51
|
Fanfone D, Stanicki D, Nonclercq D, Port M, Vander Elst L, Laurent S, Muller RN, Saussez S, Burtea C. Molecular Imaging of Galectin-1 Expression as a Biomarker of Papillary Thyroid Cancer by Using Peptide-Functionalized Imaging Probes. BIOLOGY 2020; 9:biology9030053. [PMID: 32183292 PMCID: PMC7150867 DOI: 10.3390/biology9030053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
Thyroid cancers are the most frequent endocrine cancers and their incidence is increasing worldwide. Thyroid nodules occur in over 19–68% of the population, but only 7–15% of them are diagnosed as malignant. Diagnosis relies on a fine needle aspiration biopsy, which is often inconclusive and about 90% of thyroidectomies are performed for benign lesions. Galectin-1 has been proposed as a confident biomarker for the discrimination of malignant from benign nodules. We previously identified by phage display two peptides (P1 and P7) targeting galectin-1, with the goal of developing imaging probes for non-invasive diagnosis of thyroid cancer. The peptides were coupled to ultra-small superparamagnetic particles of iron oxide (USPIO) or to a near-infrared dye (CF770) for non-invasive detection of galectin-1 expression in a mouse model of papillary thyroid cancer (PTC, as the most frequent one) by magnetic resonance imaging and fluorescence lifetime imaging. The imaging probes functionalized with the two peptides presented comparable image enhancement characteristics. However, those coupled to P7 were more favorable, and showed decreased retention by the liver and spleen (known for their galectin-1 expression) and high sensitivity (75%) and specificity (100%) of PTC detection, which confirm the aptitude of this peptide to discriminate human malignant from benign nodules (80% sensitivity, 100% specificity) previously observed by immunohistochemistry.
Collapse
Affiliation(s)
- Deborah Fanfone
- Department of General, Organic and Biomedical Chemistry, UMONS, Avenue Victor Maistriau 19, 7000 Mons, Belgium; (D.F.); (L.V.E.); (S.L.); (R.N.M.)
| | - Dimitri Stanicki
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041 Charleroi, Belgium;
| | - Denis Nonclercq
- Laboratory of Histology, Faculty of Medicine and Pharmacy, University of Mons–UMONS, Avenue du Champ de Mars 6, 7000 Mons, Belgium;
| | - Marc Port
- Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Equipe Chimie Moléculaire, Conservatoire National des Arts et Métiers (CNAM), HESAM Université, 75003 Paris, France;
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, UMONS, Avenue Victor Maistriau 19, 7000 Mons, Belgium; (D.F.); (L.V.E.); (S.L.); (R.N.M.)
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, UMONS, Avenue Victor Maistriau 19, 7000 Mons, Belgium; (D.F.); (L.V.E.); (S.L.); (R.N.M.)
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041 Charleroi, Belgium;
| | - Robert N. Muller
- Department of General, Organic and Biomedical Chemistry, UMONS, Avenue Victor Maistriau 19, 7000 Mons, Belgium; (D.F.); (L.V.E.); (S.L.); (R.N.M.)
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041 Charleroi, Belgium;
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, UMONS, Avenue du Champ de Mars, 6, 7000 Mons, Belgium;
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, UMONS, Avenue Victor Maistriau 19, 7000 Mons, Belgium; (D.F.); (L.V.E.); (S.L.); (R.N.M.)
- Correspondence: ; Tel.: +32-6537-3814
| |
Collapse
|
52
|
Vonk J, de Wit JG, Voskuil FJ, Witjes MJH. Improving oral cavity cancer diagnosis and treatment with fluorescence molecular imaging. Oral Dis 2020; 27:21-26. [PMID: 32072691 PMCID: PMC7818506 DOI: 10.1111/odi.13308] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
Abstract
Early diagnosis and radical surgical excision of oral squamous cell carcinomas are essential for achieving optimal treatment outcomes. To date, diagnostic tools that rely on anatomical anomalies provide limited information and resolution in clinical practice. As a result, oral cancer is often detected in an advanced stage. Also, no reliable real-time intraoperative tools are readily available for the evaluation of surgical resection margins. Fluorescence imaging visualises biological processes that occur in early carcinogenesis and could, therefore, enable detection of small tumours in early stages. Furthermore, due to the high sensitivity and spatial resolution, fluorescence imaging could assist in resection margin assessment during surgery. In this review, we discuss several techniques that employ fluorescence for early diagnosis and surgical guidance in oral squamous cell carcinoma and present future perspectives on the potential of fluorescence imaging in oral cancer in the near future.
Collapse
Affiliation(s)
- Jasper Vonk
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jaron Gérard de Wit
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Jan Voskuil
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Max Johannes Hendrikus Witjes
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
53
|
Schreiber CL, Zhai C, Dempsey JM, McGarraugh HH, Matthews BP, Christmann CR, Smith B. Paired Agent Fluorescence Imaging of Cancer in a Living Mouse Using Preassembled Squaraine Molecular Probes with Emission Wavelengths of 690 and 830 nm. Bioconjug Chem 2020; 31:214-223. [PMID: 31756298 PMCID: PMC7768864 DOI: 10.1021/acs.bioconjchem.9b00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New methods are described for the construction of targeted fluorescence probes for imaging cancer and the assessment of tumor targeting performance in a living mouse model. A novel noncovalent assembly process was used to fabricate a set of structurally related targeted fluorescent probes with modular differences in three critical assembly components: the emission wavelength of the squaraine fluorochrome, the number of cRGDfK peptide units that target the cancer cells, and the length of the polyethylene glycol chains as pharmacokinetic controllers. Selective targeting of cancer cells was proven by a series of cell microscopy experiments followed by in vivo imaging of subcutaneous tumors in living mice. The mouse imaging studies included a mock surgery that completely removed a fluorescently labeled tumor. Enhanced tumor accumulation due to probe targeting was first evaluated by conducting Single Agent Imaging (SAI) experiments that compared tumor imaging performance of a targeted probe and untargeted probe in separate mouse cohorts. Although there was imaging evidence for enhanced tumor accumulation of the targeted probe, there was moderate scatter in the data due to tumor-to-tumor variability of the vasculature structure and interstitial pressure. A subsequent Paired Agent Imaging (PAI) study coinjected a binary mixture of targeted probe (with emission at 690 nm) and untargeted probe (with emission at 830 nm) into the same tumor-burdened animal. The conclusion of the PAI experiment also indicated enhanced tumor accumulation of the targeted probe, but the statistical significance was much higher, even though the experiment required a much smaller cohort of mice. The imaging data from the PAI experiment was analyzed to determine the targeted probe's Binding Potential (BP) for available integrin receptors within the tumor tissue. In addition, pixelated maps of BP within each tumor indicated a heterogeneous spatial distribution of BP values. The results of this study show that the combination of fluorescent probe preassembly and PAI is a promising new way to rapidly develop targeted fluorescent probes for tumors with high BP and eventual use in clinical applications such as targeted therapy, image guided surgery, and personalized medicine.
Collapse
Affiliation(s)
- Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Janel M. Dempsey
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Braden P. Matthews
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Caroline R. Christmann
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
54
|
Daly HC, Conroy E, Todor M, Wu D, Gallagher WM, O'Shea DF. An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging. Am J Cancer Res 2020; 10:3064-3082. [PMID: 32194855 PMCID: PMC7053210 DOI: 10.7150/thno.42702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
A successful matching of a PEG group size with the EPR effect for an off-to-on responsive NIR-fluorophore conjugate has been accomplished which allows two distinct in vivo tumor imaging periods, the first being the switch on during the initial tumor uptake via enhanced permeability into the ROI (as background is suppressed) and a second, later, due to enhanced retention within the tumor. Methods: Software simulation (https://mihaitodor.github.io/particle_simulation/index.html), synthetic chemistry, with in vitro and in vivo imaging have been synergistically employed to identify an optimal PEG conjugate of a bio-responsive NIR-AZA fluorophore for in vivo tumor imaging. Results: A bio-responsive NIR-AZA fluorophore conjugated to a 10 kDa PEG group has shown excellent in vivo imaging performance with sustained high tumor to background ratios and peak tumor emission within 24 h. Analysis of fluorescence profiles over 7 days has provided evidence for the EPR effect playing a positive role. Conclusion: Preclinical results show that exploiting the EPR effect by utilizing an optimized PEG substituent on a bio-responsive fluorophore may offer a means for intraoperative tumor margin delineation. The off-to-on responsive nature of the fluorophore makes tumor imaging achievable without waiting for clearance from normal tissue.
Collapse
|
55
|
Vargas SH, Lin C, AghaAmiri S, Voss J, Ikoma N, Tran Cao HS, Ghosh SC, Uselmann AJ, Azhdarinia A. A proof-of-concept methodology to validate the in situ visualization of residual disease using cancer-targeted molecular agents in fluorescence-guided surgery. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222. [PMID: 34054189 DOI: 10.1117/12.2546190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Introduction The clinical need for improved intraoperative tumor visualization has led to the development of targeted contrast agents for fluorescence-guided surgery (FGS). A key characteristic of these agents is their high tumor specificity, which could enable detection of residual lesions that would likely be missed by visual inspection. Here, we examine the utility of a promising somatostatin receptor subtype-2 (SSTR2)-targeted fluorescent agent for detecting residual disease in mouse xenografts using FGS and post-operative histopathological validation. Methods Mice (n=2) implanted with SSTR2 overexpressing tumors were injected with 2 nmol of the dual-labeled somatostatin analog, 67Ga-MMC(IR800)-TOC, and tumors were resected 48 h post-injection using traditional white light reflectance and palpation. Tumors underwent gamma counting and histopathology analysis. The wide-field FGS imaging platform (OnLume) was used to evaluate residual disease in situ under ambient light representative of an operating room. Results The tumor was resected with grossly negative margins using conventional inspection and palpation; however, additional in situ residual disease was found in the tumor cavity using FGS imaging. In situ fluorescent tumor contrast-to-noise ratios (CNRs) were 3.0 and 5.2. Agent accumulation was 7.72 and 8.20 %ID/g in tumors and 0.27 and 0.20 %ID/g in muscle. Fluorescence pixel values and gamma counts were highly correlated (r = 0.95, P < 0.048). H&E and IHC staining confirmed cancer positivity and SSTR2-overexpression, respectively. Conclusion Our findings demonstrate that the use of clinically relevant fluorescence imaging instrumentation enhances the evaluation of promising FGS agents for in situ visualization of residual disease.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (Houston, TX, USA)
| | | | - Solmaz AghaAmiri
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (Houston, TX, USA)
| | - Julie Voss
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (Houston, TX, USA)
| | - Naruhiko Ikoma
- University of Texas MD Anderson Cancer Center (Houston, TX, USA)
| | - Hop S Tran Cao
- University of Texas MD Anderson Cancer Center (Houston, TX, USA)
| | - Sukhen C Ghosh
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (Houston, TX, USA)
| | | | - Ali Azhdarinia
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (Houston, TX, USA)
| |
Collapse
|
56
|
Wilson BC, Weersink RA. The Yin and Yang of PDT and PTT. Photochem Photobiol 2019; 96:219-231. [PMID: 31769516 DOI: 10.1111/php.13184] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
In Chinese philosophy, yin and yang ("dark-bright," "negative-positive") describe how seemingly opposite or contrary forces may actually be complementary, interconnected and interdependent. This paper provides this perspective on photodynamic and photothermal therapies, with a focus on the treatment of solid tumors. The relative strengths and weaknesses of each modality, both current and emerging, are considered with respect to the underlying biophysics, the required technologies, the biological effects, their translation into clinical practice and the realized or potential clinical outcomes. For each specific clinical application, one or the other modality may be clearly preferred, or both are effectively equivalent in terms of the various scientific/technological/practical/clinical trade-offs involved. Alternatively, a combination may the best approach. Such combined approaches may be facilitated by the use of multifunctional nanoparticles. It is important to understand the many factors that go into the selection of the optimal approach and the objective of this paper is to provide guidance on this.
Collapse
Affiliation(s)
- Brian C Wilson
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Robert A Weersink
- University Health Network/University of Toronto, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|
57
|
Ge Y, O'Shea DF. RGD conjugated switch on near infrared-fluorophores for fluorescence guided cancer surgeries. Future Oncol 2019; 15:4123-4125. [PMID: 31794258 DOI: 10.2217/fon-2019-0518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Yuan Ge
- Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Donal F O'Shea
- Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
58
|
Lang RT, Tatz J, Kercher EM, Palanisami A, Brooks DH, Spring BQ. Multichannel correlation improves the noise tolerance of real-time hyperspectral microimage mosaicking. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31828983 PMCID: PMC6905180 DOI: 10.1117/1.jbo.24.12.126002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/14/2019] [Indexed: 05/08/2023]
Abstract
Live-subject microscopies, including microendoscopy and other related technologies, offer promise for basic biology research as well as the optical biopsy of disease in the clinic. However, cellular resolution generally comes with the trade-off of a microscopic field-of-view. Microimage mosaicking enables stitching many small scenes together to aid visualization, quantitative interpretation, and mapping of microscale features, for example, to guide surgical intervention. The development of hyperspectral and multispectral systems for biomedical applications provides motivation for adapting mosaicking algorithms to process a number of simultaneous spectral channels. We present an algorithm that mosaics multichannel video by correlating channels of consecutive frames as a basis for efficiently calculating image alignments. We characterize the noise tolerance of the algorithm by using simulated video with known ground-truth alignments to quantify mosaicking accuracy and speed, showing that multiplexed molecular imaging enhances mosaic accuracy by leveraging observations of distinct molecular constituents to inform frame alignment. A simple mathematical model is introduced to characterize the noise suppression provided by a given group of spectral channels, thus predicting the performance of selected subsets of data channels in order to balance mosaic computation accuracy and speed. The characteristic noise tolerance of a given number of channels is shown to improve through selection of an optimal subset of channels that maximizes this model. We also demonstrate that the multichannel algorithm produces higher quality mosaics than the analogous single-channel methods in an empirical test case. To compensate for the increased data rate of hyperspectral video compared to single-channel systems, we employ parallel processing via GPUs to alleviate computational bottlenecks and to achieve real-time mosaicking even for video-rate multichannel systems anticipated in the future. This implementation paves the way for real-time multichannel mosaicking to accompany next-generation hyperspectral and multispectral video microscopy.
Collapse
Affiliation(s)
- Ryan T. Lang
- Northeastern University, Translational Biophotonics Cluster, Boston, United States
- Northeastern University, Department of Physics, Boston, United States
| | - Julia Tatz
- Northeastern University, Translational Biophotonics Cluster, Boston, United States
- Northeastern University, Department of Physics, Boston, United States
| | - Eric M. Kercher
- Northeastern University, Translational Biophotonics Cluster, Boston, United States
- Northeastern University, Department of Physics, Boston, United States
| | - Akilan Palanisami
- Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, United States
| | - Dana H. Brooks
- Northeastern University, Department of Electrical and Computer Engineering, Boston, United States
| | - Bryan Q. Spring
- Northeastern University, Translational Biophotonics Cluster, Boston, United States
- Northeastern University, Department of Physics, Boston, United States
- Northeastern University, Department of Bioengineering, Boston, United States
- Address all correspondence to Bryan Q. Spring, E-mail:
| |
Collapse
|
59
|
Wu D, Daly HC, Grossi M, Conroy E, Li B, Gallagher WM, Elmes R, O'Shea DF. RGD conjugated cell uptake off to on responsive NIR-AZA fluorophores: applications toward intraoperative fluorescence guided surgery. Chem Sci 2019; 10:6944-6956. [PMID: 31588261 PMCID: PMC6686729 DOI: 10.1039/c9sc02197c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
The use of NIR-fluorescence imaging to demarcate tumour boundaries for real-time guidance of their surgical resection has a huge untapped potential. However, fluorescence imaging using molecular fluorophores, even with a targeting biomolecule attached, has a major shortcoming of signal interference from non-specific background fluorescence outside the region of interest. This poor selectivity necessitates prolonged time delays to allow clearance of background fluorophore and retention within the tumour prior to image acquisition. In this report, an innovative approach to overcome this issue is described in which cancer targeted off to on bio-responsive NIR-fluorophores are utilised to switch-on first within the tumour. Bio-responsive cRGD, iRGD and PEG conjugates have been synthesised using activated ester/amine or maleimide/thiol couplings to link targeting and fluorophore components. Their off to on emission responses were measured and compared with an always-on non-responsive control with each bio-responsive derivative showing large fluorescence enhancement values. Live cell imaging experiments using metastatic breast cancer cells confirmed in vitro bio-responsive capabilities. An in vivo assessment of MDA-MB 231 tumour imaging performance for bio-responsive and always-on fluorophores was conducted with monitoring of fluorescence distributions over 96 h. As anticipated, the always-on fluorophore gave an immediate, non-specific and very strong emission throughout whereas the bio-responsive derivatives initially displayed very low fluorescence. All three bio-responsive derivatives switched on within tumours at time points consistent with their conjugated targeting groups. cRGD and iRGD conjugates both had effective tumour turn-on in the first hour, though the cRGD derivative had superior specificity for tumour over the iRGD conjugate. The pegylated derivative had similar switch-on characteristics but over a much longer period, taking 9 h before a significant emission was observable from the tumour. Evidence for in vivo active tumour targeting was obtained for the best performing cRGD bio-responsive NIR-AZA derivative from competitive binding studies. Overall, this cRGD-conjugate has the potential to overcome the inherent drawback of targeted always-on fluorophores requiring prolonged clearance times and shows excellent potential for clinical translation for intraoperative use in fluorescence guided tumour resections.
Collapse
Affiliation(s)
- Dan Wu
- Department of Chemistry , RCSI , 123 St. Stephen's Green , Dublin 2 , Ireland .
| | - Harrison C Daly
- Department of Chemistry , RCSI , 123 St. Stephen's Green , Dublin 2 , Ireland .
| | - Marco Grossi
- Department of Chemistry , RCSI , 123 St. Stephen's Green , Dublin 2 , Ireland .
| | - Emer Conroy
- School of Biomolecular and Biomedical Science , Conway Institute, University College Dublin , Belfield , Dublin 4 , Ireland
| | - Bo Li
- School of Biomolecular and Biomedical Science , Conway Institute, University College Dublin , Belfield , Dublin 4 , Ireland
| | - William M Gallagher
- School of Biomolecular and Biomedical Science , Conway Institute, University College Dublin , Belfield , Dublin 4 , Ireland
| | - Robert Elmes
- Department of Chemistry , Maynooth University Human Health Institute , Maynooth University , Maynooth , Ireland
| | - Donal F O'Shea
- Department of Chemistry , RCSI , 123 St. Stephen's Green , Dublin 2 , Ireland .
| |
Collapse
|
60
|
Yazaki PJ, Lwin TM, Minnix M, Li L, Sherman A, Molnar J, Miller A, Frankel P, Chea J, Poku E, Bowles N, Hoffman RM, Shively JE, Bouvet M. Improved antibody-guided surgery with a near-infrared dye on a pegylated linker for CEA-positive tumors. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31254333 PMCID: PMC6978469 DOI: 10.1117/1.jbo.24.6.066012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 05/09/2023]
Abstract
Real-time intraoperative image-guided cancer surgery promises to improve oncologic outcomes. Tumor-specific antibodies conjugated with near-infrared (NIR) fluorophores have demonstrated the potential to enhance visualization of solid tumor margins and metastatic disease; however, multiple challenges remain, including improvement in probe development for clinical utility. We have developed an NIR-IR800 dye on a PEGylated linker (sidewinder) conjugated to the humanized anti-carcinoembryonic antigen (CEA) antibody (M5A) with extended in vivo serum and tumor persistence. The anti-CEA M5A-sidewinder has a high dye-to-antibody ratio (average of 7 per antibody) that allows, in an orthotopic implanted human pancreatic cancer mouse model increased tumor fluorescence, higher tumor-to-background ratio and extends the surgical scheduling window compared to current antibody dye conjugates. These preclinical results demonstrate the potential of this probe for fluorescence-guided surgery of CEA-positive gastrointestinal cancers.
Collapse
Affiliation(s)
- Paul J. Yazaki
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
- Address all correspondence to Paul J. Yazaki, E-mail:
| | - Thinzar M. Lwin
- University of California San Diego, Department of Surgery, La Jolla, California, United States
| | - Megan Minnix
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Lin Li
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Anakim Sherman
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Justin Molnar
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Aaron Miller
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Paul Frankel
- Beckman Research Institute, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, United States
| | - Junie Chea
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Erasmus Poku
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Nicole Bowles
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Robert M. Hoffman
- University of California San Diego, Department of Surgery, La Jolla, California, United States
- AntiCancer, Inc., San Diego, California, United States
- VA San Diego Healthcare System, San Diego, California, United States
| | - John E. Shively
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Michael Bouvet
- University of California San Diego, Department of Surgery, La Jolla, California, United States
- VA San Diego Healthcare System, San Diego, California, United States
| |
Collapse
|
61
|
Jiang Y, Girard EJ, Pakiam F, Seibel EJ. Calibration of fluorescence imaging for tumor surgical margin delineation: multistep registration of fluorescence and histological images. J Med Imaging (Bellingham) 2019; 6:025005. [PMID: 31093519 DOI: 10.1117/1.jmi.6.2.025005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023] Open
Abstract
Although a greater extent of tumor resection is important for patients' survival, complete tumor removal, especially tumor margins, remains challenging due to the lack of sensitivity and specificity of current surgical guidance techniques at the margins. Intraoperative fluorescence imaging with targeted fluorophores is promising for tumor margin delineation. To verify the tumor margins detected by the fluorescence images, it is necessary to register fluorescence with histological images, which provide the ground truth for tumor regions. However, current registration methods compare fluorescence images to a single-layer histological slide, which is selected subjectively and represents a single plane of the three-dimensional tumor. A multistep pipeline is established to correlate fluorescence images to stacked histological images, including fluorescence calibration and multistep registration. Multiple histological slices are integrated as a two-dimensional (2-D) tumor map using optical attenuation model and average intensity projection. A BLZ-100-labeled medulloblastoma mouse model is used to test the whole framework. On average, the synthesized 2-D tumor map outperforms the selected best slide as ground truth [Dice similarity coefficient (DSC): 0.582 versus 0.398, with significant differences; mean area under the curve (AUC) of the receiver operating characteristic curve: 88% versus 85.5%] and the randomly selected slide as ground truth (DSC: 0.582 versus 0.396 with significant differences; mean AUC: 88% versus 84.1% with significant differences), which indicates our pipeline is reliable and can be applied to investigate targeted fluorescence probes in tumor margin detection. Following this proposed pipeline, BLZ-100 shows enhancement in both tumor cores and tumor margins (mean target-to-background ratio: 8.64 ± 5.76 and 4.82 ± 2.79 , respectively).
Collapse
Affiliation(s)
- Yang Jiang
- University of Washington, Human Photonics Lab, Seattle, Washington, United States
| | - Emily J Girard
- Fred Hutchinson Cancer Research Center, Olson Lab, Seattle, Washington, United States
| | - Fiona Pakiam
- Fred Hutchinson Cancer Research Center, Olson Lab, Seattle, Washington, United States
| | - Eric J Seibel
- University of Washington, Human Photonics Lab, Seattle, Washington, United States
| |
Collapse
|
62
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
63
|
2D Au-Coated Resonant MEMS Scanner for NIR Fluorescence Intraoperative Confocal Microscope. MICROMACHINES 2019; 10:mi10050295. [PMID: 31052229 PMCID: PMC6562488 DOI: 10.3390/mi10050295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
The electrostatic MEMS scanner plays an important role in the miniaturization of the microscopic imaging system. We have developed a new two-dimensional (2D) parametrically-resonant MEMS scanner with patterned Au coating (>90% reflectivity at an NIR 785-nm wavelength), for a near-infrared (NIR) fluorescence intraoperative confocal microscopic imaging system with a compact form factor. A silicon-on-insulator (SOI)-wafer based dicing-free microfabrication process has been developed for mass-production with high yield. Based on an in-plane comb-drive configuration, the resonant MEMS scanner performs 2D Lissajous pattern scanning with a large mechanical scanning angle (MSA, ±4°) on each axis at low driving voltage (36 V). A large field-of-view (FOV) has been achieved by using a post-objective scanning architecture of the confocal microscope. We have integrated the new MEMS scanner into a custom-made NIR fluorescence intraoperative confocal microscope with an outer diameter of 5.5 mm at its distal-end. Axial scanning has been achieved by using a piezoelectric actuator-based driving mechanism. We have successfully demonstrated ex vivo 2D imaging on human tissue specimens with up to five frames/s. The 2D resonant MEMS scanner can potentially be utilized for many applications, including multiphoton microendoscopy and wide-field endoscopy.
Collapse
|
64
|
Hernandez Vargas S, Ghosh SC, Azhdarinia A. New Developments in Dual-Labeled Molecular Imaging Agents. J Nucl Med 2019; 60:459-465. [PMID: 30733318 DOI: 10.2967/jnumed.118.213488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative detection of tumors has had a profound impact on how cancer surgery is performed and addresses critical unmet needs in surgical oncology. Tumor deposits, margins, and residual cancer can be imaged through the use of fluorescent contrast agents during surgical procedures to complement visual and tactile guidance. The combination of fluorescent and nuclear contrast into a multimodality agent builds on these capabilities by adding quantitative, noninvasive nuclear imaging capabilities to intraoperative imaging. This review focuses on new strategies for the development and evaluation of targeted dual-labeled molecular imaging agents while highlighting the successful first-in-human application of this technique.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Sukhen C Ghosh
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ali Azhdarinia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|