51
|
Bi YA, Scialis RJ, Lazzaro S, Mathialagan S, Kimoto E, Keefer J, Zhang H, Vildhede AM, Costales C, Rodrigues AD, Tremaine LM, Varma MVS. Reliable Rate Measurements for Active and Passive Hepatic Uptake Using Plated Human Hepatocytes. AAPS JOURNAL 2017; 19:787-796. [DOI: 10.1208/s12248-017-0051-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
|
52
|
Colbers A, Greupink R, Litjens C, Burger D, Russel FGM. Physiologically Based Modelling of Darunavir/Ritonavir Pharmacokinetics During Pregnancy. Clin Pharmacokinet 2016; 55:381-96. [PMID: 26369773 PMCID: PMC4761019 DOI: 10.1007/s40262-015-0325-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pregnant women are usually excluded from clinical trials. Physiologically based pharmacokinetic (PBPK) modelling may provide a method to predict pharmacokinetics in pregnant women, without the need to perform extensive in vivo clinical trials. Here, we used mechanistic modelling to delineate the potential impact of drug transporters on darunavir pharmacokinetics and to identify current knowledge gaps that limit accurate PBPK modelling of darunavir/ritonavir (darunavir/r) exposure in pregnancy. Simcyp (version 13.2) was used for PBPK modelling, using physicochemical and in vitro pharmacokinetic parameters of darunavir and ritonavir from the literature. The Michaelis-Menten constant (K m) and the maximum rate of metabolite formation (V max) for cytochrome P450 3A4-mediated darunavir biotransformation and inhibition by ritonavir were determined experimentally, while the contributions of hepatocyte influx and efflux transporters were assessed by sensitivity analysis. The simulations were compared with previously published clinical pharmacokinetic data. We found that use of a well-stirred liver model overestimated darunavir exposure substantially. A permeability-limited liver model, including hepatic uptake and efflux transporters and an efficient enterohepatic circulation step, resulted in an acceptable description of darunavir/r exposure. For the 600/100 mg darunavir/r twice-daily dose and the 800/100 mg once-daily dose, the estimated pharmacokinetic parameters were within a 2-fold range of the reported data. The predicted decreases in the area under the concentration-time curve (AUC) values during pregnancy for the twice- and once-daily doses were 27 and 41%, respectively, which were in line with the observed decreases of 17-22 and 33%. In conclusion, our data support a clinically relevant role of hepatic transporters in darunavir pharmacokinetics. By including them in our model, we successfully approximated the increase in darunavir exposure mediated by ritonavir co-administration and the decrease in darunavir exposure observed during pregnancy.
Collapse
Affiliation(s)
- Angela Colbers
- Department of Pharmacy, Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology (149), Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Carlijn Litjens
- Department of Pharmacy, Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology (149), Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - David Burger
- Department of Pharmacy, Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology (149), Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
53
|
Yoshikado T, Yoshida K, Kotani N, Nakada T, Asaumi R, Toshimoto K, Maeda K, Kusuhara H, Sugiyama Y. Quantitative Analyses of Hepatic OATP-Mediated Interactions Between Statins and Inhibitors Using PBPK Modeling With a Parameter Optimization Method. Clin Pharmacol Ther 2016; 100:513-523. [PMID: 27170342 DOI: 10.1002/cpt.391] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 01/01/2023]
Abstract
This study aimed to construct a widely applicable method for quantitative analyses of drug-drug interactions (DDIs) caused by the inhibition of hepatic organic anion transporting polypeptides (OATPs) using physiologically based pharmacokinetic (PBPK) modeling. Models were constructed for pitavastatin, fluvastatin, and pravastatin as substrates and cyclosporin A (CsA) and rifampicin (RIF) as inhibitors, where enterohepatic circulations (EHC) of statins were incorporated. By fitting to clinical data, parameters that described absorption, hepatic elimination, and EHC processes were optimized, and the extent of these DDIs was explained satisfactorily. Similar in vivo inhibition constant (Ki ) values of each inhibitor against OATPs were obtained, regardless of the substrates. Estimated Ki values of CsA were comparable to reported in vitro values with the preincubation of CsA, while those of RIF were smaller than reported in vitro values (coincubation). In conclusion, this study proposes a method to optimize in vivo PBPK parameters in hepatic uptake transporter-mediated DDIs.
Collapse
Affiliation(s)
- T Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan
| | - K Yoshida
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - N Kotani
- Clinical Pharmacology Strategy Group, Translational Clinical Research Science & Strategy Dept., Chugai Pharmaceutical Co., Tokyo, Japan
| | - T Nakada
- DMPK Research Laboratories Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma, Chiba, Japan
| | - R Asaumi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ibaraki, Japan
| | - K Toshimoto
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan
| | - K Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - H Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Y Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan.
| |
Collapse
|
54
|
Liu H, Sahi J. Role of Hepatic Drug Transporters in Drug Development. J Clin Pharmacol 2016; 56 Suppl 7:S11-22. [DOI: 10.1002/jcph.703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Houfu Liu
- Mechanistic Safety and Disposition, Platform Technology and Science; GlaxoSmithKline R&D; Shanghai China
| | - Jasminder Sahi
- Projects, Standards & Innovation; Asia Pacific DSAR, Sanofi; Shanghai China
| |
Collapse
|
55
|
Varma MV, El-Kattan AF. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models. J Clin Pharmacol 2016; 56 Suppl 7:S99-S109. [DOI: 10.1002/jcph.695] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Manthena V. Varma
- Pharmacokinetics; Dynamics and Metabolism; Worldwide Research and Development; Pfizer Inc; Groton CT USA
| | - Ayman F. El-Kattan
- Pharmacokinetics; Dynamics and Metabolism; Worldwide Research and Development; Pfizer Inc; Cambridge MA USA
| |
Collapse
|
56
|
Morse BL, Cai H, MacGuire JG, Fox M, Zhang L, Zhang Y, Gu X, Shen H, Dierks EA, Su H, Luk CE, Marathe P, Shu YZ, Humphreys WG, Lai Y. Rosuvastatin Liver Partitioning in Cynomolgus Monkeys: Measurement In Vivo and Prediction Using In Vitro Monkey Hepatocyte Uptake. Drug Metab Dispos 2015; 43:1788-94. [DOI: 10.1124/dmd.115.065946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022] Open
|
57
|
Vildhede A, Wiśniewski JR, Norén A, Karlgren M, Artursson P. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure. J Proteome Res 2015; 14:3305-14. [PMID: 26167961 DOI: 10.1021/acs.jproteome.5b00334] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.
Collapse
Affiliation(s)
| | - Jacek R Wiśniewski
- §Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | - Per Artursson
- ∥Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium, Science for Life Laboratory, 750 03 Uppsala, Sweden
| |
Collapse
|
58
|
Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS). Pharm Res 2015; 32:3785-802. [DOI: 10.1007/s11095-015-1749-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
|
59
|
Chanteux H, Staelens L, Mancel V, Gerin B, Boucaut D, Prakash C, Nicolas JM. Cross-Species Differences in the Preclinical Pharmacokinetics of CT7758, an α4β1/α4β7 Integrin Antagonist. Drug Metab Dispos 2015; 43:1381-91. [PMID: 26153275 DOI: 10.1124/dmd.115.064436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
CT7758, a carboxylate containing α4β1/α4/β7 integrin antagonist, was characterized for its pharmacokinetic profile in various in vitro and in vivo assays in support of clinical development. The oral bioavailability of CT7758 was 4% in mice, 2% in rats, 7-55% in dogs, and 0.2% in cynomolgus monkeys. The low bioavailability in rodents and monkey results from low intestinal absorption as evidenced by a low fraction absorbed in the rat portal vein model (3%), low-to-medium permeability in Caco-2 cells (≤1.3 × 10(-6) cm/s) with evidences of polarized efflux, and high polar surface area (104 Å). In rodents and cynomolgus monkeys, the total plasma clearance was moderate to high (≥50% hepatic blood flow QH) and associated with a short elimination half-life (≤1 hour). This contrast with the dog data which showed a much lower clearance (6% QH) and a longer t1/2 (2.4 hours). The volume of distribution (Vz) also varied significantly across species with value of 5.5, 2.8, 0.24, and 0.93 l/kg in mouse, rat, dog, and cynomolgus monkey, respectively. In vitro assays demonstrated that active hepatic uptake accounted for most of the in vivo clearance and was the source of the large species variability. In vitro uptake assays predicted a total plasma clearance in humans in the low range (33% QH), a finding subsequently confirmed in the clinic. Assays in OAPT1B1-transfected cells demonstrated active uptake transport through this transporter. The prospect of limited absorption in human prompted the synthesis an ethyl ester prodrug, CDP323, which demonstrated higher in vitro permeability, increased oral bioavailability, as well as efficient in vivo release of its active moiety CT7758.
Collapse
Affiliation(s)
- Hugues Chanteux
- UCB Pharma SA, Investigative ADME (H.C., V.M., B.G.), Bioanalytical Sciences (L.S.), Laboratory Animal Services (D.B.), Braine l'Alleud, Belgium; Strategic DMPK Support, Braine l'Alleud, Belgium (J.M.N.); and Biogen Idec, Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (C.P.)
| | - Ludovicus Staelens
- UCB Pharma SA, Investigative ADME (H.C., V.M., B.G.), Bioanalytical Sciences (L.S.), Laboratory Animal Services (D.B.), Braine l'Alleud, Belgium; Strategic DMPK Support, Braine l'Alleud, Belgium (J.M.N.); and Biogen Idec, Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (C.P.)
| | - Valérie Mancel
- UCB Pharma SA, Investigative ADME (H.C., V.M., B.G.), Bioanalytical Sciences (L.S.), Laboratory Animal Services (D.B.), Braine l'Alleud, Belgium; Strategic DMPK Support, Braine l'Alleud, Belgium (J.M.N.); and Biogen Idec, Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (C.P.)
| | - Brigitte Gerin
- UCB Pharma SA, Investigative ADME (H.C., V.M., B.G.), Bioanalytical Sciences (L.S.), Laboratory Animal Services (D.B.), Braine l'Alleud, Belgium; Strategic DMPK Support, Braine l'Alleud, Belgium (J.M.N.); and Biogen Idec, Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (C.P.)
| | - David Boucaut
- UCB Pharma SA, Investigative ADME (H.C., V.M., B.G.), Bioanalytical Sciences (L.S.), Laboratory Animal Services (D.B.), Braine l'Alleud, Belgium; Strategic DMPK Support, Braine l'Alleud, Belgium (J.M.N.); and Biogen Idec, Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (C.P.)
| | - Chandra Prakash
- UCB Pharma SA, Investigative ADME (H.C., V.M., B.G.), Bioanalytical Sciences (L.S.), Laboratory Animal Services (D.B.), Braine l'Alleud, Belgium; Strategic DMPK Support, Braine l'Alleud, Belgium (J.M.N.); and Biogen Idec, Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (C.P.)
| | - Jean-Marie Nicolas
- UCB Pharma SA, Investigative ADME (H.C., V.M., B.G.), Bioanalytical Sciences (L.S.), Laboratory Animal Services (D.B.), Braine l'Alleud, Belgium; Strategic DMPK Support, Braine l'Alleud, Belgium (J.M.N.); and Biogen Idec, Drug Metabolism and Pharmacokinetics, Biogen Idec, Cambridge, Massachusetts (C.P.)
| |
Collapse
|
60
|
Lee CA, O’Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ. Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metab Dispos 2015; 43:490-509. [DOI: 10.1124/dmd.114.062174] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
61
|
Badée J, Achour B, Rostami-Hodjegan A, Galetin A. Meta-analysis of expression of hepatic organic anion-transporting polypeptide (OATP) transporters in cellular systems relative to human liver tissue. Drug Metab Dispos 2015; 43:424-32. [PMID: 25564656 DOI: 10.1124/dmd.114.062034] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Organic anion-transporting polypeptide (OATP)1B1, OATP1B3, and OATP2B1 transporters play an important role in hepatic drug disposition. Recently, an increasing number of studies have reported proteomic expression data for OATP transporters. However, systematic analysis and understanding of the actual differences in OATP expression between liver tissue and commonly used cellular systems is lacking. In the current study, meta-analysis was performed to assess the protein expression of OATP transporters reported in hepatocytes relative to liver tissue and to identify any potential correlations in transporter expression levels in the same individual. OATP1B1 was identified as the most abundant uptake transporter at 5.9 ± 8.3, 5.8 ± 3.3, and 4.2 ± 1.7 fmol/μg protein in liver tissue, sandwich-cultured human hepatocytes (SCHH), and cryopreserved suspended hepatocytes, respectively. The rank order in average expression in liver tissue and cellular systems was OATP1B1 > OATP1B3 ≈ OATP2B1. Abundance levels of the OATP transporters investigated were not significantly different between liver and cellular systems, with the exception of OATP2B1 expression in SCHH relative to liver tissue. Analysis of OATP1B1, OATP1B3, and OATP2B1 liver expression data in the same individuals (n = 86) identified weak (OATP1B1-OATP2B1) to moderately (OATP1B3-OATP2B1) significant correlations. A significant weak correlation was noted between OATP1B1 abundance and age of human donors, whereas expression of the OATPs investigated was independent of sex. Implications of the current analysis on the in vitro-in vivo extrapolation of transporter-mediated drug disposition using physiologically based pharmacokinetic models are discussed.
Collapse
Affiliation(s)
- Justine Badée
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| |
Collapse
|
62
|
Galetin A. Rationalizing underprediction of drug clearance from enzyme and transporter kinetic data: from in vitro tools to mechanistic modeling. Methods Mol Biol 2014; 1113:255-88. [PMID: 24523117 DOI: 10.1007/978-1-62703-758-7_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, there has been an increase in the number and quality of available in vitro tools for the assessment of clearance. Complexity of data analysis and modelling of corresponding in vitro data has increased in an analogous manner, in particular for the simultaneous characterization of transporter and metabolism kinetics, together with intracellular binding and passive diffusion. In the current chapter, the impact of different factors on the in vitro-in vivo extrapolation of clearance will be addressed in a stepwise manner, from the selection of the most adequate in vitro system and experimental design/condition to the corresponding modelling of data generated. The application of static or physiologically based pharmacokinetic models in the prediction of clearance will be discussed, highlighting limitations and current challenges of some of the approaches. Particular focus will be on the ability of in vitro and in silico predictive tools to overcome the trend of clearance underprediction. Improvements made as a result of inclusion of extrahepatic metabolism and consideration of transporter-metabolism interplay across different organs will be discussed.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| |
Collapse
|
63
|
Varma MV, Bi YA, Kimoto E, Lin J. Quantitative Prediction of Transporter- and Enzyme-Mediated Clinical Drug-Drug Interactions of Organic Anion-Transporting Polypeptide 1B1 Substrates Using a Mechanistic Net-Effect Model. J Pharmacol Exp Ther 2014; 351:214-23. [DOI: 10.1124/jpet.114.215970] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
64
|
Li R, Ghosh A, Maurer TS, Kimoto E, Barton HA. Physiologically based pharmacokinetic prediction of telmisartan in human. Drug Metab Dispos 2014; 42:1646-55. [PMID: 25092714 DOI: 10.1124/dmd.114.058461] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A previously developed physiologically based pharmacokinetic model for hepatic transporter substrates was extended to an organic anion transporting polypeptide substrate, telmisartan. Predictions used in vitro data from sandwich culture human hepatocyte and human liver microsome assays. We have developed a novel method to calibrate partition coefficients (Kps) between nonliver tissues and plasma on the basis of published human positron emission tomography (PET) data to decrease the uncertainty in tissue distribution introduced by in silico-predicted Kps. With in vitro data-predicted hepatic clearances, published empirical scaling factors, and PET-calibrated Kps, the model could accurately recapitulate telmisartan pharmacokinetic (PK) behavior before 2.5 hours. Reasonable predictions also depend on having a model structure that can adequately describe the drug disposition pathways. We showed that the elimination phase (2.5-12 hours) of telmisartan PK could be more accurately recapitulated when enterohepatic recirculation of parent compound derived from intestinal deconjugation of glucuronide metabolite was incorporated into the model. This study demonstrated the usefulness of the previously proposed physiologically based modeling approach for purely predictive intravenous PK simulation and identified additional biologic processes that can be important in prediction.
Collapse
Affiliation(s)
- Rui Li
- Department of Pharmacokinetics, Dynamics, and Metabolism, Worldwide Research and Development, Pfizer Inc., Cambridge, MA (R.L., A.G., T.S.M.) and Groton, CT (E.K., H.A.B.)
| | - Avijit Ghosh
- Department of Pharmacokinetics, Dynamics, and Metabolism, Worldwide Research and Development, Pfizer Inc., Cambridge, MA (R.L., A.G., T.S.M.) and Groton, CT (E.K., H.A.B.)
| | - Tristan S Maurer
- Department of Pharmacokinetics, Dynamics, and Metabolism, Worldwide Research and Development, Pfizer Inc., Cambridge, MA (R.L., A.G., T.S.M.) and Groton, CT (E.K., H.A.B.)
| | - Emi Kimoto
- Department of Pharmacokinetics, Dynamics, and Metabolism, Worldwide Research and Development, Pfizer Inc., Cambridge, MA (R.L., A.G., T.S.M.) and Groton, CT (E.K., H.A.B.)
| | - Hugh A Barton
- Department of Pharmacokinetics, Dynamics, and Metabolism, Worldwide Research and Development, Pfizer Inc., Cambridge, MA (R.L., A.G., T.S.M.) and Groton, CT (E.K., H.A.B.)
| |
Collapse
|
65
|
Li R, Barton HA, Varma MV. Prediction of Pharmacokinetics and Drug–Drug Interactions When Hepatic Transporters are Involved. Clin Pharmacokinet 2014; 53:659-78. [DOI: 10.1007/s40262-014-0156-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
66
|
Feng B, Varma MV, Costales C, Zhang H, Tremaine L. In vitroandin vivoapproaches to characterize transporter-mediated disposition in drug discovery. Expert Opin Drug Discov 2014; 9:873-90. [DOI: 10.1517/17460441.2014.922540] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
67
|
Li R, Bi YA, Lai Y, Sugano K, Steyn SJ, Trapa PE, Di L. Permeability comparison between hepatocyte and low efflux MDCKII cell monolayer. AAPS JOURNAL 2014; 16:802-9. [PMID: 24854896 DOI: 10.1208/s12248-014-9616-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/07/2014] [Indexed: 01/04/2023]
Abstract
Determination of passive permeability is not only important for predicting oral absorption and brain penetration, but also for accurately predicting hepatic clearance. High throughput (HT) measurement of passive permeability across hepatocyte cell membrane is technically more challenging than using monolayer cell-based permeability assays. In this study, we evaluated if the HT Madin-Darby canine kidney II-low efflux (MDCKII-LE) cell monolayer permeability assay can be used as a surrogate to predict the passive permeability of hepatocytes. Apparent passive permeability of MDCKII-LE is well correlated to passive diffusion clearance of human and rat hepatocytes, suggesting that the HT MDCKII-LE assay can be used as a surrogate to estimate the passive permeability of hepatocytes. In addition, lipophilicity (Log D determined at pH 7.4) was also found to be well correlated with both MDCKII-LE and hepatocyte permeability for most compounds, hence it may serve as another permeability surrogate.
Collapse
Affiliation(s)
- Rui Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Varma MVS, Scialis RJ, Lin J, Bi YA, Rotter CJ, Goosen TC, Yang X. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS JOURNAL 2014; 16:736-48. [PMID: 24839071 DOI: 10.1208/s12248-014-9614-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/26/2014] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to characterize the involvement of hepato-biliary transport and cytochrome-P450 (CYP)-mediated metabolism in the disposition of glyburide and predict its pharmacokinetic variability due to drug interactions and genetic variations. Comprehensive in vitro studies suggested that glyburide is a highly permeable drug with substrate affinity to multiple efflux pumps and to organic anion transporting polypeptide (OATP)1B1 and OATP2B1. Active hepatic uptake was found to be significantly higher than the passive uptake clearance (15.8 versus 5.3 μL/min/10(6)-hepatocytes), using the sandwich-cultured hepatocyte model. In vitro, glyburide is metabolized (intrinsic clearance, 52.9 μL/min/mg-microsomal protein) by CYP3A4, CYP2C9, and CYP2C8 with fraction metabolism of 0.53, 0.36, and 0.11, respectively. Using these in vitro data, physiologically based pharmacokinetic models, assuming rapid-equilibrium between blood and liver compartments or permeability-limited hepatic disposition, were built to describe pharmacokinetics and evaluate drug interactions. Permeability-limited model successfully predicted glyburide interactions with rifampicin and other perpetrator drugs. Conversely, model assuming rapid-equilibrium mispredicted glyburide interactions, overall, suggesting hepatic uptake as the primary rate-determining process in the systemic clearance of glyburide. Further modeling and simulations indicated that the impairment of CYP2C9 function has a minimal effect on the systemic exposure, implying discrepancy in the contribution of CYP2C9 to glyburide clearance.
Collapse
Affiliation(s)
- Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA,
| | | | | | | | | | | | | |
Collapse
|
69
|
Schuetz JD, Swaan PW, Tweedie DJ. The role of transporters in toxicity and disease. Drug Metab Dispos 2014; 42:541-5. [PMID: 24598705 PMCID: PMC3965901 DOI: 10.1124/dmd.114.057539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
The significance of transporters in the disposition, metabolism, and elimination of drugs is well recognized. One gap in our knowledge is a comprehensive understanding of how drug transporters change functionality (their amount and activity) in response to disease and how disease and its inevitable pathology change transporter expression. In this issue of Drug Metabolism and Disposition a series of review and primary research articles are presented to highlight the importance of transporters in toxicity and disease. Because of the central role of the liver in drug metabolism, many of the articles in this theme issue focus on transporters in the liver and how pathology or alterations in physiology affects transporter expression. The contributing authors have also considered the role of transporters in drug interactions as well as drug-induced liver injury. Noninvasive approaches to assessing transporter function in vivo are also described. Several articles highlight important issues in oncology where toxicity must be balanced against efficacy. In total, this theme issue will provide a stepping-stone to future studies that will establish a more comprehensive understanding of transporters in disease.
Collapse
Affiliation(s)
- John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (J.D.S); Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S); and Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.J.T.)
| | | | | |
Collapse
|
70
|
Gertz M, Tsamandouras N, Säll C, Houston JB, Galetin A. Reduced physiologically-based pharmacokinetic model of repaglinide: impact of OATP1B1 and CYP2C8 genotype and source of in vitro data on the prediction of drug-drug interaction risk. Pharm Res 2014; 31:2367-82. [PMID: 24623479 DOI: 10.1007/s11095-014-1333-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 02/08/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the effect of OATP1B1 genotype as a covariate on repaglinide pharmacokinetics and drug-drug interaction (DDIs) risk using a reduced physiologically-based pharmacokinetic (PBPK) model. METHODS Twenty nine mean plasma concentration-time profiles for SLCO1B1 c.521T>C were used to estimate hepatic uptake clearance (CLuptake) in different genotype groups applying a population approach in NONMEM v.7.2. RESULTS Estimated repaglinide CLuptake corresponded to 217 and 113 μL/min/10(6) cells for SLCO1B1 c.521TT/TC and CC, respectively. A significant effect of OATP1B1 genotype was seen on CLuptake (48% reduction for CC relative to wild type). Sensitivity analysis highlighted the impact of CLmet and CLdiff uncertainty on the CLuptake optimization using plasma data. Propagation of this uncertainty had a marginal effect on the prediction of repaglinide OATP1B1-mediated DDI with cyclosporine; however, sensitivity of the predicted magnitude of repaglinide metabolic DDI was high. In addition, the reduced PBPK model was used to assess the effect of both CYP2C8*3 and SLCO1B1 c.521T>C on repaglinide exposure by simulations; power calculations were performed to guide prospective DDI and pharmacogenetic studies. CONCLUSIONS The application of reduced PBPK model for parameter optimization and limitations of this process associated with the use of plasma rather than tissue profiles are illustrated.
Collapse
Affiliation(s)
- Michael Gertz
- Centre for Applied Pharmacokinetic Research Manchester Pharmacy School, The University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | | | | | | | | |
Collapse
|
71
|
Lundquist P, Lööf J, Fagerholm U, Sjögren I, Johansson J, Briem S, Hoogstraate J, Afzelius L, Andersson TB. Prediction of In Vivo Rat Biliary Drug Clearance from an In Vitro Hepatocyte Efflux Model. Drug Metab Dispos 2014; 42:459-68. [DOI: 10.1124/dmd.113.054155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
72
|
Lundquist P, Lööf J, Sohlenius-Sternbeck AK, Floby E, Johansson J, Bylund J, Hoogstraate J, Afzelius L, Andersson TB. The impact of solute carrier (SLC) drug uptake transporter loss in human and rat cryopreserved hepatocytes on clearance predictions. Drug Metab Dispos 2014; 42:469-80. [PMID: 24396146 DOI: 10.1124/dmd.113.054676] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cryopreserved hepatocytes are often used as a convenient tool in studies of hepatic drug metabolism and disposition. In this study, the expression and activity of drug transporters in human and rat fresh and cryopreserved hepatocytes was investigated. In human cryopreserved hepatocytes, Western blot analysis indicated that protein expression of the drug uptake transporters [human Na(+)-taurocholate cotransporting polypeptide (NTCP), human organic anion transporting polypeptides (OATPs), human organic anion transporters, and human organic cation transporters (OCTs)] was considerably reduced compared with liver tissue. In rat cryopreserved cells, the same trend was observed but to a lesser extent. Several rat transporters were reduced as a result of both isolation and cryopreservation procedures. Immunofluorescence showed that a large portion of remaining human OATP1B1 and OATP1B3 transporters were internalized in human cryopreserved hepatocytes. Measuring uptake activity using known substrates of OATPs, OCTs, and NTCP showed decreased activity in cryopreserved as compared with fresh hepatocytes in both species. The reduced uptake in cryopreserved hepatocytes limited the in vitro metabolism of several AstraZeneca compounds. A retrospective analysis of clearance predictions of AstraZeneca compounds suggested systematic lower clearance predicted using metabolic stability data from human cryopreserved hepatocytes compared with human liver microsomes. This observation is consistent with a loss of drug uptake transporters in cryopreserved hepatocytes. In contrast, the predicted metabolic clearance from fresh rat hepatocytes was consistently higher than those predicted from liver microsomes, consistent with retention of uptake transporters. The uptake transporters, which are decreased in cryopreserved hepatocytes, may be rate-limiting for the metabolism of the compounds and thus be one explanation for underpredictions of in vivo metabolic clearance from cryopreserved hepatocytes.
Collapse
Affiliation(s)
- Patrik Lundquist
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, (P.L., J.L., A.-K.S.-S., E.F., J.J., J.B., J.H., L.A.); Cardiovascular and Metabolic Diseases Innovative Medicines DMPK, AstraZeneca R&D, Mölndal, (P.L., T.B.A.); Department of Pharmacy, Uppsala University, Uppsala, (P.L.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, (T.B.A.), Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Lundquist P, Englund G, Skogastierna C, Lööf J, Johansson J, Hoogstraate J, Afzelius L, Andersson TB. Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Dispos 2014; 42:448-58. [PMID: 24396144 DOI: 10.1124/dmd.113.054528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp-mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.
Collapse
Affiliation(s)
- Patrik Lundquist
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, (P.L., G.E., C.S., J.L., J.J., J.H., L.A.); Cardiovascular and Gastrointestinal Innovative Medicines DMPK, AstraZeneca R&D, Mölndal, (P.L., T.B.A.); Department of Pharmacy, Uppsala University, Uppsala, (P.L.); and Section of Pharmacogenetics, Departments of Physiology and Pharmacology, Karolinska Institutet, Stockholm, (T.B.A.), Sweden
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Zamek-Gliszczynski MJ, Chu X, Polli JW, Paine MF, Galetin A. Understanding the Transport Properties of Metabolites: Case Studies and Considerations for Drug Development. Drug Metab Dispos 2013; 42:650-64. [DOI: 10.1124/dmd.113.055558] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
75
|
Nordell P, Winiwarter S, Hilgendorf C. Resolving the distribution-metabolism interplay of eight OATP substrates in the standard clearance assay with suspended human cryopreserved hepatocytes. Mol Pharm 2013; 10:4443-51. [PMID: 24102095 DOI: 10.1021/mp400253f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Uptake transporters may act to elevate the intrahepatic exposure of drugs, impacting the route and rate of elimination, as well as the drug-drug interaction potential. We have here extended the assessment of metabolic drug stability in a standard human hepatocyte incubation to allow for elucidation of the distribution-metabolism interplay established for substrates of drug transporters. Cellular concentration-time profiles were obtained from incubations of eight known OATP substrates at 1 μM, each for two different 10-donor batches of suspended cryopreserved human hepatocytes. The kinetic data sets were analyzed using a mechanistic mathematical model that allowed for separate estimation of active uptake, bidirectional diffusion, metabolism and nonspecific extracellular and intracellular binding. The range of intrinsic clearances attributed to active uptake, diffusion and metabolism of the test set spanned more than 2 orders of magnitude each, with median values of 18, 5.3, and 0.5 μL/min/10(6) cells, respectively. This is to be compared with the values for the apparent clearance from the incubations, which only spanned 1 order of magnitude with a median of 2.6 μL/min/10(6) cells. The parameter estimates of the two pooled 10-donor hepatocyte batches investigated displayed only small differences in contrast to the variability associated with use of cells from individual donors reported in the literature. The active contribution to the total cellular uptake ranged from 55% (glyburide) to 96% (rosuvastatin), with an unbound intra-to-extracellular concentration ratio at steady state of 2.1 and 17, respectively. Principal component analysis showed that the parameter estimates of the investigated compounds were largely influenced by lipophilicity. Active cellular uptake in hepatocytes was furthermore correlated to pure OATP1B1-mediated uptake as measured in a transfected cell system. The presented approach enables the assessment of the key pathways regulating hepatic disposition of transporter and enzyme substrates from one single, reproducible and generally accessible human in vitro system.
Collapse
Affiliation(s)
- Pär Nordell
- Drug Safety and Metabolism, AstraZeneca R&D Mölndal , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | | | | |
Collapse
|
76
|
Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos 2013; 41:1975-93. [PMID: 24065860 DOI: 10.1124/dmd.113.054031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prediction of human pharmacokinetics of new drugs, as well as other disposition attributes, has become a routine practice in drug research and development. Prior to the 1990s, drug disposition science was used in a mostly descriptive manner in the drug development phase. With the advent of in vitro methods and availability of human-derived reagents for in vitro studies, drug-disposition scientists became engaged in the compound design phase of drug discovery to optimize and predict human disposition properties prior to nomination of candidate compounds into the drug development phase. This has reaped benefits in that the attrition rate of new drug candidates in drug development for reasons of unacceptable pharmacokinetics has greatly decreased. Attributes that are predicted include clearance, volume of distribution, half-life, absorption, and drug-drug interactions. In this article, we offer our experience-based perspectives on the tools and methods of predicting human drug disposition using in vitro and animal data.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | |
Collapse
|
77
|
Poulin P, Haddad S. Toward a new paradigm for the efficient in vitro–in vivo extrapolation of metabolic clearance in humans from hepatocyte data. J Pharm Sci 2013; 102:3239-51. [DOI: 10.1002/jps.23502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/18/2023]
|
78
|
Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 2013; 34:45-78. [PMID: 23115084 DOI: 10.1002/bdd.1823] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organic anion transporting polypeptide (OATP) family transporters accept a number of drugs and are increasingly being recognized as important factors in governing drug and metabolite pharmacokinetics. OATP1B1 and OATP1B3 play an important role in hepatic drug uptake while OATP2B1 and OATP1A2 might be key players in intestinal absorption and transport across blood-brain barrier of drugs, respectively. To understand the importance of OATPs in the hepatic clearance of drugs, the rate-determining process for elimination should be considered; for some drugs, hepatic uptake clearance rather than metabolic intrinsic clearance is the more important determinant of hepatic clearances. The importance of the unbound concentration ratio (liver/blood), K(p,uu) , of drugs, which is partly governed by OATPs, is exemplified in interpreting the difference in the IC(50) of statins between the hepatocyte and microsome systems for the inhibition of HMG-CoA reductase activity. The intrinsic activity and/or expression level of OATPs are affected by genetic polymorphisms and drug-drug interactions. Their effects on the elimination rate or intestinal absorption rate of drugs may sometimes depend on the substrate drug. This is partly because of the different contribution of OATP isoforms to clearance or intestinal absorption. When the contribution of the OATP-mediated pathway is substantial, the pharmacokinetics of substrate drugs should be greatly affected. This review describes the estimation of the contribution of OATP1B1 to the total hepatic uptake of drugs from the data of fold-increases in the plasma concentration of substrate drugs by the genetic polymorphism of this transporter. To understand the importance of the OATP family transporters, modeling and simulation with a physiologically based pharmacokinetic model are helpful.
Collapse
Affiliation(s)
- Yoshihisa Shitara
- Pharmacokinetics Laboratory, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Poulin P. Prediction of Total Hepatic Clearance by Combining Metabolism, Transport, and Permeability Data in the In Vitro–In Vivo Extrapolation Methods: Emphasis on an Apparent Fraction Unbound in Liver for Drugs. J Pharm Sci 2013; 102:2085-95. [DOI: 10.1002/jps.23562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
|
80
|
Ball K, Bouzom F, Scherrmann JM, Walther B, Declèves X. Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier--towards a mechanistic IVIVE-based approach. AAPS JOURNAL 2013; 15:913-32. [PMID: 23784110 DOI: 10.1208/s12248-013-9496-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/09/2013] [Indexed: 01/09/2023]
Abstract
Predicting the penetration of drugs across the human blood-brain barrier (BBB) is a significant challenge during their development. A variety of in vitro systems representing the BBB have been described, but the optimal use of these data in terms of extrapolation to human unbound brain concentration profiles remains to be fully exploited. Physiologically based pharmacokinetic (PBPK) modelling of drug disposition in the central nervous system (CNS) currently consists of fitting preclinical in vivo data to compartmental models in order to estimate the permeability and efflux of drugs across the BBB. The increasingly popular approach of using in vitro-in vivo extrapolation (IVIVE) to generate PBPK model input parameters could provide a more mechanistic basis for the interspecies translation of preclinical models of the CNS. However, a major hurdle exists in verifying these predictions with observed data, since human brain concentrations can't be directly measured. Therefore a combination of IVIVE-based and empirical modelling approaches based on preclinical data are currently required. In this review, we summarise the existing PBPK models of the CNS in the literature, and we evaluate the current opportunities and limitations of potential IVIVE strategies for PBPK modelling of BBB penetration.
Collapse
Affiliation(s)
- Kathryn Ball
- Centre de Pharmacocinétique et Métabolisme, Groupe de Recherche Servier, Orléans, France
| | | | | | | | | |
Collapse
|
81
|
Mateus A, Matsson P, Artursson P. Rapid Measurement of Intracellular Unbound Drug Concentrations. Mol Pharm 2013; 10:2467-78. [DOI: 10.1021/mp4000822] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Research Institute for Medicines
and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University
of Lisbon, 1649-003 Lisbon, Portugal
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
82
|
Chu X, Korzekwa K, Elsby R, Fenner K, Galetin A, Lai Y, Matsson P, Moss A, Nagar S, Rosania GR, Bai JPF, Polli JW, Sugiyama Y, Brouwer KLR. Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin Pharmacol Ther 2013; 94:126-41. [PMID: 23588320 DOI: 10.1038/clpt.2013.78] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intracellular concentrations of drugs and metabolites are often important determinants of efficacy, toxicity, and drug interactions. Hepatic drug distribution can be affected by many factors, including physicochemical properties, uptake/efflux transporters, protein binding, organelle sequestration, and metabolism. This white paper highlights determinants of hepatocyte drug/metabolite concentrations and provides an update on model systems, methods, and modeling/simulation approaches used to quantitatively assess hepatocellular concentrations of molecules. The critical scientific gaps and future research directions in this field are discussed.
Collapse
Affiliation(s)
- X Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Rahway, New Jersey, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS JOURNAL 2013; 15:629-45. [PMID: 23543602 DOI: 10.1208/s12248-013-9470-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
Recently, the US Food and Drug Administration and European Medicines Agency have issued new guidance for industry on drug interaction studies, which outline comprehensive recommendations on a broad range of in vitro and in vivo studies to evaluate drug-drug interaction (DDI) potential. This paper aims to provide an overview of these new recommendations and an in-depth scientifically based perspective on issues surrounding some of the recommended approaches in emerging areas, particularly, transporters and complex DDIs. We present a number of theoretical considerations and several case examples to demonstrate complexities in applying (1) the proposed transporter decision trees and associated criteria for studying a broad spectrum of transporters to derive actionable information and (2) the recommended model-based approaches at an early stage of drug development to prospectively predict DDIs involving time-dependent inhibition and mixed inhibition/induction of drug metabolizing enzymes. We hope to convey the need for conducting DDI studies on a case-by-case basis using a holistic scientifically based interrogative approach and to communicate the need for additional research to fill in knowledge gaps in these areas where the science is rapidly evolving to better ensure the safety and efficacy of new therapeutic agents.
Collapse
Affiliation(s)
- Thomayant Prueksaritanont
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Sharp and Dohme Corp., WP 75A-203, West Point, PA 19486, USA,
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Zamek-Gliszczynski MJ, Lee CA, Poirier A, Bentz J, Chu X, Ellens H, Ishikawa T, Jamei M, Kalvass JC, Nagar S, Pang KS, Korzekwa K, Swaan PW, Taub ME, Zhao P, Galetin A. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin Pharmacol Ther 2013; 94:64-79. [PMID: 23588311 DOI: 10.1038/clpt.2013.45] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug-drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science.
Collapse
Affiliation(s)
- M J Zamek-Gliszczynski
- Drug Disposition, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Varma MVS, Lin J, Bi YA, Rotter CJ, Fahmi OA, Lam JL, El-Kattan AF, Goosen TC, Lai Y. Quantitative Prediction of Repaglinide-Rifampicin Complex Drug Interactions Using Dynamic and Static Mechanistic Models: Delineating Differential CYP3A4 Induction and OATP1B1 Inhibition Potential of Rifampicin. Drug Metab Dispos 2013; 41:966-74. [DOI: 10.1124/dmd.112.050583] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
86
|
Nordell P, Svanberg P, Bird J, Grime K. Predicting Metabolic Clearance for Drugs That Are Actively Transported into Hepatocytes: Incubational Binding as a Consequence of in Vitro Hepatocyte Concentration Is a Key Factor. Drug Metab Dispos 2013; 41:836-43. [DOI: 10.1124/dmd.112.050377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
87
|
Ronaldson PT, Davis TP. Targeted drug delivery to treat pain and cerebral hypoxia. Pharmacol Rev 2013; 65:291-314. [PMID: 23343976 DOI: 10.1124/pr.112.005991] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
88
|
Barton HA, Lai Y, Goosen TC, Jones HM, El-Kattan AF, Gosset JR, Lin J, Varma MV. Model-based approaches to predict drug–drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond. Expert Opin Drug Metab Toxicol 2013; 9:459-72. [DOI: 10.1517/17425255.2013.759210] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
89
|
Effect of Ritonavir on (99m)Technetium-Mebrofenin Disposition in Humans: A Semi-PBPK Modeling and In Vitro Approach to Predict Transporter-Mediated DDIs. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e20. [PMID: 23887590 PMCID: PMC3600725 DOI: 10.1038/psp.2012.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/13/2012] [Indexed: 11/15/2022]
Abstract
A semiphysiologically based pharmacokinetic (semi-PBPK) model was developed to describe a unique blood, liver, and bile clinical data set for the hepatobiliary imaging agent 99mTechnetium–mebrofenin (99mTc–mebrofenin), and to simulate sites/mechanisms of a 99mTc–mebrofenin–ritonavir drug–drug interaction (DDI). The transport inhibitor ritonavir (multiple-dose: 2 × 300 mg) significantly increased systemic 99mTc–mebrofenin exposure as compared with control (4,464 ± 1,861 vs. 1,970 ± 311 nCi min/ml; mean ± SD), without affecting overall hepatic exposure or biliary recovery. A novel extrahepatic distribution compartment was required to characterize 99mTc–mebrofenin disposition. Ritonavir inhibited 99mTc–mebrofenin accumulation in human sandwich-cultured hepatocytes (SCH) (half maximal inhibitory concentration (IC50) = 3.46 ± 1.53 µmol/l). Despite ritonavir accumulation in hepatocytes, intracellular binding was extensive (97. 6%), which limited interactions with multidrug resistance protein 2 (MRP2)-mediated biliary excretion. These in vitro data supported conclusions from modeling/simulation that ritonavir inhibited 99mTc–mebrofenin hepatic uptake, but not biliary excretion, at clinically relevant concentrations. This integrated approach, utilizing modeling, clinical, and in vitro data, emphasizes the importance of hepatic and extrahepatic distribution, assessment of inhibitory potential in relevant in vitro systems, and intracellular unbound concentrations to assess transporter-mediated hepatic DDIs.
Collapse
|
90
|
Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol 2012; 9:237-52. [DOI: 10.1517/17425255.2013.741589] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
91
|
Gertz M, Cartwright CM, Hobbs MJ, Kenworthy KE, Rowland M, Houston JB, Galetin A. Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm Res 2012. [PMID: 23179780 DOI: 10.1007/s11095-012-0918-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To apply physiologically-based pharmacokinetic (PBPK) modeling to investigate the consequences of reduction in activity of hepatic and intestinal uptake and efflux transporters by cyclosporine and its metabolite AM1. METHODS Inhibitory potencies of cyclosporine and AM1 against OATP1B1, OATP1B3 and OATP2B1 were investigated in HEK293 cells +/- pre-incubation. Cyclosporine PBPK model implemented in Matlab was used to assess interaction potential (+/- metabolite) against different processes (uptake, efflux and metabolism) in liver and intestine and to predict quantitatively drug-drug interaction with repaglinide. RESULTS Cyclosporine and AM1 were potent inhibitors of OATP1B1 and OATP1B3, IC(50) ranging from 0.019-0.093 μM following pre-incubation. Cyclosporine PBPK model predicted the highest interaction potential against liver uptake transporters, with a maximal reduction of >70% in OATP1B1 activity; the effect on hepatic efflux and metabolism was minimal. In contrast, 80-97% of intestinal P-gp and CYP3A4 activity was reduced due to the 50-fold higher cyclosporine enterocytic concentrations relative to unbound hepatic inlet. The inclusion of AM1 resulted in a minor increase in the predicted maximal reduction of OATP1B1/1B3 activity. Good predictability of cyclosporine-repaglinide DDI and the impact of dose staggering are illustrated. CONCLUSIONS This study highlights the application of PBPK modeling for quantitative prediction of transporter-mediated DDIs with concomitant consideration of P450 inhibition.
Collapse
Affiliation(s)
- Michael Gertz
- Centre for Applied Pharmacokinetic Research School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
92
|
Kudo T, Hisaka A, Sugiyama Y, Ito K. Analysis of the repaglinide concentration increase produced by gemfibrozil and itraconazole based on the inhibition of the hepatic uptake transporter and metabolic enzymes. Drug Metab Dispos 2012; 41:362-71. [PMID: 23139378 DOI: 10.1124/dmd.112.049460] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The plasma concentration of repaglinide is reported to increase greatly when given after repeated oral administration of itraconazole and gemfibrozil. The present study analyzed this interaction based on a physiologically based pharmacokinetic (PBPK) model incorporating inhibition of the hepatic uptake transporter and metabolic enzymes involved in repaglinide disposition. Firstly, the plasma concentration profiles of inhibitors (itraconazole, gemfibrozil, and gemfibrozil glucuronide) were reproduced by a PBPK model to obtain their pharmacokinetic parameters. The plasma concentration profiles of repaglinide were then analyzed by a PBPK model, together with those of the inhibitors, assuming a competitive inhibition of CYP3A4 by itraconazole, mechanism-based inhibition of CYP2C8 by gemfibrozil glucuronide, and inhibition of organic anion transporting polypeptide (OATP) 1B1 by gemfibrozil and its glucuronide. The plasma concentration profiles of repaglinide were well reproduced by the PBPK model based on the above assumptions, and the optimized values for the inhibition constants (0.0676 nM for itraconazole against CYP3A4; 14.2 μM for gemfibrozil against OATP1B1; and 5.48 μM for gemfibrozil glucuronide against OATP1B1) and the fraction of repaglinide metabolized by CYP2C8 (0.801) were consistent with the reported values. The validity of the obtained parameters was further confirmed by sensitivity analyses and by reproducing the repaglinide concentration increase produced by concomitant gemfibrozil administration at various timings/doses. The present findings suggested that the reported concentration increase of repaglinide, suggestive of synergistic effects of the coadministered inhibitors, can be quantitatively explained by the simultaneous inhibition of the multiple clearance pathways of repaglinide.
Collapse
Affiliation(s)
- Toshiyuki Kudo
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | | | | | | |
Collapse
|
93
|
Ethnic variability in the plasma exposures of OATP1B1 substrates such as HMG-CoA reductase inhibitors: a kinetic consideration of its mechanism. Clin Pharmacol Ther 2012; 94:37-51. [PMID: 23443754 DOI: 10.1038/clpt.2012.221] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because the plasma exposure levels of rosuvastatin in Asians are generally twice those in Caucasians, the starting dose for Asians in the United States is set to half of that for non-Asians. However, the precise role of ethnicity in the clearance of rosuvastatin has not yet been clarified. This review focuses on ethnic variability in the clinical pharmacokinetics of 3-hydroxy-3-methylglutaryl co-enzyme A (HMG-CoA) reductase inhibitors (statins) and angiotensin II receptor antagonists. The mechanisms of such variability are discussed quantitatively, with building a hypothetical model for pravastatin, and validated against other statins. Our analyses suggest that the ethnic variability in the plasma exposure of statins cannot be explained only by the difference in the allele frequencies of organic anion-transporting polypeptide (OATP)1B1 and breast cancer resistance protein (BCRP), and the intrinsic ethnic variability in the activity of OATP1B1 (the ratio of Japanese/Caucasians is 0.584) must be considered. Further work and validation with additional data will clarify the applicability of this model to other OATP1B1 substrates.
Collapse
|
94
|
Elsby R, Hilgendorf C, Fenner K. Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther 2012; 92:584-98. [PMID: 23047648 DOI: 10.1038/clpt.2012.163] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of statins is widespread across disease areas because many patients have comorbidities. Given that these drugs have become common as comedications, it is essential to have an understanding of the potential risks of drug-drug interactions (DDIs) between statins and candidate drugs in development. Although the hepatic uptake transporter organic anion-transporting polypeptide 1B1 (OATP1B1) is known to play a substantial role in statin-related DDI risk, other transporters and metabolizing enzymes can also be involved. Consequently, a holistic approach to risk assessment is required, tailored to each statin. Using evidence from pharmacogenetics, DDIs, and literature on absorption, distribution, metabolism, and elimination (ADME) in humans, this review identifies pathways that contribute the most to, and are therefore the most critical to, the disposition of each statin. It also provides an understanding of the expected theoretical maximum increase in systemic exposure if the disposition of a statin is inhibited. Finally, on a statin-by-statin basis, we propose in vitro inhibition studies that should be routinely conducted during drug development so as to better assess DDI risk.
Collapse
Affiliation(s)
- R Elsby
- Global DMPK-In Vitro/In Silico ADME, AstraZeneca R&D Alderley Park, Cheshire, UK.
| | | | | |
Collapse
|