51
|
LIU MIHUA, ZHANG YUAN, LIN XIAOLONG, HE JUN, TAN TIANPING, WU SHAOJIAN, YU SHAN, CHEN LI, CHEN YUDAN, FU HONGYUN, YUAN CONG, LI JIAN. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting calreticulin expression in H9c2 cells. Mol Med Rep 2015; 12:5197-202. [DOI: 10.3892/mmr.2015.4020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/11/2015] [Indexed: 11/06/2022] Open
|
52
|
Yu Z, Zhang Y, Liu N, Yuan J, Lin L, Zhuge Q, Xiao J, Wang X. Roles of Neuroglobin Binding to Mitochondrial Complex III Subunit Cytochrome c1 in Oxygen-Glucose Deprivation-Induced Neurotoxicity in Primary Neurons. Mol Neurobiol 2015; 53:3249-3257. [PMID: 26050086 DOI: 10.1007/s12035-015-9273-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
Abstract
Neuroglobin (Ngb) is a tissue globin specifically expressed in brain neurons. Recent studies by our laboratory and others have demonstrated that Ngb is protective against stroke and related neurological disorders, but the mechanisms remain poorly understood. We previously identified cytochrome c1 (Cyc1) as an Ngb-interacting molecule by yeast two-hybrid screening. Cyc1 is a subunit of mitochondria complex III, which is a component of mitochondrial respiratory chain and a major source of reactive oxygen species (ROS) production under both physiological and pathological conditions. In this study, we for the first time defined Ngb-Cyc1 binding, and investigated its roles in oxygen-glucose deprivation (OGD)/reoxygenation-induced neurotoxicity and ROS production in primary neurons. Immunocytochemistry and co-immunoprecipitation validated Ngb-Cyc1 binding, which was significantly increased by OGD and Ngb overexpression. We found 4 h OGD with/without 4 h reoxygenation significantly increased complex III activity, but this activity elevation was significantly attenuated in three groups of neurons: Ngb overexpression, specific complex III inhibitor stigmatellin, or stigmatellin plus Ngb overexpression, whereas there was no significant differences between these three groups, suggesting Ngb-Cyc1 binding may function in suppressing OGD-mediated complex III activity elevation. Importantly, these three groups of neurons also showed significant decreases in OGD-induced superoxide anion generation and neurotoxicity. These results suggest that Ngb can bind to mitochondrial complex III subunit Cyc1, leading to suppression of OGD-mediated complex III activity and subsequent ROS production elevation, and eventually reduction of OGD-induced neurotoxicity. This molecular signaling cascade may be at least part of the mechanisms of Ngb neuroprotection against OGD-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhanyang Yu
- Department of Neurosurgery, The First Affiliated Hospital, College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, 149 13th Street, Room 2411A, Charlestown, MA, 02129, USA.
| | - Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital, College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ning Liu
- Key Laboratory of Protein Biochemistry and Developmental Biology of State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jing Yuan
- Key Laboratory of Protein Biochemistry and Developmental Biology of State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, 149 13th Street, Room 2411A, Charlestown, MA, 02129, USA
| | - Li Lin
- Department of Neurosurgery, The First Affiliated Hospital, College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital, College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jian Xiao
- Department of Neurosurgery, The First Affiliated Hospital, College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, 149 13th Street, Room 2411A, Charlestown, MA, 02129, USA.
| |
Collapse
|
53
|
Monoamine Oxidases as Potential Contributors to Oxidative Stress in Diabetes: Time for a Study in Patients Undergoing Heart Surgery. BIOMED RESEARCH INTERNATIONAL 2015; 2015:515437. [PMID: 26101773 PMCID: PMC4458524 DOI: 10.1155/2015/515437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/01/2014] [Accepted: 09/17/2014] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a pathomechanism causally linked to the progression of chronic cardiovascular diseases and diabetes. Mitochondria have emerged as the most relevant source of reactive oxygen species, the major culprit being classically considered the respiratory chain at the inner mitochondrial membrane. In the past decade, several experimental studies unequivocally demonstrated the contribution of monoamine oxidases (MAOs) at the outer mitochondrial membrane to the maladaptative ventricular hypertrophy and endothelial dysfunction. This paper addresses the contribution of mitochondrial dysfunction to the pathogenesis of heart failure and diabetes together with the mounting evidence for an emerging role of MAO inhibition as putative cardioprotective strategy in both conditions.
Collapse
|
54
|
Duan H, Li Y, Yan L, Yang H, Wu J, Qian P, Li B, Wang S. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes. Exp Cell Res 2015; 335:99-106. [PMID: 25978972 DOI: 10.1016/j.yexcr.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 01/09/2023]
Abstract
Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200nmol/L Ang II for 4 days. Enhanced H2O2 production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection.
Collapse
Affiliation(s)
- Hongyan Duan
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Yongqiang Li
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Lijie Yan
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Haitao Yang
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Jintao Wu
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Peng Qian
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Bing Li
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China
| | - Shanling Wang
- Department of cardiology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China.
| |
Collapse
|
56
|
Loss of dihydrolipoyl succinyltransferase (DLST) leads to reduced resting heart rate in the zebrafish. Basic Res Cardiol 2015; 110:14. [PMID: 25697682 PMCID: PMC4335124 DOI: 10.1007/s00395-015-0468-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
The genetic underpinnings of heart rate regulation are only poorly understood. In search for genetic regulators of cardiac pacemaker activity, we isolated in a large-scale mutagenesis screen the embryonic lethal, recessive zebrafish mutant schneckentempo (ste). Homozygous ste mutants exhibit a severely reduced resting heart rate with normal atrio-ventricular conduction and contractile function. External electrical pacing reveals that defective excitation generation in cardiac pacemaker cells underlies bradycardia in ste−/− mutants. By positional cloning and gene knock-down analysis we find that loss of dihydrolipoyl succinyltransferase (DLST) function causes the ste phenotype. The mitochondrial enzyme DLST is an essential player in the citric acid cycle that warrants proper adenosine-tri-phosphate (ATP) production. Accordingly, ATP levels are significantly diminished in ste−/− mutant embryos, suggesting that limited energy supply accounts for reduced cardiac pacemaker activity in ste−/− mutants. We demonstrate here for the first time that the mitochondrial enzyme DLST plays an essential role in the modulation of the vertebrate heart rate by controlling ATP production in the heart.
Collapse
|