51
|
Yamazawa T, Iino M. [Ca2+ imaging in interstitial cells of Cajal during rhythmic activity]. Nihon Yakurigaku Zasshi 2004; 123:155-62. [PMID: 14993727 DOI: 10.1254/fpj.123.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Spontaneous contraction of intestinal smooth muscles is required for bowel movement and its failure results in disorders including irritable bowel syndrome. Rhythmic spontaneous depolarizations in intestinal smooth muscle cells, often referred to as slow waves, are essential for the movement of the gastrointestinal tract. Interstitial cells of Cajal (ICC) lie adjacent to smooth muscle layers and are implicated to be the pacemaker cells generating slow waves, because mutant mice lacking this cell type show gut rhythm disorders. However, the pace-making mechanism remains unclear. Here we review intracellular Ca(2+) signals of both ICC and smooth muscle cells during rhythmic activity in the gastrointestinal tract.
Collapse
Affiliation(s)
- Toshiko Yamazawa
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Japan.
| | | |
Collapse
|
52
|
Ordög T, Redelman D, Horowitz NN, Sanders KM. Immunomagnetic enrichment of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2004; 286:G351-60. [PMID: 14563669 DOI: 10.1152/ajpgi.00281.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Disruptions of networks of interstitial cells of Cajal (ICC), gastrointestinal pacemakers and mediators of neurotransmission, can lead to disordered phasic contractions and peristalsis by reducing and uncoupling electrical slow waves. However, detailed analysis of the ICC network behavior has been hampered by their scarcity, limited accessibility in intact tissues, and contamination with other cell types in culture. Our goal was to develop a simple technique to purify ICC from murine gastrointestinal muscles for functional studies. We identified ICC in live small intestinal muscles or primary cell cultures by Kit immunoreactivity using fluorescent antibodies. Because this technique also labels resident macrophages nonspecifically, parallel studies were performed in which nonfluorescent Kit antibodies and macrophages labeled with fluorescent dextran were used for subtractive analysis of ICC. In both groups, Kit-positive cells were tagged with superparamagnetic antibodies and sorted on magnetic columns. Efficacy was assessed by flow cytometry. ICC enrichment from primary cultures and freshly dissociated tissues was approximately 63-fold and approximately 8-fold, respectively. Unlike the cells derived directly from tissues, cells sorted from cultures frequently yielded extensive, nearly homogenous ICC networks on reseeding. Monitoring oscillations in mitochondrial Ca(2+) or membrane potential by imaging revealed spontaneous rhythmicity in these networks. Cells that did not bind to the columns yielded cultures that were depleted of ICC and dominated by smooth muscle cells. In conclusion, immunomagnetic sorting of primary cultures of ICC results in relatively homogenous, functional ICC networks. This technique is less suitable for obtaining ICC from freshly dispersed cells.
Collapse
Affiliation(s)
- Tamás Ordög
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | | | | | | |
Collapse
|
53
|
Abstract
A simple model of pacing in mouse intestine to longitudinal (LM) as well as circular muscle (CM) has been developed. Undissected segments of LM or CM from mouse ileum or jejunum were prepared to record contractions, nerve functions were inhibited, and regular spontaneous contractions were recorded. These had the properties expected of interstitial cells of Cajal (ICC) paced contractions: ileum slower than jejunum, inhibited but not abolished by nicardipine, reduced in frequency by cyclopiazonic acid, abolished by Ca(2+)-free media, and high temperature dependence (Q10 approximately 2.6-3.2). Nicardipine significantly reduced the pacing frequency in LM and CM. Intestinal segments from W/W(V) mice had few irregular contractions in CM but had regular contractions in LM. Other differences were found between LM and CM that suggest that the control of pacing of LM differed from pacing of CM. Moreover, both LM and CM segments in wild-type and W/W(V) and after cyclopiazonic acid responded to electrical pacing (50 V/cm, 50 or 100 ms) at 1 pulse per second. Temperature <26 degrees C inhibited electrically paced contractions in CM. These findings suggest that the current models of ICC pacing need to be modified to apply to intact segments of mouse intestine.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7 Canada.
| | | | | | | |
Collapse
|
54
|
Hennig GW, Hirst GDS, Park KJ, Smith CB, Sanders KM, Ward SM, Smith TK. Propagation of pacemaker activity in the guinea-pig antrum. J Physiol 2004; 556:585-99. [PMID: 14754999 PMCID: PMC1664942 DOI: 10.1113/jphysiol.2003.059055] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cyclical periods of depolarization (slow waves) underlie peristaltic contractions involved in mixing and emptying of contents in the gastric antrum. Slow waves originate from a myenteric network of interstitial cells of Cajal (ICC-MY). In this study we have visualized the sequence and propagation of Ca(2+) transients associated with pacemaker potentials in the ICC network and longitudinal (LM) and circular muscle (CM) layers of the isolated guinea-pig gastric antrum. Gastric antrum was dissected to reveal the ICC-MY network, loaded with Fluo-4 AM and activity was monitored at 37 degrees C. Ca(2+) waves propagated throughout the ICC-MY network at an average velocity of 3.24 +/- 0.12 mm s(-1) at a frequency of 4.87 +/- 0.16 cycles min(-1) (n= 4). The propagation of the Ca(2+) wave often appeared 'step-like', with separate regions of the network being activated after variable delays. The direction of propagation was highly variable (Delta angle of propagation 44.3 +/- 10.9 deg per cycle) and was not confined to the axes of the longitudinal or circular muscle. Ca(2+) waves appeared to spread out radially from the site of initiation. The initiating Ca(2+) wave in ICC-MY was correlated to secondary Ca(2+) waves in intramuscular interstitial cells of Cajal, ICC-IM, and smooth muscle cells, and the local distortion (contraction) in a field of view. TTX (1 microm) had little effect on slow wave or pacemaker potential activity, but 2-APB (50 microm) blocked all Ca(2+) waves, indicating a pivotal role for intracellular Ca(2+) stores. Nicardipine (2 microm) eliminated the Ca(2+) transient generated by smooth muscle, but did not affect the fast upstroke associated with ICC-MY. These results indicate that slow waves follow a sequence of activation, beginning with the ICC-MY and ICC-IM network, followed later by a sustained Ca(2+) transient in the muscle layers that is responsible for contraction.
Collapse
Affiliation(s)
- G W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Shaw L, O'Neill S, Jones CJP, Austin C, Taggart MJ. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries. Br J Pharmacol 2004; 141:678-88. [PMID: 14744813 PMCID: PMC1574231 DOI: 10.1038/sj.bjp.0705647] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1. In pressurised rat mesenteric small arteries (50 mmHg), we examined the effects of stimulation with U46619, endothelin-1 (ET-1) or phenylephrine (PE) on changes in vessel diameter, global [Ca(2+)](i), individual smooth muscle cell [Ca(2+)](i) and Ca(2+)-sensitisation of contraction. 2. U46619 or ET-1 gave tonic diameter reductions, whereas PE-stimulated vessels gave tonic contractions or initial vasoconstrictions followed by diameter oscillations. Global [Ca(2+)](i) changes were transient for each agonist, with tonic constrictions being accompanied by maintained submaximal global [Ca(2+)](i) levels. 3. U46619, ET-1 or PE tonic constrictions were accompanied by apparently asynchronous [Ca(2+)](i) waves in individual smooth muscle cells of the vessel wall, as examined by confocal fluorescent microscopy. In vessels exhibiting vasomotion to PE, some apparent synchrony of activation of individual cells was evident; however, this was incomplete with many cells responding out of phase with their neighbours. 4. In alpha-toxin-permeabilised preparations, agonist-induced Ca(2+)-sensitisation of constriction at submaximal Ca(2+) (pCa6.7) in the presence of GTP was greater with U46619 or ET than PE. 5. We conclude that, in pressurised mesenteric arteries, (i) a general feature of receptor-coupled constriction is the generation of periodic smooth muscle [Ca(2+)](i) waves; (ii) complete synchrony of Ca(2+) oscillations between smooth muscle cells is not a prerequisite for receptor-coupled vasomotion; (iii) varied Ca(2+)-sensitising actions of agonists may partly determine tonic or phasic vessel responses to different stimuli.
Collapse
Affiliation(s)
- Linda Shaw
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
| | - Stephen O'Neill
- Unit of Cardiac Physiology, Cardiovascular Research, University of Manchester, Manchester
| | - Carolyn J P Jones
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester
| | - Clare Austin
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
| | - Michael J Taggart
- Smooth Muscle Physiology Group, Cardiovascular Research, University of Manchester, Manchester
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester
- Author for correspondence:
| |
Collapse
|
56
|
Kawano S, Otsu K, Shoji S, Yamagata K, Hiraoka M. Ca(2+) oscillations regulated by Na(+)-Ca(2+) exchanger and plasma membrane Ca(2+) pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells. Cell Calcium 2003; 34:145-56. [PMID: 12810056 DOI: 10.1016/s0143-4160(03)00069-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).
Collapse
Affiliation(s)
- Seiko Kawano
- Department of Cardiovascular Diseases, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | | | | | | | | |
Collapse
|
57
|
Hirst GDS, Ward SM. Interstitial cells: involvement in rhythmicity and neural control of gut smooth muscle. J Physiol 2003; 550:337-46. [PMID: 12794179 PMCID: PMC2343044 DOI: 10.1113/jphysiol.2003.043299] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many smooth muscles display spontaneous electrical and mechanical activity, which persists in the absence of any stimulation. In the past this has been attributed largely to the properties of the smooth muscle cells. Now it appears that in several organs, particularly in the gastrointestinal tract, activity in smooth muscles arises from a separate group of cells, known as interstitial cells of Cajal (ICC), which are distributed amongst the smooth muscle cells. Thus in the gastrointestinal tract, a network of interstitial cells, usually located near the myenteric plexus, generates pacemaker potentials that are conducted passively into the adjacent muscle layers where they produce rhythmical membrane potential changes. The mechanical activity of most smooth muscle cells, can be altered by autonomic, or enteric, nerves innervating them. Previously it was thought that neuroeffector transmission occurred simply because neurally released transmitters acted on smooth muscle cells. However, in several, but not all, regions of the gastrointestinal tract, it appears that nerve terminals, rather than communicating directly with smooth muscle cells, preferentially form synapses with ICC and these relay information to neighbouring smooth muscle cells. Thus a set of ICC, which are distributed amongst the smooth muscle cells of the gut, are the targets of transmitters released by intrinsic enteric excitatory and inhibitory nerve terminals: in some regions of the gastrointestinal tract, the same set of ICC also augment the waves of depolarisation generated by pacemaker ICC. Similarly in the urethra, ICC, distributed amongst the smooth muscle cells, generate rhythmic activity and also appear to be the targets of autonomic nerve terminals.
Collapse
Affiliation(s)
- G D S Hirst
- Department of Zoology, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
58
|
Schultz T, Daniel V, Daniel EE. Does ICC pacing require functional gap junctions between ICC and smooth muscle in mouse intestine? Neurogastroenterol Motil 2003; 15:129-38. [PMID: 12680912 DOI: 10.1046/j.1365-2982.2003.00401.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We tested the hypothesis that interstitial cells of Cajal (ICC) pace longitudinal and circular muscle of mouse intestine through gap junctions. Carbenoxolone (10(-6), 10(-5), 10(-4) mol L(-1)), an inhibitor of gap junction conductance, was applied to segments of longitudinal or circular muscle with contractions driven by ICC after inhibition of nerve function by tetrodotoxin (10(-6) mol L(-1)) and L-NOARG (10(-4) mol L(-1)). Carbenoxolone concentration- and time-dependently inhibited the amplitude of contraction (0.2-1.5 g in controls) of segments of longitudinal muscle, but had no effect on the frequency of contractions (from 36-54 min). It also inhibited the amplitude of contractions of circular muscle segments and reduced the frequency slightly at 10(-4) mol L(-)1. Carbenoxolone inhibited tonic contractions of longitudinal but not circular segments to 60 mmol L(-1) KCl, suggesting that it directly inhibited contractions of longitudinal muscle. The responses to pacing by electrical field stimulation (40 V cm(-1), 50-100 ms, 1 Hz) after block of nerve function were reduced insignificantly in amplitude, and not in frequency in both longitudinal and circular segments. We conclude that it is likely that only gap junctions within circular muscle are involved in pacing of muscle by ICC. Carbenoxolone also has effects on muscle contractility in longitudinal muscle.
Collapse
Affiliation(s)
- T Schultz
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
59
|
van Helden DF, Imtiaz MS. Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol 2003; 548:271-96. [PMID: 12576498 PMCID: PMC2342787 DOI: 10.1113/jphysiol.2002.033720] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca2+ imaging and multiple microelectrode recording procedures were used to investigate a slow wave-like electrical rhythmicity in single bundle strips from the circular muscle layer of the guinea-pig gastric pylorus. The 'slow waves' (SWs) consisted of a pacemaker and regenerative component, with both potentials composed of more elementary events variously termed spontaneous transient depolarizations (STDs) or unitary potentials. STDs and SW pacemaker and regenerative potentials exhibited associated local and distributed Ca2+ transients, respectively. Ca2+ transients were often larger in cellular regions that exhibited higher basal Ca2+ indicator-associated fluorescence, typical of regions likely to contain intramuscular interstitial cells of Cajal (ICCIM). The emergence of rhythmicity arose through entrainment of STDs resulting in pacemaker Ca2+ transients and potentials, events that exhibited considerable spatial synchronicity. Application of ACh to strips exhibiting weak rhythmicity caused marked enhancement of SW synchronicity. SWs and underlying Ca2+ increases exhibited very high 'apparent conduction velocities' ('CVs') orders of magnitude greater than for sequentially conducting Ca2+ waves. Central interruption of either intercellular connectivity or inositol 1,4,5-trisphosphate receptor (IP3R)-mediated store Ca2+ release in strips caused SWs at the two ends to run independently of each other, consistent with a coupled oscillator-based mechanism. Central inhibition of stores required much wider regions of blockade than inhibition of connectivity indicating that stores were voltage-coupled. Simulations, made using a conventional store array model but now including depolarization coupled to IP3R-mediated Ca2+ release, predicted the experimental findings. The linkage between membrane voltage and Ca2+ release provides a means for stores to interact as strongly coupled oscillators, resulting in the emergence of Ca2+ phase waves and associated pacemaker potentials. This distributed pacemaker triggers regenerative Ca2+ release and resultant SWs.
Collapse
Affiliation(s)
- Dirk F van Helden
- The Neuroscience Group, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Newcastle, NSW 2308, Australia.
| | | |
Collapse
|
60
|
Rumessen JJ, Vanderwinden JM. Interstitial Cells in the Musculature of the Gastrointestinal Tract: Cajal and Beyond. ACTA ACUST UNITED AC 2003; 229:115-208. [PMID: 14669956 DOI: 10.1016/s0074-7696(03)29004-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Expression of the receptor tyrosine kinase KIT on cells referred to as interstitial cells of Cajal (ICC) has been instrumental during the past decade in the tremendous interest in cells in the interstitium of the smooth muscle layers of the digestive tract. ICC generate the pacemaker component (electrical slow waves of depolarization) of the smooth musculature and are involved in neurotransmission. By integration of ICC functions, substantial progress has been made in our understanding of the neuromuscular control of gastrointestinal motility, opening novel therapeutic perspectives. In this article, the ultrastructure and light microscopic morphology, as well as the functions and the development of ICC and of neighboring fibroblast-like cells (FLC), are critically reviewed. Directions for future research are considered and a unifying concept of mesenchymal cells, either KIT positive (the "ICC") or KIT negative "non-Cajal" (including the FLC and possibly also other cell types) cell types in the interstitium of the smooth musculature of the gastrointestinal tract, is proposed. Furthermore, evidence is accumulating to suggest that, as postulated by Santiago Ramon y Cajal, the concept of interstitial cells is not likely to be restricted to the gastrointestinal musculature.
Collapse
Affiliation(s)
- Jüri J Rumessen
- Department of Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | | |
Collapse
|
61
|
Yoo SY, Jung SH, Eom M, Kim IH, Han A. Delayed maturation of interstitial cells of Cajal in meconium obstruction. J Pediatr Surg 2002; 37:1758-61. [PMID: 12483650 DOI: 10.1053/jpsu.2002.36715] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND/PURPOSE The etiology of meconium obstruction without cystic fibrosis is unclear. Interstitial cells of Cajal (ICC) function as pacemakers in gut motility and may play a role in the pathophysiology of the disease. METHODS The ICC were examined by immunohistochemical staining with anti-c-kit antibody in the bowel walls of 6 neonates who had meconium obstruction without cystic fibrosis, and the results were compared with specimens from normal neonates (n = 2). RESULTS Six patients underwent ileostomy between 2 and 15 days after birth, and 5 of them presented with microcolon. Ganglion cells were present in the ileum and colon. Whereas ICC were evenly distributed in the control specimens, they were not seen at the time of ileostomy in the colons of 2 patients, and the other 4 showed scanty distribution in muscle layers. However, ileum showed normal distribution of ICC in all patients. The ileostomies were closed between 39 and 104 days of age, and the ICC distribution was changed to a normal pattern in the colons of all 6 patients. Their bowel movements were restored to normal after closure. CONCLUSION The findings of this study suggest that delayed maturity of ICC may be a cause of meconium obstruction without cystic fibrosis.
Collapse
Affiliation(s)
- Soo-Young Yoo
- Division of Pediatric Surgery and the Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | | | | | | |
Collapse
|
62
|
Huizinga JD, Zhu Y, Ye J, Molleman A. High-conductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology 2002; 123:1627-36. [PMID: 12404237 DOI: 10.1053/gast.2002.36549] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Interstitial cells of Cajal (ICCs) are responsible for slow, wave-driven, rhythmic, peristaltic motor patterns in the gastrointestinal tract. The aim was to identify and characterize the ion channels that generate the underlying pacemaker activity. METHODS Single ion channel recordings were obtained from nonenzymatically isolated ICCs and studied by using the cell attached and inside-out configurations of the patch clamp technique. RESULTS A high-conductance chloride channel was observed in ICCs that was spontaneously and rhythmically active at the same frequency as the rhythmic inward currents defining ICC pacemaker activity, 20-30 cycles/min at room temperature. Main conductance levels occurred between 122-144 pS and between 185-216 pS. Periodicity in the channel opening coincided with periodicity in membrane potential change, hence, at the single channel level, chloride channels were seen to be associated with the generation of rhythmic changes in membrane potential. CONCLUSIONS ICCs harbor high-conductance chloride channels that participate in the generation of pacemaker activity and may become a target for pharmacologic treatment of gut motor disorders.
Collapse
Affiliation(s)
- Jan D Huizinga
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
63
|
Torihashi S, Fujimoto T, Trost C, Nakayama S. Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem 2002; 277:19191-7. [PMID: 11897792 DOI: 10.1074/jbc.m201728200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are considered to be pacemaker cells in gastrointestinal tracts. ICC generate electrical rhythmicity (dihydropyridine-insensitive) as slow waves and drive spontaneous contraction of smooth muscles. Although cytosolic Ca(2+) has been assumed to play a key role in pacemaking, Ca(2+) movements in ICC have not yet been examined in detail. In the present study, using cultured cell clusters isolated from mouse small intestine, we demonstrated Ca(2+) oscillations in ICC. Fluo-4 was loaded to the cell cluster, the relative amount of cytosolic Ca(2+) was recorded, and ICC were identified by c-Kit immunoreactivity. We specifically detected Ca(2+) oscillation in ICC in the presence of dihydropyridine, which abolishes Ca(2+) oscillation in smooth muscles. The oscillation was coupled to the electrical activity corresponding to slow waves, and it depended on Ca(2+) influx through a non-selective cation channel, which was SK&F 96365-sensitive and store-operated. We further demonstrated the presence of transient receptor potential-like channel 4 (TRP4) in caveolae of ICC. Taken together, the results infer that the Ca(2+) oscillation in ICC is intimately linked to the pacemaker function and depends on Ca(2+) influx mediated by TRP4.
Collapse
Affiliation(s)
- Shigeko Torihashi
- Department of Anatomy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|