis of the combined effects of parental weight status on newborn TL showed that TL was significantly shortened among newborns whose mothers were overweight and fathers were of healthy weight when compared with those whose mothers and fathers were both of normal weight [percentage change: − 8.38% (95% CI: − 15.47 to − 0.92%; P = 0.028)]. Subgroup analysis indicated these effects were more pronounced among male newborns and those whose paternal age < 31 years or maternal age ≥ 28 years at delivery. Conclusions Maternal pre-pregnancy overweight, but not paternal pre-pregnancy overweight is associated with shorter newborn TL. Weight control in reproductive women and effective healthy weight management before pregnancy may be of particular benefit for improving longevity and life quality of offspring. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-03757-x.
Collapse
Affiliation(s)
- Bincai Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- Department of Student Work, The First Clinical Medical College of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hui Juan Jennifer Tan
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
60
|
Heritable variation in telomere length predicts mortality in Soay sheep. Proc Natl Acad Sci U S A 2021; 118:2020563118. [PMID: 33876756 DOI: 10.1073/pnas.2020563118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomere length (TL) is considered an important biomarker of whole-organism health and aging. Across humans and other vertebrates, short telomeres are associated with increased subsequent mortality risk, but the processes responsible for this correlation remain uncertain. A key unanswered question is whether TL-mortality associations arise due to positive effects of genes or early-life environment on both an individual's average lifetime TL and their longevity, or due to more immediate effects of environmental stressors on within-individual TL loss and increased mortality risk. Addressing this question requires longitudinal TL and life history data across the entire lifetimes of many individuals, which are difficult to obtain for long-lived species like humans. Using longitudinal data and samples collected over nearly two decades, as part of a long-term study of wild Soay sheep, we dissected an observed positive association between TL and subsequent survival using multivariate quantitative genetic models. We found no evidence that telomere attrition was associated with increased mortality risk, suggesting that TL is not an important marker of biological aging or exposure to environmental stress in our study system. Instead, we find that among-individual differences in average TL are associated with increased lifespan. Our analyses suggest that this correlation between an individual's average TL and lifespan has a genetic basis. This demonstrates that TL has the potential to evolve under natural conditions, and suggests an important role of genetics underlying the widespread observation that short telomeres predict mortality.
Collapse
|
61
|
Postnatal Catch-Up Growth Programs Telomere Dynamics and Glucose Intolerance in Low Birth Weight Mice. Int J Mol Sci 2021; 22:ijms22073657. [PMID: 33915805 PMCID: PMC8037520 DOI: 10.3390/ijms22073657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/06/2023] Open
Abstract
Low birth weight and rapid postnatal weight gain are independent predictors of obesity and diabetes in adult life, yet the molecular events involved in this process remain unknown. In inbred and outbred mice, this study examines natural intrauterine growth restriction (IUGR) in relation to body weight, telomere length (TL), glucose tolerance, and growth factor gene (Igf1, Igf2, Insr, Igf1r, and Igf2r) mRNA expression levels in the brain, liver, and muscle at 2- and 10 days of age and then at 3- and 9 months of age. At birth, ~15% of the animals showed IUGR, but by 3 and 9 months, half of these animals had regained the same weight as controls without IUGR (recuperated group). At 10 days, there was no difference in TL between animals undergoing IUGR and controls. However, by 3 and 9 months of age, the recuperated animals had shorter TL than the control and IUGR-non recuperated animals and also showed glucose intolerance. Further, compared to controls, Igf1 and Igf2 growth factor mRNA expression was lower in Day 2-IUGR mice, while Igf2r and Insr mRNA expression was higher in D10-IUGR animals. Moreover, at 3 months of age, only in the recuperated group were brain and liver Igf1, Igf2, Insr, and Igf2r expression levels higher than in the control and IUGR-non-recuperated groups. These data indicate that catch-up growth but not IUGR per se affects TL and glucose tolerance, and suggest a role in this latter process of insulin/insulin-like growth signaling pathway gene expression during early development.
Collapse
|
62
|
Cheron M, Angelier F, Ribout C, Brischoux F. Clutch quality is related to embryonic development duration, hatchling body size and telomere length in the spined toad (Bufo spinosus). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Reproductive success is often related to parental quality, a parameter expressed through various traits, such as site selection, mate selection and energetic investment in the eggs or progeny. Owing to the complex interactions between environmental and parental characteristics occurring at various stages of the reproductive event, it is often complicated to tease apart the relative contributions of these different factors to reproductive success. Study systems where these complex interactions are simplified (e.g. absence of parental care) can help us to understand how metrics of parental quality (e.g. gamete and egg quality) influence reproductive success. Using such a study system in a common garden experiment, we investigated the relationships between clutch hatching success (a proxy of clutch quality) and offspring quality in an amphibian species lacking post-oviposition parental care. We found a relationship between clutch quality and embryonic development duration and hatchling phenotype. We found that hatchling telomere length was linked to hatching success. These results suggest that clutch quality is linked to early life traits in larval amphibians and that deciphering the influence of parental traits on the patterns we detected is a promising avenue of research.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d’Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois,France
| | - Frédéric Angelier
- Centre d’Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois,France
| | - Cécile Ribout
- Centre d’Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois,France
| | - François Brischoux
- Centre d’Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois,France
| |
Collapse
|
63
|
Kärkkäinen T, Teerikorpi P, Schuett W, Stier A, Laaksonen T. Interplays between pre- and post-natal environments affect early-life mortality, body mass and telomere dynamics in the wild. J Exp Biol 2021; 224:jeb231290. [PMID: 33234683 DOI: 10.1242/jeb.231290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Early-life conditions are crucial determinants of phenotype and fitness. The effects of pre- and post-natal conditions on fitness prospects have been widely studied but their interactive effects have received less attention. In birds, asynchronous hatching creates challenging developmental conditions for the last-hatched chicks, but differential allocation in last-laid eggs might help to compensate this initial handicap. The relative importance and potential interaction between pre- and post-hatching developmental conditions for different fitness components remains mostly unknown. We manipulated hatching order in wild pied flycatchers (Ficedula hypoleuca), creating three groups: natural asynchrony (last-laid eggs hatching last), reversed asynchrony (last-laid eggs hatching first) and hatching synchrony (all eggs hatching at once). We examined the effects of these manipulations on early-life survival, growth and telomere length, a potential cellular biomarker of fitness prospects. Mortality was mostly affected by hatching order, with last-hatched chicks being more likely to die. Early-life telomere dynamics and growth were influenced by the interplays between laying and hatching order. Last-laid but first-hatched chicks were heavier but had shorter telomeres 5 days after hatching than their siblings, indicating rapid early growth with potential adverse consequences on telomere length. Synchronous chicks did not suffer any apparent cost of hatching synchronously. Impaired phenotypes only occurred when reversing the natural hatching order (i.e. developmental mismatch), suggesting that maternal investment in last-laid eggs might indeed counterbalance the initial handicap of last-hatched chicks. Our experimental study thus highlights that potential interplays between pre- and post-natal environments are likely to shape fitness prospects in the wild.
Collapse
Affiliation(s)
- Tiia Kärkkäinen
- Department of Biology, University of Turku, 20014 Turku, Finland
| | | | - Wiebke Schuett
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
- Department of Biology, Institute of Zoology, Universität Hamburg, D-20146 Hamburg, Germany
| | - Antoine Stier
- Department of Biology, University of Turku, 20014 Turku, Finland
- Collage of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Toni Laaksonen
- Department of Biology, University of Turku, 20014 Turku, Finland
- Natural Resources Institute Finland (LUKE), 20520 Turku, Finland
| |
Collapse
|
64
|
Dudek BM, Henderson MT, Hudon SF, Hayden EJ, Heath JA. Haematophagous ectoparasites lower survival of and have detrimental physiological effects on golden eagle nestlings. CONSERVATION PHYSIOLOGY 2021; 9:coab060. [PMID: 34386238 PMCID: PMC8354271 DOI: 10.1093/conphys/coab060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/31/2021] [Accepted: 07/20/2021] [Indexed: 05/12/2023]
Abstract
Haematophagous ectoparasites can directly affect the health of young animals by depleting blood volume and reducing energetic resources available for growth and development. Less is known about the effects of ectoparasitism on stress physiology (i.e. glucocorticoid hormones) or animal behaviour. Mexican chicken bugs (Haematosiphon inodorus; Hemiptera: Cimicidae) are blood-sucking ectoparasites that live in nesting material or nest substrate and feed on nestling birds. Over the past 50 years, the range of H. inodorus has expanded, suggesting that new hosts or populations may be vulnerable. We studied the physiological and behavioural effects of H. inodorus on golden eagle (Aquila chrysaetos) nestlings in southwestern Idaho. We estimated the level of H. inodorus infestation at each nest and measured nestling mass, haematocrit, corticosterone concentrations, telomere lengths and recorded early fledging and mortality events. At nests with the highest levels of infestation, nestlings had significantly lower mass and haematocrit. In addition, highly parasitized nestlings had corticosterone concentrations twice as high on average (42.9 ng/ml) than non-parasitized nestlings (20.2 ng/ml). Telomeres of highly parasitized female nestlings significantly shortened as eagles aged, but we found no effect of parasitism on the telomeres of male nestlings. Finally, in nests with higher infestation levels, eagle nestlings were 20 times more likely to die, often because they left the nest before they could fly. These results suggest that H. inodorus may limit local golden eagle populations by decreasing productivity. For eagles that survived infestation, chronically elevated glucocorticoids and shortened telomeres may adversely affect cognitive function or survival in this otherwise long-lived species. Emerging threats from ectoparasites should be an important management consideration for protected species, like golden eagles.
Collapse
Affiliation(s)
- Benjamin M Dudek
- Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA
- Corresponding author: Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA. Tel: (860) 248-0004.
| | - Michael T Henderson
- Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA
- The Peregrine Fund, Boise, ID 83709, USA
| | - Stephanie F Hudon
- Department of Biological Sciences, Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Eric J Hayden
- Department of Biological Sciences, Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Julie A Heath
- Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
65
|
Tschirren B, Romero-Haro AÁ, Zahn S, Criscuolo F. Sex-specific effects of experimental ectoparasite infestation on telomere length in great tit nestlings. J Evol Biol 2020; 34:584-589. [PMID: 33226680 DOI: 10.1111/jeb.13744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Telomere length is a biomarker of biological ageing and lifespan in various vertebrate taxa. Evidence is accumulating that telomeres shorten more rapidly when an individual is exposed to environmental stressors. Parasites are potent selective agents that can cause physiological stress directly or indirectly through the activation of the host's immune system. Yet to date, empirical evidence for a role of parasites in telomere dynamics in natural populations is limited. Here, we show experimentally that exposure to ectoparasitic hen fleas (Ceratophyllus gallinae) during growth results in shorter telomeres in female, but not male, great tit (Parus major) nestlings. Females had longer telomeres than males when growing up in experimentally deparasitized nests but, likely because of the sex-specific effects of ectoparasitism on telomere length, this sexual dimorphism was absent in birds growing up in experimentally infested nests. Our results provide the first experimental evidence for a role of ectoparasitism in telomere dynamics in a natural vertebrate population, and suggest that the costs of infection manifest in sex-specific ways.
Collapse
Affiliation(s)
- Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Sandrine Zahn
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
66
|
Vernasco BJ, Dakin R, Majer AD, Haussmann MF, Brandt Ryder T, Moore IT. Longitudinal dynamics and behavioural correlates of telomeres in male wire‐tailed manakins. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ben J. Vernasco
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
| | - Roslyn Dakin
- Migratory Bird Center Smithsonian Conservation Biology Institute Washington DC USA
| | | | | | - T. Brandt Ryder
- Migratory Bird Center Smithsonian Conservation Biology Institute Washington DC USA
| | - Ignacio T. Moore
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
| |
Collapse
|
67
|
Acoustic Developmental Programming: implications for adaptive plasticity and the evolution of sensitive periods. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
68
|
Stier A, Hsu BY, Marciau C, Doligez B, Gustafsson L, Bize P, Ruuskanen S. Born to be young? Prenatal thyroid hormones increase early-life telomere length in wild collared flycatchers. Biol Lett 2020; 16:20200364. [PMID: 33171077 DOI: 10.1098/rsbl.2020.0364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The underlying mechanisms of the lifelong consequences of prenatal environmental condition on health and ageing remain little understood. Thyroid hormones (THs) are important regulators of embryogenesis, transferred from the mother to the embryo. Since prenatal THs can accelerate early-life development, we hypothesized that this might occur at the expense of resource allocation in somatic maintenance processes, leading to premature ageing. Therefore, we investigated the consequences of prenatal TH supplementation on potential hallmarks of ageing in a free-living avian model in which we previously demonstrated that experimentally elevated prenatal TH exposure accelerates early-life growth. Using cross-sectional sampling, we first report that mitochondrial DNA (mtDNA) copy number and telomere length significantly decrease from early-life to late adulthood, thus suggesting that these two molecular markers could be hallmarks of ageing in our wild bird model. Elevated prenatal THs had no effect on mtDNA copy number but counterintuitively increased telomere length both soon after birth and at the end of the growth period (equivalent to offsetting ca 4 years of post-growth telomere shortening). These findings suggest that prenatal THs might have a role in setting the 'biological' age at birth, but raise questions about the nature of the evolutionary costs of prenatal exposure to high TH levels.
Collapse
Affiliation(s)
- Antoine Stier
- Department of Biology, University of Turku, Turku, Finland.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, Turku, Finland
| | - Coline Marciau
- Department of Biology, University of Turku, Turku, Finland
| | - Blandine Doligez
- Department of Biometry and Evolutionary Biology, CNRS, Université Lyon 1, Lyon, France
| | - Lars Gustafsson
- Department of Ecology and Genetics/Animal Ecology, University of Uppsala, Uppsala, Sweden
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
69
|
Power ML, Power S, Bertelsen MF, Jones G, Teeling EC. Wing: A suitable nonlethal tissue type for repeatable and rapid telomere length estimates in bats. Mol Ecol Resour 2020; 21:421-432. [PMID: 33049101 DOI: 10.1111/1755-0998.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Telomeres are used increasingly in ecology and evolution as biomarkers for ageing and environmental stress, and are typically measured from DNA extracted from nonlethally sampled blood. However, obtaining blood is not always possible in field conditions and only limited amounts can be taken from small mammals, such as bats, which moreover lack nucleated red blood cells and hence yield relatively low amounts of DNA. As telomere length can vary within species according to age and tissue, it is important to determine which tissues serve best as a representation of the organism as a whole. Here, we investigated whether wing tissue biopsies, a rapid and relatively noninvasive tissue collection method, could serve as a proxy for other tissues when measuring relative telomere length (rTL) in the Egyptian fruit bat (Rousettus aegyptiacus). Telomeres were measured from blood, brain, heart, kidney, liver lung, muscle and wing, and multiple wing biopsies were taken from the same individuals to determine intra-individual repeatability of rTL measured by using qPCR. Wing rTL correlated with rTL estimates from most tissues apart from blood. Blood rTL was not significantly correlated with rTL from any other tissue. Blood and muscle rTLs were significantly longer compared with other tissues, while lung displayed the shortest rTLs. Individual repeatability of rTL measures from wing tissue was high (>70%). Here we show the relationships between tissue telomere dynamics for the first time in a bat, and our results provide support for the use of wing tissue for rTL measurements.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - Sarahjane Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
70
|
Burraco P, Comas M, Reguera S, Zamora-Camacho FJ, Moreno-Rueda G. Telomere length mirrors age structure along a 2200-m altitudinal gradient in a Mediterranean lizard. Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110741. [DOI: 10.1016/j.cbpa.2020.110741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
|
71
|
Hudon SF, Palencia Hurtado E, Beck JD, Burden SJ, Bendixsen DP, Callery KR, Sorensen Forbey J, Waits LP, Miller RA, Nielsen ÓK, Heath JA, Hayden EJ. Primers to highly conserved elements optimized for qPCR-based telomere length measurement in vertebrates. Mol Ecol Resour 2020; 21:59-67. [PMID: 32762107 DOI: 10.1111/1755-0998.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022]
Abstract
Telomere length dynamics are an established biomarker of health and ageing in animals. The study of telomeres in numerous species has been facilitated by methods to measure telomere length by real-time quantitative PCR (qPCR). In this method, telomere length is determined by quantifying the amount of telomeric DNA repeats in a sample and normalizing this to the total amount of genomic DNA. This normalization requires the development of genomic reference primers suitable for qPCR, which remains challenging in nonmodel organism with genomes that have not been sequenced. Here we report reference primers that can be used in qPCR to measure telomere lengths in any vertebrate species. We designed primer pairs to amplify genetic elements that are highly conserved between evolutionarily distant taxa and tested them in species that span the vertebrate tree of life. We report five primer pairs that meet the specificity and reproducibility standards of qPCR. In addition, we demonstrate an approach to choose the best primers for a given species by testing the primers on multiple individuals within a species and then applying an established computational tool. These reference primers can facilitate qPCR-based telomere length measurements in any vertebrate species of ecological or economic interest.
Collapse
Affiliation(s)
| | | | - James D Beck
- Computational Science and Engineering, Boise State University, Boise, ID, USA
| | - Steven J Burden
- Biomolecular Sciences, Boise State University, Boise, ID, USA
| | | | - Kathleen R Callery
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | | | - Lisette P Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | | | - Ólafur K Nielsen
- Department of Ecology, Icelandic Institute of Natural History, Garðabaer, Iceland
| | - Julie A Heath
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Eric J Hayden
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| |
Collapse
|
72
|
Sebastiano M, Angelier F, Blévin P, Ribout C, Sagerup K, Descamps S, Herzke D, Moe B, Barbraud C, Bustnes JO, Gabrielsen GW, Chastel O. Exposure to PFAS is Associated with Telomere Length Dynamics and Demographic Responses of an Arctic Top Predator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10217-10226. [PMID: 32696640 DOI: 10.1021/acs.est.0c03099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental factors that can influence telomeres are diverse, but the association between telomeres and exposure to environmental contaminants is yet to be elucidated. To date, prior studies have focused on legacy persistent chlorinated pollutants (POPs), while the effects of poly- and perfluoroalkyl substances (PFAS) have been poorly documented. Here, we investigated the associations among PFAS congeners, absolute telomere length (cross-sectional approach), and telomere dynamics (rate of telomere length change over time, longitudinal approach) in one of the most contaminated arctic top predators, the glaucous gull Larus hyperboreus from Svalbard. We further estimated the effect of PFAS on apparent survival rates and re-sighting probabilities using a 10-year capture/recapture dataset (2010-2019). We found that birds exposed to higher concentrations of perfluorononadecanoate (PFNA) (median of 1565 pg/mL of ww in males and 1370 pg/mL of ww in females) and perfluorotetradecanoate (PFTeDA) (median of 370 pg/mL of ww in males and 210 pg/mL of ww in females) showed the slowest rate of telomere shortening. We also found that high blood concentrations of perfluorooctanoate (PFOA) (median of 120 pg/mL of ww in males and 150 pg/mL of ww in females) and perfluorohexanesulfonate (PFHxS) (median of 495 pg/mL of ww in males and 395 pg/mL of ww in females) were positively associated with higher re-sighting probabilities and apparent survival in males but not in females. Our work is the first to report an association between single PFAS compounds and telomeres, and the first to link PFAS exposure with survival probabilities, suggesting that the effect of PFAS exposure might be more tied to the type of compound rather than the total concentration of PFAS.
Collapse
Affiliation(s)
- Manrico Sebastiano
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
- Akvaplan-niva AS, Fram Centre, NO-9296 Tromsø, Norway
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | | | | | - Dorte Herzke
- Norwegian Institute for Air Research, NILU, Fram Centre, NO-9296 Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research, NINA, Høgskoleringen 9, NO-7034 Trondheim, Norway
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, NINA, Fram Centre, NO-9296 Tromsø, Norway
| | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| |
Collapse
|
73
|
Casagrande S, Stier A, Monaghan P, Loveland JL, Boner W, Lupi S, Trevisi R, Hau M. Increased glucocorticoid concentrations in early life cause mitochondrial inefficiency and short telomeres. J Exp Biol 2020; 223:jeb222513. [PMID: 32532864 DOI: 10.1242/jeb.222513] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Telomeres are DNA structures that protect chromosome ends. However, telomeres shorten during cell replication and at critically low lengths can reduce cell replicative potential, induce cell senescence and decrease fitness. Stress exposure, which elevates glucocorticoid hormone concentrations, can exacerbate telomere attrition. This phenomenon has been attributed to increased oxidative stress generated by glucocorticoids ('oxidative stress hypothesis'). We recently suggested that glucocorticoids could increase telomere attrition during stressful periods by reducing the resources available for telomere maintenance through changes in the metabolic machinery ('metabolic telomere attrition hypothesis'). Here, we tested whether experimental increases in glucocorticoid levels affected telomere length and mitochondrial function in wild great tit (Parus major) nestlings during the energy-demanding early growth period. We monitored resulting corticosterone (Cort) concentrations in plasma and red blood cells, telomere lengths and mitochondrial metabolism (metabolic rate, proton leak, oxidative phosphorylation, maximal mitochondrial capacity and mitochondrial inefficiency). We assessed oxidative damage caused by reactive oxygen species (ROS) metabolites as well as the total non-enzymatic antioxidant protection in plasma. Compared with control nestlings, Cort-nestlings had higher baseline corticosterone, shorter telomeres and higher mitochondrial metabolic rate. Importantly, Cort-nestlings showed increased mitochondrial proton leak, leading to a decreased ATP production efficiency. Treatment groups did not differ in oxidative damage or antioxidants. Hence, glucocorticoid-induced telomere attrition is associated with changes in mitochondrial metabolism, but not with ROS production. These findings support the hypothesis that shortening of telomere length during stressful periods is mediated by glucocorticoids through metabolic rearrangements.
Collapse
Affiliation(s)
- Stefania Casagrande
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Antoine Stier
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Pat Monaghan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jasmine L Loveland
- Max Planck Institute for Ornithology, Behavioural Genetics and Evolutionary Ecology Group, 82319 Seewiesen, Germany
| | - Winifred Boner
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sara Lupi
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, A-1160 Vienna, Austria
| | - Rachele Trevisi
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Michaela Hau
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
74
|
Sánchez-Montes G, Martínez-Solano Í, Díaz-Paniagua C, Vilches A, Ariño AH, Gomez-Mestre I. Telomere attrition with age in a wild amphibian population. Biol Lett 2020; 16:20200168. [PMID: 32673551 PMCID: PMC7423040 DOI: 10.1098/rsbl.2020.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Telomere shortening with age has been documented in many organisms, but few studies have reported telomere length measurements in amphibians, and no information is available for growth after metamorphosis, nor in wild populations. We provide both cross-sectional and longitudinal evidence of net telomere attrition with age in a wild amphibian population of natterjack toads (Epidalea calamita). Based on age-estimation by skeletochronology and qPCR telomere length measurements in the framework of an individual-based monitoring programme, we confirmed telomere attrition in recaptured males. Our results support that toads experience telomere attrition throughout their ontogeny, and that most attrition occurs during the first 1-2 years. We did not find associations between telomere length and inbreeding or body condition. Our results on telomere length dynamics under natural conditions confirm telomere shortening with age in amphibians and provide quantification of wide telomere length variation within and among age-classes in a wild breeding population.
Collapse
Affiliation(s)
- Gregorio Sánchez-Montes
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Íñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Carmen Díaz-Paniagua
- Ecology, Evolution, and Development Group, Doñana Biological Station, CSIC, c/ Américo Vespucio 26, 41092 Seville, Spain
| | - Antonio Vilches
- Department of Environmental Biology, University of Navarra, c/ Irunlarrea, 1, 31008 Pamplona, Spain
| | - Arturo H. Ariño
- Department of Environmental Biology, University of Navarra, c/ Irunlarrea, 1, 31008 Pamplona, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station, CSIC, c/ Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
75
|
Pineda-Pampliega J, Herrera-Dueñas A, Mulder E, Aguirre JI, Höfle U, Verhulst S. Antioxidant supplementation slows telomere shortening in free-living white stork chicks. Proc Biol Sci 2020; 287:20191917. [PMID: 31937223 DOI: 10.1098/rspb.2019.1917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomere length (TL) and shortening is increasingly shown to predict variation in survival and lifespan, raising the question of what causes variation in these traits. Oxidative stress is well known to accelerate telomere attrition in vitro, but its importance in vivo is largely hypothetical. We tested this hypothesis experimentally by supplementing white stork (Ciconia ciconia) chicks with antioxidants. Individuals received either a control treatment, or a supply of tocopherol (vitamin E) and selenium, which both have antioxidant properties. The antioxidant treatment increased the concentration of tocopherol for up to two weeks after treatment but did not affect growth. Using the telomere restriction fragment technique, we evaluated erythrocyte TL and its dynamics. Telomeres shortened significantly over the 21 days between the baseline and final sample, independent of sex, mass, size and hatching order. The antioxidant treatment significantly mitigated shortening rate of average TL (-31% in shorter telomeres; percentiles 10th, 20th and 30th). Thus, our results support the hypothesis that oxidative stress shortens telomeres in vivo.
Collapse
Affiliation(s)
- Javier Pineda-Pampliega
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Amparo Herrera-Dueñas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - José I Aguirre
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ursula Höfle
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), 13071 Ciudad Real, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
76
|
Contrasting seasonal patterns of telomere dynamics in response to environmental conditions in the ectothermic sand lizard, Lacerta agilis. Sci Rep 2020; 10:182. [PMID: 31932620 PMCID: PMC6957525 DOI: 10.1038/s41598-019-57084-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Telomeres, the protective, terminal parts of the chromosomes erode during cell division and as a result of oxidative damage by reactive oxygen species (ROS). Ectotherms rely on the ambient temperature for maintaining temperature-dependent metabolic rate, regulated through behavioural thermoregulation. Their temperature-dependant metabolism, hence also the ROS production, is indirectly regulated through thermoregulation. Consequently, a potential causal chain affecting telomere length and attrition is: temperature (in particular, its deviation from a species-specific optimum) – metabolism - ROS production – anti-oxidation - telomere erosion. We measured telomere length in sand lizards (Lacerta agilis) using qPCR on blood samples from 1998–2006. Effects of climatological parameters (mean temperature and average sunshine hours) in the summer and winter preceding telomere sampling were used as predictors of telomere length in mixed model analysis. During the lizards’ active period (summer), there was a largely negative effect of mean temperature and sun on telomere length, whereas a combined measure of age and size (head length) was positively related to telomere length. During the inactive period of lizards (winter), the results were largely the opposite with a positive relationship between temperature and sunshine hours and telomere length. In all four cases, thermal and age effects on telomere length appeared to be non-linear in the two sexes and seasons, with complex response surface effects on telomere length from combined age and thermal effects.
Collapse
|
77
|
Bichet C, Bouwhuis S, Bauch C, Verhulst S, Becker PH, Vedder O. Telomere length is repeatable, shortens with age and reproductive success, and predicts remaining lifespan in a long‐lived seabird. Mol Ecol 2020; 29:429-441. [DOI: 10.1111/mec.15331] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | | | - Oscar Vedder
- Institute of Avian Research Wilhelmshaven Germany
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
78
|
Fitzpatrick LJ, Olsson M, Parsley LM, Pauliny A, Pinfold TL, Pirtle T, While GM, Wapstra E. Temperature and telomeres: thermal treatment influences telomere dynamics through a complex interplay of cellular processes in a cold-climate skink. Oecologia 2019; 191:767-776. [PMID: 31620874 DOI: 10.1007/s00442-019-04530-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
Abstract
Telomere dynamics vary fundamentally between endothermic populations and species as a result of differences in life history, yet we know little about these patterns in ectotherms. In ectotherms, the relationships between climate, metabolism and life history suggest that telomere attrition should be higher at relatively high environmental temperatures compared to relatively low environmental temperatures, but these effects may vary between populations due to local adaptation. To address this hypothesis, we sampled reactive oxygen species (ROS) and telomere length of lizards from warm lowland and cool highland populations of a climatically widespread lizard species that we exposed to hot or cold basking treatments. The hot treatment increased relative telomere length compared to the cold treatment independent of climatic origin or ROS levels. Lizards from the cool highland region had lower ROS levels than those from the warm lowland region. Within the highland lizards, ROS increased more in the cold basking treatment than the hot basking treatment. These results are in the opposite direction to those predicted, suggesting that the relationships between temperature, metabolism, ROS and telomere dynamics are not straightforward. Future work incorporating detailed understanding of the thermal reaction norms of these and other linked traits is needed to fully understand these processes.
Collapse
Affiliation(s)
- L J Fitzpatrick
- School of Natural Sciences, University of Tasmania, Hobart, Australia.
| | - M Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - L M Parsley
- School of Natural Sciences, University of Tasmania, Hobart, Australia.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - A Pauliny
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - T L Pinfold
- School of Medicine, University of Tasmania, Hobart, Australia
| | - T Pirtle
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - G M While
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - E Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
79
|
Impact of continuous predator threat on telomere dynamics in parent and nestling pied flycatchers. Oecologia 2019; 191:757-766. [PMID: 31612326 PMCID: PMC6853860 DOI: 10.1007/s00442-019-04529-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/03/2019] [Indexed: 11/03/2022]
Abstract
In addition to direct mortality, predators can have indirect effects on prey populations by affecting prey behaviour or physiology. For example, predator presence can increase stress hormone levels, which can have physiological costs. Stress exposure accelerates the shortening of telomeres (i.e. the protective caps of chromosomes) and shorter telomeres have been linked to increased mortality risk. However, the effect of perceived predation risk on telomeres is not known. We investigated the effects of continuous predator threat (nesting Eurasian pygmy owl Glaucidium passerinum) on telomere dynamics of both adult and partially cross-fostered nestling pied flycatchers (Ficedula hypoleuca) in the wild. Females nesting at owl-inhabited sites showed impaired telomere maintenance between incubation and chick rearing compared to controls, and both males and females ended up with shorter telomeres at owl-inhabited sites in the end of chick rearing. On the contrary, both original and cross-fostered chicks reared in owl sites had consistently longer telomeres during growth than chicks reared at control sites. Thus, predation risk may cause a long-term cost in terms of telomeres for parents but not for their offspring. Predators may therefore affect telomere dynamics of their preys, which could have implications for their ageing rate and consequently for population dynamics.
Collapse
|
80
|
Sudyka J. Does Reproduction Shorten Telomeres? Towards Integrating Individual Quality with Life‐History Strategies in Telomere Biology. Bioessays 2019; 41:e1900095. [DOI: 10.1002/bies.201900095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Joanna Sudyka
- Wild Urban Evolution and Ecology LabCentre of New Technologies (CeNT)University of Warsaw 02‐097 Warsaw Poland
| |
Collapse
|
81
|
Denham J, Stevenson K, Denham MM. Age-associated telomere shortening in Thoroughbred horses. Exp Gerontol 2019; 127:110718. [PMID: 31479729 DOI: 10.1016/j.exger.2019.110718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
Telomeres are genetically conserved repetitive terminal DNA that protect against genomic instability and shorten with ageing. Here, we reveal the leukocyte telomere length of Equus caballus by measuring terminal restriction fragments (TRFs) using Southern Blot analysis in a cohort of 43 Thoroughbred horses (age: 24 h-25 years). Heterogeneous TRFs were observed in each animal and large inter-animal variation in mean TRF was observed (range: 10.5-18.7 kbp). Mean TRFs were inversely correlated with age (r = -0.47). The estimated yearly rate of telomere attrition was 134 bp. Horses should be considered as an alternative animal model to investigate environmental and lifestyle factors that regulate telomeres and promote healthy ageing.
Collapse
Affiliation(s)
- Joshua Denham
- Discipline of Exercise Science, School of Health and Biomedical Sciences, Bundoora West Campus, RMIT University, Bundoora, VIC 3083, Australia.
| | - Kim Stevenson
- Discipline of Biosciences and Food Technology, School of Science, Bundoora West Campus, RMIT University, Bundoora, VIC 3083, Australia
| | - Michele M Denham
- Jubilee Stud, Mount Duneed Road, Freshwater Creek, VIC 3217, Australia
| |
Collapse
|
82
|
Adwan Shekhidem H, Sharvit L, Leman E, Manov I, Roichman A, Holtze S, M Huffman D, Y Cohen H, Bernd Hildebrandt T, Shams I, Atzmon G. Telomeres and Longevity: A Cause or an Effect? Int J Mol Sci 2019; 20:ijms20133233. [PMID: 31266154 PMCID: PMC6651551 DOI: 10.3390/ijms20133233] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 01/20/2023] Open
Abstract
Telomere dynamics have been found to be better predictors of survival and mortality than chronological age. Telomeres, the caps that protect the end of linear chromosomes, are known to shorten with age, inducing cell senescence and aging. Furthermore, differences in age-related telomere attrition were established between short-lived and long-lived organisms. However, whether telomere length is a “biological thermometer” that reflects the biological state at a certain point in life or a biomarker that can influence biological conditions, delay senescence and promote longevity is still an ongoing debate. We cross-sectionally tested telomere length in different tissues of two long-lived (naked mole-rat and Spalax) and two short-lived (rat and mice) species to tease out this enigma. While blood telomere length of the naked mole-rat (NMR) did not shorten with age but rather showed a mild elongation, telomere length in three tissues tested in the Spalax declined with age, just like in short-lived rodents. These findings in the NMR, suggest an age buffering mechanism, while in Spalax tissues the shortening of the telomeres are in spite of its extreme longevity traits. Therefore, using long-lived species as models for understanding the role of telomeres in longevity is of great importance since they may encompass mechanisms that postpone aging.
Collapse
Affiliation(s)
| | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Eva Leman
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Irena Manov
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Asael Roichman
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
| | - Derek M Huffman
- Departments of Molecular Pharmacology, Medicine, and the Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Haim Y Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Thomas Bernd Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
- Freie Universität Berlin, D-14195 Berlin, Germany
| | - Imad Shams
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
83
|
Pérez-Rodríguez L, Redondo T, Ruiz-Mata R, Camacho C, Moreno-Rueda G, Potti J. Vitamin E Supplementation—But Not Induced Oxidative Stress—Influences Telomere Dynamics During Early Development in Wild Passerines. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
84
|
Noguera JC, Velando A. Reduced telomere length in embryos exposed to predator cues. J Exp Biol 2019; 222:jeb.216176. [DOI: 10.1242/jeb.216176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
It is often assumed that embryos are isolated from external influences, but recent studies indicate that environmental stressors during prenatal stages can exert long-term negative effects on fitness. A potential mechanism by which predation risk may lastingly shape life-history traits and phenotypes is via effects on telomeres. However, whether prenatal exposition to environmental stressors, such as cues of predator presence, affects postnatal telomere length has not hitherto been investigated. Using an experimental design in which we modified the exposure of yellow-legged gull (Larus michahellis) embryos to social cues of predator presence (i.e. alarm calls), we show that prenatally exposed chicks had shorter telomeres after hatching. Since young birds with shorter telomere length have reduced fledging success, reproductive success and lifespan, the reduced telomere length in the exposed chicks is likely to have long-term fitness consequences. Moreover, our results provide a mechanistic link through which predators may negatively affect population dynamics.
Collapse
Affiliation(s)
- Jose C. Noguera
- Grupo de Ecología Animal (GEA), Dpto. de Ecología y Biología Animal, Universidad de Vigo, Vigo 36310, Spain
| | - Alberto Velando
- Grupo de Ecología Animal (GEA), Dpto. de Ecología y Biología Animal, Universidad de Vigo, Vigo 36310, Spain
| |
Collapse
|