51
|
Liu H, Yu W, Wu J, Li Z, Li H, Zhou J, Hu J, Lu Y. Identification and characterization of circular RNAs during wood formation of poplars in acclimation to low nitrogen availability. PLANTA 2020; 251:47. [PMID: 31925576 DOI: 10.1007/s00425-020-03338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Circular RNA (circRNA) identification and expression profiles, and construction of circRNAs-miRNAs-mRNAs networks indicates that circRNAs are involved in wood formation of poplars in acclimation to low nitrogen availability. Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in wood formation of poplars in acclimation to low nitrogen (N) availability are currently unknown. Here, we undertook a systematic identification and characterization of circRNAs in the wood of Populus × canescens exposed to either 50 (low N) or 500 (normal N) µM NH4NO3 using rRNA-depleted RNA-sequencing. A total of 2,509 unique circRNAs were identified, and 163 (ca. 6.5%) circRNAs were significantly differentially expressed (DE) under low N condition. We observed a positive correlation between the expression patterns of DE circRNAs and their hosting protein-coding genes. Moreover, circRNAs-miRNAs-mRNAs' networks were identified in the wood of poplars under low N availability. For instance, upregulated several circRNAs, such as circRNA1226, circRNA 1732, and circRNA392 induced increases in nuclear factor Y, subunit A1-A (NFYA1-A), NFYA1-B, and NFYA10 transcript levels via the mediation of miR169b members, which is in line with reduced xylem width and cell layers of the xylem in the wood of low N-supplied poplars. Upregulation of circRNA1006, circRNA1344, circRNA1941, circRNA901, and circRNA146 caused increased transcript level of MYB61 via the mediation of a miR5021 member, corresponding well to the higher lignin concentration in the wood of low N-treated poplars. Overall, these results indicated that DE circRNAs play an essential role in regulating gene expression via circRNAs-miRNAs-mRNAs' networks to modulate wood anatomical and chemical properties of poplars in acclimation to low N availability.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of State Forestry and Grassland Administration, Non-Timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Wanwen Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institution of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510000, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jingjing Hu
- Inertia Shanghai Biotechnology Co., Ltd., Shanghai, 200335, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
52
|
Han Y, Li X, Yan Y, Duan MH, Xu JH. Identification, characterization, and functional prediction of circular RNAs in maize. Mol Genet Genomics 2020; 295:491-503. [PMID: 31894398 DOI: 10.1007/s00438-019-01638-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are a new type of intracellular regulator that have been widely identified in animals and plants by high-throughput sequencing. However, there are still few functional studies on circRNAs in plants. To better understand maize circRNAs and their potential functions, we identified 1199 circRNAs in maize from RiboMinus RNA-Seq transcriptome data, and found distinct features of splicing site selection bias, longer flanking introns, and miniature inverted-repeat transposable element (MITE) insertions in flanking introns in maize circRNAs compared to other plant circRNAs. In total, 31 and 36 orthologous circRNAs were identified in rice and maize, respectively, but the orthologous parental genes could not produce orthologous circRNAs, mostly because of long-sequence insertions/deletions at flanking introns and approximately 24.3% of them contained MITE sequences. The majority of maize circRNAs showed high diversity of expression under different treatments and/or in different genetic backgrounds, implying that circRNAs could be involved in various regulatory networks. Twenty-six ecircRNAs were predicted to contain one or more target mimics, and 229 circRNAs had high coding potential, indicating that circRNAs could perform peptide-encoding functions in plants. These results will broaden understanding of the roles of circRNAs in plants and support further functional work on maize.
Collapse
Affiliation(s)
- Yang Han
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xinxin Li
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Yan
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. and Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., Hangzhou, 310021, People's Republic of China
| | - Jian-Hong Xu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
53
|
Vaschetto LM, Litholdo CG, Sendín LN, Terenti Romero CM, Filippone MP. Cereal Circular RNAs (circRNAs): An Overview of the Computational Resources for Identification and Analysis. Methods Mol Biol 2020; 2072:157-163. [PMID: 31541445 DOI: 10.1007/978-1-4939-9865-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circular RNAs (circRNAs) are a widespread class of endogenous noncoding RNAs and they have been studied in the past few years, implying important biological functions in all kingdoms of life. Recently, circRNAs have been identified in many plant species, including cereal crops, showing differential expression during stress response and developmental programs, which suggests their role in these process. In the following years, it is expected that insights into the functional roles of circRNAs can be used by cereal scientists and molecular breeders with the aim to develop new strategies for crop improvement. Here, we briefly outline the current knowledge about circRNAs in plants and we also outline available computational resources for their validation and analysis in cereal species.
Collapse
Affiliation(s)
- Luis M Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Córdoba, Argentina.
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Córdoba, Argentina.
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, USA.
| | - Celso Gaspar Litholdo
- Centre National pour la Recherche Scientifique (CNRS)/Université de Perpignan Via Domitia (UPVD)-Laboratoire Génome et Développement des Plantes (LGDP-UMR5096), Perpignan, France
| | - Lorena Noelia Sendín
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Claudia Mabel Terenti Romero
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria San Luis (INTA, EEA SAN LUIS), San Luis, Argentina
| | - María Paula Filippone
- Universidad Nacional de Tucumán, Facultad de Agronomía y Zootecnia, (UNT-FAZ), Tucumán, Argentina
| |
Collapse
|
54
|
Regulatory networks of circRNAs related to transcription factors in Populus euphratica Oliv. heteromorphic leaves. Biosci Rep 2019; 39:221382. [PMID: 31790153 PMCID: PMC6911160 DOI: 10.1042/bsr20190540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs that are characterized by a covalently closed circular structure. They have been widely found in Populus euphratica Oliv. heteromorphic leaves (P. hl). To study the role of circRNAs related to transcription factors (TFs) in the morphogenesis of P. hl, the expression profiles of circRNAs in linear, lanceolate, ovate, and broad-ovate leaves of P. euphratica were elucidated by strand-specific sequencing. We identified and characterized 22 circRNAs related to TFs in P. hl at the four developmental stages. Using the competing endogenous RNAs hypothesis as a guide, we constructed circRNA-miRNA-TF mRNA regulatory networks, which indicated that circRNAs antagonized microRNAs (miRNAs), thereby influencing the expression of the miRNA target genes and playing a significant role in transcriptional regulation. Gene ontology annotation of the target TF genes predicted that these circRNAs were associated mainly with the regulation of leaf development, leaf morphogenesis, signal transduction, and response to abiotic stress. These findings implied that the circRNAs affected the size and number of cells in P. hl by regulating the expression of TF mRNAs. Our results provide a basis for further studies of leaf development in poplar trees.
Collapse
|
55
|
Drongitis D, Aniello F, Fucci L, Donizetti A. Roles of Transposable Elements in the Different Layers of Gene Expression Regulation. Int J Mol Sci 2019; 20:ijms20225755. [PMID: 31731828 PMCID: PMC6888579 DOI: 10.3390/ijms20225755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/03/2023] Open
Abstract
The biology of transposable elements (TEs) is a fascinating and complex field of investigation. TEs represent a substantial fraction of many eukaryotic genomes and can influence many aspects of DNA function that range from the evolution of genetic information to duplication, stability, and gene expression. Their ability to move inside the genome has been largely recognized as a double-edged sword, as both useful and deleterious effects can result. A fundamental role has been played by the evolution of the molecular processes needed to properly control the expression of TEs. Today, we are far removed from the original reductive vision of TEs as “junk DNA”, and are more convinced that TEs represent an essential element in the regulation of gene expression. In this review, we summarize some of the more recent findings, mainly in the animal kingdom, concerning the active roles that TEs play at every level of gene expression regulation, including chromatin modification, splicing, and protein translation.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy;
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Laura Fucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
- Correspondence:
| |
Collapse
|
56
|
Yu Y, Zhang Y, Chen X, Chen Y. Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annu Rev Cell Dev Biol 2019; 35:407-431. [PMID: 31403819 DOI: 10.1146/annurev-cellbio-100818-125218] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A large and significant portion of eukaryotic transcriptomes consists of noncoding RNAs (ncRNAs) that have minimal or no protein-coding capacity but are functional. Diverse ncRNAs, including both small RNAs and long ncRNAs (lncRNAs), play essential regulatory roles in almost all biological processes by modulating gene expression at the transcriptional and posttranscriptional levels. In this review, we summarize the current knowledge of plant small RNAs and lncRNAs, with a focus on their biogenesis, modes of action, local and systemic movement, and functions at the nexus of plant development and environmental responses. The complex connections among small RNAs, lncRNAs, and small peptides in plants are also discussed, along with the challenges of identifying and investigating new classes of ncRNAs.
Collapse
Affiliation(s)
- Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xuemei Chen
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
57
|
Wang Y, Xiong Z, Li Q, Sun Y, Jin J, Chen H, Zou Y, Huang X, Ding Y. Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition. BMC PLANT BIOLOGY 2019; 19:340. [PMID: 31382873 PMCID: PMC6683460 DOI: 10.1186/s12870-019-1944-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/25/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are known to play an important role in the regulation of gene expression in eukaryotes. Photo-thermosensitive genic male sterile (PTGMS) is a very important germplasm resource in two-line hybrid rice breeding. Although many circRNAs have been identified in rice (Oryza sativa L.), little is known about the biological roles of circRNAs in the fertility transition of the PTGMS rice line. RESULTS In the present study, RNA-sequencing libraries were constructed from the young panicles of the Wuxiang S sterile line rice (WXS (S)) and its fertile line rice (WXS (F)) at three development stages with three biological replicates. A total of 9994 circRNAs were obtained in WXS rice based on high-throughput strand-specific RNA sequencing and bioinformatic approaches, of which 5305 were known circRNAs and 4689 were novel in rice. And 14 of 16 randomly selected circRNAs were experimentally validated with divergent primers. Our results showed that 186 circRNAs were significantly differentially expressed in WXS (F) compared with WXS (S), of which 97, 87 and 60 circRNAs were differentially expressed at the pollen mother cell (PMC) formation stage (P2), the meiosis stage (P3) and the microspore formation stage (P4), respectively. Fertility specific expression patterns of eight circRNAs were analysis by qRT-PCR. Gene ontology (GO) and KEGG pathway analysis of the parental genes of differentially expressed circRNAs (DECs) revealed that they mainly participated in various biological processes such as development, response to stimulation, hormonal regulation, and reproduction. Furthermore, 15 DECs were found to act as putative miRNA sponges to involved in fertility transition in PTGMS rice line. CONCLUSION In the present study, the abundance and characteristics of circRNAs were investigated in the PTGMS rice line using bioinformatic approaches. Moreover, the expression patterns of circRNAs were different between WXS (F) and WXS (S). Our findings primarily revealed that circRNAs might be endogenous noncoding regulators of flower and pollen development, and were involved in the fertility transition in the PTGMS rice line, and guide the production and application of two-line hybrid rice.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zeyang Xiong
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Qian Li
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yueyang Sun
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jing Jin
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Hao Chen
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yu Zou
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | | | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
58
|
Luo Z, Han L, Qian J, Li L. Circular RNAs exhibit extensive intraspecific variation in maize. PLANTA 2019; 250:69-78. [PMID: 30904942 DOI: 10.1007/s00425-019-03145-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Comprehensive transcriptome profiling uncovers extensive intraspecific variation of circular RNAs in maize, shedding light on genomic and phenotypic variation among maize inbred lines. Circular RNAs (circRNAs) are single-strand, covalently closed transcripts. A substantial number of circRNAs have been identified and shown to be associated with phenotypic variation in various species. However, little is known about the intraspecific variation of circRNAs in maize (Zea mays L.). Here, we collected a large transcriptomic dataset (by circRNA-seq and mRNA-seq) from seedling leaves of the reference maize inbred lines B73 and Mo17. We identified over 1500 circRNAs in these lines using two circRNA detection methods, CIRCexplorer2 and CIRI. Notably, a substantial proportion of circRNAs varied in terms of sequence or expression level between lines, pointing to extensive intraspecific variation of circRNAs in maize. GO and KEGG analyses showed that genes producing circRNAs with intraspecific variation were more likely to be enriched in multiple functional groups, compared with those that did not produce circRNAs. These findings suggest that circRNAs could be utilized as an indicator of genomic and phenotypic variation among maize inbred lines. Ribosomal profiling revealed that several circRNAs might have translational capacity in maize. These results uncover the extensive intraspecific variation of circRNAs and pave the way for further understanding the molecular mechanisms underlying phenotypic variation at the circRNA level in maize.
Collapse
Affiliation(s)
- Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Crop Information Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Crop Information Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Crop Information Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Crop Information Center, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
59
|
Wang Y, Gao Y, Zhang H, Wang H, Liu X, Xu X, Zhang Z, Kohnen MV, Hu K, Wang H, Xi F, Zhao L, Lin C, Gu L. Genome-Wide Profiling of Circular RNAs in the Rapidly Growing Shoots of Moso Bamboo (Phyllostachys edulis). PLANT & CELL PHYSIOLOGY 2019; 60:1354-1373. [PMID: 30835314 DOI: 10.1093/pcp/pcz043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/24/2019] [Indexed: 05/19/2023]
Abstract
Circular RNAs, including circular exonic RNAs (circRNA), circular intronic RNAs (ciRNA) and exon-intron circRNAs (EIciRNAs), are a new type of noncoding RNAs. Growing shoots of moso bamboo (Phyllostachys edulis) represent an excellent model of fast growth and their circular RNAs have not been studied yet. To understand the potential regulation of circular RNAs, we systematically characterized circular RNAs from eight different developmental stages of rapidly growing shoots. Here, we identified 895 circular RNAs including a subset of mutually inclusive circRNA. These circular RNAs were generated from 759 corresponding parental coding genes involved in cellulose, hemicellulose and lignin biosynthetic process. Gene co-expression analysis revealed that hub genes, such as DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), MAINTENANCE OF METHYLATION (MOM), dicer-like 3 (DCL3) and ARGONAUTE 1 (AGO1), were significantly enriched giving rise to circular RNAs. The expression level of these circular RNAs presented correlation with its linear counterpart according to transcriptome sequencing. Further protoplast transformation experiments indicated that overexpressing circ-bHLH93 generating from transcription factor decreased its linear transcript. Finally, the expression profiles suggested that circular RNAs may have interplay with miRNAs to regulate their cognate linear mRNAs, which was further supported by overexpressing miRNA156 decreasing the transcript of circ-TRF-1 and linear transcripts of TRF-1. Taken together, the overall profile of circular RNAs provided new insight into an unexplored category of long noncoding RNA regulation in moso bamboo.
Collapse
Affiliation(s)
- Yongsheng Wang
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihui Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqing Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Xu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Markus V Kohnen
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiqiang Hu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feihu Xi
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangzhen Zhao
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| | - Lianfeng Gu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
60
|
Zhang P, Fan Y, Sun X, Chen L, Terzaghi W, Bucher E, Li L, Dai M. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:697-713. [PMID: 30715761 DOI: 10.1111/tpj.14267] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 05/19/2023]
Abstract
Drought is a major abiotic stress that threatens global food security. Circular RNAs (circRNAs) are endogenous RNAs. How these molecules influence plant stress responses remains elusive. Here, a large-scale circRNA profiling identified 2174 and 1354 high-confidence circRNAs in maize and Arabidopsis, respectively, and most were differentially expressed in response to drought. A substantial number of drought-associated circRNA-hosting genes were involved in conserved or species-specific pathways in drought responses. Comparative analysis revealed that circRNA biogenesis was more complex in maize than in Arabidopsis. In most cases, maize circRNAs were negatively correlated with sRNA accumulation. In 368 maize inbred lines, the circRNA-hosting genes were enriched for single nucleotide polymorphisms (SNPs) associated with circRNA expression and drought tolerance, implying either important roles of circRNAs in maize drought responses or their potential use as biomarkers for breeding drought-tolerant maize. Additionally, the expression levels of circRNAs derived from drought-responsible genes encoding calcium-dependent protein kinase and cytokinin oxidase/dehydrogenase were significantly associated with drought tolerance of maize seedlings. Specifically, Arabidopsis plants overexpressing circGORK (Guard cell outward-rectifying K+ -channel) were hypersensitive to abscisic acid, but insensitive to drought, suggesting a positive role of circGORK in drought tolerance. We report the transcriptomic profiling and transgenic studies of circRNAs in plant drought responses, and provide evidence highlighting the universal molecular mechanisms involved in plant drought tolerance.
Collapse
Affiliation(s)
- Pei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Etienne Bucher
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université Bretagne Loire, 49045, Angers, France
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
61
|
Zhu YX, Jia JH, Yang L, Xia YC, Zhang HL, Jia JB, Zhou R, Nie PY, Yin JL, Ma DF, Liu LC. Identification of cucumber circular RNAs responsive to salt stress. BMC PLANT BIOLOGY 2019; 19:164. [PMID: 31029105 PMCID: PMC6486992 DOI: 10.1186/s12870-019-1712-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/11/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are 3'-5' head-to-tail covalently closed non-coding RNA that have been proved to play essential roles in many cellular and developmental processes. However, no information relate to cucumber circRNAs is available currently, especially under salt stress condition. RESULTS In this study, we sequenced circRNAs in cucumber and a total of 2787 were identified, with 1934 in root and 44 in leaf being differentially regulated under salt stress. Characteristics analysis of these circRNAs revealed following features: most of them are exon circRNAs (79.51%) and they prefer to arise from middle exon(s) of parent genes (2035/2516); moreover, most of circularization events (88.3%) use non-canonical-GT/AG splicing signals; last but not least, pairing-driven circularization is not the major way to generate cucumber circRNAs since very few circRNAs (18) contain sufficient flanking complementary sequences. Annotation and enrichment analysis of both parental genes and target mRNAs were launched to uncover the functions of differentially expressed circRNAs induced by salt stress. The results showed that circRNAs may be paly roles in salt stress response by mediating transcription, signal transcription, cell cycle, metabolism adaptation, and ion homeostasis related pathways. Moreover, circRNAs may function to regulate proline metabolisms through regulating associated biosynthesis and degradation genes. CONCLUSIONS The present study identified large number of cucumber circRNAs and function annotation revealed their possible biological roles in response to salt stress. Our findings will lay a solid foundation for further structure and function studies of cucumber circRNAs.
Collapse
Affiliation(s)
- Yong-Xing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jian-Hua Jia
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Lei Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yu-Chen Xia
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Hui-Li Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jin-Bu Jia
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Ran Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Pei-Yao Nie
- Biomarker Technologies, Beijing, 101300 China
| | - Jun-Liang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Dong-Fang Ma
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Le-Cheng Liu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| |
Collapse
|
62
|
Xu Y, Ren Y, Lin T, Cui D. Identification and characterization of CircRNAs involved in the regulation of wheat root length. Biol Res 2019; 52:19. [PMID: 30947746 PMCID: PMC6448277 DOI: 10.1186/s40659-019-0228-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. METHODS LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. RESULTS Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. CONCLUSIONS The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length.
Collapse
Affiliation(s)
- Yanhua Xu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.,College of life science, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangqun Cui
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
63
|
Zhao W, Chu S, Jiao Y. Present Scenario of Circular RNAs (circRNAs) in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:379. [PMID: 31001302 PMCID: PMC6454147 DOI: 10.3389/fpls.2019.00379] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/12/2019] [Indexed: 05/22/2023]
Abstract
Circular RNAs (circRNAs) are new endogenous non-coding RNA family members that arise during pre-mRNA splicing in a reversed order in which the 3' and 5' ends are covalently closed. Compared to the comprehensive investigation of circRNAs in animals, circRNA research in plants is still in its infancy. Genome-wide identification and characterization of circRNAs have recently been performed in several plant species. CircRNAs are ubiquitously expressed and abundant in plants. The expression of circRNAs is often dependent on cell-type, tissue, and developmental stage, and it is particularly stress-inducible in plants. CircRNAs might play important roles in various biological processes in plants, including development and the response to biotic and abiotic stresses. Here, we review the current literature and provide a brief overview of circRNAs and their research status in plants, as well as the bioinformatic tools and database resources for circRNA analysis.
Collapse
Affiliation(s)
- Wei Zhao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
64
|
Wang K, Wang C, Guo B, Song K, Shi C, Jiang X, Wang K, Tan Y, Wang L, Wang L, Li J, Li Y, Cai Y, Zhao H, Sun X. CropCircDB: a comprehensive circular RNA resource for crops in response to abiotic stress. Database (Oxford) 2019; 2019:baz053. [PMID: 31058278 PMCID: PMC6501434 DOI: 10.1093/database/baz053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022]
Abstract
Circular RNA (circRNAs) may mediate mRNA expression as miRNA sponge. Since the community has paid more attention on circRNAs, a lot of circRNA databases have been developed for plant. However, a comprehensive collection of circRNAs in crop response to abiotic stress is still lacking. In this work, we applied a big-data approach to take full advantage of large-scale sequencing data, and developed a rich circRNA resource: CropCircDB for maize and rice, later extending to incorporate more crop species. We also designed a metric: stress detections score, which is specifically for detecting circRNAs under stress condition. In summary, we systematically investigated 244 and 288 RNA-Seq samples for maize and rice, respectively, and found 38 785 circRNAs in maize, and 63 048 circRNAs in rice. This resource not only supports user-friendly JBrowser to visualize genome easily, but also provides elegant view of circRNA structures and dynamic profiles of circRNA expression in all samples. Together, this database will host all predicted and validated crop circRNAs response to abiotic stress.
Collapse
Affiliation(s)
- Kai Wang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Chong Wang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Baohuan Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Kun Song
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Chuanhong Shi
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xin Jiang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Keyi Wang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yacong Tan
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Lequn Wang
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Lin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jiangjiao Li
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ying Li
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yu Cai
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Hongwei Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyong Sun
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| |
Collapse
|
65
|
Liu S, Wang Q, Li X, Wang G, Wan Y. Detecting of chloroplast circular RNAs in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2019; 14:1621088. [PMID: 31130103 PMCID: PMC6619943 DOI: 10.1080/15592324.2019.1621088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed single-strand RNA molecules identified in eukaryotes. Here we report 10 sequences of chloroplast genome (cpDNA) encoded circRNAs (cp-circRNA) from 3-day-old Arabidopsis thaliana seedlings via next-generation sequencing. Their parental sequences were referred to as exonic, intronic, and intergenic gene sequences. Due to the very low level of cp-circRNA expression, we attempted to use a digital polymerase chain reaction technique to validate their existence. Four of these circRNAs were confirmed: ath_circ_476, ath_circ_477, ath_circ_478, and ath_circ_480. Their expression levels in etiolated and de-etiolated seedlings were quantified using digital PCR. Of the four, the exonic circRNA ath_circ_476 was highly expressed in etiolated seedlings. Its parental gene, cytochrome C assembly protein (ycf5), has expression trends similar to ath_circ_476. Given that ycf5 is a single-exon gene, we propose that the circularization of ath_circ_476 occurs via an unknown process rather than via RNA-splicing-based mechanisms. Therefore, we provided a reliable method for detecting cp-circRNAs in low copies and implied an unknown circularisation mechanism of RNA in chloroplasts.
Collapse
Affiliation(s)
- Shuai Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, Haidian, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qiaojun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, Haidian, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xinyu Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, Haidian, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Guibin Wang
- Thermo Fisher Scientific, Pudong, Shanghai, China
| | - Yinglang Wan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, Haidian, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- CONTACT Yinglang Wan College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing, Haidian 100083, PR China
| |
Collapse
|
66
|
Genome-wide identification and functional analysis of circRNAs in Zea mays. PLoS One 2018; 13:e0202375. [PMID: 30533052 PMCID: PMC6289457 DOI: 10.1371/journal.pone.0202375] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs, which increasingly drawn researchers' attention in recent years as their importance in regulating gene expression at the transcriptional and post-transcriptional levels. With the development of high-throughput sequencing and bioinformatics, circRNAs have been widely analysed in animals, but the understanding of characteristics and function of circRNAs is limited in plants, especially in maize. Here, 3715 unique circRNAs were predicted in Zea mays systematically, and 8 of 12 circRNAs were validated by experiments. By analysing circRNA sequence, the events of alternative circularization phenomenon were found prevailed in maize. By comparing circRNAs in different species, it showed that part circRNAs are conserved across species, for example, there are 273 circRNAs conserved between maize and rice. Although most of the circRNAs have low expression levels, we found 149 differential expressed circRNAs responding to heat, cold, or drought, and 1782 tissue-specific expressed circRNAs. The results showed that those circRNAs may have potential biological functions in specific situations. Finally, two different methods were used to search circRNA functions, which were based on circRNAs originated from protein-coding genes and circRNAs as miRNA decoys. 346 circRNAs could act as miRNA decoys, which might modulate the effects of multiple molecular functions, including binding, catalytic activity, oxidoreductase activity, and transmembrane transporter activity. In summary, maize circRNAs were identified, classified and characterized systematically. We also explored circRNA functions, suggesting that circRNAs are involved in multiple molecular processes and play important roles in regulating of gene expression. Our results provide a rich resource for further study of maize circRNAs.
Collapse
|
67
|
Tong W, Yu J, Hou Y, Li F, Zhou Q, Wei C, Bennetzen JL. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). PLANTA 2018; 248:1417-1429. [PMID: 30128600 DOI: 10.1007/s00425-018-2983-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Circular RNA (circRNA) discovery, expression patterns and experimental validation in developing tea leaves indicates its correlation with circRNA-parental genes and potential roles in ceRNA interaction network. Circular RNAs (circRNAs) have recently emerged as a novel class of abundant endogenous stable RNAs produced by circularization with regulatory potential. However, identification of circRNAs in plants, especially in non-model plants with large genomes, is challenging. In this study, we undertook a systematic identification of circRNAs from different stage tissues of tea plant (Camellia sinensis) leaf development using rRNA-depleted circular RNA-seq. By combining two state-of-the-art detecting tools, we characterized 3174 circRNAs, of which 342 were shared by each approach, and thus considered high-confidence circRNAs. A few predicted circRNAs were randomly chosen, and 20 out of 24 were experimental confirmed by PCR and Sanger sequencing. Similar in other plants, tissue-specific expression was also observed for many C. sinensis circRNAs. In addition, we found that circRNA abundances were positively correlated with the mRNA transcript abundances of their parental genes. qRT-PCR validated the differential expression patterns of circRNAs between leaf bud and young leaf, which also indicated the low expression abundance of circRNAs compared to the standard mRNAs from the parental genes. We predicted the circRNA-microRNA interaction networks, and 54 of the differentially expressed circRNAs were found to have potential tea plant miRNA binding sites. The gene sets encoding circRNAs were significantly enriched in chloroplasts related GO terms and photosynthesis/metabolites biosynthesis related KEGG pathways, suggesting the candidate roles of circRNAs in photosynthetic machinery and metabolites biosynthesis during leaf development.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Qiying Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Henan Key Laboratory of Tea Plant Biology, College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Jeffrey L Bennetzen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
68
|
Chu Q, Bai P, Zhu X, Zhang X, Mao L, Zhu QH, Fan L, Ye CY. Characteristics of plant circular RNAs. Brief Bioinform 2018; 21:135-143. [PMID: 30445438 DOI: 10.1093/bib/bby111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 11/14/2022] Open
Abstract
Circular RNA (circRNA) is a kind of covalently closed single-stranded RNA molecules that have been proved to play important roles in transcriptional regulation of genes in diverse species. With the rapid development of bioinformatics tools, a huge number (95143) of circRNAs have been identified from different plant species, providing an opportunity for uncovering the overall characteristics of plant circRNAs. Here, based on publicly available circRNAs, we comprehensively analyzed characteristics of plant circRNAs with the help of various bioinformatics tools as well as in-house scripts and workflows, including the percentage of coding genes generating circRNAs, the frequency of alternative splicing events of circRNAs, the non-canonical splicing signals of circRNAs and the networks involving circRNAs, miRNAs and mRNAs. All this information has been integrated into an upgraded online database, PlantcircBase 3.0 (http://ibi.zju.edu.cn/plantcircbase/). In this database, we provided browse, search and visualization tools as well as a web-based blast tool, BLASTcirc, for prediction of circRNAs from query sequences based on searching against plant genomes and transcriptomes.
Collapse
Affiliation(s)
- Qinjie Chu
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Panpan Bai
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xintian Zhu
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Xingchen Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Lingfeng Mao
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | | | - Longjiang Fan
- Institute of Crop Science, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
69
|
Ren Y, Yue H, Li L, Xu Y, Wang Z, Xin Z, Lin T. Identification and characterization of circRNAs involved in the regulation of low nitrogen-promoted root growth in hexaploid wheat. Biol Res 2018; 51:43. [PMID: 30390705 PMCID: PMC6215338 DOI: 10.1186/s40659-018-0194-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. METHODS Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. RESULTS Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. CONCLUSIONS LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth.
Collapse
Affiliation(s)
- Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huifang Yue
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Le Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanhua Xu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.,Shangqiu Normal University, Shangqiu, 476000, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
70
|
Ghorbani A, Izadpanah K, Peters JR, Dietzgen RG, Mitter N. Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:402-409. [PMID: 30080628 DOI: 10.1016/j.plantsci.2018.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs that are usually derived from exonic regions of genes, but can also arise from intronic and intergenic regions. Studies of circRNAs in humans, animals and several plant species have shown an altered population of circRNAs in response to abiotic and biotic stress. Recently it was shown that circRNAs also occur in maize, but it is unknown if maize circRNAs are responsive to stress. Maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) causes an economically important disease in maize and other gramineous crops in Iran. In this study, we used data from RNA-Seq of MIMV-infected maize and uninfected controls to identify differentially expressed circRNAs. Such circRNAs were confirmed by two-dimensional polyacrylamide gel electrophoresis, northern blot, RT-qPCR and sequencing. A total of 1443 circRNAs were identified in MIMV-infected maize and 1165 circRNAs in uninfected maize. Two hundred and one circRNAs were in common between MIMV-infected and uninfected samples. Of these, 155 circRNAs were up-regulated and 5 down-regulated in MIMV infected plants, compared to the uninfected control. This study for the first time identified and profiled circRNA expression in maize in response to virus infection. Moreover, we predict that 33 circRNAs may bind 23 maize miRNAs, possibly affecting plant metabolism and development. Our data suggest a role for circRNAs in plant cell regulation and response to biotic stress such as virus infection, and give new insights into the complexity of plant-microbe interactions.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, QLD, Australia.
| | | | - Jonathan R Peters
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, QLD, Australia
| |
Collapse
|
71
|
Zeng RF, Zhou JJ, Hu CG, Zhang JZ. Transcriptome-wide identification and functional prediction of novel and flowering-related circular RNAs from trifoliate orange (Poncirus trifoliata L. Raf.). PLANTA 2018; 247:1191-1202. [PMID: 29417269 DOI: 10.1007/s00425-018-2857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
A total of 558 potential circular RNAs (circRNAs) were identified in citrus, and these were analyzed and compared. One hundred seventy-six differentially expressed circRNAs were identified in two genotypes of trifoliate orange. Circular RNAs (circRNAs) play diverse roles in transcriptional control and microRNA (miRNA) function. However, little information is known about circRNAs in citrus. To identify citrus circRNAs and investigate their functional roles, high-throughput sequencing of precocious trifoliate orange (an early-flowering trifoliate orange mutant, Poncirus trifoliata L. Raf.) and its wild type was performed. A total of 558 potential circRNAs were identified by bioinformatic analysis, and 86.02% of these were sense-overlapping circRNAs. Their sequence features, alternative circularization, and other characteristics were investigated in this study. Compared with the wild type, 176 circRNAs were identified as differentially expressed circRNAs, 61 were significantly up-regulated and 115 were down-regulated in precocious trifoliate orange, indicating that they may play an important role in the early flowering process. Alternative circularization and differential expression of some circRNAs were verified by Sanger sequencing and real-time polymerase chain reaction. The functions of differentially expressed circRNAs and their host genes were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. We found that many differentially expressed circRNAs had abundant miRNA binding sites: 29 circRNAs were found to act as the 16 miRNA targets. Overall, these results will help to reveal the biological functions of circRNAs in growth and development of citrus.
Collapse
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
72
|
Xiang L, Cai C, Cheng J, Wang L, Wu C, Shi Y, Luo J, He L, Deng Y, Zhang X, Yuan Y, Cai Y. Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq. PeerJ 2018; 6:e4500. [PMID: 29576969 PMCID: PMC5858604 DOI: 10.7717/peerj.4500] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs), a class of recently discovered non-coding RNAs, play a role in biological and developmental processes. A recent study showed that circRNAs exist in plants and play a role in their environmental stress responses. However, cotton circRNAs and their role in Verticillium wilt response have not been identified up to now. In this study, two CSSLs (chromosome segment substitution lines) of G.barbadense introgressed into G. hirsutum, CSSL-1 and CSSL-4 (a resistant line and a susceptible line to Verticillium wilt, respectively), were inoculated with V. dahliae for RNA-seq library construction and circRNA analysis. A total of 686 novel circRNAs were identified. CSSL-1 and CSSL-4 had similar numbers of circRNAs and shared many circRNAs in common. However, CSSL-4 differentially expressed approximately twice as many circRNAs as CSSL-1, and the differential expression levels of the common circRNAs were generally higher in CSSL-1 than in CSSL-4. Moreover, two C-RRI comparisons, C-RRI-vs-C-RRM and C-RRI-vs-C-RSI, possessed a large proportion (approximately 50%) of the commonly and differentially expressed circRNAs. These results indicate that the differentially expressed circRNAs may play roles in the Verticillium wilt response in cotton. A total of 280 differentially expressed circRNAs were identified. A Gene Ontology analysis showed that most of the ‘stimulus response’ term source genes were NBS family genes, of which most were the source genes from the differentially expressed circRNAs, indicating that NBS genes may play a role in Verticillium wilt resistance and might be regulated by circRNAs in the disease-resistance process in cotton.
Collapse
Affiliation(s)
- Liuxin Xiang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.,School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Lu Wang
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chaofeng Wu
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Jingzhi Luo
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lin He
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yushan Deng
- School of Bioinformatics, School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| |
Collapse
|
73
|
Litholdo CG, da Fonseca GC. Circular RNAs and Plant Stress Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:345-353. [PMID: 30259379 DOI: 10.1007/978-981-13-1426-1_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that have been extensively explored in the past few years. The advent of new high-throughput sequencing technologies coupled with bioinformatics tools revealed the presence of these molecules in the transcriptome of a wide range of organisms. In animals, circRNAs can modulate gene expression and act as sponges of miRNAs to inhibit their activity. It has been demonstrated that they have the potential to be diagnostic biomarkers as their expression is closely associated to human diseases, such as Alzheimer and cancer. However, in plants their function remains elusive. Recently, the role of the circRNAs in plant stress responses has been studied. During the infection of Pseudomonas syringae in kiwifruit plants, 584 circRNAs were differentially expressed in leaf samples, and a group of them could be further associated with the stage of infection. Under phosphate deficiency conditions, 27 rice circRNAs were reported to be differentially expressed. In tomato, 163 circRNAs demonstrated chilling-responsive expression, with 102 containing miRNA-binding sites and are predicted to act as miRNA sponges. Additionally, Arabidopsis seedlings presented 1583 heat-specific circRNAs, and it was also reported that heat stress could increase the quantity, length, and alternative circularization events of circRNAs. Finally, wheat seedlings under dehydration stress had 62 circRNAs differentially expressed, with 6 being predicted as miRNA sponges. Although the role of plant circRNAs during the biotic and abiotic stresses is still poorly characterised, these molecules have the potential to expand the number of targets and tools in the biotechnology field.
Collapse
Affiliation(s)
- Celso Gaspar Litholdo
- Laboratoire Génome et Développement des Plantes, Centre National pour la Recherche Scientifique (CNRS), Perpignan, France.
| | | |
Collapse
|
74
|
|