51
|
Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 2019; 8. [PMID: 31069060 PMCID: PMC6489989 DOI: 10.12688/f1000research.18411.1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Airway neutrophilia is a common feature of many chronic inflammatory lung diseases and is associated with disease progression, often regardless of the initiating cause. Neutrophils and their products are thought to be key mediators of the inflammatory changes in the airways of patients with chronic obstructive pulmonary disease (COPD) and have been shown to cause many of the pathological features associated with disease, including emphysema and mucus hypersecretion. Patients with COPD also have high rates of bacterial colonisation and recurrent infective exacerbations, suggesting that neutrophil host defence mechanisms are impaired, a concept supported by studies showing alterations to neutrophil migration, degranulation and reactive oxygen species production in cells isolated from patients with COPD. Although the role of neutrophils is best described in COPD, many of the pathological features of this disease are not unique to COPD and also feature in other chronic inflammatory airway diseases, including asthma, cystic fibrosis, alpha-1 anti-trypsin deficiency, and bronchiectasis. There is increasing evidence for immune cell dysfunction contributing to inflammation in many of these diseases, focusing interest on the neutrophil as a key driver of pulmonary inflammation and a potential therapeutic target than spans diseases. This review discusses the evidence for neutrophilic involvement in COPD and also considers their roles in alpha-1 anti-trypsin deficiency, bronchiectasis, asthma, and cystic fibrosis. We provide an in-depth assessment of the role of the neutrophil in each of these conditions, exploring recent advances in understanding, and finally discussing the possibility of common mechanisms across diseases.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - William J McIver
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Georgia M Walton
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
52
|
Tietze S, Kräter M, Jacobi A, Taubenberger A, Herbig M, Wehner R, Schmitz M, Otto O, List C, Kaya B, Wobus M, Bornhäuser M, Guck J. Spheroid Culture of Mesenchymal Stromal Cells Results in Morphorheological Properties Appropriate for Improved Microcirculation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802104. [PMID: 31016116 PMCID: PMC6469243 DOI: 10.1002/advs.201802104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Indexed: 05/10/2023]
Abstract
Human bone marrow mesenchymal stromal cells (MSCs) are used in clinical trials for the treatment of systemic inflammatory diseases due to their regenerative and immunomodulatory properties. However, intravenous administration of MSCs is hampered by cell trapping within the pulmonary capillary networks. Here, it is hypothesized that traditional 2D plastic-adherent cell expansion fails to result in appropriate morphorheological properties required for successful cell circulation. To address this issue, a method to culture MSCs in nonadherent 3D spheroids (mesenspheres) is adapted. The biological properties of mesensphere-cultured MSCs remain identical to conventional 2D cultures. However, morphorheological analyses reveal a smaller size and lower stiffness of mesensphere-derived MSCs compared to plastic-adherent MSCs, measured using real-time deformability cytometry and atomic force microscopy. These properties result in an increased ability to pass through microconstrictions in an ex vivo microcirculation assay. This ability is confirmed in vivo by comparison of cell accumulation in various organ capillary networks after intravenous injection of both types of MSCs in mouse. The findings generally identify cellular morphorheological properties as attractive targets for improving microcirculation and specifically suggest mesensphere culture as a promising approach for optimized MSC-based therapies.
Collapse
Affiliation(s)
- Stefanie Tietze
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Martin Kräter
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
- Max Planck Institute for the Science of Light & Max‐Planck‐Zentrum für Physik und MedizinStaudtstraße 291058ErlangenGermany
| | - Angela Jacobi
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Anna Taubenberger
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Maik Herbig
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Rebekka Wehner
- Institute of ImmunologyMedical Faculty Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Marc Schmitz
- Institute of ImmunologyMedical Faculty Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Oliver Otto
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Catrin List
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Berna Kaya
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Manja Wobus
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Martin Bornhäuser
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Jochen Guck
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
- Max Planck Institute for the Science of Light & Max‐Planck‐Zentrum für Physik und MedizinStaudtstraße 291058ErlangenGermany
| |
Collapse
|
53
|
Yang D, Zhou Y, Zhou Y, Han J, Ai Y. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes. Biosens Bioelectron 2019; 133:16-23. [PMID: 30903937 DOI: 10.1016/j.bios.2019.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Precise measurement of mechanical and electrical properties of single cells can yield useful information on the physiological and pathological state of cells. In this work, we develop a differential multiconstriction microfluidic device with self-aligned 3D electrodes to simultaneously characterize the deformability, electrical impedance and relaxation index of single cells at a high throughput manner (>430 cell/min). Cells are pressure-driven to flow through a series of sequential microfluidic constrictions, during which deformability, electrical impedance and relaxation index of single cells are extracted simultaneously from impedance spectroscopy measurements. Mechanical and electrical phenotyping of untreated, Cytochalasin B treated and N-Ethylmaleimide treated MCF-7 breast cancer cells demonstrate the ability of our system to distinguish different cell populations purely based on these biophysical properties. In addition, we quantify the classification of different cell types using a back propagation neural network. The trained neural network yields the classification accuracy of 87.8% (electrical impedance), 70.1% (deformability), 42.7% (relaxation index) and 93.3% (combination of electrical impedance, deformability and relaxation index) with high sensitivity (93.3%) and specificity (93.3%) for the test group. Furthermore, we have demonstrated the cell classification of a cell mixture using the presented biophysical phenotyping technique with the trained neural network, which is in quantitative agreement with the flow cytometric analysis using fluorescent labels. The developed concurrent electrical and mechanical phenotyping provide great potential for high-throughput and label-free single cell analysis.
Collapse
Affiliation(s)
- Dahou Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ying Zhou
- BioSystems and Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
| | - Yinning Zhou
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Jongyoon Han
- BioSystems and Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; Department of Electrical Engineering and Computer Science, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
54
|
Kim TH, Ly C, Christodoulides A, Nowell CJ, Gunning PW, Sloan EK, Rowat AC. Stress hormone signaling through β-adrenergic receptors regulates macrophage mechanotype and function. FASEB J 2019; 33:3997-4006. [PMID: 30509116 PMCID: PMC6404566 DOI: 10.1096/fj.201801429rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Critical functions of immune cells require them to rapidly change their shape and generate forces in response to cues from their surrounding environment. However, little is known about how soluble factors that may be present in the microenvironment modulate key aspects of cellular mechanobiology-such as immune cell deformability and force generation-to impact functions such as phagocytosis and migration. Here we show that signaling by soluble stress hormones through β-adrenoceptors (β-AR) reduces the deformability of macrophages; this is dependent on changes in the organization of the actin cytoskeleton and is associated with functional changes in phagocytosis and migration. Pharmacologic interventions reveal that the impact of β-AR signaling on macrophage deformability is dependent on actin-related proteins 2/3, indicating that stress hormone signaling through β-AR shifts actin organization to favor branched structures rather than linear unbranched actin filaments. These findings show that through remodeling of the actin cytoskeleton, β-AR-mediated stress hormone signaling modulates macrophage mechanotype to impact functions that play a critical role in immune response.-Kim, T.-H., Ly, C., Christodoulides, A., Nowell, C. J., Gunning, P. W., Sloan, E. K., Rowat, A. C. Stress hormone signaling through β-adrenergic receptors regulates macrophage mechanotype and function.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Alexei Christodoulides
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Cameron J. Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter W. Gunning
- School of Medical Sciences, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Erica K. Sloan
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
- UCLA AIDS Institute, University of California, Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
55
|
Radley G, Ali S, Pieper IL, Thornton CA. Mechanical shear stress and leukocyte phenotype and function: Implications for ventricular assist device development and use. Int J Artif Organs 2018; 42:133-142. [PMID: 30585115 DOI: 10.1177/0391398818817326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heart failure remains a disease of ever increasing prevalence in the modern world. Patients with end-stage heart failure are being referred increasingly for mechanical circulatory support. Mechanical circulatory support can assist patients who are ineligible for transplant and stabilise eligible patients prior to transplantation. It is also used during cardiopulmonary bypass surgery to maintain circulation while operating on the heart. While mechanical circulatory support can stabilise heart failure and improve quality of life, complications such as infection and thrombosis remain a common risk. Leukocytes can contribute to both of these complications. Contact with foreign surfaces and the introduction of artificial mechanical shear stress can lead to the activation of leukocytes, reduced functionality and the release of pro-inflammatory and pro-thrombogenic microparticles. Assessing the impact of mechanical trauma to leukocytes is largely overlooked in comparison to red blood cells and platelets. This review provides an overview of the available literature on the effects of mechanical circulatory support systems on leukocyte phenotype and function. One purpose of this review is to emphasise the importance of studying mechanical trauma to leukocytes to better understand the occurrence of adverse events during mechanical circulatory support.
Collapse
Affiliation(s)
- Gemma Radley
- Swansea University Medical School, Swansea, UK
- Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Sabrina Ali
- Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Ina Laura Pieper
- Swansea University Medical School, Swansea, UK
- Scandinavian Real Heart AB, Västerås, Sweden
| | | |
Collapse
|
56
|
Radley G, Pieper IL, Ali S, Bhatti F, Thornton CA. The Inflammatory Response to Ventricular Assist Devices. Front Immunol 2018; 9:2651. [PMID: 30498496 PMCID: PMC6249332 DOI: 10.3389/fimmu.2018.02651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
The therapeutic use of ventricular assist devices (VADs) for end-stage heart failure (HF) patients who are ineligible for transplant has increased steadily in the last decade. In parallel, improvements in VAD design have reduced device size, cost, and device-related complications. These complications include infection and thrombosis which share underpinning contribution from the inflammatory response and remain common risks from VAD implantation. An added and underappreciated difficulty in designing a VAD that supports heart function and aids the repair of damaged myocardium is that different types of HF are accompanied by different inflammatory profiles that can affect the response to the implanted device. Circulating inflammatory markers and changes in leukocyte phenotypes receive much attention as biomarkers for mortality and disease progression. However, they are seldom used to monitor progress during and outcomes from VAD therapy or during the design phase for new devices. Even the partial reversal of heart damage associated with heart failure is a desirable outcome from VAD use. Therefore, improved understanding of the interplay between VADs and the recipient's inflammatory response would potentially increase their uptake, improve patient lives, and fuel research related to other blood-contacting medical devices. Here we provide a review of what is currently known about inflammation in heart failure and how this inflammatory profile is altered in heart failure patients receiving VAD therapy.
Collapse
Affiliation(s)
- Gemma Radley
- Swansea University Medical School, Swansea, United Kingdom.,Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, United Kingdom
| | - Ina Laura Pieper
- Swansea University Medical School, Swansea, United Kingdom.,Scandinavian Real Heart AB, Västerås, Sweden
| | - Sabrina Ali
- Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, United Kingdom
| | - Farah Bhatti
- Department of Cardiology, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, United Kingdom
| | | |
Collapse
|
57
|
Vogt KL, Summers C, Chilvers ER, Condliffe AM. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur J Clin Invest 2018; 48 Suppl 2:e12967. [PMID: 29896919 DOI: 10.1111/eci.12967] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
The activation status of neutrophils can cycle from basal through primed to fully activated ("green-amber-red"), and at least in vitro, primed cells can spontaneously revert to a near basal phenotype. This broad range of neutrophil responsiveness confers extensive functional flexibility, allowing neutrophils to respond rapidly and appropriately to varied and evolving threats throughout the body. Primed and activated cells display dramatically enhanced bactericidal capacity (including augmented respiratory burst activity, degranulation and longevity), but this enhancement also confers the capacity for significant unintended tissue injury. Neutrophil priming and its consequences have been associated with adverse outcomes in a range of disease states, hence understanding the signalling processes that regulate the transition between basal and primed states (and back again) may offer new opportunities for therapeutic intervention in pathological settings. A wide array of host- and pathogen-derived molecules is able to modulate the functional status of these versatile cells. Reflecting this extensive repertoire of potential mediators, priming can be established by a range of signalling pathways (including mitogen-activated protein kinases, phosphoinositide 3-kinases, phospholipase D and calcium transients) and intracellular processes (including endocytosis, vesicle trafficking and the engagement of adhesion molecules). The signalling pathways engaged, and the exact cellular phenotype that results, vary according to the priming agent(s) to which the neutrophil is exposed and the precise environmental context. Herein we describe the signals that establish priming (in particular for enhanced respiratory burst, degranulation and prolonged lifespan) and describe the recently recognised process of de-priming, correlating in vitro observations with in vivo significance.
Collapse
Affiliation(s)
- Katja L Vogt
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| | | | | | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
58
|
Kräter M, Sapudom J, Bilz NC, Pompe T, Guck J, Claus C. Alterations in Cell Mechanics by Actin Cytoskeletal Changes Correlate with Strain-Specific Rubella Virus Phenotypes for Cell Migration and Induction of Apoptosis. Cells 2018; 7:E136. [PMID: 30217036 PMCID: PMC6162683 DOI: 10.3390/cells7090136] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
The cellular cytoskeleton is central for key cellular functions, and as such is a marker for diseased and infected cell states. Here we analyzed infection with rubella virus (RV) strains with respect to phenotypes in cellular mechanical properties, cell movement, and viral cytopathogenicity. Real-time deformability cytometry (RT-DC), as a high-throughput platform for the assessment of cell mechanics, revealed a correlation of an increase in cortical filamentous-actin (F-actin) with a higher cellular stiffness. The additional reduction of stress fibers noted for only some RV strains as the most severe actin rearrangement lowered cell stiffness. Furthermore, a reduced collective and single cell migration speed in a wound healing assay was detected in addition to severe changes in cell morphology. The latter was followed by activation of caspase 3/7 as a sign for induction of apoptosis. Our study emphasizes RT-DC technology as a sensitive means to characterize viral cell populations and to implicate alterations of cell mechanical properties with cell functions. These interdependent events are not only promising options to elucidate viral spread and to understand viral pathologies within the infected host. They also contribute to any diseased cell state, as exemplified by RV as a representative agent for cytoskeletal alterations involved in a cytopathological outcome.
Collapse
Affiliation(s)
- Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Jiranuwat Sapudom
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
- Department of Dermatology, Venerology and Allergology, University Clinic of Leipzig, 04103 Leipzig, Germany.
| | | | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Claudia Claus
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
59
|
Affiliation(s)
- Sonja M. Weiz
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
- Material Systems for Nanoelectronics; Chemnitz University of Technology; Reichenhainer Straße 70 09107 Chemnitz Germany
| |
Collapse
|
60
|
Ciciliano JC, Abbaspour R, Woodall J, Wu C, Bakir MS, Lam WA. Probing blood cell mechanics of hematologic processes at the single micron level. LAB ON A CHIP 2017; 17:3804-3816. [PMID: 29052682 DOI: 10.1039/c7lc00720e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood cells circulate in a dynamic fluidic environment, and during hematologic processes such as hemostasis, thrombosis, and inflammation, blood cells interact biophysically with a myriad of vascular matrices-blood clots and the subendothelial matrix. While it is known that adherent cells physiologically respond to the mechanical properties of their underlying matrices, how blood cells interact with their mechanical microenvironment of vascular matrices remains poorly understood. To that end, we developed microfluidic systems that achieve high fidelity, high resolution, single-micron PDMS features that mimic the physical geometries of vascular matrices. With these electron beam lithography (EBL)-based microsystems, the physical interactions of individual blood cells with the mechanical properties of the matrices can be directly visualized. We observe that the physical presence of the matrix, in and of itself, mediates hematologic processes of the three major blood cell types: platelets, erythrocytes, and leukocytes. First, we find that the physical presence of single micron micropillars creates a shear microgradient that is sufficient to cause rapid, localized platelet adhesion and aggregation that leads to complete microchannel occlusion; this response is enhanced with the presence of fibrinogen or collagen on the micropillar surface. Second, we begin to describe the heretofore unknown biophysical parameters for the formation of schistocytes, pathologic erythrocyte fragments associated with various thrombotic microangiopathies (poorly understood, yet life-threatening blood disorders associated with microvascular thrombosis). Finally, we observe that the physical interactions with a vascular matrix is sufficient to cause neutrophils to form procoagulant neutrophil extracellular trap (NET)-like structures. By combining electron beam lithography (EBL), photolithography, and soft lithography, we thus create microfluidic devices that provide novel insight into the response of blood cells to the mechanical microenvironment of vascular matrices and have promise as research-enabling and diagnostic platforms.
Collapse
Affiliation(s)
- Jordan C Ciciliano
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|