51
|
Shenkman BS, Zinovyeva OE, Belova SP, Samkhaeva ND, Shcheglova NS, Mirzoev TM, Vilchinskaya NA, Altaeva EG, Turtikova OV, Nemirovskaya TL. The response of skeletal muscle to alcohol abuse: Gender differences. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
52
|
Pierre N, Appriou Z, Gratas-Delamarche A, Derbré F. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic Biol Med 2016; 98:197-207. [PMID: 26744239 DOI: 10.1016/j.freeradbiomed.2015.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/16/2022]
Abstract
In the literature, the terms physical inactivity and immobilization are largely used as synonyms. The present review emphasizes the need to establish a clear distinction between these two situations. Physical inactivity is a behavior characterized by a lack of physical activity, whereas immobilization is a deprivation of movement for medical purpose. In agreement with these definitions, appropriate models exist to study either physical inactivity or immobilization, leading thereby to distinct conclusions. In this review, we examine the involvement of oxidative stress in skeletal muscle insulin resistance and atrophy induced by, respectively, physical inactivity and immobilization. A large body of evidence demonstrates that immobilization-induced atrophy depends on the chronic overproduction of reactive oxygen and nitrogen species (RONS). On the other hand, the involvement of RONS in physical inactivity-induced insulin resistance has not been investigated. This observation outlines the need to elucidate the mechanism by which physical inactivity promotes insulin resistance.
Collapse
Affiliation(s)
- Nicolas Pierre
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Zephyra Appriou
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Arlette Gratas-Delamarche
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Frédéric Derbré
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France.
| |
Collapse
|
53
|
Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review. Front Physiol 2016; 7:361. [PMID: 27610086 PMCID: PMC4997013 DOI: 10.3389/fphys.2016.00361] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as “simple” atrophy) and insulin resistance are “non-pathological” events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear—especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state “anabolic resistance.” While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic “marker” studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.
Collapse
Affiliation(s)
- Supreeth S Rudrappa
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Daniel J Wilkinson
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Paul L Greenhaff
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Kenneth Smith
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Iskandar Idris
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Philip J Atherton
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| |
Collapse
|
54
|
Bartali B, Semba RD, Araujo AB. Klotho, FGF21 and FGF23: Novel Pathways to Musculoskeletal Health? J Frailty Aging 2016; 2:179-83. [PMID: 27070923 DOI: 10.14283/jfa.2013.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone mineral density, muscle mass and physical function reach their peak between the second and fourth decade of life and then decline steadily with aging. The crucial question is: what factors contribute to or modulate this decline? The aim of this mini-review is to propose a theoretical framework for the potential role of emerging biomarkers such as klotho, fibroblast growth factors (FGF)21 and FGF23 on musculoskeletal health, with a particular focus on decline in muscle mass and function, and calls for future research to examine this proposed link. The identification of new physiological mechanisms underlying these declines may open a potentially important avenue for the development of novel intervention strategies aimed at preventing or reducing their potentially detrimental consequences.
Collapse
Affiliation(s)
- B Bartali
- Benedetta Bartali, PhD, New England Research Institutes, 9 Galen Street Watertown, MA 02472 USA, Phone: +1(617) 972-3350, FAX: +1 (617) 673-9514,
| | | | | |
Collapse
|
55
|
Heckle MR, Flatt DM, Sun Y, Mancarella S, Marion TN, Gerling IC, Weber KT. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail Rev 2016; 21:191-8. [DOI: 10.1007/s10741-016-9535-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 2016; 120:1196-206. [PMID: 26869711 DOI: 10.1152/japplphysiol.00997.2015] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development.
Collapse
Affiliation(s)
- Ruth K Globus
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Emily Morey-Holton
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| |
Collapse
|
57
|
Mukai R, Matsui N, Fujikura Y, Matsumoto N, Hou DX, Kanzaki N, Shibata H, Horikawa M, Iwasa K, Hirasaka K, Nikawa T, Terao J. Preventive effect of dietary quercetin on disuse muscle atrophy by targeting mitochondria in denervated mice. J Nutr Biochem 2016; 31:67-76. [PMID: 27133425 DOI: 10.1016/j.jnutbio.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
Quercetin is a major dietary flavonoid in fruits and vegetables. We aimed to clarify the preventive effect of dietary quercetin on disuse muscle atrophy and the underlying mechanisms. We established a mouse denervation model by cutting the sciatic nerve in the right leg (SNX surgery) to lack of mobilization in hind-limb. Preintake of a quercetin-mixed diet for 14days before SNX surgery prevented loss of muscle mass and atrophy of muscle fibers in the gastrocnemius muscle (GM). Phosphorylation of Akt, a key phosphorylation pathway of suppression of protein degradation, was activated in the quercetin-mixed diet group with and without SNX surgery. Intake of a quercetin-mixed diet suppressed the generation of hydrogen peroxide originating from mitochondria and elevated mitochondrial peroxisome proliferator-activated receptor-γ coactivator 1α mRNA expression as well as NADH dehydrogenase 4 expression in the GM with SNX surgery. Quercetin and its conjugated metabolites reduced hydrogen peroxide production in the mitochondrial fraction obtained from atrophied muscle. In C2C12 myotubes, quercetin reached the mitochondrial fraction. These findings suggest that dietary quercetin can prevent disuse muscle atrophy by targeting mitochondria in skeletal muscle tissue through protecting mitochondria from decreased biogenesis and reducing mitochondrial hydrogen peroxide release, which can be related to decreased hydrogen peroxide production and/or improvements on antioxidant capacity of mitochondria.
Collapse
Affiliation(s)
- Rie Mukai
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Naoko Matsui
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Yutaka Fujikura
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Norifumi Matsumoto
- Department of Biochemical Science and Technology Faculty of Agriculture, Kagoshima University, 1-12-24, Korimoto, Kagoshima, 890-0065, Japan
| | - De-Xing Hou
- Department of Biochemical Science and Technology Faculty of Agriculture, Kagoshima University, 1-12-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Noriyuki Kanzaki
- Institute for Health Care Science, Suntory Wellness Ltd, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Oksaka, 618-8503, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Oksaka, 618-8503, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences
| | - Keiko Iwasa
- Research Institute, Suntory Global Innovation Center, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Oksaka, 618-8503, Japan
| | - Katsuya Hirasaka
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Junji Terao
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan.
| |
Collapse
|
58
|
Romanello V, Sandri M. Mitochondrial Quality Control and Muscle Mass Maintenance. Front Physiol 2016; 6:422. [PMID: 26793123 PMCID: PMC4709858 DOI: 10.3389/fphys.2015.00422] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Loss of muscle mass and force occurs in many diseases such as disuse/inactivity, diabetes, cancer, renal, and cardiac failure and in aging-sarcopenia. In these catabolic conditions the mitochondrial content, morphology and function are greatly affected. The changes of mitochondrial network influence the production of reactive oxygen species (ROS) that play an important role in muscle function. Moreover, dysfunctional mitochondria trigger catabolic signaling pathways which feed-forward to the nucleus to promote the activation of muscle atrophy. Exercise, on the other hand, improves mitochondrial function by activating mitochondrial biogenesis and mitophagy, possibly playing an important part in the beneficial effects of physical activity in several diseases. Optimized mitochondrial function is strictly maintained by the coordinated activation of different mitochondrial quality control pathways. In this review we outline the current knowledge linking mitochondria-dependent signaling pathways to muscle homeostasis in aging and disease and the resulting implications for the development of novel therapeutic approaches to prevent muscle loss.
Collapse
Affiliation(s)
| | - Marco Sandri
- Venetian Institute of Molecular MedicinePadova, Italy; Department of Biomedical Science, University of PadovaPadova, Italy; Institute of Neuroscience, Consiglio Nazionale delle RicerchePadova, Italy; Department of Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
59
|
Malavaki CJ, Sakkas GK, Mitrou GI, Kalyva A, Stefanidis I, Myburgh KH, Karatzaferi C. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy. J Muscle Res Cell Motil 2016; 36:405-21. [DOI: 10.1007/s10974-015-9439-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
|
60
|
Emanuele Bianchi V, Falcioni G. Reactive oxygen species, health and longevity. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
61
|
DJ-1 protects against undernutrition-induced atrophy through inhibition of the MAPK-ubiquitin ligase pathway in myoblasts. Life Sci 2015; 143:50-7. [PMID: 26408915 DOI: 10.1016/j.lfs.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/01/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023]
Abstract
AIMS The purpose of this study is to explore whether antioxidant DJ-1 protein affects the atrophy of skeletal muscle cell induced by undernutrition. MAIN METHODS To determine cell atrophic responses, L6 cell line and skeletal primary cells from mouse hind limbs were cultivated under condition of FBS-free and low glucose. Changes of protein expression were analyzed using Western blot. Overexpression and knockdown of DJ-1 was performed in cells to assess its influence on cell atrophic responses. KEY FINDINGS Undernutrition decreased cell size and increased the abundance of oxidized form and total form of DJ-1 protein in L6 myoblasts. The undernourished cells revealed an elevation in the expression of muscle-specific RING finger-1 (MuRF-1) and atrogin-1, and in the phosphorylations of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase compared with control groups. Moreover, DJ-1-knockout mice showed a decrease in cell size and an enhancement in the expression of MuRF-1 and atrogin-1, as well as in the phosphorylation of MAPKs in gastrocnemius muscles; these changes were also observed in L6 cells transfected with siRNA of DJ-1. On the other hand, L6 cells overexpressing full-length DJ-1 did not exhibit the alterations in cell size and ubiquitin ligases seen after undernourished states of control cells. Myotubes differentiated from L6 cells also showed elevated expression of MuRF-1 and atrogin-1 in response to undernutrition. SIGNIFICANCE These results suggest that DJ-1 protein may contribute to undernutrition-induced atrophy via MAPKs/ubiquitin ligase pathway in skeletal muscle cells.
Collapse
|
62
|
Lourenço Dos Santos S, Baraibar MA, Lundberg S, Eeg-Olofsson O, Larsson L, Friguet B. Oxidative proteome alterations during skeletal muscle ageing. Redox Biol 2015; 5:267-274. [PMID: 26073261 PMCID: PMC4475901 DOI: 10.1016/j.redox.2015.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the 'oxi-proteome' or 'carbonylome', have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.
Collapse
Affiliation(s)
- Sofia Lourenço Dos Santos
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing-IBPS, Paris F-75005, France; CNRS UMR-8256, Paris F-75005, France; Inserm U1164, Paris F-75005, France
| | - Martin A Baraibar
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing-IBPS, Paris F-75005, France; CNRS UMR-8256, Paris F-75005, France; Inserm U1164, Paris F-75005, France
| | - Staffan Lundberg
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 82, Sweden
| | - Orvar Eeg-Olofsson
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 82, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden; Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Bertrand Friguet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing-IBPS, Paris F-75005, France; CNRS UMR-8256, Paris F-75005, France; Inserm U1164, Paris F-75005, France.
| |
Collapse
|
63
|
Small dedifferentiated cardiomyocytes bordering on microdomains of fibrosis: evidence for reverse remodeling with assisted recovery. J Cardiovasc Pharmacol 2015; 64:237-46. [PMID: 24785345 DOI: 10.1097/fjc.0000000000000111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the perspective of functional myocardial regeneration, we investigated small cardiomyocytes bordering on microdomains of fibrosis, where they are dedifferentiated re-expressing fetal genes, and determined: (1) whether they are atrophied segments of the myofiber syncytium, (2) their redox state, (3) their anatomic relationship to activated myofibroblasts (myoFb), given their putative regulatory role in myocyte dedifferentiation and redifferentiation, (4) the relevance of proteolytic ligases of the ubiquitin-proteasome system as a mechanistic link to their size, and (5) whether they could be rescued from their dedifferentiated phenotype. Chronic aldosterone/salt treatment (ALDOST) was invoked, where hypertensive heart disease with attendant myocardial fibrosis creates the fibrillar collagen substrate for myocyte sequestration, with propensity for disuse atrophy, activated myoFb, and oxidative stress. To address phenotype rescue, 4 weeks of ALDOST was terminated followed by 4 weeks of neurohormonal withdrawal combined with a regimen of exogenous antioxidants, ZnSO4, and nebivolol (assisted recovery). Compared with controls, at 4 weeks of ALDOST, we found small myocytes to be: (1) sequestered by collagen fibrils emanating from microdomains of fibrosis and representing atrophic segments of the myofiber syncytia, (2) dedifferentiated re-expressing fetal genes (β-myosin heavy chain and atrial natriuretic peptide), (3) proximal to activated myoFb expressing α-smooth muscle actin microfilaments and angiotensin-converting enzyme, (4) expressing reactive oxygen species and nitric oxide with increased tissue 8-isoprostane, coupled to ventricular diastolic and systolic dysfunction, and (5) associated with upregulated redox-sensitive proteolytic ligases MuRF1 and atrogin-1. In a separate study, we did not find evidence of myocyte replication (BrdU labeling) or expression of stem cell antigen (c-Kit) at weeks 1-4 ALDOST. Assisted recovery caused complete disappearance of myoFb from sites of fibrosis with redifferentiation of these myocytes, loss of oxidative stress, and ubiquitin-proteasome system activation, with restoration of nitric oxide and improved ventricular function. Thus, small dedifferentiated myocytes bordering on microdomains of fibrosis can re-differentiate and represent a potential source of autologous cells for functional myocardial regeneration.
Collapse
|
64
|
Paolini C, Quarta M, Wei-LaPierre L, Michelucci A, Nori A, Reggiani C, Dirksen RT, Protasi F. Oxidative stress, mitochondrial damage, and cores in muscle from calsequestrin-1 knockout mice. Skelet Muscle 2015; 5:10. [PMID: 26075051 PMCID: PMC4464246 DOI: 10.1186/s13395-015-0035-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Mutations in the gene encoding ryanodine receptor type-1 (RYR1), the calcium ion (Ca2+) release channel in the sarcoplasmic reticulum (SR) of skeletal muscle, are linked to central core disease (CCD) and malignant hyperthermia (MH) susceptibility. We recently reported that mice lacking the skeletal isoform of calsequestrin (CASQ1-null), the primary Ca2+ buffer in the SR of skeletal muscle and a modulator of RYR1 activity, exhibit lethal heat- and anesthetic-induced hypermetabolic episodes that resemble MH events in humans. Methods We compared ultrastructure, oxidative status, and contractile function in skeletal fibers of extensor digitorum longus (EDL) muscles in wild type (WT) and CASQ1-null mice at different ages (from 4 to 27 months) using structural, biochemical, and functional assays. Results About 25% of fibers in EDL muscles from CASQ1-null mice of 14 to 27 months of age exhibited large areas of structural disarray (named core-like regions), which were rarely observed in muscle from age-matched WT mice. To determine early events that may lead to the formation of cores, we analyzed EDL muscles from adult mice: at 4 to 6 months of age, CASQ1-null mice (compared to WT) displayed significantly reduced grip strength (40 ± 1 vs. 86 ± 1 mN/gr) and exhibited an increase in the percentage of damaged mitochondria (15.1% vs. 2.6%) and a decrease in average cross-sectional fiber area (approximately 37%) in EDL fibers. Finally, oxidative stress was also significantly increased (25% reduction in ratio between reduced and oxidized glutathione, or GSH/GSSG, and 35% increase in production of mitochondrial superoxide flashes). Providing ad libitum access to N-acetylcysteine in the drinking water for 2 months normalized GSH/GSSG ratio, reduced mitochondrial damage (down to 8.9%), and improved grip strength (from 46 ± 3 to 59 ± 2 mN/gr) in CASQ1-null mice. Conclusions Our findings: 1) demonstrate that ablation of CASQ1 leads to enhanced oxidative stress, mitochondrial damage, and the formation of structural cores in skeletal muscle; 2) provide new insights in the pathogenic mechanisms that lead to damage/disappearance of mitochondria in cores; and 3) suggest that antioxidants may provide some therapeutic benefit in reducing mitochondrial damage, limiting the development of cores, and improving muscle function. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0035-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia Paolini
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| | - Marco Quarta
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy ; Department of Neurology and Neurological Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305 USA
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642 USA
| | - Antonio Michelucci
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642 USA
| | - Feliciano Protasi
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| |
Collapse
|
65
|
Cannavino J, Brocca L, Sandri M, Grassi B, Bottinelli R, Pellegrino MA. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading. J Physiol 2015; 593:1981-95. [PMID: 25565653 DOI: 10.1113/jphysiol.2014.286740] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/01/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Skeletal muscle atrophy occurs as a result of disuse. Although several studies have established that a decrease in protein synthesis and increase in protein degradation lead to muscle atrophy, little is known about the triggers underlying such processes. A growing body of evidence challenges oxidative stress as a trigger of disuse atrophy; furthermore, it is also becoming evident that mitochondrial dysfunction may play a causative role in determining muscle atrophy. Mitochondrial fusion and fission have emerged as important processes that govern mitochondrial function and PGC-1α may regulate fusion/fission events. Although most studies on mice have focused on the anti-gravitary slow soleus muscle as it is preferentially affected by disuse atrophy, several fast muscles (including gastrocnemius) go through a significant loss of mass following unloading. Here we found that in fast muscles an early down-regulation of pro-fusion proteins, through concomitant AMP-activated protein kinase (AMPK) activation, can activate catabolic systems, and ultimately cause muscle mass loss in disuse. Elevated muscle PGC-1α completely preserves muscle mass by preventing the fall in pro-fusion protein expression, AMPK and catabolic system activation, suggesting that compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy. ABSTRACT The mechanisms triggering disuse muscle atrophy remain of debate. It is becoming evident that mitochondrial dysfunction may regulate pathways controlling muscle mass. We have recently shown that mitochondrial dysfunction plays a major role in disuse atrophy of soleus, a slow, oxidative muscle. Here we tested the hypothesis that hindlimb unloading-induced atrophy could be due to mitochondrial dysfunction in fast muscles too, notwithstanding their much lower mitochondrial content. Gastrocnemius displayed atrophy following both 3 and 7 days of unloading. SOD1 and catalase up-regulation, no H2 O2 accumulation and no increase of protein carbonylation suggest the antioxidant defence system efficiently reacted to redox imbalance in the early phases of disuse. A defective mitochondrial fusion (Mfn1, Mfn2 and OPA1 down-regulation) occurred together with an impairment of OXPHOS capacity. Furthermore, at 3 days of unloading higher acetyl-CoA carboxylase (ACC) phosphorylation was found, suggesting AMP-activated protein kinase (AMPK) pathway activation. To test the role of mitochondrial alterations we used Tg-mice overexpressing PGC-1α because of the known effect of PGC-1α on stimulation of Mfn2 expression. PGC-α overexpression was sufficient to prevent (i) the decrease of pro-fusion proteins (Mfn1, Mfn2 and OPA1), (ii) activation of the AMPK pathway, (iii) the inducible expression of MuRF1 and atrogin1 and of authopagic factors, and (iv) any muscle mass loss in response to disuse. As the effects of increased PGC-1α activity were sustained throughout disuse, compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy also in fast muscles.
Collapse
Affiliation(s)
- Jessica Cannavino
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
66
|
Pfitzer G. Biomechanical adaptation to hindlimb suspension: it involves not only transcriptional mechanisms but also post-translational modification of the molecular motor, myosin. Acta Physiol (Oxf) 2014; 212:263-6. [PMID: 25204547 DOI: 10.1111/apha.12390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Pfitzer
- Institute of Vegetative Physiology; University of Cologne; Köln Germany
| |
Collapse
|
67
|
Maffei M, Longa E, Qaisar R, Agoni V, Desaphy JF, Camerino DC, Bottinelli R, Canepari M. Actin sliding velocity on pure myosin isoforms from hindlimb unloaded mice. Acta Physiol (Oxf) 2014; 212:316-29. [PMID: 24888432 DOI: 10.1111/apha.12320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/25/2014] [Indexed: 11/29/2022]
Abstract
AIM Notwithstanding the widely accepted idea that following disuse skeletal muscles become faster, an increase in shortening velocity was previously observed mostly in fibres containing type 1 myosin, whereas a decrease was generally found in fibres containing type 2B myosin. In this study, unloaded shortening velocity of pure type 1 and 2B fibres from hindlimb unloaded mice was determined and a decrease in type 2B fibres was found. METHODS To clarify whether the decrease in shortening velocity could depend on alterations of myosin motor function, an in vitro motility assay approach was applied to study pure type 1 and pure type 2B myosin from hindlimb unloaded mice. The latter approach, assessing actin sliding velocity on isolated myosin in the absence of other myofibrillar proteins, enabled to directly investigate myosin motor function. RESULTS Actin sliding velocity was significantly lower on type 2B myosin following unloading (2.70 ± 0.32 μm s(-1)) than in control conditions (4.11 ± 0.35 μm s(-1)), whereas actin sliding velocity of type 1 myosin was not different following unloading (0.89 ± 0.04 μm s(-1)) compared with control conditions (0.84 ± 0.17 μm s(-1)). Myosin light chain (MLC) isoform composition of type 2B myosin from hindlimb unloaded and control mice was not different. No oxidation of either type 1 or 2B myosin was observed. Higher phosphorylation of regulatory MLC in type 2B myosin after unloading was found. CONCLUSION Results suggest that the observed lower shortening velocity of type 2B fibres following unloading could be related to slowing of acto-myosin kinetics in the presence of MLC phosphorylation.
Collapse
Affiliation(s)
- M. Maffei
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - E. Longa
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - R. Qaisar
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - V. Agoni
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - J.-F. Desaphy
- Section of Pharmacology; Department of Pharmacy and Drug Sciences and Interuniversity Institute of Myology; University of Bari - Aldo Moro; Bari Italy
| | - D. Conte Camerino
- Section of Pharmacology; Department of Pharmacy and Drug Sciences and Interuniversity Institute of Myology; University of Bari - Aldo Moro; Bari Italy
| | - R. Bottinelli
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
- Fondazione Salvatore Maugeri (IRCCS); Scientific Institute of Pavia; Pavia Italy
- Interdipartimental Centre of Biology and Sport Medicine; University of Pavia; Pavia Italy
| | - M. Canepari
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| |
Collapse
|
68
|
A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:306179. [PMID: 25374651 PMCID: PMC4211297 DOI: 10.1155/2014/306179] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R2 = 0.95), plasma (R2 = 0.82), and erythrocytes (R2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials.
Collapse
|
69
|
Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 2014; 6:246. [PMID: 25295003 PMCID: PMC4170136 DOI: 10.3389/fnagi.2014.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023] Open
Abstract
The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.
Collapse
Affiliation(s)
- Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
- Center for Cardiovascular and Respiratory Sciences, Morgantown, WV, USA
| | - Matthew J. Myers
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Junaith S. Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
70
|
Abstract
Cardinal pathological features of hypertensive heart disease (HHD) include not only hypertrophied cardiomyocytes and foci of scattered microscopic scarring, a footprint of prior necrosis, but also small myocytes ensnared by fibrillar collagen where disuse atrophy with protein degradation would be predicted. Whether atrophic signaling is concordant with the appearance of HHD and involves oxidative and endoplasmic reticulum (ER) stress remains unexplored. Herein, we examine these possibilities focusing on the left ventricle and cardiomyocytes harvested from hypertensive rats receiving 4 weeks aldosterone/salt treatment (ALDOST) alone or together with ZnSO₄, a nonvasoactive antioxidant, with the potential to attenuate atrophy and optimize hypertrophy. Compared with untreated age-/sex-/strain-matched controls, ALDOST was accompanied by (1) left ventricle hypertrophy with preserved systolic function; (2) concordant cardiomyocyte atrophy (<1000 μm²) found at sites bordering on fibrosis where they were reexpressing β-myosin heavy chain; and (3) upregulation of ubiquitin ligases, muscle RING-finger protein-1 and atrogin-1, and elevated 8-isoprostane and unfolded protein ER response with messenger RNA upregulation of stress markers. ZnSO₄ cotreatment reduced lipid peroxidation, fibrosis, and the number of atrophic myocytes, together with a further increase in cell area and width of atrophied and hypertrophied myocytes, and improved systolic function but did not attenuate elevated blood pressure. We conclude that atrophic signaling, concordant with hypertrophy, occurs in the presence of a reparative fibrosis and induction of oxidative and ER stress at sites of scarring where myocytes are atrophied. ZnSO₄ cotreatment in HHD with ALDOST attenuates the number of atrophic myocytes, optimizes size of atrophied and hypertrophied myocytes, and improves systolic function.
Collapse
|
71
|
Cannavino J, Brocca L, Sandri M, Bottinelli R, Pellegrino MA. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol 2014; 592:4575-89. [PMID: 25128574 DOI: 10.1113/jphysiol.2014.275545] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prolonged skeletal muscle inactivity causes muscle fibre atrophy. Redox imbalance has been considered one of the major triggers of skeletal muscle disuse atrophy, but whether redox imbalance is actually the major cause or simply a consequence of muscle disuse remains of debate. Here we hypothesized that a metabolic stress mediated by PGC-1α down-regulation plays a major role in disuse atrophy. First we studied the adaptations of soleus to mice hindlimb unloading (HU) in the early phase of disuse (3 and 7 days of HU) with and without antioxidant treatment (trolox). HU caused a reduction in cross-sectional area, redox status alteration (NRF2, SOD1 and catalase up-regulation), and induction of the ubiquitin proteasome system (MuRF-1 and atrogin-1 mRNA up-regulation) and autophagy (Beclin1 and p62 mRNA up-regulation). Trolox completely prevented the induction of NRF2, SOD1 and catalase mRNAs, but not atrophy or induction of catabolic systems in unloaded muscles, suggesting that oxidative stress is not a major cause of disuse atrophy. HU mice showed a marked alteration of oxidative metabolism. PGC-1α and mitochondrial complexes were down-regulated and DRP1 was up-regulated. To define the link between mitochondrial dysfunction and disuse muscle atrophy we unloaded mice overexpressing PGC-1α. Transgenic PGC-1α animals did not show metabolic alteration during unloading, preserving muscle size through the reduction of autophagy and proteasome degradation. Our results indicate that mitochondrial dysfunction plays a major role in disuse atrophy and that compounds inducing PGC-1α expression could be useful to treat/prevent muscle atrophy.
Collapse
Affiliation(s)
- Jessica Cannavino
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine and Dulbecco Telethon Institute, 35129, Padova, Italy Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy Interuniversity Institute of Myology, University of Pavia, Pavia, Italy Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
72
|
Bernardes SS, Guarnier FA, Marinello PC, Armani A, Simão ANC, Cecchini R, Cecchini AL. Reactive oxygen species play a role in muscle wasting during thyrotoxicosis. Cell Tissue Res 2014; 357:803-14. [PMID: 24842047 DOI: 10.1007/s00441-014-1881-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
Abstract
The role of reactive oxygen species (ROS) in muscle protein hydrolysis and protein oxidation in thyrotoxicosis has not been explored. This study indicates that ROS play a role in skeletal muscle wasting pathways in thyrotoxicosis. Two experimental groups (rats) were treated for 5 days with either 3,3',5-triiodothyronine (HT) or HT with α-tocopherol (HT + αT). Two controls were used, vehicle (Control) and control treated with αT (Control + αT). Serum T3, peritoneal fat, serum glycerol, muscle and body weight, temperature, mitochondrial metabolism (cytochrome c oxidase activity), oxidative stress parameters and proteolytic activities were examined. High body temperature induced by HT returned to normal when animals were treated with αT, although total body and muscle weight did not. An increase in lipolysis was observed in the HT + αT group, as peritoneal fat decreased significantly together with an increase in serum glycerol. GSH, GSSG and total radical-trapping antioxidant parameter (TRAP) decreased and catalase activity increased in the HT group. The glutathione redox ratio was higher in HT + αT than in both HT and Control + αT groups. Carbonyl proteins, AOPP, mitochondrial and chymotrypsin-like proteolytic activities were higher in the HT group than in the Control. HT treatment with αT restored mitochondrial metabolism, TRAP, carbonyl protein, chymotrypsin-like activity and AOPP to the level as that of the Control + αT. Calpain activity was lower in the HT + αT group than in HT and Control + αT and superoxide dismutase (SOD) activity was higher in the HT + αT group than in the Control + αT. Although αT did not reverse muscle loss, ROS was involved in proteolysis to some degree.
Collapse
Affiliation(s)
- Sara Santos Bernardes
- Laboratory of Molecular Pathology, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Paraná State, Brazil
| | | | | | | | | | | | | |
Collapse
|
73
|
Unno N. Utilization of oxidative stress biomarkers is important to assess treatment effects on exercise capacity in patients with intermittent claudication. Circ J 2014; 78:1327-8. [PMID: 24805357 DOI: 10.1253/circj.cj-14-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Naoki Unno
- Second Department of Surgery, Hamamatsu University School of Medicine
| |
Collapse
|
74
|
Barreiro E. Protein carbonylation and muscle function in COPD and other conditions. MASS SPECTROMETRY REVIEWS 2014; 33:219-236. [PMID: 24167039 DOI: 10.1002/mas.21394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Skeletal muscle, the most abundant tissue in mammals, is essential for any activity in life. Muscle dysfunction is a common systemic manifestation in highly prevalent conditions such as chronic obstructive pulmonary disease (COPD), cancer cachexia, and sepsis. It has a significant impact on exercise tolerance, thus worsening the patients' quality of life and survival. Among several factors, oxidative stress is a major player in the etiology of skeletal muscle dysfunction associated with those conditions. Whereas low levels of oxidants are absolutely required for normal cell adaptation, high levels of reactive oxygen species (ROS) alter the function and structure of molecules such as proteins, DNA, and lipids. Specifically, protein carbonylation, a common variety of protein oxidation, was shown to alter the function of key enzymes and structural proteins involved in muscle contractile performance. Moreover, increased levels of ROS may also activate proteolytic systems, thus leading to enhanced protein breakdown in several models. In the current review, the specific modifications induced by carbonylation in protein structure and function in muscles have been described. Furthermore, the potential role of ROS in the activation of proteolytic systems in skeletal muscles is also discussed. The review summarizes the effects of protein carbonylation on muscles in several models and conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and aging. Future research should focus on the elucidation of the specific protein sites modified by ROS in these muscles using redox proteomics analyses and on the assessment of the consequent alterations in protein function and stability.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department-Muscle Research, Respiratory System Unit (URMAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)-Hospital del Mar, Department of Experimental, Health Sciences (CEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader, 88, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Majorca, Balearic Islands, Spain
| |
Collapse
|
75
|
Cobley JN, Sakellariou GK, Owens DJ, Murray S, Waldron S, Gregson W, Fraser WD, Burniston JG, Iwanejko LA, McArdle A, Morton JP, Jackson MJ, Close GL. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radic Biol Med 2014; 70:23-32. [PMID: 24525000 DOI: 10.1016/j.freeradbiomed.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
Abstract
Several redox-regulated responses to an acute exercise bout fail in aged animal skeletal muscle, including the ability to upregulate the expression of antioxidant defense enzymes and heat shock proteins (HSPs). These findings are generally derived from studies on sedentary rodent models and thus may be related to reduced physical activity and/or intraspecies differences as opposed to aging per se. This study, therefore, aimed to determine the influence of age and training status on the expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes in quiescent and exercised human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis before and 3 days after an acute high-intensity-interval exercise bout in young trained, young untrained, old trained, and old untrained subjects. Levels of HSP72, PRX5, and eNOS were significantly higher in quiescent muscle of older compared with younger subjects, irrespective of training status. 3-NT levels were elevated in muscles of the old untrained but not the old trained state, suggesting that lifelong training may reduce age-related macromolecule damage. SOD1, CAT, and HSP27 levels were not significantly different between groups. HSP27 content was upregulated in all groups studied postexercise. HSP72 content was upregulated to a greater extent in muscle of trained compared with untrained subjects postexercise, irrespective of age. In contrast to every other group, old untrained subjects failed to upregulate CAT postexercise. Aging was associated with a failure to upregulate SOD2 and a downregulation of PRX5 in muscle postexercise, irrespective of training status. In conclusion, lifelong training is unable to fully prevent the progression toward a more stressed muscular state as evidenced by increased HSP72, PRX5, and eNOS protein levels in quiescent muscle. Moreover, lifelong training preserves some (e.g., CAT) but not all (e.g., SOD2, HSP72, PRX5) of the adaptive redox-regulated responses after an acute exercise bout. Collectively, these data support many but not all of the findings from previous animal studies and suggest parallel aging effects in humans and mice at rest and after exercise that are not modulated by training status in human skeletal muscle.
Collapse
Affiliation(s)
- J N Cobley
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - G K Sakellariou
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - D J Owens
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - S Murray
- Cardiology Department, Liverpool Heart and Chest Hospital, Liverpool L14 3PE, UK
| | - S Waldron
- Stepping Hill Hospital, Stockport SK2 7JE, UK
| | - W Gregson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - W D Fraser
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - J G Burniston
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - L A Iwanejko
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - A McArdle
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - J P Morton
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - M J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - G L Close
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
76
|
Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Humanized animal exercise model for clinical implication. Pflugers Arch 2014; 466:1673-87. [PMID: 24647666 DOI: 10.1007/s00424-014-1496-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/20/2023]
Abstract
Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Department of Health Sciences and Technology, Cardiovascular and Metabolic Disease Center, Inje University, Bok Ji-Ro 75, Busanjin-Gu, Busan, 613-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
77
|
Zampieri S, Pietrangelo L, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, Pond A, Grim-Stieger M, Cvecka J, Sedliak M, Tirpáková V, Mayr W, Sarabon N, Rossini K, Barberi L, De Rossi M, Romanello V, Boncompagni S, Musarò A, Sandri M, Protasi F, Carraro U, Kern H. Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci 2014; 70:163-73. [PMID: 24550352 DOI: 10.1093/gerona/glu006] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aging is usually accompanied by a significant reduction in muscle mass and force. To determine the relative contribution of inactivity and aging per se to this decay, we compared muscle function and structure in (a) male participants belonging to a group of well-trained seniors (average of 70 years) who exercised regularly in their previous 30 years and (b) age-matched healthy sedentary seniors with (c) active young men (average of 27 years). The results collected show that relative to their sedentary cohorts, muscle from senior sportsmen have: (a) greater maximal isometric force and function, (b) better preserved fiber morphology and ultrastructure of intracellular organelles involved in Ca(2+) handling and ATP production, (c) preserved muscle fibers size resulting from fiber rescue by reinnervation, and (d) lowered expression of genes related to autophagy and reactive oxygen species detoxification. All together, our results indicate that: (a) skeletal muscle of senior sportsmen is actually more similar to that of adults than to that of age-matched sedentaries and (b) signaling pathways controlling muscle mass and metabolism are differently modulated in senior sportsmen to guarantee maintenance of skeletal muscle structure, function, bioenergetic characteristics, and phenotype. Thus, regular physical activity is a good strategy to attenuate age-related general decay of muscle structure and function (ClinicalTrials.gov: NCT01679977).
Collapse
Affiliation(s)
- S Zampieri
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria. Department of Biomedical Sciences, University of Padova, Italy.
| | - L Pietrangelo
- CeSI - Center for Research on Aging - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Italy
| | - S Loefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - H Fruhmann
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - M Vogelauer
- Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria
| | - S Burggraf
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - A Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale
| | - M Grim-Stieger
- Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria
| | - J Cvecka
- Faculty of Physical Education and Sport, Comenius University, Bratislava, Slovakia
| | - M Sedliak
- Faculty of Physical Education and Sport, Comenius University, Bratislava, Slovakia
| | - V Tirpáková
- Faculty of Physical Education and Sport, Comenius University, Bratislava, Slovakia
| | - W Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - N Sarabon
- University of Primorska, Science and Research Centre, Institute for Kinesilogical Research, Koper, Slovenia
| | - K Rossini
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria. Department of Biomedical Sciences, University of Padova, Italy
| | - L Barberi
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Rome, Italy
| | - M De Rossi
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Rome, Italy
| | - V Romanello
- Department of Biomedical Sciences, University of Padova, Italy. Venetian Institute of Molecular Medicine, Dulbecco Telethon Institute, Padova, Italy
| | - S Boncompagni
- CeSI - Center for Research on Aging - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Italy
| | - A Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Rome, Italy
| | - M Sandri
- Department of Biomedical Sciences, University of Padova, Italy. Venetian Institute of Molecular Medicine, Dulbecco Telethon Institute, Padova, Italy
| | - F Protasi
- CeSI - Center for Research on Aging - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Italy
| | - U Carraro
- Department of Biomedical Sciences, University of Padova, Italy
| | - H Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria. Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria
| |
Collapse
|
78
|
Pierno S, Tricarico D, Liantonio A, Mele A, Digennaro C, Rolland JF, Bianco G, Villanova L, Merendino A, Camerino GM, De Luca A, Desaphy JF, Camerino DC. An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function. AGE (DORDRECHT, NETHERLANDS) 2014; 36:73-88. [PMID: 23716142 PMCID: PMC3889891 DOI: 10.1007/s11357-013-9544-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.
Collapse
Affiliation(s)
- Sabata Pierno
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4-campus, 70125, Bari, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Alway SE, Bennett BT, Wilson JC, Edens NK, Pereira SL. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats. Exp Gerontol 2013; 50:82-94. [PMID: 24316035 DOI: 10.1016/j.exger.2013.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb suspension (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 months) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p<0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2±113.8 μm(2)) vs. vehicle treated animals (1953.0±41.9 μm(2)). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (-22%), and FADD (-77%) was lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; West Virginia Center for Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States.
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Neile K Edens
- Discovery R&D, Abbott Nutrition, Columbus, OH, United States
| | | |
Collapse
|
80
|
Bogdanis G, Stavrinou P, Fatouros I, Philippou A, Chatzinikolaou A, Draganidis D, Ermidis G, Maridaki M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol 2013; 61:171-7. [DOI: 10.1016/j.fct.2013.05.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/10/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
81
|
Pantic B, Trevisan E, Citta A, Rigobello MP, Marin O, Bernardi P, Salvatori S, Rasola A. Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death Dis 2013; 4:e858. [PMID: 24136222 PMCID: PMC3920960 DOI: 10.1038/cddis.2013.385] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
Abstract
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.
Collapse
Affiliation(s)
- B Pantic
- 1] CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy [2] Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Powers SK, Wiggs MP, Sollanek KJ, Smuder AJ. Ventilator-induced diaphragm dysfunction: cause and effect. Am J Physiol Regul Integr Comp Physiol 2013; 305:R464-77. [DOI: 10.1152/ajpregu.00231.2013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mechanical ventilation (MV) is used clinically to maintain gas exchange in patients that require assistance in maintaining adequate alveolar ventilation. Common indications for MV include respiratory failure, heart failure, drug overdose, and surgery. Although MV can be a life-saving intervention for patients suffering from respiratory failure, prolonged MV can promote diaphragmatic atrophy and contractile dysfunction, which is referred to as ventilator-induced diaphragm dysfunction (VIDD). This is significant because VIDD is thought to contribute to problems in weaning patients from the ventilator. Extended time on the ventilator increases health care costs and greatly increases patient morbidity and mortality. Research reveals that only 18–24 h of MV is sufficient to develop VIDD in both laboratory animals and humans. Studies using animal models reveal that MV-induced diaphragmatic atrophy occurs due to increased diaphragmatic protein breakdown and decreased protein synthesis. Recent investigations have identified calpain, caspase-3, autophagy, and the ubiquitin-proteasome system as key proteases that participate in MV-induced diaphragmatic proteolysis. The challenge for the future is to define the MV-induced signaling pathways that promote the loss of diaphragm protein and depress diaphragm contractility. Indeed, forthcoming studies that delineate the signaling mechanisms responsible for VIDD will provide the knowledge necessary for the development of a pharmacological approach that can prevent VIDD and reduce the incidence of weaning problems.
Collapse
Affiliation(s)
- Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Michael P. Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kurt J. Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
83
|
Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol 2013; 48:973-84. [DOI: 10.1016/j.exger.2013.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
|
84
|
Song Y, Pillow JJ. Developmental regulation of molecular signalling in fetal and neonatal diaphragm protein metabolism. Exp Biol Med (Maywood) 2013; 238:913-22. [DOI: 10.1177/1535370213494562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Structural and functional immaturity of the preterm diaphragm predisposes the preterm baby to respiratory muscle weakness and consequent impaired efficiency of spontaneous respiration, potentially necessitating mechanical respiratory support. The ontogeny of several proteolytic genes (calpain, caspase-3, MAFbx and MuRF-1) changes dynamically with gestational and early postnatal development. We aimed to define the molecular signal cascades and triggers responsible for the dynamic changes in the proteolytic pathways during in utero and early postnatal development. Costal diaphragm was obtained immediately following euthanasia of fetal and newborn lambs from 75 to 200 days postconceptional age (term = 150 days). Gene expression of insulin-like growth factor 1 (IGF-1), tumour necrosis factor α (TNF-α) and myostatin decreased steadily in utero from 75 to 145 days ( P < 0.05) and the transcripts increased again after birth except of myostatin. Rapid activation of the fork-head transcriptional factors of the O class (FOXO1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways was observed at 24 h of postnatal age. Diaphragm reactive oxygen species (ROS) production increased over 29-fold at 24 h postnatal age, compared with the 145 days fetus ( P < 0.01). Local (diaphragmatic) ROS accumulation occurred earlier and was more predominant than systemic (plasma) ROS. There were positive correlations between signalling transduction molecules (FOXO1 and NF-κB) and antioxidant gene expression (superoxide dismutase and glutathione peroxidase 1). We conclude that anabolic (IGF-1) and catabolic (TNF-α and myostatin) factors have a similar developmental pattern with a decreasing trend toward full term. This may reflect in utero integration of cellular events into low protein metabolism as the diaphragm matures in late gestation. On initiation of spontaneous breathing, ROS accumulated and potentially activated cascade of FOXO and NF-κB signal transduction. The finding provides new insights into developmental regulation of protein metabolism within development. The implication of these postnatal events for diaphragm adaptation to the ex utero environment needs further investigation.
Collapse
Affiliation(s)
- Yong Song
- Centre for Neonatal Research and Education, The University of Western Australia, Crawley 6009, Western Australia, Australia
- School of Women’s and Infants’ Health, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - J Jane Pillow
- Centre for Neonatal Research and Education, The University of Western Australia, Crawley 6009, Western Australia, Australia
- School of Women’s and Infants’ Health, The University of Western Australia, Crawley 6009, Western Australia, Australia
- Women and Newborns Health Service, c/-King Edward Memorial and Princess Margaret Hospitals, Subiaco, Perth 6008, Western Australia, Australia
| |
Collapse
|
85
|
Zuo L, Shiah A, Roberts WJ, Chien MT, Wagner PD, Hogan MC. Low Po₂ conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1009-16. [PMID: 23576612 DOI: 10.1152/ajpregu.00563.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po₂ conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po₂ compared with a value approximating normal resting Po₂. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po₂ (30 Torr), low Po₂ (3-5 Torr), high Po₂ with ebselen (antioxidant), or low Po₂ with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po₂ treatment was greater than during high Po₂ treatment, and ebselen decreased ROS generation in both low- and high-Po₂ conditions (P < 0.05). ROS accumulated at a faster rate in low vs. high Po₂. Force was reduced >30% for each condition except low Po₂ with ebselen, which only decreased ~15%. We concluded that single myofibers under low Po₂ conditions develop accelerated and more oxidative stress than at Po₂ = 30 Torr (normal human resting Po₂). Ebselen decreases ROS formation in both low and high Po₂, but only mitigates skeletal muscle fatigue during reduced Po₂ conditions.
Collapse
Affiliation(s)
- Li Zuo
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Increased insulin sensitivity and distorted mitochondrial adaptations during muscle unloading. Int J Mol Sci 2012; 13:16971-85. [PMID: 23443131 PMCID: PMC3546734 DOI: 10.3390/ijms131216971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 11/17/2022] Open
Abstract
We aimed to further investigate mitochondrial adaptations to muscle disuse and the consequent metabolic disorders. Male rats were submitted to hindlimb unloading (HU) for three weeks. Interestingly, HU increased insulin sensitivity index (ISI) and decreased blood level of triglyceride and insulin. In skeletal muscle, HU decreased expression of pyruvate dehydrogenase kinase 4 (PDK4) and its protein level in mitochondria. HU decreased mtDNA content and mitochondrial biogenesis biomarkers. Dynamin-related protein (Drp1) in mitochondria and Mfn2 mRNA level were decreased significantly by HU. Our findings provide more extensive insight into mitochondrial adaptations to muscle disuse, involving the shift of fuel utilization towards glucose, the decreased mitochondrial biogenesis and the distorted mitochondrial dynamics.
Collapse
|
87
|
Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G, Diaz A, Gratas-Delamarche A, Cerda M, Viña J. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PLoS One 2012; 7:e46668. [PMID: 23071610 PMCID: PMC3465256 DOI: 10.1371/journal.pone.0046668] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/04/2012] [Indexed: 12/20/2022] Open
Abstract
Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS) are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1) and Muscle RING (Really Interesting New Gene) Finger-1 (MuRF-1). We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ∼20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.
Collapse
Affiliation(s)
- Frederic Derbre
- Laboratory “Movement Sport and Health Sciences”, University Rennes 2-ENS Cachan, Rennes, France
| | - Beatriz Ferrando
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Fabian Sanchis-Gomar
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Vladimir E. Martinez-Bello
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Ana Diaz
- UCIM, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Arlette Gratas-Delamarche
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Miguel Cerda
- Department of Pathology, University of Valencia, Valencia, Spain
| | - Jose Viña
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
- * E-mail:
| |
Collapse
|
88
|
Young K, Cramp R, Franklin C. Hot and steady: Elevated temperatures do not enhance muscle disuse atrophy during prolonged aestivation in the ectothermCyclorana alboguttata. J Morphol 2012; 274:165-74. [DOI: 10.1002/jmor.20080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 08/12/2012] [Accepted: 08/22/2012] [Indexed: 01/31/2023]
|
89
|
Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One 2012; 7:e41701. [PMID: 22870245 PMCID: PMC3411696 DOI: 10.1371/journal.pone.0041701] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/25/2012] [Indexed: 01/13/2023] Open
Abstract
Background Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects’ levels. Conclusions Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.
Collapse
|
90
|
Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, Pellegrino MA. The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Physiol 2012; 590:5211-30. [PMID: 22848045 DOI: 10.1113/jphysiol.2012.240267] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In order to get a comprehensive picture of the complex adaptations of human skeletal muscle to disuse and further the understanding of the underlying mechanisms, we participated in two bed rest campaigns, one lasting 35 days and one 24 days. In the first bed rest (BR) campaign, myofibrillar proteins, metabolic enzymes and antioxidant defence systems were found to be down-regulated both post-8 days and post-35 days BR by proteomic analysis of vastus lateralis muscle samples from nine subjects. Such profound alterations occurred early (post-8 days BR), before disuse atrophy developed, and persisted through BR (post-35 days BR). To understand the mechanisms underlying the protein adaptations observed, muscle biopsies from the second bed rest campaign (nine subjects) were used to evaluate the adaptations of master controllers of the balance between muscle protein breakdown and muscle protein synthesis (MuRF-1 and atrogin-1; Akt and p70S6K), of autophagy (Beclin-1, p62, LC3, bnip3, cathepsin-L), of expression of antioxidant defence systems (NRF2) and of energy metabolism (PGC-1α, SREBP-1, AMPK). The results indicate that: (i) redox imbalance and remodelling of muscle proteome occur early and persist through BR; (ii) impaired energy metabolism is an early and persistent phenomenon comprising both the oxidative and glycolytic one; (iii) although both major catabolic systems, ubiquitin proteasome and autophagy, could contribute to the progression of atrophy late into BR, a decreased protein synthesis cannot be ruled out; (iv) a decreased PGC-1α, with the concurrence of SREBP-1 up-regulation, is a likely trigger of metabolic impairment, whereas the AMPK pathway is unaltered.
Collapse
Affiliation(s)
- Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
91
|
Liu Y, Hernández-Ochoa EO, Randall WR, Schneider MF. NOX2-dependent ROS is required for HDAC5 nuclear efflux and contributes to HDAC4 nuclear efflux during intense repetitive activity of fast skeletal muscle fibers. Am J Physiol Cell Physiol 2012; 303:C334-47. [PMID: 22648949 DOI: 10.1152/ajpcell.00152.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) have been linked to oxidation and nuclear efflux of class IIa histone deacetylase 4 (HDAC4) in cardiac muscle. Here we use HDAC-GFP fusion proteins expressed in isolated adult mouse flexor digitorum brevis muscle fibers to study ROS mediation of HDAC localization in skeletal muscle. H(2)O(2) causes nuclear efflux of HDAC4-GFP or HDAC5-GFP, which is blocked by the ROS scavenger N-acetyl-l-cysteine (NAC). Repetitive stimulation with 100-ms trains at 50 Hz, 2/s ("50-Hz trains") increased ROS production and caused HDAC4-GFP or HDAC5-GFP nuclear efflux. During 50-Hz trains, HDAC5-GFP nuclear efflux was completely blocked by NAC, but HDAC4-GFP nuclear efflux was only partially blocked by NAC and partially blocked by the calcium-dependent protein kinase (CaMK) inhibitor KN-62. Thus, during intense activity both ROS and CaMK play roles in nuclear efflux of HDAC4, but only ROS mediates HDAC5 nuclear efflux. The 10-Hz continuous stimulation did not increase the rate of ROS production and did not cause HDAC5-GFP nuclear efflux but promoted HDAC4-GFP nuclear efflux that was sensitive to KN-62 but not NAC and thus mediated by CaMK but not by ROS. Fibers from NOX2 knockout mice lacked ROS production and ROS-dependent nuclear efflux of HDAC5-GFP or HDAC4-GFP during 50-Hz trains but had unmodified Ca(2+) transients. Our results demonstrate that ROS generated by NOX2 could play important roles in muscle remodeling due to intense muscle activity and that the nuclear effluxes of HDAC4 and HDAC5 are differentially regulated by Ca(2+) and ROS during muscle activity.
Collapse
Affiliation(s)
- Yewei Liu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1503, USA
| | | | | | | |
Collapse
|
92
|
Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol 2012; 3:142. [PMID: 22629249 PMCID: PMC3355468 DOI: 10.3389/fphys.2012.00142] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/27/2012] [Indexed: 12/22/2022] Open
Abstract
The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K+, H+, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being.
Collapse
Affiliation(s)
- Gregory C Bogdanis
- Department of Physical Education and Sports Science, University of Athens Athens, Greece
| |
Collapse
|
93
|
Relationship between human aging muscle and oxidative system pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:830257. [PMID: 22685621 PMCID: PMC3362949 DOI: 10.1155/2012/830257] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/07/2023]
Abstract
Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS) generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function).
Collapse
|
94
|
Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol 2012; 215:1615-25. [DOI: 10.1242/jeb.067470] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Summary
The central aim of this review is to address the highly multidisciplinary topic of redox biology as related to exercise using an integrative and comparative approach rather than focusing on blood, skeletal muscle or humans. An attempt is also made to re-define ‘oxidative stress’ as well as to introduce the term ‘alterations in redox homeostasis’ to describe changes in redox homeostasis indicating oxidative stress, reductive stress or both. The literature analysis shows that the effects of non-muscle-damaging exercise and muscle-damaging exercise on redox homeostasis are completely different. Non-muscle-damaging exercise induces alterations in redox homeostasis that last a few hours post exercise, whereas muscle-damaging exercise causes alterations in redox homeostasis that may persist for and/or appear several days post exercise. Both exhaustive maximal exercise lasting only 30 s and isometric exercise lasting 1–3 min (the latter activating in addition a small muscle mass) induce systemic oxidative stress. With the necessary modifications, exercise is capable of inducing redox homeostasis alterations in all fluids, cells, tissues and organs studied so far, irrespective of strains and species. More importantly, ‘exercise-induced oxidative stress’ is not an ‘oddity’ associated with a particular type of exercise, tissue or species. Rather, oxidative stress constitutes a ubiquitous fundamental biological response to the alteration of redox homeostasis imposed by exercise. The hormesis concept could provide an interpretative framework to reconcile differences that emerge among studies in the field of exercise redox biology. Integrative and comparative approaches can help determine the interactions of key redox responses at multiple levels of biological organization.
Collapse
Affiliation(s)
- Michalis G. Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Antonios Kyparos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Chrysoula Spanou
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sports Science, University of Thessaly, Karies, 42100 Trikala, Greece
| | - Anastasios A. Theodorou
- Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - Ioannis S. Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW This review will discuss the evidence both for and against the concept that reactive oxygen species (ROS) play an important role in the regulation of inactivity-induced skeletal muscle atrophy. RECENT FINDINGS It is well established that prolonged skeletal muscle inactivity causes muscle fiber atrophy and a decrease in muscle force production. This disuse-induced muscle atrophy is the consequence of a loss in muscle protein resulting from increased protein degradation and decreased protein synthesis. Recent studies suggest that oxidative stress can influence cell-signaling pathways that regulate both muscle protein breakdown and synthesis during prolonged periods of disuse. Specifically, it is feasible that increased ROS production in muscle fibers can promote increased proteolysis and also depress protein synthesis during periods of skeletal muscle inactivity. SUMMARY Although it is established that oxidants can participate in the regulation of protein turnover in cells, there remains debate as to whether oxidative stress is required for disuse skeletal muscle atrophy. Nonetheless, based on emerging evidence we conclude that increased ROS production in skeletal muscles significantly contributes to inactivity-induced muscle atrophy.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
96
|
Hadj Salem I, Kamoun F, Louhichi N, Trigui M, Triki C, Fakhfakh F. Impact of single-nucleotide polymorphisms at the TP53-binding and responsive promoter region of BCL2 gene in modulating the phenotypic variability of LGMD2C patients. Mol Biol Rep 2012; 39:7479-86. [PMID: 22367371 DOI: 10.1007/s11033-012-1581-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/30/2012] [Indexed: 11/25/2022]
Abstract
Apoptosis of skeletal muscle fibers is a well-known event occurring in patients suffering from muscular dystrophies. In this study, we hypothesized that functional polymorphisms in genes involved in the mitochondrial apoptotic pathway might modulate the apoptotic capacity underlying the muscle loss and contributing to intrafamilial and interfamilial variable phenotypes in LGMD2C (Limb Girdle Muscular Dystrophy type 2C) patients sharing the same c.521delT mutation in SGCG gene. Detection of apoptosis was confirmed on muscle biopsies taken from LGMD2C patients using the TUNEL method. We genotyped then ten potentially functional SNPs in TP53, BCL-2 and BAX genes involved in the mitochondrial apoptotic pathway. Potential genotype-dependent Bcl-2 and p53 protein expressed in skeletal muscle was investigated using western blot and ELISA assays. The result showed that muscle cells carrying the TP53-R72R and TP53-16 bp del/del genotypes displayed an increased p53 level which could be more effective in inducing apoptosis by activation of the pro-apoptotic gene expression. In addition, the BCL2-938 AA genotype was associated with increased Bcl-2 protein expression in muscle from LGMD2C patients compared to -938CC genotype, while there was no evidence of significant difference in the BAX haplotype. Our findings suggest that increased Bcl-2 protein expression may counteract pro-apoptotic pathways and thus reduce the muscle loss. To the best of our knowledge, this is a pioneer study evaluating the role of apoptotic BCL-2 and TP53 genes in contributing to the phenotypic manifestation of c.521delT mutation in LGMD2C patients. Larger studies are needed to validate these findings.
Collapse
Affiliation(s)
- Ikhlass Hadj Salem
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Avenue Magida Boulila, 3029 Sfax, Tunisia.
| | | | | | | | | | | |
Collapse
|
97
|
Young KM, Cramp RL, Franklin C. Each to their own: skeletal muscles of different function use different biochemical strategies during aestivation at high temperature. J Exp Biol 2012. [DOI: 10.1242/jeb.072827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Summary
Preservation of muscle morphology depends on a continuing regulatory balance between molecules that protect, and molecules that damage, muscle structural integrity. Excessive disruption of the biochemical balance that favours reactive oxygen species (ROS) in disused muscles may lead to oxidative stress; which in turn is associated with increased atrophic or apoptotic signalling and/or oxidative damage to the muscle and thus muscle disuse atrophy. Increases in rate of oxygen consumption likely increase the overall generation of ROS in vivo. Temperature-induced increases in muscle oxygen consumption rate occur in some muscles of ectotherms undergoing prolonged muscular disuse during aestivation. In the green-striped burrowing frog, Cyclorana alboguttata, both large jumping muscles and small non-jumping muscles undergo atrophy seemingly commensurate with their rate of oxygen consumption during aestivation. However, since the extent of atrophy in these muscles is not enhanced at higher temperatures despite a temperature sensitive rate of oxygen consumption in the jumping muscle, we proposed that muscles are protected by biochemical means that when mobilised at higher temperatures inhibit atrophy. We proposed the biochemical response to temperature would be muscle-specific. We examined the effect of temperature on the antioxidant and heat shock protein systems and evidence of oxidative damage to lipids and proteins in two functionally different skeletal muscles, gastrocnemius (jumping muscle) and iliofibularis (non-jumping muscle), by aestivating frogs at 24 and 30oC for six months. We assayed small molecule antioxidant capacity, mitochondrial and cytosolic SOD and Hsp70 to show that protective mechanisms in disused muscles are differentially regulated both with respect to temperature and aestivation. High aestivation temperature results in an antioxidant response in the metabolically temperature-sensitive jumping muscle. We assayed lipid peroxidation and protein oxidation to show that oxidative damage is apparent during aestivation and its pattern is muscle-specific, but unaffected by temperature. Consideration is given to how the complex responses of muscle biochemistry inform of the different strategies muscles may use in regulating their oxidative environment during extended disuse and disuse at high temperature.
Collapse
|
98
|
de Gonzalo-Calvo D, de Luxan-Delgado B, Rodriguez-Gonzalez S, Garcia-Macia M, Suarez FM, Solano JJ, Rodriguez-Colunga MJ, Coto-Montes A. Oxidative Protein Damage Is Associated With Severe Functional Dependence Among the Elderly Population: A Principal Component Analysis Approach. J Gerontol A Biol Sci Med Sci 2011; 67:663-70. [DOI: 10.1093/gerona/glr215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
99
|
Reactive oxygen species in skeletal muscle signaling. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:982794. [PMID: 22175016 PMCID: PMC3235811 DOI: 10.1155/2012/982794] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/25/2011] [Indexed: 12/13/2022]
Abstract
Generation of reactive oxygen species (ROS) is a ubiquitous phenomenon in eukaryotic cells' life. Up to the 1990s of the past century, ROS have been solely considered as toxic species resulting in oxidative stress, pathogenesis and aging. However, there is now clear evidence that ROS are not merely toxic species but also-within certain concentrations-useful signaling molecules regulating physiological processes. During intense skeletal muscle contractile activity myotubes' mitochondria generate high ROS flows: this renders skeletal muscle a tissue where ROS hold a particular relevance. According to their hormetic nature, in muscles ROS may trigger different signaling pathways leading to diverging responses, from adaptation to cell death. Whether a "positive" or "negative" response will prevail depends on many variables such as, among others, the site of ROS production, the persistence of ROS flow or target cells' antioxidant status. In this light, a specific threshold of physiological ROS concentrations above which ROS exert negative, toxic effects is hard to determine, and the concept of "physiologically compatible" levels of ROS would better fit with such a dynamic scenario. In this review these concepts will be discussed along with the most relevant signaling pathways triggered and/or affected by ROS in skeletal muscle.
Collapse
|
100
|
Bottinelli R, Westerblad H. Reactive oxygen and nitrogen species in skeletal muscle: acute and long-term effects. J Physiol 2011; 589:2117-8. [PMID: 21532033 DOI: 10.1113/jphysiol.2011.209437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|