51
|
Vieira CK, Marascalchi MN, Rodrigues AV, de Armas RD, Stürmer SL. Morphological and molecular diversity of arbuscular mycorrhizal fungi in revegetated iron-mining site has the same magnitude of adjacent pristine ecosystems. J Environ Sci (China) 2018; 67:330-343. [PMID: 29778166 DOI: 10.1016/j.jes.2017.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/11/2017] [Accepted: 08/25/2017] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are important during revegetation of mining sites, but few studies compared AMF community in revegetated sites with pristine adjacent ecosystems. The aim of this study was to assess AMF species richness in a revegetated iron-mining site and adjacent ecosystems and to relate AMF occurrence to soil chemical parameters. Soil samples were collected in dry and rainy seasons in a revegetated iron-mining site (RA) and compared with pristine ecosystems of forest (FL), canga (NG), and Cerrado (CE). AMF species were identified by spore morphology from field and trap cultures and by LSU rDNA sequencing using Illumina. A total of 62 AMF species were recovered, pertaining to 18 genera and nine families of Glomeromycota. The largest number of species and families were detected in RA, and Acaulospora mellea and Glomus sp1 were the most frequent species. Species belonging to Glomeraceae and Acaulosporaceae accounted for 42%-48% of total species richness. Total number of spores and mycorrhizal inoculum potential tended to be higher in the dry than in the rainy season, except in RA. Sequences of uncultured Glomerales were dominant in all sites and seasons and five species were detected exclusively by DNA-based identification. Redundancy analysis evidenced soil pH, organic matter, aluminum, and iron as main factors influencing AMF presence. In conclusion, revegetation of the iron-mining site seems to be effective in maintaining a diverse AMF community and different approaches are complementary to reveal AMF species, despite the larger number of species being identified by traditional identification of field spores.
Collapse
Affiliation(s)
- Caroline Krug Vieira
- Universidade Regional de Blumenau (FURB), Programa de Pós-Graduação em Engenharia Ambiental, 89030-903 Blumenau, SC, Brazil
| | | | - Arthur Vinicius Rodrigues
- Universidade Regional de Blumenau (FURB), Programa de Pós-Graduação em Engenharia Florestal, 89030-903 Blumenau, SC, Brazil
| | | | - Sidney Luiz Stürmer
- Universidade Regional de Blumenau (FURB), Departamento de Ciências Naturais (DCN), 89030-903 Blumenau, SC, Brazil.
| |
Collapse
|
52
|
León-Sánchez L, Nicolás E, Goberna M, Prieto I, Maestre FT, Querejeta JI. Poor plant performance under simulated climate change is linked to mycorrhizal responses in a semiarid shrubland. THE JOURNAL OF ECOLOGY 2018; 106:960-976. [PMID: 30078910 PMCID: PMC6071827 DOI: 10.1111/1365-2745.12888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Warmer and drier conditions associated with ongoing climate change will increase abiotic stress for plants and mycorrhizal fungi in drylands worldwide, thereby potentially reducing vegetation cover and productivity and increasing the risk of land degradation and desertification. Rhizosphere microbial interactions and feedbacks are critical processes that could either mitigate or aggravate the vulnerability of dryland vegetation to forecasted climate change.We conducted a four-year manipulative study in a semiarid shrubland in the Iberian Peninsula to assess the effects of warming (~2.5ºC; W), rainfall reduction (~30%; RR) and their combination (W+RR) on the performance of native shrubs (Helianthemum squamatum) and their associated mycorrhizal fungi.Warming (W and W+RR) decreased the net photosynthetic rates of H. squamatum shrubs by ~31% despite concurrent increases in stomatal conductance (~33%), leading to sharp decreases (~50%) in water use efficiency. Warming also advanced growth phenology, decreased leaf nitrogen and phosphorus contents per unit area, reduced shoot biomass production by ~36% and decreased survival during a dry year in both W and W+RR plants. Plants under RR showed more moderate decreases (~10-20%) in photosynthesis, stomatal conductance and shoot growth.Warming, RR and W+RR altered ectomycorrhizal fungal (EMF) community structure and drastically reduced the relative abundance of EMF sequences obtained by high-throughput sequencing, a response associated with decreases in the leaf nitrogen, phosphorus and dry matter contents of their host plants. In contrast to EMF, the community structure and relative sequence abundances of other non-mycorrhizal fungal guilds were not significantly affected by the climate manipulation treatments.Synthesis: Our findings highlight the vulnerability of both native plants and their symbiotic mycorrhizal fungi to climate warming and drying in semiarid shrublands, and point to the importance of a deeper understanding of plant-soil feedbacks to predict dryland vegetation responses to forecasted aridification. The interdependent responses of plants and ectomycorrhizal fungi to warming and rainfall reduction may lead to a detrimental feedback loop on vegetation productivity and nutrient pool size, which could amplify the adverse impacts of forecasted climate change on ecosystem functioning in EMF-dominated drylands.
Collapse
Affiliation(s)
- Lupe León-Sánchez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Emilio Nicolás
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Marta Goberna
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC, UVEG, GV), Moncada, Valencia, Spain
| | - Iván Prieto
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Fernando T. Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | | |
Collapse
|
53
|
Biological invasions increase the richness of arbuscular mycorrhizal fungi from a Hawaiian subtropical ecosystem. Biol Invasions 2018; 20:2421-2437. [PMID: 30956539 PMCID: PMC6417436 DOI: 10.1007/s10530-018-1710-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/14/2018] [Indexed: 11/26/2022]
Abstract
Biological invasions can have various impacts on the diversity of important microbial mutualists such as mycorrhizal fungi, but few studies have tested whether the effects of invasions on mycorrhizal diversity are consistent across spatial gradients. Furthermore, few of these studies have taken place in tropical ecosystems that experience an inordinate rate of invasions into native habitats. Here, we examined the effects of plant invasions dominated by non-native tree species on the diversity of arbuscular mycorrhizal (AM) fungi in Hawaii. To test the hypothesis that invasions result in consistent changes in AM fungal diversity across spatial gradients relative to native forest habitats, we sampled soil in paired native and invaded sites from three watersheds and used amplicon sequencing to characterize AM fungal communities. Whether our analyses considered phylogenetic relatedness or not, we found that invasions consistently increased the richness of AM fungi. However, AM fungal species composition was not related to invasion status of the vegetation nor local environment, but stratified by watershed. Our results suggest that while invasions can lead to an overall increase in the diversity of microbial mutualists, the effects of plant host identity or geographic structuring potentially outweigh those of invasive species in determining the community membership of AM fungi. Thus, host specificity and spatial factors such as dispersal need to be taken into consideration when examining the effects of biological invasions on symbiotic microbes.
Collapse
|
54
|
Xia Y, Sun J, Chen DG. Power and Sample Size Calculations for Microbiome Data. STATISTICAL ANALYSIS OF MICROBIOME DATA WITH R 2018. [DOI: 10.1007/978-981-13-1534-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
55
|
Vasar M, Andreson R, Davison J, Jairus T, Moora M, Remm M, Young JPW, Zobel M, Öpik M. Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. MYCORRHIZA 2017; 27:761-773. [PMID: 28730541 DOI: 10.1007/s00572-017-0791-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/12/2017] [Indexed: 05/26/2023]
Abstract
The arrival of 454 sequencing represented a major breakthrough by allowing deeper sequencing of environmental samples than was possible with existing Sanger approaches. Illumina MiSeq provides a further increase in sequencing depth but shorter read length compared with 454 sequencing. We explored whether Illumina sequencing improves estimates of arbuscular mycorrhizal (AM) fungal richness in plant root samples, compared with 454 sequencing. We identified AM fungi in root samples by sequencing amplicons of the SSU rRNA gene with 454 and Illumina MiSeq paired-end sequencing. In addition, we sequenced metagenomic DNA without prior PCR amplification. Amplicon-based Illumina sequencing yielded two orders of magnitude higher sequencing depth per sample than 454 sequencing. Initial analysis with minimal quality control recorded five times higher AM fungal richness per sample with Illumina sequencing. Additional quality control of Illumina samples, including restriction of the marker region to the most variable amplicon fragment, revealed AM fungal richness values close to those produced by 454 sequencing. Furthermore, AM fungal richness estimates were not correlated with sequencing depth between 300 and 30,000 reads per sample, suggesting that the lower end of this range is sufficient for adequate description of AM fungal communities. By contrast, metagenomic Illumina sequencing yielded very few AM fungal reads and taxa and was dominated by plant DNA, suggesting that AM fungal DNA is present at prohibitively low abundance in colonised root samples. In conclusion, Illumina MiSeq sequencing yielded higher sequencing depth, but similar richness of AM fungi in root samples, compared with 454 sequencing.
Collapse
Affiliation(s)
- Martti Vasar
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Str, 51005, Tartu, Estonia.
| | - Reidar Andreson
- Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Str, 51010, Tartu, Estonia
- Estonian Biocentre, 23b Riia Str, 51010, Tartu, Estonia
| | - John Davison
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Str, 51005, Tartu, Estonia
| | - Teele Jairus
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Str, 51005, Tartu, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Str, 51005, Tartu, Estonia
| | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Str, 51010, Tartu, Estonia
| | - J P W Young
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Str, 51005, Tartu, Estonia
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Str, 51005, Tartu, Estonia
| |
Collapse
|
56
|
Berruti A, Desirò A, Visentin S, Zecca O, Bonfante P. ITS fungal barcoding primers versus 18S AMF-specific primers reveal similar AMF-based diversity patterns in roots and soils of three mountain vineyards. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:658-667. [PMID: 28799720 DOI: 10.1111/1758-2229.12574] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/17/2017] [Accepted: 08/03/2017] [Indexed: 05/26/2023]
Abstract
ITS primers commonly used to describe soil fungi are flawed for AMF although it is unknown the extent to which they distort the interpretation of community patterns. Here, we focus on how the use of a specific ITS2 fungal barcoding primer pair biased for AMF changes the interpretation of AMF community patterns from three mountain vineyards compared to a novel AMF-specific approach on the 18S. We found that although discrepancies were present in the taxonomic composition of the two resulting datasets, the estimation of diversity patterns among AMF communities was similar and resulted in both primer systems being able to correctly assess the community-structuring effect of location, compartment (root vs. soil) and environment. Both methodologies made it possible to detect the same alpha-diversity trend among the locations under study but not between root and soil transects. We show that the ITS2 primer system for fungal barcoding provides a good estimate of both AMF community structure and relation to environmental variables. However, this primer system does not fit in with cross-compartment surveys (roots vs. soil) as it can underestimate AMF diversity in soil samples. When specifically focusing on AMF, the 18S primer system resulted in wide coverage and marginal non-target amplification.
Collapse
Affiliation(s)
- Andrea Berruti
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
- Institute for Sustainable Plant Protection, UOS Torino - National Research Council, viale Mattioli 25, Torino 10125, Italy
| | - Alessandro Desirò
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
| | - Stefano Visentin
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
| | - Odoardo Zecca
- Institut Agricole Re´gional, strada la Rochere 1, Aosta 11100, Italy
| | - Paola Bonfante
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
| |
Collapse
|
57
|
Pärtel M, Öpik M, Moora M, Tedersoo L, Szava-Kovats R, Rosendahl S, Rillig MC, Lekberg Y, Kreft H, Helgason T, Eriksson O, Davison J, de Bello F, Caruso T, Zobel M. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2017; 216:227-238. [PMID: 28722181 DOI: 10.1111/nph.14695] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/06/2017] [Indexed: 05/24/2023]
Abstract
The availability of global microbial diversity data, collected using standardized metabarcoding techniques, makes microorganisms promising models for investigating the role of regional and local factors in driving biodiversity. Here we modelled the global diversity of symbiotic arbuscular mycorrhizal (AM) fungi using currently available data on AM fungal molecular diversity (small subunit (SSU) ribosomal RNA (rRNA) gene sequences) in field samples. To differentiate between regional and local effects, we estimated species pools (sets of potentially suitable taxa) for each site, which are expected to reflect regional processes. We then calculated community completeness, an index showing the fraction of the species pool present, which is expected to reflect local processes. We found significant spatial variation, globally in species pool size, as well as in local and dark diversity (absent members of the species pool). Species pool size was larger close to areas containing tropical grasslands during the last glacial maximum, which are possible centres of diversification. Community completeness was greater in regions of high wilderness (remoteness from human disturbance). Local diversity was correlated with wilderness and current connectivity to mountain grasslands. Applying the species pool concept to symbiotic fungi facilitated a better understanding of how biodiversity can be jointly shaped by large-scale historical processes and recent human disturbance.
Collapse
Affiliation(s)
- Meelis Pärtel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Robert Szava-Kovats
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Søren Rosendahl
- Department of Biology, Sect. Ecology & Evolution, University of Copenhagen, Universitetsparken 15, Building 3, DK-2100, Copenhagen, Denmark
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Ylva Lekberg
- MPG Ranch, 1001 S. Higgins Ave, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Holger Kreft
- Department of Biodiversity, Macroecology and Biogeography, Georg-August-University Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Thorunn Helgason
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ove Eriksson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden
| | - John Davison
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Francesco de Bello
- Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlate Stoce 1, CZ-370 05, České Budějovice, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| | - Tancredi Caruso
- School of Biological Sciences, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
58
|
Hart MM, Antunes PM, Chaudhary VB, Abbott LK. Fungal inoculants in the field: Is the reward greater than the risk? Funct Ecol 2017. [DOI: 10.1111/1365-2435.12976] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Geoffroy A, Sanguin H, Galiana A, Bâ A. Molecular Characterization of Arbuscular Mycorrhizal Fungi in an Agroforestry System Reveals the Predominance of Funneliformis spp. Associated with Colocasia esculenta and Pterocarpus officinalis Adult Trees and Seedlings. Front Microbiol 2017; 8:1426. [PMID: 28804479 PMCID: PMC5532380 DOI: 10.3389/fmicb.2017.01426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Pterocarpus officinalis (Jacq.) is a leguminous forestry tree species endemic to Caribbean swamp forests. In Guadeloupe, smallholder farmers traditionally cultivate flooded taro (Colocasia esculenta) cultures under the canopy of P. officinalis stands. The role of arbuscular mycorrhizal (AM) fungi in the sustainability of this traditional agroforestry system has been suggested but the composition and distribution of AM fungi colonizing the leguminous tree and/or taro are poorly characterized. An in-depth characterization of root-associated AM fungal communities from P. officinalis adult trees and seedlings and taro cultures, sampled in two localities of Guadeloupe, was performed by pyrosequencing (GS FLX+) of partial 18S rRNA gene. The AM fungal community was composed of 215 operational taxonomic units (OTUs), belonging to eight fungal families dominated by Glomeraceae, Acaulosporaceae, and Gigasporaceae. Results revealed a low AM fungal community membership between P. officinalis and C. esculenta. However, certain AM fungal community taxa (10% of total community) overlapped between P. officinalis and C. esculenta, notably predominant Funneliformis OTUs. These findings provide new perspectives in deciphering the significance of Funneliformis in nutrient exchange between P. officinalis and C. esculenta by forming a potential mycorrhizal network.
Collapse
Affiliation(s)
- Alexandre Geoffroy
- Laboratoire de Biologie et Physiologie Végétales, L’Unité de Formation des Sciences Exactes et Naturelles, Unité Mixte de Recherche LSTM, Université des AntillesPointe-à-Pitre, France
- Unité Mixte de Recherche LTSM, Centre de Coopération Internationale en Recherche Agronomique Pour le DéveloppementMontpellier, France
| | - Hervé Sanguin
- Unité Mixte de Recherche LTSM, Centre de Coopération Internationale en Recherche Agronomique Pour le DéveloppementMontpellier, France
| | - Antoine Galiana
- Unité Mixte de Recherche LTSM, Centre de Coopération Internationale en Recherche Agronomique Pour le DéveloppementMontpellier, France
| | - Amadou Bâ
- Laboratoire de Biologie et Physiologie Végétales, L’Unité de Formation des Sciences Exactes et Naturelles, Unité Mixte de Recherche LSTM, Université des AntillesPointe-à-Pitre, France
| |
Collapse
|
60
|
Thijs S, Op De Beeck M, Beckers B, Truyens S, Stevens V, Van Hamme JD, Weyens N, Vangronsveld J. Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surveys. Front Microbiol 2017; 8:494. [PMID: 28400755 PMCID: PMC5368227 DOI: 10.3389/fmicb.2017.00494] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
Bacterial taxonomic community analyses using PCR-amplification of the 16S rRNA gene and high-throughput sequencing has become a cornerstone in microbiology research. To reliably detect the members, or operational taxonomic units (OTUs), that make up bacterial communities, taxonomic surveys rely on the use of the most informative PCR primers to amplify the broad range of phylotypes present in up-to-date reference databases. However, primers specific for the domain Bacteria were often developed some time ago against database versions that are now out of date. Here we evaluated the performance of four bacterial primers for characterizing complex microbial communities in explosives contaminated and non-contaminated forest soil and by in silico evaluation against the current SILVA123 database. Primer pair 341f/785r produced the highest number of bacterial OTUs, phylogenetic richness, Shannon diversity, low non-specificity and most reproducible results, followed by 967f/1391r and 799f/1193r. Primer pair 68f/518r showed overall low coverage and a bias toward Alphaproteobacteria. In silico, primer pair 341f/785r showed the highest coverage of the domain Bacteria (96.1%) with no obvious bias toward the majority of bacterial species. This suggests the high utility of primer pair 341f/785r for soil and plant-associated bacterial microbiome studies.
Collapse
Affiliation(s)
- Sofie Thijs
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | | | - Bram Beckers
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Sascha Truyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Vincent Stevens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University Kamloops, BC, Canada
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| |
Collapse
|
61
|
Gorzelak MA, Pickles BJ, Hart MM. Exploring the symbiont diversity of ancient western redcedars: arbuscular mycorrhizal fungi of long-lived hosts. Mol Ecol 2017; 26:1586-1597. [PMID: 28099772 DOI: 10.1111/mec.14023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are globally distributed, monophyletic root symbionts with ancient origins. Their contribution to carbon cycling and nutrient dynamics is ecologically important, given their obligate association with over 70% of vascular plant species. Current understanding of AMF species richness and community structure is based primarily on studies of grasses, herbs and agricultural crops, typically in disturbed environments. Few studies have considered AMF interactions with long-lived woody perennial species in undisturbed ecosystems. Here we examined AMF communities associated with roots and soils of young, mature and old western redcedar (Thuja plicata) at two sites in the old-growth temperate rainforests of British Columbia. Due to the unique biology of AMF, community richness and structure were assessed using a conservative, clade-based approach. We found 91 AMF OTUs across all samples, with significantly greater AMF richness in the southern site, but no differences in richness along the host chronosequence at either site. All host age classes harboured AMF communities that were overdispersed (more different to each other than expected by chance), with young tree communities most resembling old tree communities. A comparison with similar clade richness data obtained from the literature indicates that western redcedar AMF communities are as rich as those of grasses, tropical trees and palms. Our examination of undisturbed temperate old-growth rainforests suggests that priority effects, rather than succession, are an important aspect of AMF community assembly in this ecosystem.
Collapse
Affiliation(s)
- Monika A Gorzelak
- Department of Forest and Conservation Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brian J Pickles
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, RG6 8AS, UK
| | - Miranda M Hart
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
62
|
Laila R, Robin AHK, Yang K, Choi GJ, Park JI, Nou IS. Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates. Int J Mol Sci 2017; 18:E84. [PMID: 28054984 PMCID: PMC5297718 DOI: 10.3390/ijms18010084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/16/2022] Open
Abstract
Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae). It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates), collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY). The nuclear ribosomal DNA (rDNA) sequence of P. brassicae, comprising 6932 base pairs (bp), was cloned and sequenced and found to include the small subunits (SSUs) and a large subunit (LSU), internal transcribed spacers (ITS1 and ITS2), and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs), oligonucleotide polymorphisms, and insertions/deletions (InDels). A combination of three markers was able to distinguish the geographical isolates into two groups.
Collapse
Affiliation(s)
- Rawnak Laila
- Department of Horticulture, Sunchon National University, Suncheon 540-950, Korea.
| | | | - Kiwoung Yang
- Department of Horticulture, Sunchon National University, Suncheon 540-950, Korea.
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 540-950, Korea.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 540-950, Korea.
| |
Collapse
|
63
|
Arbuscular mycorrhizal fungi associating with roots of Alnus and Rubus in Europe and the Middle East. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
64
|
Sanders IR, Rodriguez A. Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. THE ISME JOURNAL 2016; 10:2780-2786. [PMID: 27128992 PMCID: PMC5148194 DOI: 10.1038/ismej.2016.73] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 02/02/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) occur in the roots of most plants and are an ecologically important component of the soil microbiome. Richness of AMF taxa is a strong driver of plant diversity and productivity, thus providing a rationale for characterizing AMF diversity in natural ecosystems. Consequently, a large number of molecular studies on AMF community composition are currently underway. Most published studies, at best, only address species or genera-level resolution. However, several experimental studies indicate that variation in plant performance is large among plants colonised by different individuals of one AMF species. Thus, there is a potential disparity between how molecular community ecologists are currently describing AMF diversity and the level of AMF diversity that may actually be ecologically relevant. We propose a strategy to find many polymorphic loci that can define within-species genetic variability within AMF, or at any level of resolution desired within the Glomermycota. We propose that allele diversity at the intraspecific level could then be measured for target AMF groups, or at other levels of resolution, in environmental DNA samples. Combining the use of such markers with experimental studies on AMF diversity would help to elucidate the most important level(s) of AMF diversity in plant communities. Our goal is to encourage ecologists who are trying to explain how mycorrhizal fungal communities are structured to take an approach that could also yield meaningful information that is relevant to the diversity, functioning and productivity of ecosystems.
Collapse
Affiliation(s)
- Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alia Rodriguez
- Biology Department, Faculty of Science, National University of Colombia, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
65
|
Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
66
|
Zheng Y, Chen L, Luo CY, Zhang ZH, Wang SP, Guo LD. Plant Identity Exerts Stronger Effect than Fertilization on Soil Arbuscular Mycorrhizal Fungi in a Sown Pasture. MICROBIAL ECOLOGY 2016; 72:647-58. [PMID: 27423979 DOI: 10.1007/s00248-016-0817-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 05/26/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play key roles in plant nutrition and plant productivity. AM fungal responses to either plant identity or fertilization have been investigated. However, the interactive effects of different plant species and fertilizer types on these symbiotic fungi remain poorly understood. We evaluated the effects of the factorial combinations of plant identity (grasses Avena sativa and Elymus nutans and legume Vicia sativa) and fertilization (urea and sheep manure) on AM fungi following 2-year monocultures in a sown pasture field study. AM fungal extraradical hyphal density was significantly higher in E. nutans than that in A. sativa and V. sativa in the unfertilized control and was significantly increased by urea and manure in A. sativa and by manure only in E. nutans, but not by either fertilizers in V. sativa. AM fungal spore density was not significantly affected by plant identity or fertilization. Forty-eight operational taxonomic units (OTUs) of AM fungi were obtained through 454 pyrosequencing of 18S rDNA. The OTU richness and Shannon diversity index of AM fungi were significantly higher in E. nutans than those in V. sativa and/or A. sativa, but not significantly affected by any fertilizer in all of the three plant species. AM fungal community composition was significantly structured directly by plant identity only and indirectly by both urea addition and plant identity through soil total nitrogen content. Our findings highlight that plant identity has stronger influence than fertilization on belowground AM fungal community in this converted pastureland from an alpine meadow.
Collapse
Affiliation(s)
- Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai-Yun Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Zhen-Hua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shi-Ping Wang
- Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
67
|
Nadimi M, Stefani FOP, Hijri M. The large (134.9 kb) mitochondrial genome of the glomeromycete Funneliformis mosseae. MYCORRHIZA 2016; 26:747-755. [PMID: 27246226 DOI: 10.1007/s00572-016-0710-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Funneliformis mosseae is among the most ecologically and economically important glomeromycete species and occurs both in natural and disturbed areas in a wide range of habitats and climates. In this study, we report the sequencing of the complete mitochondrial (mt) genome of F. mosseae isolate FL299 using 454 pyrosequencing and Illumina HiSeq technologies. This mt genome is a full-length circular chromosome of 134,925 bp, placing it among the largest mitochondrial DNAs (mtDNAs) in the fungal kingdom. A comparative analysis with publically available arbuscular mycorrhizal fungal mtDNAs revealed that the mtDNA of F. mosseae FL299 contained a very large number of insertions contributing to its expansion. The gene synteny was completely reshuffled compared to previously published glomeromycotan mtDNAs and several genes were oriented in an anti-sense direction. Furthermore, the presence of different types of introns and insertions in rnl (14 introns) made this gene very distinctive in Glomeromycota. The presence of alternative genetic codes in both initiation (GUG) and termination (UGA) codons was another new feature in this mtDNA compared to previously published glomeromycotan mt genomes. The phylogenetic analysis inferred from the analysis of 14 protein mt genes confirmed the position of the Glomeromycota clade as a sister group of Mortierellomycotina. This mt genome is the largest observed so far in Glomeromycota and the first mt genome within the Funneliformis clade, providing new opportunities to better understand their evolution and to develop molecular markers.
Collapse
Affiliation(s)
- Maryam Nadimi
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Franck O P Stefani
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.
| |
Collapse
|
68
|
AMF components from a microbial inoculum fail to colonize roots and lack soil persistence in an arable maize field. Symbiosis 2016. [DOI: 10.1007/s13199-016-0442-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
69
|
Phylogenetically Structured Differences in rRNA Gene Sequence Variation among Species of Arbuscular Mycorrhizal Fungi and Their Implications for Sequence Clustering. Appl Environ Microbiol 2016; 82:4921-30. [PMID: 27260357 DOI: 10.1128/aem.00816-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Arbuscular mycorrhizal (AM) fungi form mutualisms with plant roots that increase plant growth and shape plant communities. Each AM fungal cell contains a large amount of genetic diversity, but it is unclear if this diversity varies across evolutionary lineages. We found that sequence variation in the nuclear large-subunit (LSU) rRNA gene from 29 isolates representing 21 AM fungal species generally assorted into genus- and species-level clades, with the exception of species of the genera Claroideoglomus and Entrophospora However, there were significant differences in the levels of sequence variation across the phylogeny and between genera, indicating that it is an evolutionarily constrained trait in AM fungi. These consistent patterns of sequence variation across both phylogenetic and taxonomic groups pose challenges to interpreting operational taxonomic units (OTUs) as approximations of species-level groups of AM fungi. We demonstrate that the OTUs produced by five sequence clustering methods using 97% or equivalent sequence similarity thresholds failed to match the expected species of AM fungi, although OTUs from AbundantOTU, CD-HIT-OTU, and CROP corresponded better to species than did OTUs from mothur or UPARSE. This lack of OTU-to-species correspondence resulted both from sequences of one species being split into multiple OTUs and from sequences of multiple species being lumped into the same OTU. The OTU richness therefore will not reliably correspond to the AM fungal species richness in environmental samples. Conservatively, this error can overestimate species richness by 4-fold or underestimate richness by one-half, and the direction of this error will depend on the genera represented in the sample. IMPORTANCE Arbuscular mycorrhizal (AM) fungi form important mutualisms with the roots of most plant species. Individual AM fungi are genetically diverse, but it is unclear whether the level of this diversity differs among evolutionary lineages. We found that the amount of sequence variation in an rRNA gene that is commonly used to identify AM fungal species varied significantly between evolutionary groups that correspond to different genera, with the exception of two genera that are genetically indistinguishable from each other. When we clustered groups of similar sequences into operational taxonomic units (OTUs) using five different clustering methods, these patterns of sequence variation caused the number of OTUs to either over- or underestimate the actual number of AM fungal species, depending on the genus. Our results indicate that OTU-based inferences about AM fungal species composition from environmental sequences can be improved if they take these taxonomically structured patterns of sequence variation into account.
Collapse
|
70
|
Selosse MA, Vincenot L, Öpik M. Data processing can mask biology: towards better reporting of fungal barcoding data? THE NEW PHYTOLOGIST 2016; 210:1159-1164. [PMID: 26818207 DOI: 10.1111/nph.13851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lucie Vincenot
- Ecodiv URA/IRSTEA/EA-1293, Normandie Université, SFR Scale 4116, UFR Sciences & Techniques, Université de Rouen, Mont-Saint-Aignan, 76821, France
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., Tartu, 51005, Estonia
| |
Collapse
|
71
|
Thiéry O, Vasar M, Jairus T, Davison J, Roux C, Kivistik PA, Metspalu A, Milani L, Saks Ü, Moora M, Zobel M, Öpik M. Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions ofRhizophagus irregularisandGigaspora margaritais high and isolate-dependent. Mol Ecol 2016; 25:2816-32. [DOI: 10.1111/mec.13655] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/29/2016] [Accepted: 04/14/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Odile Thiéry
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Martti Vasar
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Teele Jairus
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - John Davison
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales; UPS; CNRS 24 chemin de Borde Rouge-Auzeville; BP 42617; Université de Toulouse; 31326 Castanet-Tolosan France
| | - Paula-Ann Kivistik
- Estonian Genome Center; University of Tartu; 23b Riia St. 51010 Tartu Estonia
| | - Andres Metspalu
- Estonian Genome Center; University of Tartu; 23b Riia St. 51010 Tartu Estonia
| | - Lili Milani
- Estonian Genome Center; University of Tartu; 23b Riia St. 51010 Tartu Estonia
| | - Ülle Saks
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Mari Moora
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Martin Zobel
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Maarja Öpik
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| |
Collapse
|
72
|
DNA-metabarcoding uncovers the diversity of soil-inhabiting fungi in the tropical island of Puerto Rico. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Johansen RB, Vestberg M, Burns BR, Park D, Hooker JE, Johnston PR. A coastal sand dune in New Zealand reveals high arbuscular mycorrhizal fungal diversity. Symbiosis 2015. [DOI: 10.1007/s13199-015-0355-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|