51
|
Prediction of LncRNA-encoded small peptides in glioma and oligomer channel functional analysis using in silico approaches. PLoS One 2021; 16:e0248634. [PMID: 33735310 PMCID: PMC7971536 DOI: 10.1371/journal.pone.0248634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is a lethal malignant brain cancer, and many reports have shown that abnormalities in the behavior of water and ion channels play an important role in regulating tumor proliferation, migration, apoptosis, and differentiation. Recently, new studies have suggested that some long noncoding RNAs containing small open reading frames can encode small peptides and form oligomers for water or ion regulation. However, because the peptides are difficult to identify, their functional mechanisms are far from being clearly understood. In this study, we used bioinformatics methods to identify and evaluate lncRNAs, which may encode small transmembrane peptides in gliomas. Combining ab initio homology modeling, molecular dynamics simulations, and free energy calculations, we constructed a predictive model and predicted the oligomer channel activity of peptides by identifying the lncRNA ORFs. We found that one key hub lncRNA, namely, DLEU1, which contains two smORFs (ORF1 and ORF8), encodes small peptides that form pentameric channels. The mechanics of water and ion (Na+ and Cl-) transport through this pentameric channel were simulated. The potential mean force of the H2O molecules along the two ORF-encoded peptide channels indicated that the energy barrier was different between ORF1 and ORF8. The ORF1-encoded peptide pentamer acted as a self-assembled water channel but not as an ion channel, and the ORF8 permeated neither ions nor water. This work provides new methods and theoretical support for further elucidation of the function of lncRNA-encoded small peptides and their role in cancer. Additionally, this study provides a theoretical basis for drug development.
Collapse
|
52
|
Pluhackova K, Horner A. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity. BMC Biol 2021; 19:4. [PMID: 33441107 PMCID: PMC7807449 DOI: 10.1186/s12915-020-00936-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lipid-protein interactions stabilize protein oligomers, shape their structure, and modulate their function. Whereas in vitro experiments already account for the functional importance of lipids by using natural lipid extracts, in silico methods lack behind by embedding proteins in single component lipid bilayers. However, to accurately complement in vitro experiments with molecular details at very high spatio-temporal resolution, molecular dynamics simulations have to be performed in natural(-like) lipid environments. RESULTS To enable more accurate MD simulations, we have prepared four membrane models of E. coli polar lipid extract, a typical model organism, each at all-atom (CHARMM36) and coarse-grained (Martini3) representations. These models contain all main lipid headgroup types of the E. coli inner membrane, i.e., phosphatidylethanolamines, phosphatidylglycerols, and cardiolipins, symmetrically distributed between the membrane leaflets. The lipid tail (un)saturation and propanylation stereochemistry represent the bacterial lipid tail composition of E. coli grown at 37∘C until 3/4 of the log growth phase. The comparison of the Simple three lipid component models to the complex 14-lipid component model Avanti over a broad range of physiologically relevant temperatures revealed that the balance of lipid tail unsaturation and propanylation in different positions and inclusion of lipid tails of various length maintain realistic values for lipid mobility, membrane area compressibility, lipid ordering, lipid volume and area, and the bilayer thickness. The only Simple model that was able to satisfactory reproduce most of the structural properties of the complex Avanti model showed worse agreement of the activation energy of basal water permeation with the here performed measurements. The Martini3 models reflect extremely well both experimental and atomistic behavior of the E. coli polar lipid extract membranes. Aquaporin-1 embedded in our native(-like) membranes causes partial lipid ordering and membrane thinning in its vicinity. Moreover, aquaporin-1 attracts and temporarily binds negatively charged lipids, mainly cardiolipins, with a distinct cardiolipin binding site in the crevice at the contact site between two monomers, most probably stabilizing the tetrameric protein assembly. CONCLUSIONS The here prepared and validated membrane models of E. coli polar lipids extract revealed that lipid tail complexity, in terms of double bond and cyclopropane location and varying lipid tail length, is key to stabilize membrane properties over a broad temperature range. In addition, they build a solid basis for manifold future simulation studies on more realistic lipid membranes bridging the gap between simulations and experiments.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Mattenstr. 26, Basel, 4058, Switzerland.
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
53
|
Yuan YD, Dong J, Liu J, Zhao D, Wu H, Zhou W, Gan HX, Tong YW, Jiang J, Zhao D. Porous organic cages as synthetic water channels. Nat Commun 2020; 11:4927. [PMID: 33004793 PMCID: PMC7530991 DOI: 10.1038/s41467-020-18639-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 09/03/2020] [Indexed: 02/05/2023] Open
Abstract
Nature has protein channels (e.g., aquaporins) that preferentially transport water molecules while rejecting even the smallest hydrated ions. Aspirations to create robust synthetic counterparts have led to the development of a few one-dimensional channels. However, replicating the performance of the protein channels in these synthetic water channels remains a challenge. In addition, the dimensionality of the synthetic water channels also imposes engineering difficulties to align them in membranes. Here we show that zero-dimensional porous organic cages (POCs) with nanoscale pores can effectively reject small cations and anions while allowing fast water permeation (ca. 109 water molecules per second) on the same magnitude as that of aquaporins. Water molecules are found to preferentially flow in single-file, branched chains within the POCs. This work widens the choice of water channel morphologies for water desalination applications.
Collapse
Affiliation(s)
- Yi Di Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Jinqiao Dong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Jie Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Daohui Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Hui Xian Gan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
- National University of Singapore, NUS Environmental Research Institute (NERI), 117411, Singapore, Singapore
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
- National University of Singapore, NUS Environmental Research Institute (NERI), 117411, Singapore, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
| |
Collapse
|
54
|
Porter CJ, Werber JR, Zhong M, Wilson CJ, Elimelech M. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS NANO 2020; 14:10894-10916. [PMID: 32886487 DOI: 10.1021/acsnano.0c05753] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transmembrane protein channels, including ion channels and aquaporins that are responsible for fast and selective transport of water, have inspired membrane scientists to exploit and mimic their performance in membrane technologies. These biomimetic membranes comprise discrete nanochannels aligned within amphiphilic matrices on a robust support. While biological components have been used directly, extensive work has also been conducted to produce stable synthetic mimics of protein channels and lipid bilayers. However, the experimental performance of biomimetic membranes remains far below that of biological membranes. In this review, we critically assess the status and potential of biomimetic desalination membranes. We first review channel chemistries and their transport behavior, identifying key characteristics to optimize water permeability and salt rejection. We compare various channel types within an industrial context, considering transport performance, processability, and stability. Through a re-examination of previous vesicular stopped-flow studies, we demonstrate that incorrect permeability equations result in an overestimation of the water permeability of nanochannels. We find in particular that the most optimized aquaporin-bearing bilayer had a pure water permeability of 2.1 L m-2 h-1 bar-1, which is comparable to that of current state-of-the-art polymeric desalination membranes. Through a quantitative assessment of biomimetic membrane formats, we analytically show that formats incorporating intact vesicles offer minimal benefit, whereas planar biomimetic selective layers could allow for dramatically improved salt rejections. We then show that the persistence of nanoscale defects explains observed subpar performance. We conclude with a discussion on optimal strategies for minimizing these defects, which could enable breakthrough performance.
Collapse
Affiliation(s)
- Cassandra J Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jay R Werber
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Corey J Wilson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
55
|
Rodriguez RA, Chan R, Liang H, Chen LY. Quantitative study of unsaturated transport of glycerol through aquaglyceroporin that has high affinity for glycerol. RSC Adv 2020; 10:34203-34214. [PMID: 32944226 PMCID: PMC7494219 DOI: 10.1039/d0ra05262k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
The structures of several aquaglyceroporins have been resolved to atomic resolution showing two or more glycerols bound inside a channel and confirming a glycerol-facilitator's affinity for its substrate glycerol. However, the kinetics data of glycerol transport experiments all point to unsaturated transport that is characteristic of low substrate affinity in terms of the Michaelis-Menten kinetics. In this article, we present an in silico-in vitro research focused on AQP3, one of the human aquaglyceroporins that is natively expressed in the abundantly available erythrocytes. We conducted 2.1 μs in silico simulations of AQP3 embedded in a model erythrocyte membrane with intracellular-extracellular asymmetries in leaflet lipid compositions and compartment salt ions. From the equilibrium molecular dynamics (MD) simulations, we elucidated the mechanism of glycerol transport at high substrate concentrations. From the steered MD simulations, we computed the Gibbs free-energy profile throughout the AQP3 channel. From the free-energy profile, we quantified the kinetics of glycerol transport that is unsaturated due to glycerol-glycerol interactions mediated by AQP3 resulting in the concerted movement of two glycerol molecules for the transport of one glycerol molecule across the cell membrane. We conducted in vitro experiments on glycerol uptake into human erythrocytes for a wide range of substrate concentrations and various temperatures. The experimental data quantitatively validated our theoretical-computational conclusions on the unsaturated glycerol transport through AQP3 that has high affinity for glycerol.
Collapse
Affiliation(s)
- Roberto A. Rodriguez
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Ruth Chan
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
- Department of Pharmacology, The University of Texas Health Science Center at San AntonioSan AntonioTexas 78229USA
| | - Liao Y. Chen
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| |
Collapse
|
56
|
Li Y, Li Z, Aydin F, Quan J, Chen X, Yao YC, Zhan C, Chen Y, Pham TA, Noy A. Water-ion permselectivity of narrow-diameter carbon nanotubes. SCIENCE ADVANCES 2020; 6:6/38/eaba9966. [PMID: 32938679 PMCID: PMC7494338 DOI: 10.1126/sciadv.aba9966] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Carbon nanotube (CNT) pores, which mimic the structure of the aquaporin channels, support extremely high water transport rates that make them strong candidates for building artificial water channels and high-performance membranes. Here, we measure water and ion permeation through 0.8-nm-diameter CNT porins (CNTPs)-short CNT segments embedded in lipid membranes-under optimized experimental conditions. Measured activation energy of water transport through the CNTPs agrees with the barrier values typical for single-file water transport. Well-tempered metadynamics simulations of water transport in CNTPs also report similar activation energy values and provide molecular-scale details of the mechanism for water entry into these channels. CNTPs strongly reject chloride ions and show water-salt permselectivity values comparable to those of commercial desalination membranes.
Collapse
Affiliation(s)
- Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Zhongwu Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Fikret Aydin
- Quantum Simulations Group, Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Jana Quan
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Xi Chen
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA 94343, USA
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA 94343, USA
| | - Cheng Zhan
- Quantum Simulations Group, Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Tuan Anh Pham
- Quantum Simulations Group, Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
- School of Natural Sciences, University of California Merced, Merced, CA 94343, USA
| |
Collapse
|
57
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
58
|
Chan R, Falato M, Liang H, Chen LY. In silico simulations of erythrocyte aquaporins with quantitative in vitro validation. RSC Adv 2020; 10:21283-21291. [PMID: 32612811 PMCID: PMC7328926 DOI: 10.1039/d0ra03456h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modelling water and membrane lipids is an essential element in the computational research of biophysical/biochemical processes such as water transport across the cell membrane. In this study, we examined the accuracies of two popular water models, TIP3P and TIP4P, in the molecular dynamics simulations of erythrocyte aquaporins (AQP1 and AQP3). We modelled the erythrocyte membrane as an asymmetric lipid bilayer with appropriate lipid compositions of its inner and outer leaflet, in comparison with a symmetric lipid bilayer of a single lipid type. We computed the AQP1/3 permeabilities with the transition state theory with full correction for recrossing events. We also conducted cell swelling assays for water transport across the erythrocyte membrane. The experimental results agree with the TIP3P water–erythrocyte membrane model, in confirmation of the expected accuracy of the erythrocyte membrane model, the TIP3P water model, and the CHARMM parameters for water–protein interactions. Quantitatively predictive study of aquaporins in model erythrocyte membrane validated with cellular experiments.![]()
Collapse
Affiliation(s)
- Ruth Chan
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Michael Falato
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA.,Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| | - Liao Y Chen
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| |
Collapse
|
59
|
Shen J, Ye R, Romanies A, Roy A, Chen F, Ren C, Liu Z, Zeng H. Aquafoldmer-Based Aquaporin-like Synthetic Water Channel. J Am Chem Soc 2020; 142:10050-10058. [PMID: 32375470 DOI: 10.1021/jacs.0c02013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic water channels were developed with an aim to replace aquaporins for possible uses in water purification, while concurrently retaining aquaporins' ability to conduct highly selective superfast water transport. Among the currently available synthetic water channel systems, none possesses water transport properties that parallel those of aquaporins. In this report, we present the first synthetic water channel system with intriguing aquaproin-like features. Employing a "sticky end"-mediated molecular strategy for constructing abiotic water channels, we demonstrate that a 20% enlargement in angstrom-scale pore volume could effect a remarkable enhancement in macroscopic water transport profile by 15 folds. This gives rise to a powerful synthetic water channel able to transport water at a speed of ∼3 × 109 H2O s-1 channel-1 with a high rejection of NaCl and KCl. This high water permeability, which is about 50% of aquaporin Z's capacity, makes channel 1 the fastest among the existing synthetic water channels with high selectivity.
Collapse
Affiliation(s)
- Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Alyssa Romanies
- Department of Chemistry & Biochemistry and the West Center for Computational Chemistry and Drug Design, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Arundhati Roy
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Feng Chen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Changliang Ren
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry and the West Center for Computational Chemistry and Drug Design, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Huaqiang Zeng
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| |
Collapse
|
60
|
Boytsov D, Hannesschlaeger C, Horner A, Siligan C, Pohl P. Micropipette Aspiration-Based Assessment of Single Channel Water Permeability. Biotechnol J 2020; 15:e1900450. [PMID: 32346982 DOI: 10.1002/biot.201900450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Indexed: 11/09/2022]
Abstract
Measurements of the unitary hydraulic conductivity of membrane channels, pf , may be hampered by difficulties in producing sufficient quantities of purified and reconstituted proteins. Low yield expression, the purely empiric choice of detergents, as well as protein aggregation and misfolding during reconstitution may result in an average of less than one reconstituted channel per large unilamellar vesicle. This limits their applicability for pf measurements, independent of whether light scattering or fluorescence quenching of encapsulated dyes is monitored. Here the micropipette aspiration technique is adopted because its superb sensitivity allows resolving pf values for one order of magnitude smaller protein densities in sphingomyelin and cholesterol rich giant unilamellar vesicles (GUVs). Protein density is derived from intensity fluctuations that fluorescently labeled channels in the aspirated GUV induce by diffusing through the diffraction limited spot. A perfusion system minimizes unstirred layers in the immediate membrane vicinity as demonstrated by the distribution of both encapsulated and extravesicular aqueous dyes. pf amounted to 2.4 ± 0.1 × 10-13 cm³ s-1 for aquaporin-1 that served as a test case. The new assay paves the way for directly monitoring the effect that interaction of aquaporins with other proteins or inhibitors may have on pf on a single sample.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| | | | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| |
Collapse
|
61
|
Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide-Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angew Chem Int Ed Engl 2020; 59:4806-4813. [PMID: 31950583 PMCID: PMC7093082 DOI: 10.1002/anie.201916287] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Reported herein is a series of pore-containing polymeric nanotubes based on a hydrogen-bonded hydrazide backbone. Nanotubes of suitable lengths, possessing a hollow cavity of about a 6.5 Å diameter, mediate highly efficient transport of diverse types of anions, rather than cations, across lipid membranes. The reported polymer channel, having an average molecular weight of 18.2 kDa and 3.6 nm in helical height, exhibits the highest anion-transport activities for iodide (EC50 =0.042 μm or 0.028 mol % relative to lipid), whcih is transported 10 times more efficiently than chlorides (EC50 =0.47 μm). Notably, even in cholesterol-rich environment, iodide transport activity remains high with an EC50 of 0.37 μm. Molecular dynamics simulation studies confirm that the channel is highly selective for anions and that such anion selectivity arises from a positive electrostatic potential of the central lumen rendered by the interior-pointing methyl groups.
Collapse
Affiliation(s)
- Arundhati Roy
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jie Shen
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Feng Chen
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huaqiang Zeng
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| |
Collapse
|
62
|
Bülbül E, Hegemann D, Geue T, Heuberger M. How the dynamics of subsurface hydration regulates protein-surface interactions. Colloids Surf B Biointerfaces 2020; 190:110908. [PMID: 32163842 DOI: 10.1016/j.colsurfb.2020.110908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
The role of water structure near surfaces has been scrutinized extensively because it is accepted to control protein-surface interactions, however, often avoiding effects of hydration dynamics. Relating to this, we have recently discussed how the amount and state of water, accumulated within various hydrophobic-to-hydrophilic subsurface gradients of plasma polymer films, influence the magnitude of adsorbed bovine serum albumin, spurring the hypothesis of the presence of a subsurface dipolar field. This study now analyzes the kinetics of hydration by systematically introducing modified gradient architectures and relating different hydration times to the adsorption of a dipolar probing protein. We find that dry-stored subsurface gradients, owing nominally identical surface characteristics, exhibits comparable surface potential and protein adsorption values, while they behave in a different manner at transient hydration times of few hours, before reaching near-equilibrium state of the hydration. A characteristic hydration time is found where protein adsorption on gradient films is minimal, unveiling the transient nature of the effect. In general, protein adsorption is sensitive to the time allowed for hydration of the adsorbent surface, supporting our initial hypothesis inasmuch as the quantity as well as quality of water inside the subsurface matrix is crucial for controlling protein-surface interactions.
Collapse
Affiliation(s)
- Ezgi Bülbül
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland; Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
| | - Dirk Hegemann
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland.
| | - Thomas Geue
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland.
| | - Manfred Heuberger
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland; Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
63
|
Fan W, Chen J. Two-state diffusive mobility of slow and fast transport of water in narrow nanochannels. Phys Rev E 2020; 101:010101. [PMID: 32069533 DOI: 10.1103/physreve.101.010101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/06/2022]
Abstract
Transport of water in narrow nanochannels as a single-file chain is involved in various biological activities and nanofluidic applications. However, although the consistent dipole orientation of the water molecules is intensively studied, its effect upon the transport behavior is still unknown. In this Rapid Communication, we find two states of slow and fast transport coexist in the single-file water in the presence of channel defects that break the collective dipole orientation. A low diffusive mobility is found for the dipole orientation inconsistent configurations while mobility approximately two times higher is found for the consistent ones. The two-state diffusion process relies on the different hydrogen bond connections, which possess overlapped structures, enabling a spontaneous transition. The slow state is insensitive to the increased defect number while the fast state is reduced accordingly. The two states exhibit different lifetime and temperature dependences that demonstrate a possibility for manipulation. Our result implies the possibility of two-state diffusion process of water in nanofluid phenomena due to the common presence of defects in nanochannels.
Collapse
Affiliation(s)
- Wen Fan
- Department of Physics, Fudan University, Shanghai 200433, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jige Chen
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
64
|
Galimzyanov TR, Bashkirov PV, Blank PS, Zimmerberg J, Batishchev OV, Akimov SA. Monolayerwise application of linear elasticity theory well describes strongly deformed lipid membranes and the effect of solvent. SOFT MATTER 2020; 16:1179-1189. [PMID: 31934707 DOI: 10.1039/c9sm02079a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The theory of elasticity of lipid membranes is used widely to describe processes of cell membrane remodeling. Classically, the functional of a membrane's elastic energy is derived under assumption of small deformations; the membrane is considered as an infinitely thin film. This functional is quadratic on membrane surface curvature, with half of the splay modulus as its proportionality coefficient; it is generally applicable for small deformations only. Any validity of this functional for the regime of strong deformations should be verified experimentally. Recently, research using molecular dynamics simulations challenged the validity of this classic, linear model, i.e. the constancy of the splay modulus for strongly bent membranes. Here we demonstrate that the quadratic energy functional still can be applied for calculation of the elastic energy of strongly deformed membranes without introducing higher order terms with additional elastic moduli, but only if applied separately for each lipid monolayer. For cylindrical membranes, both classic and monolayerwise models yield equally accurate results. For cylindrical deformations we experimentally show that the elastic energy of lipid monolayers is additive: a low molecular weight solvent leads to an approximately twofold decrease in the membrane bending stiffness. Accumulation of solvent molecules in the inner monolayer of a membrane cylinder can explain these results, as the solvent partially prevents lipid molecules from splaying there. Thus, the linear theory of elasticity can be expanded through the range from weak to strong deformations-its simplicity and physical transparency describe various membrane phenomena.
Collapse
Affiliation(s)
- Timur R Galimzyanov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia
| | | | | | | | | | | |
Collapse
|
65
|
Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations. Commun Chem 2020; 3:17. [PMID: 36703372 PMCID: PMC9814626 DOI: 10.1038/s42004-020-0263-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
Cell membranes are composed of a hydrated lipid bilayer that is molecularly complex and diverse, and the link between molecular hydration structure and membrane macroscopic properties is not well understood, due to a lack of technology that can probe and relate molecular level hydration information to micro- and macroscopic properties. Here, we demonstrate a direct link between lipid hydration structure and macroscopic dynamic curvature fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we observe the formation of transient domains of ordered water at the interface of freestanding lipid membranes. These domains are induced by the binding of divalent ions and their structure is ion specific. Using nonlinear optical theory, we convert the spatiotemporal SH intensity into maps of membrane potential, surface charge density, and binding free energy. Using an electromechanical theory of membrane bending, we show that transient electric field gradients across the membrane induce spatiotemporal membrane curvature fluctuations.
Collapse
|
66
|
Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide‐Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arundhati Roy
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Ruijuan Ye
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore 117585 Singapore
| | - Jie Shen
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Feng Chen
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Huaqiang Zeng
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| |
Collapse
|
67
|
Song W, Joshi H, Chowdhury R, Najem JS, Shen YX, Lang C, Henderson CB, Tu YM, Farell M, Pitz ME, Maranas CD, Cremer PS, Hickey RJ, Sarles SA, Hou JL, Aksimentiev A, Kumar M. Artificial water channels enable fast and selective water permeation through water-wire networks. NATURE NANOTECHNOLOGY 2020; 15:73-79. [PMID: 31844288 PMCID: PMC7008941 DOI: 10.1038/s41565-019-0586-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/04/2019] [Indexed: 05/09/2023]
Abstract
Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.
Collapse
Affiliation(s)
- Woochul Song
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Joseph S Najem
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
- Department of Mechanical Engineering, The Pennsylvania State University, UniversityPark, PA, USA
| | - Yue-Xiao Shen
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Chao Lang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Codey B Henderson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Megan Farell
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Megan E Pitz
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
68
|
Shahbabaei M, Kim D. Exploring fast water permeation through aquaporin-mimicking membranes. Phys Chem Chem Phys 2020; 22:1333-1348. [DOI: 10.1039/c9cp05496k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using molecular dynamics simulations, herein, we illustrate that a bending structure shows different behaviors for fast water transport through aquaporin-mimicking membranes in multilayer graphene and tubular structures.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| | - Daejoong Kim
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| |
Collapse
|
69
|
Bülbül E, Rupper P, Geue T, Bernard L, Heuberger M, Hegemann D. Extending the Range of Controlling Protein Adsorption via Subsurface Architecture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42760-42772. [PMID: 31644873 DOI: 10.1021/acsami.9b14584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, it has been shown that water, confined in a plasma polymer subsurface chemical gradient, nanometers below the surface, significantly reduced the amount of adsorbed protein bovine serum albumin (BSA). Relating to this effect, we proposed the hypothesis that oriented water molecules within the subsurface gradient generate a long-range dipolar field, which interacts with dipolar proteins such as BSA near the surface region. This study extends the above used in situ multistep plasma deposition process to introduce plasma oxidation modifications of the subsurface architecture with the aim to further control the effect on protein adsorption. Neutron reflectivity measurements reveal that the oxidation time increases the amount of matrix-confined water. There is, however, an optimal oxidation time to obtain minimal protein adsorption, which suggests that a minimal distance between confined water molecules plays an important role. Altogether we can extend the range of controlling the adsorbed protein mass by the introduction of this additional plasma oxidation step.
Collapse
Affiliation(s)
- Ezgi Bülbül
- Laboratory for Advanced Fibers, Empa , Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen , Switzerland
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zurich , 8093 Zurich , Switzerland
| | - Patrick Rupper
- Laboratory for Advanced Fibers, Empa , Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen , Switzerland
| | - Thomas Geue
- Laboratory for Neutron Scattering and Imaging , Paul Scherrer Institute , 5232 Villigen PSI , Switzerland
| | - Laetitia Bernard
- Laboratory for Nanoscale Materials Science, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Manfred Heuberger
- Laboratory for Advanced Fibers, Empa , Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen , Switzerland
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zurich , 8093 Zurich , Switzerland
| | - Dirk Hegemann
- Laboratory for Advanced Fibers, Empa , Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen , Switzerland
| |
Collapse
|
70
|
|
71
|
Ando T. High-speed atomic force microscopy. Curr Opin Chem Biol 2019; 51:105-112. [DOI: 10.1016/j.cbpa.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
|
72
|
Schwarz T, Striedner Y, Horner A, Haase K, Kemptner J, Zeppezauer N, Hermann P, Tiemann-Boege I. PRDM9 forms a trimer by interactions within the zinc finger array. Life Sci Alliance 2019; 2:e201800291. [PMID: 31308055 PMCID: PMC6643046 DOI: 10.26508/lsa.201800291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
PRDM9 is a trans-acting factor directing meiotic recombination to specific DNA-binding sites by its zinc finger (ZnF) array. It was suggested that PRDM9 is a multimer; however, we do not know the stoichiometry or the components inducing PRDM9 multimerization. In this work, we used in vitro binding studies and characterized with electrophoretic mobility shift assays, mass spectrometry, and fluorescence correlation spectroscopy the stoichiometry of the PRDM9 multimer of two different murine PRDM9 alleles carrying different tags and domains produced with different expression systems. Based on the migration distance of the PRDM9-DNA complex, we show that PRDM9 forms a trimer. Moreover, this stoichiometry is adapted already by the free, soluble protein with little exchange between protein monomers. The variable ZnF array of PRDM9 is sufficient for multimerization, and at least five ZnFs form already a functional trimer. Finally, we also show that only one ZnF array within the PRDM9 oligomer binds to the DNA, whereas the remaining two ZnF arrays likely maintain the trimer by ZnF-ZnF interactions.
Collapse
Affiliation(s)
- Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Karin Haase
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Jasmin Kemptner
- Red Cross Blood Transfusion Center Upper Austria, MedCampus II, Johannes Kepler University, Linz, Austria
| | | | - Philipp Hermann
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | | |
Collapse
|
73
|
Wragg D, de Almeida A, Casini A, Leoni S. Unveiling the Mechanisms of Aquaglyceroporin‐3 Water and Glycerol Permeation by Metadynamics. Chemistry 2019; 25:8713-8718. [DOI: 10.1002/chem.201902121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Darren Wragg
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| | - Andreia de Almeida
- Tumour Micro Environment Group, Division of Cancer and GeneticsSchool of MedicineCardiff University Tenovus Building Cardiff CF14 4XN UK
| | - Angela Casini
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| | - Stefano Leoni
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| |
Collapse
|
74
|
Canessa Fortuna A, Zerbetto De Palma G, Aliperti Car L, Armentia L, Vitali V, Zeida A, Estrin DA, Alleva K. Gating in plant plasma membrane aquaporins: the involvement of leucine in the formation of a pore constriction in the closed state. FEBS J 2019; 286:3473-3487. [DOI: 10.1111/febs.14922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Agustina Canessa Fortuna
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| | - Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
- Instituo de Biotecnología Universidad Nacional de Hurlingham Villa Tesei Argentina
| | - Lucio Aliperti Car
- Laboratorio de Fisiología de Proteínas IQUIBICEN y Facultad de Ciencias Exactas y Naturales CONICET Universidad de Buenos Aires Argentina
| | - Luciano Armentia
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| | - Victoria Vitali
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| | - Ari Zeida
- Departamento de Bioquímica Facultad de Medicina Center for Free Radical and Biomedical Research Universidad de la República Montevideo Uruguay
| | - Darío A. Estrin
- DQIAQF‐INQUIMAE Facultad de Ciencias Exactas y Naturales CONICET Universidad de Buenos Aires Argentina
| | - Karina Alleva
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| |
Collapse
|
75
|
Cooperativity and allostery in aquaporin 0 regulation by Ca 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:988-996. [PMID: 30802427 DOI: 10.1016/j.bbamem.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/21/2022]
Abstract
Aquaporin 0 (AQP0) is essential for eye lens homeostasis as is regulation of its water permeability by Ca2+, which occurs through interactions with calmodulin (CaM), but the underlying molecular mechanisms are not well understood. Here, we use molecular dynamics (MD) simulations on the microsecond timescale under an osmotic gradient to explicitly model water permeation through the AQP0 channel. To identify any structural features that are specific to water permeation through AQP0, we also performed simulations of aquaporin 1 (AQP1) and a pure mixed lipid bilayer under the same conditions. The relative single-channel water osmotic permeability coefficients (pf) calculated from all of our simulations are in reasonable agreement with experiment. Our simulations allowed us to characterize the dynamics of the key structural elements that modulate the diffusion of water single-files through the AQP0 and AQP1 pores. We find that CaM binding influences the collective dynamics of the whole AQP0 tetramer, promoting the closing of both the extracellular and intracellular gates by inducing cooperativity between neighboring subunits.
Collapse
|
76
|
Abstract
Spontaneous solute and solvent permeation through membranes is of vital importance to human life, be it gas exchange in red blood cells, metabolite excretion, drug/toxin uptake, or water homeostasis. Knowledge of the underlying molecular mechanisms is the sine qua non of every functional assignment to membrane transporters. The basis of our current solubility diffusion model was laid by Meyer and Overton. It correlates the solubility of a substance in an organic phase with its membrane permeability. Since then, a wide range of studies challenging this rule have appeared. Commonly, the discrepancies have their origin in ill-used measurement approaches, as we demonstrate on the example of membrane CO2 transport. On the basis of the insight that scanning electrochemical microscopy offered into solute concentration distributions in immediate membrane vicinity of planar membranes, we analyzed the interplay between chemical reactions and diffusion for solvent transport, weak acid permeation, and enzymatic reactions adjacent to membranes. We conclude that buffer reactions must also be considered in spectroscopic investigations of weak acid transport in vesicular suspensions. The evaluation of energetic contributions to membrane translocation of charged species demonstrates the compatibility of the resulting membrane current with the solubility diffusion model. A local partition coefficient that depends on membrane penetration depth governs spontaneous membrane translocation of both charged and uncharged molecules. It is determined not only by the solubility in an organic phase but also by other factors like cholesterol concentration and intrinsic electric membrane potentials.
Collapse
Affiliation(s)
- Christof Hannesschlaeger
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Andreas Horner
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Peter Pohl
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| |
Collapse
|
77
|
Rodriguez RA, Liang H, Chen LY, Plascencia-Villa G, Perry G. Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:768-775. [PMID: 30659792 PMCID: PMC6382548 DOI: 10.1016/j.bbamem.2019.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 11/23/2022]
Abstract
For its fundamental relevance, transport of water and glycerol across the erythrocyte membrane has long been investigated before and after the discovery of aquaporins (AQPs), the membrane proteins responsible for water and glycerol transport. AQP1 is abundantly expressed in the human erythrocyte for maintaining its hydrohomeostasis where AQP3 is also expressed (at a level ~30-folds lower than AQP1) facilitating glycerol transport. This research is focused on two of the remaining questions: How permeable is AQP3 to water? What is the glycerol-AQP3 affinity under near-physiological conditions? Through atomistic modelling and large-scale simulations, we found that AQP3 is two to three times more permeable to water than AQP1 and that the glycerol-AQP3 affinity is approximately 500/M. Using these computed values along with the data from the latest literature on AQP1 and on erythrocyte proteomics, we estimated the water and glycerol transport rates across the membrane of an entire erythrocyte. We used these rates to predict the time courses of erythrocyte swelling-shrinking in response to inward and outward osmotic gradients. Experimentally, we monitored the time course of human erythrocytes when subject to an osmotic or glycerol gradient with light scattering in a stopped-flow spectrometer. We observed close agreement between the experimentally measured and the computationally predicted time courses of erythrocytes, which corroborated our computational conclusions on the AQP3 water-permeability and the glycerol-AQP3 affinity.
Collapse
Affiliation(s)
- Roberto A Rodriguez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Huiyun Liang
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Liao Y Chen
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America.
| | - Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| |
Collapse
|
78
|
Song W, Tu YM, Oh H, Samineni L, Kumar M. Hierarchical Optimization of High-Performance Biomimetic and Bioinspired Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:589-607. [PMID: 30577695 DOI: 10.1021/acs.langmuir.8b03655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomimetic and bioinspired membranes have emerged as an innovative platform for water purification and aqueous separations. They are inspired by the exceptional water permeability (∼109 water molecules per second per channel) and perfect selectivity of biological water channels, aquaporins. However, only few successes have been reported for channel-based membrane fabrication due to inherent challenges of realizing coherence between channel design at the angstrom level and development of scalable membranes that maintain these molecular properties at practice-relevant scales. In this article, we feature recent progress toward practical biomimetic membranes, with the review organized along a hierarchical structural perspective that biomimetic membranes commonly share. These structures range from unitary pore shapes and tubular hydrophobic channel geometries to self-assembled bilayer structures and finally to macroscale membranes covering a size range from the angstrom, to the micrometer scale, and finally to the centimeter and larger scales. To maximize the advantage of water channel implementation into membranes, each feature needs to be optimized in an appropriate manner that provides a path to successful scale-up to achieve high performance in practical biomimetic and bioinspired membranes.
Collapse
|
79
|
Pokhrel R, Bhattarai N, Baral P, Gerstman BS, Park JH, Handfield M, Chapagain PP. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140. Phys Chem Chem Phys 2019; 21:12530-12539. [DOI: 10.1039/c9cp01558b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The emergence of antibiotic-resistance is a major concern to global human health and identification of novel antibiotics is critical to mitigate the threat.
Collapse
Affiliation(s)
| | - Nisha Bhattarai
- Department of Physics
- Florida International University
- Miami
- USA
| | - Prabin Baral
- Department of Physics
- Florida International University
- Miami
- USA
| | - Bernard S. Gerstman
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| | | | | | - Prem P. Chapagain
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
80
|
Barboiu M, Kumar M, Baaden M, Gale PA, Hinds BJ. Highlights from the Faraday Discussion on Artificial Water Channels, Glasgow, UK. Chem Commun (Camb) 2019; 55:3853-3858. [DOI: 10.1039/c9cc90112d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Faraday Discussion on Artificial Water Channels was the first of its kind organized on a recently conceived field and was held from 25–27 June 2018 at the Technology & Innovation Centre at the University of Strathclyde.
Collapse
Affiliation(s)
- Mihail Barboiu
- Institut Europeen des Membranes
- Adaptive Supramolecular Nanosystems Group University of Montpellier
- ENSCM-CNRS
- Montpellier
- France
| | - Manish Kumar
- Department of Chemical Engineering
- Pennsylvania State University
- University Park
- USA
| | - Marc Baaden
- Laboratoire de Biochimie Théorique
- CNRS – UPR9080
- Institut de Biologie Physico-Chimique
- F-75005 Paris
- France
| | - Philip A. Gale
- School of Chemistry (F11)
- The University of Sydney
- Australia
| | - Bruce J. Hinds
- Department of Material Science and Engineering
- University of Washington
- Seattle
- USA
| |
Collapse
|
81
|
Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem Soc Rev 2019; 48:3102-3144. [PMID: 31114820 DOI: 10.1039/c8cs00420j] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the archetype of entropic forces, both trivial in its fundamental expression - the van 't Hoff perfect gas law - and highly subtle in its physical roots. While osmosis is intimately linked with transport across membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-osmosis and -phoresis, whose consequences are presently actively explored for example for the manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary perspective. Pushing the fundamental understanding of osmosis allows one to propose new perspectives for different fields and we highlight a number of examples along these lines, for example introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and applications where osmosis shows great promises: osmotic phenomena in membrane science (with recent developments in separation, desalination, reverse osmosis for water purification thanks in particular to the emergence of new nanomaterials); applications in biology and health (in particular discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil recovery in porous media.
Collapse
Affiliation(s)
- Sophie Marbach
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
82
|
Ozu M, Galizia L, Acuña C, Amodeo G. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells 2018; 7:E209. [PMID: 30423856 PMCID: PMC6262540 DOI: 10.3390/cells7110209] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) function as tetrameric structures in which each monomer has its own permeable pathway. The combination of structural biology, molecular dynamics simulations, and experimental approaches has contributed to improve our knowledge of how protein conformational changes can challenge its transport capacity, rapidly altering the membrane permeability. This review is focused on evidence that highlights the functional relationship between the monomers and the tetramer. In this sense, we address AQP permeation capacity as well as regulatory mechanisms that affect the monomer, the tetramer, or tetramers combined in complex structures. We therefore explore: (i) water permeation and recent evidence on ion permeation, including the permeation pathway controversy-each monomer versus the central pore of the tetramer-and (ii) regulatory mechanisms that cannot be attributed to independent monomers. In particular, we discuss channel gating and AQPs that sense membrane tension. For the latter we propose a possible mechanism that includes the monomer (slight changes of pore shape, the number of possible H-bonds between water molecules and pore-lining residues) and the tetramer (interactions among monomers and a positive cooperative effect).
Collapse
Affiliation(s)
- Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Luciano Galizia
- Instituto de investigaciones Médicas A. Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
| | - Cynthia Acuña
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| |
Collapse
|
83
|
Molecular Basis of Aquaporin-7 Permeability Regulation by pH. Cells 2018; 7:cells7110207. [PMID: 30423801 PMCID: PMC6262577 DOI: 10.3390/cells7110207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023] Open
Abstract
The aquaglyceroporin AQP7, a family member of aquaporin membrane channels, facilitates the permeation of water and glycerol through cell membranes and is crucial for body lipid and energy homeostasis. Regulation of glycerol permeability via AQP7 is considered a promising therapeutic strategy towards fat-related metabolic complications. Here, we used a yeast aqy-null strain for heterologous expression and functional analysis of human AQP7 and investigated its regulation by pH. Using a combination of in vitro and in silico approaches, we found that AQP7 changes from fully permeable to virtually closed at acidic pH, and that Tyr135 and His165 facing the extracellular environment are crucial residues for channel permeability. Moreover, instead of reducing the pore size, the protonation of key residues changes AQP7’s protein surface electrostatic charges, which, in turn, may decrease glycerol’s binding affinity to the pore, resulting in decreased permeability. In addition, since some pH-sensitive residues are located at the monomer-monomer interface, decreased permeability may result from cooperativity between AQP7’s monomers. Considering the importance of glycerol permeation via AQP7 in multiple pathophysiological conditions, this mechanism of hAQP7 pH-regulation may help the design of selective modulators targeting aquaglyceroporin-related disorders.
Collapse
|
84
|
Halsey AM, Conner AC, Bill RM, Logan A, Ahmed Z. Aquaporins and Their Regulation after Spinal Cord Injury. Cells 2018; 7:E174. [PMID: 30340399 PMCID: PMC6210264 DOI: 10.3390/cells7100174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022] Open
Abstract
After injury to the spinal cord, edema contributes to the underlying detrimental pathophysiological outcomes that lead to worsening of function. Several related membrane proteins called aquaporins (AQPs) regulate water movement in fluid transporting tissues including the spinal cord. Within the cord, AQP1, 4 and 9 contribute to spinal cord injury (SCI)-induced edema. AQP1, 4 and 9 are expressed in a variety of cells including astrocytes, neurons, ependymal cells, and endothelial cells. This review discusses some of the recent findings of the involvement of AQP in SCI and highlights the need for further study of these proteins to develop effective therapies to counteract the negative effects of SCI-induced edema.
Collapse
Affiliation(s)
- Andrea M Halsey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
85
|
Abstract
Water at interfaces governs many processes on the molecular scale from electrochemical and enzymatic reactions to protein folding. Here we focus on water transport through proteinaceous pores that are so narrow that the water molecules cannot overtake each other in the pore. After a short introduction into the single-file transport theory, we analyze experiments in which the unitary water permeability, pf, of water channel proteins (aquaporins, AQPs), potassium channels (KcsA), and antibiotics (gramicidin-A derivatives) has been obtained. A short outline of the underlying methods (scanning electrochemical microscopy, fluorescence correlation spectroscopy, measurements of vesicle light scattering) is also provided. We conclude that pf increases exponentially with a decreasing number NH of hydrogen bond donating or accepting residues in the channel wall. The variance in NH is responsible for a more than hundredfold change in pf. The dehydration penalty at the channel mouth has a smaller effect on pf. The intricate link between pf and the Gibbs activation energy barrier, ΔG‡t, for water flow suggests that conformational transitions of water channels act as a third determinant of pf.
Collapse
Affiliation(s)
- Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria.
| | | |
Collapse
|
86
|
Tunuguntla RH, Hu AY, Zhang Y, Noy A. Impact of PEG additives and pore rim functionalization on water transport through sub-1 nm carbon nanotube porins. Faraday Discuss 2018; 209:359-369. [PMID: 29987303 DOI: 10.1039/c8fd00068a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes represent one of the most interesting examples of a nanofluidic channel that combines extremely small diameters with atomically smooth walls and well-defined chemical functionalities at the pore entrance. In the past, sub-1 nm diameter carbon nanotube porins (CNTPs) embedded in a lipid membrane matrix demonstrated extremely high water permeabilities and strong ion selectivities. In this work, we explore additional factors that can influence transport in these channels. Specifically, we use stopped-flow transport measurements to focus on the effect of chemical modifications of the CNT rims and chaotropic polyethyleneglycol (PEG) additives on CNTP water permeability and Arrhenius activation energy barriers for water transport. We show that PEG, especially in its more chaotropic coiled configuration, enhances the water transport and reduces the associated activation energy. Removal of the static charges on the CNTP rim by converting -COOH groups to neutral methylamide groups also reduces the activation energy barriers and enhances water transport rates.
Collapse
Affiliation(s)
- Ramya H Tunuguntla
- Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | |
Collapse
|
87
|
Werber JR, Porter CJ, Elimelech M. A Path to Ultraselectivity: Support Layer Properties To Maximize Performance of Biomimetic Desalination Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10737-10747. [PMID: 30106285 DOI: 10.1021/acs.est.8b03426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reverse osmosis (RO) has become a premier technology for desalination and water purification. The need for increased selectivity has incentivized research into novel membranes, such as biomimetic membranes that incorporate the perfectly selective biological water channel aquaporin or synthetic water channels like carbon nanotubes. In this study, we consider the performance of composite biomimetic membranes by projecting water permeability, salt rejection, and neutral-solute retention based on the permeabilities of the individual components, particularly the water channel, the amphiphilic bilayer matrix, and potential support layers that include polymeric RO, nanofiltration (NF), and porous ultrafiltration membranes. We find that the support layer will be crucial in the overall performance. Selective, relatively low-permeability supports minimize the negative impact of defects in the biomimetic layer, which are currently the main performance-limiting factor for biomimetic membranes. In particular, RO membranes as support layers would enable >99.85% salt rejection at ∼10000-fold greater biomimetic-layer defect area than for porous supports. By fundamentally characterizing neutral-solute permeation through RO and NF membranes, we show that RO membranes as support layers would enable high rejection of organic pollutants based on molecular size, overcoming the rapid permeation of hydrophobic solutes through the biomimetic layer. A biomimetic membrane could also achieve exceptionally high boron rejections of ∼99.7%, even with 1% defect area in the biomimetic layer. We conclude by discussing the implications of our findings for biomimetic membrane design.
Collapse
Affiliation(s)
- Jay R Werber
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Cassandra J Porter
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| |
Collapse
|
88
|
Chowdhury R, Ren T, Shankla M, Decker K, Grisewood M, Prabhakar J, Baker C, Golbeck JH, Aksimentiev A, Kumar M, Maranas CD. PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nat Commun 2018; 9:3661. [PMID: 30202038 PMCID: PMC6131167 DOI: 10.1038/s41467-018-06097-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022] Open
Abstract
Monodispersed angstrom-size pores embedded in a suitable matrix are promising for highly selective membrane-based separations. They can provide substantial energy savings in water treatment and small molecule bioseparations. Such pores present as membrane proteins (chiefly aquaporin-based) are commonplace in biological membranes but difficult to implement in synthetic industrial membranes and have modest selectivity without tunable selectivity. Here we present PoreDesigner, a design workflow to redesign the robust beta-barrel Outer Membrane Protein F as a scaffold to access three specific pore designs that exclude solutes larger than sucrose (>360 Da), glucose (>180 Da), and salt (>58 Da) respectively. PoreDesigner also enables us to design any specified pore size (spanning 3-10 Å), engineer its pore profile, and chemistry. These redesigned pores may be ideal for conducting sub-nm aqueous separations with permeabilities exceeding those of classical biological water channels, aquaporins, by more than an order of magnitude at over 10 billion water molecules per channel per second.
Collapse
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tingwei Ren
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Manish Shankla
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karl Decker
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew Grisewood
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jeevan Prabhakar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carol Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
89
|
Liu X, Shu L, Jin S. Model of osmosis in a single-file pore. Phys Rev E 2018; 98:022406. [PMID: 30253501 DOI: 10.1103/physreve.98.022406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Single-file transport of water and other small molecules through narrow pores in osmosis has drawn considerable attention in recent years due to its extensive application in biology and industry. In this work, we propose a discrete model to describe nonideal osmosis through single-file pores. Every site is assumed to be occupied by a molecule according to experiments and simulations. Hence, a dense chain can always be found, and collective hopping is the only movement method enabling the molecular chain to move. The roles of solute in osmosis are clarified in this model. Those molecules reflected at the pore entrance produce osmotic pressure, and those inside the pore contribute to the flow resistance of the molecular chain. The solute molecules that can enter the pore but cannot penetrate it may significantly reduce the osmotic flux, although they are all rejected by the pore. This conclusion can help to clarify the emerging debate about whether the reflection coefficient of the fully rejected solute can be less than 1. The design of highly efficient membrane pores may also benefit from this study.
Collapse
Affiliation(s)
- Xiaokang Liu
- School of Energy and Power Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan, China
| | - Liangsuo Shu
- School of Energy and Power Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan, China
| | - Shiping Jin
- School of Energy and Power Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan, China
| |
Collapse
|
90
|
Biomimetic Membranes as a Technology Platform: Challenges and Opportunities. MEMBRANES 2018; 8:membranes8030044. [PMID: 30018213 PMCID: PMC6161077 DOI: 10.3390/membranes8030044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Biomimetic membranes are attracting increased attention due to the huge potential of using biological functional components and processes as an inspirational basis for technology development. Indeed, this has led to several new membrane designs and applications. However, there are still a number of issues which need attention. Here, I will discuss three examples of biomimetic membrane developments within the areas of water treatment, energy conversion, and biomedicine with a focus on challenges and applicability. While the water treatment area has witnessed some progress in developing biomimetic membranes of which some are now commercially available, other areas are still far from being translated into technology. For energy conversion, there has been much focus on using bacteriorhodopsin proteins, but energy densities have so far not reached sufficient levels to be competitive with state-of-the-art photovoltaic cells. For biomedical (e.g., drug delivery) applications the research focus has been on the mechanism of action, and much less on the delivery 'per se'. Thus, in order for these areas to move forward, we need to address some hard questions: is bacteriorhodopsin really the optimal light harvester to be used in energy conversion? And how do we ensure that biomedical nano-carriers covered with biomimetic membrane material ever reach their target cells/tissue in sufficient quantities? In addition to these area-specific questions the general issue of production cost and scalability must also be treated in order to ensure efficient translation of biomimetic membrane concepts into reality.
Collapse
|
91
|
Hannesschläger C, Barta T, Siligan C, Horner A. Quantification of Water Flux in Vesicular Systems. Sci Rep 2018; 8:8516. [PMID: 29867158 PMCID: PMC5986868 DOI: 10.1038/s41598-018-26946-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023] Open
Abstract
Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities Pf. A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring Pf from scattered light intensities exists, approximations potentially misjudging Pf by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability pf depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.
Collapse
Affiliation(s)
- Christof Hannesschläger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria.
| |
Collapse
|
92
|
Werber JR, Elimelech M. Permselectivity limits of biomimetic desalination membranes. SCIENCE ADVANCES 2018; 4:eaar8266. [PMID: 29963628 PMCID: PMC6025908 DOI: 10.1126/sciadv.aar8266] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/17/2018] [Indexed: 05/12/2023]
Abstract
Water scarcity and inadequate membrane selectivity have spurred interest in biomimetic desalination membranes, in which biological or synthetic water channels are incorporated in an amphiphilic bilayer. As low channel densities (0.1 to 10%) are required for sufficient water permeability, the amphiphilic bilayer matrix will play a critical role in separation performance. We determine selectivity limits for biomimetic membranes by studying the transport behavior of water, neutral solutes, and ions through the bilayers of lipid and block-copolymer vesicles and projecting performance for varying water channel densities. We report that defect-free biomimetic membranes would have water/salt permselectivities ~108-fold greater than current desalination membranes. In contrast, the solubility-based permeability of lipid and block-copolymer bilayers (extending Overton's rule) will result in poor rejection of hydrophobic solutes. Defect-free biomimetic membranes thus offer great potential for seawater desalination and ultrapure water production, but would perform poorly in wastewater reuse. Potential strategies to limit neutral solute permeation are discussed.
Collapse
Affiliation(s)
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
93
|
Tunuguntla RH, Zhang Y, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Response to Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins". Science 2018; 359:359/6383/eaaq1241. [PMID: 29599214 DOI: 10.1126/science.aaq1241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022]
Abstract
Horner and Pohl argue that high water transport rates reported for carbon nanotube porins (CNTPs) originate from leakage at the nanotube-bilayer interface. Our results and new experimental evidence are consistent with transport through the nanotube pores and rule out a defect-mediated transport mechanism. Mechanistic origins of the high Arrhenius factor that we reported for narrow CNTPs at pH 8 require further investigation.
Collapse
Affiliation(s)
- Ramya H Tunuguntla
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yuliang Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Robert Y Henley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.,Physics Department, Northeastern University, Boston, MA 02115, USA
| | - Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.,School of Natural Sciences, University of California, Merced, CA 94343, USA
| | - T Anh Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Meni Wanunu
- Physics Department, Northeastern University, Boston, MA 02115, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. .,School of Natural Sciences, University of California, Merced, CA 94343, USA
| |
Collapse
|
94
|
Horner A, Pohl P. Comment on “Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins”. Science 2018; 359:359/6383/eaap9173. [DOI: 10.1126/science.aap9173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
| | - Peter Pohl
- Johannes Kepler University, 4020 Linz, Austria
| |
Collapse
|
95
|
Lindahl V, Gourdon P, Andersson M, Hess B. Permeability and ammonia selectivity in aquaporin TIP2;1: linking structure to function. Sci Rep 2018; 8:2995. [PMID: 29445244 PMCID: PMC5813003 DOI: 10.1038/s41598-018-21357-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/02/2018] [Indexed: 01/16/2023] Open
Abstract
Aquaporin TIP2;1 is a protein channel permeable to both water and ammonia. The structural origin of ammonia selectivity remains obscure, but experiments have revealed that a double mutation renders it impermeable to ammonia without affecting water permeability. Here, we aim to reproduce and explain these observations by performing an extensive mutational study using microsecond long molecular dynamics simulations, applying the two popular force fields CHARMM36 and Amber ff99SB-ILDN. We calculate permeabilities and free energies along the channel axis for ammonia and water. For one force field, the permeability of the double mutant decreases by a factor of 2.5 for water and 4 for ammonia, increasing water selectivity by a factor of 1.6. We attribute this effect to decreased entropy of water in the pore, due to the observed increase in pore-water interactions and narrower pore. Additionally, we observe spontaneous opening and closing of the pore on the cytosolic side, which suggests a gating mechanism for the pore. Our results show that sampling methods and simulation times are sufficient to delineate even subtle effects of mutations on structure and function and to capture important long-timescale events, but also underline the importance of improving models further.
Collapse
Affiliation(s)
- Viveca Lindahl
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Magnus Andersson
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Berk Hess
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
96
|
Horner A, Siligan C, Cornean A, Pohl P. Positively charged residues at the channel mouth boost single-file water flow. Faraday Discuss 2018; 209:55-65. [PMID: 29972179 PMCID: PMC6161257 DOI: 10.1039/c8fd00050f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Positively charged residues in the vicinity of the channel entrance or exit accelerate single-file water flow.
Water molecules lose two of their four bulk neighbours when entering single-file channels. This process may be sensitive to the presence of positive and negative charges at the channel mouth, since the costs for dehydrating cations and anions differ by a large margin. However, it is not known whether entrance charges affect the single channel water permeability (pf). So far, pf is only known to be governed by H-bond formation between permeating water molecules and wall-lining residues. Here we compare the pf values of five different aquaporin species (AQP1, AQPZ, AQP4 wild type, and two phosphorylation mimicking AQP4 mutants) that offer the same number of hydrogen bond donating and receiving residues in their single-file region but display different entrance charges. The pf measurements were performed with reconstituted lipid vesicles. We assessed (i) the osmotically induced vesicle deflation from the light scattering intensity in a stopped-flow device and (ii) the aquaporin abundance by fluorescence correlation spectroscopy. Substitution of serine at positions 111 and 180 in AQP4 for aspartic acid showed only a marginal effect on pf, suggesting that negative entrance charges are of minor importance. In contrast, the total number of positively charged amino acid side chains at entrances and exits correlates with pf: a total of three, four and seven charges of AQP4, AQPZ, and AQP1 translate into pf values of 1.1, 1.8, and 3.2 × 10–13 cm3 s–1, respectively. Thus, positive interfacial charges boost the pf value of AQP1 to three times the value of AQP4. Nevertheless, the number of hydrogen bond donating and receiving residues in the single-file region remains the major determinant of pf. Their effect on pf may be a hundredfold larger than that of interfacial charges.
Collapse
Affiliation(s)
- Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria.
| | | | | | | |
Collapse
|
97
|
Hegemann D, Hocquard N, Heuberger M. Nanoconfined water can orient and cause long-range dipolar interactions with biomolecules. Sci Rep 2017; 7:17852. [PMID: 29259309 PMCID: PMC5736754 DOI: 10.1038/s41598-017-18258-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Surface properties are generally determined by the top most surface layer also defining how molecules adsorb onto it. By exploring effects due to interactions with deeper subsurface layers, however, long-range interaction forces were found to also significantly contribute to molecular adsorption, in which hydration of the subsurface region is the key factor. Water molecules confined to a subsurface amphiphilic gradient are confirmed to cause these long-range dipolar interactions by preferential orientation, thus significantly changing the way how a protein interacts with the surface. These findings imply future exploitation of an additional factor to modulate adsorption processes.
Collapse
Affiliation(s)
- Dirk Hegemann
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Fibers, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| | - Nicolas Hocquard
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Fibers, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Manfred Heuberger
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Fibers, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|
98
|
Tan Y, Gladrow J, Keyser UF, Dagdug L, Pagliara S. Particle transport across a channel via an oscillating potential. Phys Rev E 2017; 96:052401. [PMID: 29347788 DOI: 10.1103/physreve.96.052401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Membrane protein transporters alternate their substrate-binding sites between the extracellular and cytosolic side of the membrane according to the alternating access mechanism. Inspired by this intriguing mechanism devised by nature, we study particle transport through a channel coupled with an energy well that oscillates its position between the two entrances of the channel. We optimize particle transport across the channel by adjusting the oscillation frequency. At the optimal oscillation frequency, the translocation rate through the channel is a hundred times higher with respect to free diffusion across the channel. Our findings reveal the effect of time-dependent potentials on particle transport across a channel and will be relevant for membrane transport and microfluidics application.
Collapse
Affiliation(s)
- Yizhou Tan
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jannes Gladrow
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Leonardo Dagdug
- Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom and Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
99
|
Tunuguntla RH, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017; 357:792-796. [DOI: 10.1126/science.aan2438] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
|
100
|
Tong J, Wu Z, Briggs MM, Schulten K, McIntosh TJ. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness. Biophys J 2017; 111:90-9. [PMID: 27410737 DOI: 10.1016/j.bpj.2016.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Zhe Wu
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Margaret M Briggs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Klaus Schulten
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois.
| | - Thomas J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|