51
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
52
|
McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 2016; 353:aaf7907. [PMID: 27229144 DOI: 10.1126/science.aaf7907] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
Multicellular systems develop from single cells through distinct lineages. However, current lineage-tracing approaches scale poorly to whole, complex organisms. Here, we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 target sites, marks cells and enables the elucidation of lineage relationships via the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable and that thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of thousands of cells from individual zebrafish, we find that most cells in adult organs derive from relatively few embryonic progenitors. In future analyses, genome editing of synthetic target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell lineage in multicellular systems for normal development and disease.
Collapse
Affiliation(s)
- Aaron McKenna
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gregory M Findlay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Marshall S Horwitz
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. Department of Pathology, University of Washington, Seattle, WA, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. Center for Brain Science, Harvard University, Cambridge, MA, USA. The Broad Institute of Harvard and MIT, Cambridge, MA, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
53
|
Evangelista M, Baroudi ME, Rizzo M, Tuccoli A, Poliseno L, Pellegrini M, Rainaldi G. Alkaline Phosphatase-Positive Immortal Mouse Embryo Fibroblasts Are Cells in a Transitional Reprogramming State Induced to Face Environmental Stresses. GENETICS & EPIGENETICS 2016; 7:33-41. [PMID: 26740745 PMCID: PMC4694620 DOI: 10.4137/geg.s27696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP+) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP+ I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP+ and AP− I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP+ I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP+ I-MEFs. Together with sestrin 1 upregulation, we found that AP+ I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP+ I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP+ phenotype and achieve a quiescent state characterized by a new transcriptional network.
Collapse
Affiliation(s)
| | | | - Milena Rizzo
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.; Tuscan Tumor Institute (ITT), Firenze, Italy
| | - Andrea Tuccoli
- Oncogenomics Unit, Core Research Laboratory (CRL), Tuscan Tumor Institute (ITT), Pisa, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.; Oncogenomics Unit, Core Research Laboratory (CRL), Tuscan Tumor Institute (ITT), Pisa, Italy
| | - Marco Pellegrini
- Laboratory of Integrative Systems Medicine (LISM), CNR, Pisa, Italy
| | - Giuseppe Rainaldi
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.; Tuscan Tumor Institute (ITT), Firenze, Italy
| |
Collapse
|
54
|
Baiting for Cancer: Using the Zebrafish as a Model in Liver and Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:391-410. [DOI: 10.1007/978-3-319-30654-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 2015; 88:275-289. [PMID: 26130508 PMCID: PMC4698826 DOI: 10.1016/j.freeradbiomed.2015.06.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
| | - Alicia R Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
56
|
Vargas RA, Sarmiento K, Vásquez IC. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies. Zebrafish 2015. [DOI: 10.1089/zeb.2015.1102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rafael Antonio Vargas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karen Sarmiento
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Isabel Cristina Vásquez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
57
|
Kang BJ, Park J, Kim J, Kim HH, Lee C, Hwang JY, Lien CL, Shung KK. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts. J R Soc Interface 2015; 12:rsif.2014.1154. [PMID: 25505135 DOI: 10.1098/rsif.2014.1154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s(-1) with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation.
Collapse
Affiliation(s)
- Bong Jin Kang
- NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinhyoung Park
- NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jieun Kim
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Hyung Ham Kim
- NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Changyang Lee
- NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Ching-Ling Lien
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - K Kirk Shung
- NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
58
|
Abstract
The ability to repair damaged or lost tissues varies significantly among vertebrates. The regenerative ability of the heart is clinically very relevant, because adult teleost fish and amphibians can regenerate heart tissue, but we mammals cannot. Interestingly, heart regeneration is possible in neonatal mice, but this ability is lost within 7 days after birth. In zebrafish and neonatal mice, lost cardiomyocytes are regenerated via proliferation of spared, differentiated cardiomyocytes. While some cardiomyocyte turnover occurs in adult mammals, the cardiomyocyte production rate is too low in response to injury to regenerate the heart. Instead, mammalian hearts respond to injury by remodeling of spared tissue, which includes cardiomyocyte hypertrophy. Wnt/β-catenin signaling plays important roles during vertebrate heart development, and it is re-activated in response to cardiac injury. In this review, we discuss the known functions of this signaling pathway in injured hearts, its involvement in cardiac fibrosis and hypertrophy, and potential therapeutic approaches that might promote cardiac repair after injury by modifying Wnt/β-catenin signaling. Regulation of cardiac remodeling by this signaling pathway appears to vary depending on the injury model and the exact stages that have been studied. Thus, conflicting data have been published regarding a potential role of Wnt/β-catenin pathway in promotion of fibrosis and cardiomyocyte hypertrophy. In addition, the Wnt inhibitory secreted Frizzled-related proteins (sFrps) appear to have Wnt-dependent and Wnt-independent roles in the injured heart. Thus, while the exact functions of Wnt/β-catenin pathway activity in response to injury still need to be elucidated in the non-regenerating mammalian heart, but also in regenerating lower vertebrates, manipulation of the pathway is essential for creation of therapeutically useful cardiomyocytes from stem cells in culture. Hopefully, a detailed understanding of the in vivo role of Wnt/β-catenin signaling in injured mammalian and non-mammalian hearts will also contribute to the success of current efforts towards developing regenerative therapies.
Collapse
Affiliation(s)
- Gunes Ozhan
- Izmir Biomedicine and Genome Center (iBG-izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey ; Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
59
|
Johnson B, Bark D, Van Herck I, Garrity D, Dasi LP. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech Model Mechanobiol 2015; 14:1379-89. [DOI: 10.1007/s10237-015-0681-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/29/2015] [Indexed: 01/29/2023]
|
60
|
Kannan RR, Iniyan AM, Prakash VSG. Isolation of a small molecule with anti-MRSA activity from a mangrove symbiont Streptomyces sp. PVRK-1 and its biomedical studies in Zebrafish embryos. Asian Pac J Trop Biomed 2015; 1:341-7. [PMID: 23569790 DOI: 10.1016/s2221-1691(11)60077-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/21/2011] [Accepted: 05/01/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of the present study was to isolate the anti-MRSA (Methicillin Resistant Staphylococcus aureus) molecule from the Mangrove symbiont Streptomyces and its biomedical studies in Zebrafish embryos. METHODS MRSA was isolated from the pus samples of Colachal hospitals and confirmed by amplification of mecA gene. Anti-MRSA molecule producing strain was identified by 16s rRNA gene sequencing. Anti-MRSA compound production was optimized by Solid State Fermentation (SSF) and the purification of the active molecule was carried out by TLC and RP-HPLC. The inhibitory concentration and LC50 were calculated using Statistical software SPSS. The Biomedical studies including the cardiac assay and organ toxicity assessment were carried out in Zebrafish. RESULTS The bioactive anti-MRSA small molecule A2 was purified by TLC with Rf value of 0.37 with 1.389 retention time at RP-HPLC. The Inhibitory Concentration of the purified molecule A2 was 30 µg/mL but, the inhibitory concentration of the MRSA in the infected embryo was 32-34 µg/mL for TLC purified molecule A2 with LC50 mean value was 61.504 µg/mL. Zebrafish toxicity was assessed in 48-60 µg/mL by observing the physiological deformities and the heart beat rates (HBR) of embryos for anti MRSA molecule showed the mean of 41.33-41.67 HBR/15 seconds for 40 µg/mL and control was 42.33-42.67 for 15 seconds which significantly showed that the anti-MRSA molecule A2 did not affected the HBR. CONCLUSIONS Anti-MRSA molecule from Streptomyces sp PVRK-1 was isolated and biomedical studies in Zebrafish model assessed that the molecule was non toxic at the minimal inhibitory concentration of MRSA.
Collapse
Affiliation(s)
- Rajaretinam Rajesh Kannan
- International Centre for Nanobiotechnology (ICN), Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari Dist-629502, TN, India
| | | | | |
Collapse
|
61
|
Zhang Y, Wang H, Wen D, Zhang J, Zheng F, Jiang N, Ma D. Tissue factor pathway inhibitor-2 is critical in zebrafish cardiogenesis. Biochem Biophys Res Commun 2015; 456:827-33. [DOI: 10.1016/j.bbrc.2014.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 02/05/2023]
|
62
|
The zebrafish/tumor xenograft angiogenesis assay as a tool for screening anti-angiogenic miRNAs. Cytotechnology 2014; 67:969-75. [PMID: 24947063 DOI: 10.1007/s10616-014-9735-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/19/2014] [Indexed: 10/25/2022] Open
Abstract
The zebrafish/tumor xenograft angiogenesis assay is used to approach tumor angiogenesis, a pivotal step in cancer progression and target for anti-tumor therapies. Here, we evaluated whether the assay could allow the identification of microRNAs having an anti-angiogenic potential. For that, we transfected DU-145 prostate cancer cells with four microRNAs (miR-125a, miR-320, miR-487b, miR-492) responsive to both anti- and pro-angiogenic stimuli applied to human umbilical vein endothelial cells. After transfection, DU-145 cells were injected close to the developing subintestinal vessels of transgenic Tg(Kdrl:eGFP)s843 zebrafish embryos that express green fluorescent protein under the control of Kdrl promoter. At 72 h post-fertilization, we observed that green fluorescent protein-positive neo-vessels infiltrated the graft of DU-145 transfected with miR-125a, miR-320, and miR-487b. Vice versa, neo-vessel formation and tumor cell infiltration were inhibited when DU-145 cells transfected with miR-492 were used. These results indicated that the zebrafish/tumor xenograft assay was adequate to identify microRNAs able to suppress the release of angiogenic growth factors by angiogenic tumor cells.
Collapse
|
63
|
Johnson BM, Garrity DM, Dasi LP. Quantifying function in the early embryonic heart. J Biomech Eng 2014; 135:041006. [PMID: 24231901 DOI: 10.1115/1.4023701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/19/2013] [Indexed: 11/08/2022]
Abstract
Congenital heart defects arise during the early stages of development, and studies have linked abnormal blood flow and irregular cardiac function to improper cardiac morphogenesis. The embryonic zebrafish offers superb optical access for live imaging of heart development. Here, we build upon previously used techniques to develop a methodology for quantifying cardiac function in the embryonic zebrafish model. Imaging was performed using bright field microscopy at 1500 frames/s at 0.76 μm/pixel. Heart function was manipulated in a wild-type zebrafish at ∼55 h post fertilization (hpf). Blood velocity and luminal diameter were measured at the atrial inlet and atrioventricular junction (AVJ) by analyzing spatiotemporal plots. Control volume analysis was used to estimate the flow rate waveform, retrograde fractions, stroke volume, and cardiac output. The diameter and flow waveforms at the inlet and AVJ are highly repeatable between heart beats. We have developed a methodology for quantifying overall heart function, which can be applied to early stages of zebrafish development.
Collapse
|
64
|
Abstract
The process of de novo vessel formation, called angiogenesis, is essential for tumor progression and spreading. Targeting of molecular pathways involved in such tumor angiogenetic processes by using specific drugs or inhibitors is important for developing new anticancer therapies. Drug discovery remains to be the main focus for biomedical research and represents the essence of antiangiogenesis cancer research. To pursue these molecular and pharmacological goals, researchers need to use animal models that facilitate the elucidation of tumor angiogenesis mechanisms and the testing of antiangiogenic therapies. The past few years have seen the zebrafish system emerge as a valid model organism to study developmental angiogenesis and, more recently, as an alternative vertebrate model for cancer research. In this review, we will discuss why the zebrafish model system has the advantage of being a vertebrate model equipped with easy and powerful transgenesis as well as imaging tools to investigate not only physiological angiogenesis but also tumor angiogenesis. We will also highlight the potential of zebrafish for identifying antitumor angiogenesis drugs to block tumor development and progression. We foresee the zebrafish model as an important system that can possibly complement well-established mouse models in cancer research to generate novel insights into the molecular mechanism of the tumor angiogenesis.
Collapse
Affiliation(s)
- Massimo M Santoro
- From the Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Katholieke University Leuven, Leuven, Belgium; and Vesalius Research Center, VIB, Leuven, Belgium.
| |
Collapse
|
65
|
Abstract
INTRODUCTION Off-target effects represent one of the major concerns in the development of new pharmaceuticals, requiring large-scale animal toxicity testing. Faster, cheaper and more reliable assays based on zebrafish embryos (ZE) are being developed as major tools for assessing toxicity of chemicals during the drug-discovery process. AREAS COVERED This paper reviews techniques aimed to the analysis of in vivo sublethal toxic effects of drugs on major physiological functions, including the cardiovascular, nervous, neuromuscular, gastrointestinal and thyroid systems among others. Particular emphasis is placed on high-throughput screening techniques (HTS), including robotics, imaging technologies and image-analysis software. EXPERT OPINION The analysis of off-target effects of candidate drugs requires systemic analyses, as they often involve the complete organism rather than specific, tissue- or cell-specific targets. The unique physical and physiological characteristics of ZE make this system an essential tool for drug discovery and toxicity assessment. Different HTS methodologies applicable to ZE allow the screening of large numbers of different chemicals for many diverse and relevant toxic endpoints.
Collapse
Affiliation(s)
- Demetrio Raldúa
- IDAEA-CSIC, Environmental Chemistry , Jordi Girona 18, 08034 Barcelona , Spain +34 93400 6157 ; +34 93204 5904 ;
| | | |
Collapse
|
66
|
Agarwal T, Lalwani MK, Kumar S, Roy S, Chakraborty TK, Sivasubbu S, Maiti S. Morphological Effects of G-Quadruplex Stabilization Using a Small Molecule in Zebrafish. Biochemistry 2014; 53:1117-24. [DOI: 10.1021/bi4009352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tani Agarwal
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Mukesh Kumar Lalwani
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Santosh Kumar
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Saumya Roy
- CSIR-Indian Institute of Chemical
Technology, , Hyderabad 500 007, India
| | - Tushar Kanti Chakraborty
- CSIR-Indian Institute of Chemical
Technology, , Hyderabad 500 007, India
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
- CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
67
|
Opitz R, Antonica F, Costagliola S. New model systems to illuminate thyroid organogenesis. Part I: an update on the zebrafish toolbox. Eur Thyroid J 2013; 2:229-42. [PMID: 24783054 PMCID: PMC3923603 DOI: 10.1159/000357079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/07/2013] [Indexed: 12/16/2022] Open
Abstract
Thyroid dysgenesis (TD) resulting from defects during embryonic thyroid development represents a major cause of congenital hypothyroidism. The pathogenetic mechanisms of TD in human newborns, however, are still poorly understood and disease-causing genetic variants have been identified in only a small percentage of TD cases. This limited understanding of the pathogenesis of TD is partly due to a lack of knowledge on how intrinsic factors and extrinsic signalling cues orchestrate the differentiation of thyroid follicular cells and the morphogenesis of thyroid tissue. Recently, embryonic stem cells and zebrafish embryos emerged as novel model systems that allow for innovative experimental approaches in order to decipher cellular and molecular mechanisms of thyroid development and to unravel pathogenic mechanisms of TD. Zebrafish embryos offer several salient properties for studies on thyroid organogenesis including rapid and external development, optical transparency, ease of breeding, relative short generation time and amenability for genome editing. In this review, we will highlight recent advances in the zebrafish toolkit to visualize cellular dynamics of organ development and discuss specific prospects of the zebrafish model for studies on vertebrate thyroid development and human congenital thyroid diseases.
Collapse
Affiliation(s)
- Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Francesco Antonica
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
68
|
Hisano Y, Ota S, Kawahara A. Genome editing using artificial site-specific nucleases in zebrafish. Dev Growth Differ 2013; 56:26-33. [PMID: 24117409 DOI: 10.1111/dgd.12094] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/13/2013] [Accepted: 09/15/2013] [Indexed: 02/02/2023]
Abstract
Zebrafish is a model vertebrate suitable for genetic analysis. Forward genetic analysis via chemical mutagenesis screening has established a variety of zebrafish mutants that are defective in various types of organogenesis, and the genes responsible for the individual mutants have been identified from genome mapping. On the other hand, reverse genetic analysis via targeted gene disruption using embryonic stem (ES) cells (e.g., knockout mouse) can uncover gene functions by investigating the phenotypic effects. However, this approach is mostly limited to mice among the vertebrate models because of the difficulty in establishing ES cells. Recently, new gene targeting technologies, such as the transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems, have been developed: that can directly introduce genome modifications at the targeted genomic locus. Here, we summarize these new and powerful genome editing techniques for the study of zebrafish.
Collapse
Affiliation(s)
- Yu Hisano
- Laboratory for Cardiovascular Molecular Dynamics, RIKEN Quantitative Biology Center (QBiC), Furuedai 6-2-3, Suita, Osaka, 565-0874, Japan
| | | | | |
Collapse
|
69
|
Gays D, Santoro MM. The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell Mol Life Sci 2013; 70:2489-503. [PMID: 23069988 PMCID: PMC11113687 DOI: 10.1007/s00018-012-1181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Massimo Mattia Santoro
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
70
|
Hsu CC, Pai WY, Lai CY, Lu MW, Her GM. Genetic characterization and in vivo image analysis of novel zebrafish Danio rerio pigment mutants. JOURNAL OF FISH BIOLOGY 2013; 82:1671-1683. [PMID: 23639161 DOI: 10.1111/jfb.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
This study reports the isolation and characterization of a new type of transparent zebrafish Danio rerio mutant called pinky (pk), which has been visually isolated from a spontaneous mutation in a D. rerio colony. The pk larvae possess complex mutations affecting pigmentation because of missing pigment cells or a dramatic reduction in the chromatophore number. The pk displays a totally colourless phenotype and adult body transplant with no other obvious external morphological abnormalities, except for a red retina. The molecular analysis results in several candidate genes, hps1, ap3m2 and rabggta, implicated in the Hermansky-Pudlak syndrome (HPS) genes associated with HPS in pk. To demonstrate its applications of deep-tissue imaging, this study examines green fluorescent protein alone or with other fluorescent proteins to investigate their capability for using multilabelling purposes in live adult pk. In this study, pk is particularly valuable for tissue cell labelling and internal organogenesis studies because of its optical clarity in the adult body.
Collapse
Affiliation(s)
- C C Hsu
- Department of Radiology, Buddhist Tzu Chi General Hospital, Taichung Branch, No. 66, Sec. 1, Fongsing Rd, Tanzih Township, Taichung County 427, Taiwan
| | | | | | | | | |
Collapse
|
71
|
A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS One 2013; 8:e62302. [PMID: 23638029 PMCID: PMC3636224 DOI: 10.1371/journal.pone.0062302] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
A novel defensin antimicrobial peptide gene was identified in Atlantic cod, Gadus morhua. This three exon/two intron defensin gene codes for a peptide precursor consisting of two domains: a signal peptide of 26 amino acids and a mature peptide of 40 residues. The mature cod defensin has six conserved cysteine residues that form 1–5, 2–4 and 3–6 disulphide bridges. This pattern is typical of beta-defensins and this gene was therefore named cod beta-defensin (defb). The tertiary structure of Defb exhibits an α/β fold with one α helix and β1β2β3 sheets. RT-PCR analysis indicated that defb transcripts were present mainly in the swim bladder and peritoneum wall but could also be detected at moderate to low levels in skin, head- and excretory kidneys. In situ hybridisation revealed that defb was specifically expressed by cells located in the swim bladder submucosa and the oocytes. During embryonic development, defb gene transcripts were detectable from the golden eye stage onwards and their expression was restricted to the swim bladder and retina. Defb was differentially expressed in several tissues following antigenic challenge with Vibrio anguillarum, being up-regulated up to 25-fold in head kidney. Recombinant Defb displayed antibacterial activity, with a minimal inhibitory concentration of 0.4–0.8 µM and 25–50 µM against the Gram-(+) bacteria Planococcus citreus and Micrococcus luteus, respectively. In addition, Defb stimulated phagocytic activity of cod head kidney leucocytes invitro. These findings imply that beta-defensins may play an important role in the innate immune response of Atlantic cod.
Collapse
|
72
|
Kannan RR, Vincent SGP. Cynodon dactylon and Sida acuta extracts impact on the function of the cardiovascular system in zebrafish embryos. J Biomed Res 2013; 26:90-7. [PMID: 23554736 PMCID: PMC3597324 DOI: 10.1016/s1674-8301(12)60017-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to screen cardioactive herbs from Western Ghats of India. The heart beat rate (HBR) and blood flow during systole and diastole were tested in zebrafish embryos. We found that Cynodon dactylon (C. dactylon) induced increases in the HBR in zebrafish embryos with a HBR of (3.968±0.344) beats/s, which was significantly higher than that caused by betamethosone [(3.770±0.344) beats/s]. The EC50 value of C. dactylon was 3.738 µg/mL. The methanolic extract of Sida acuta (S. acuta) led to decreases in the HBR in zebrafish embryos [(1.877±0.079) beats/s], which was greater than that caused by nebivolol (positive control). The EC50 value of Sida acuta was 1.195 µg/mL. The untreated embryos had a HBR of (2.685±0.160) beats/s at 3 d post fertilization (dpf). The velocities of blood flow during the cardiac cycle were (2,291.667±72.169) µm/s for the control, (4,250±125.000) µm/s for C. dactylon and (1,083.333±72.169) µm/s for S. acuta. The LC50 values were 32.6 µg/mL for C. dactylon and 20.9 µg/mL for S. acuta. In addition, the extracts exhibited no chemical genetic effects in the drug dosage range tested. In conclusion, we developed an assay that can measure changes in cardiac function in response to herbal small molecules and determine the cardiogenic effects by microvideography.
Collapse
Affiliation(s)
- Rajaretinam Rajesh Kannan
- International Center for Nanobiotechnology (ICN), Center for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari Dist, Tamil Nadu 629502, India
| | | |
Collapse
|
73
|
The Transitional Cardiac Pumping Mechanics in the Embryonic Heart. Cardiovasc Eng Technol 2013; 4:246-255. [PMID: 29637499 DOI: 10.1007/s13239-013-0120-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Several studies have linked abnormal blood flow dynamics to the formation of congenital heart defects during the early stages of development. The objective of this study is to document the transition of pumping mechanics from the early tube stage to the late looping stage of the embryonic heart. The optically transparent zebrafish embryonic heart was utilized as the in vivo model and was studied using standard bright field microscopy at three relevant stages within the transitional period: (1) tube stage at 30 hours post-fertilization (hpf); (2) early cardiac looping stage at 36 hpf; and (3) late cardiac looping stage at 48 hpf. High-speed videos were collected at 1000 fps at a spatial resolution of 1.1 μm/pixel at each of these stages and were post-processed to yield blood velocity patterns as well as wall kinematics. Results show that several relevant trends exist. Morphological trends from tube through late looping include: (a) ballooning of the chambers, (b) increasing constriction at the atrioventricular junction (AVJ), and (c) repositioning of the ventricle toward the side of the atrium. Blood flow trends include: (a) higher blood velocities, (b) increased AVJ regurgitation, and (c) larger percentages of blood from the upper atrium expelled backward toward the atrial inlet. Pumping mechanics trends include: (a) increasing contraction wave delay at the AVJ, (b) the AVJ begins acting as a rudimentary valve, (c) decreasing chamber constriction during maximum contraction, and (d) a transition in ventricular kinematics from a pronounced propagating wave to an independent, full-chamber contraction. The above results provide new insight into the transitional pumping mechanics from peristalsis-like pumping to a displacement pumping mechanism.
Collapse
|
74
|
Zhu JJ, Xu YQ, He JH, Yu HP, Huang CJ, Gao JM, Dong QX, Xuan YX, Li CQ. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J Appl Toxicol 2013; 34:139-48. [PMID: 23307606 DOI: 10.1002/jat.2843] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/11/2022]
Abstract
Cardiovascular toxicity is a major challenge for the pharmaceutical industry and predictive screening models to identify and eliminate pharmaceuticals with the potential to cause cardiovascular toxicity in humans are urgently needed. In this study, taking advantage of the transparency of larval zebrafish, Danio rerio, we assessed cardiovascular toxicity of seven known human cardiotoxic drugs (aspirin, clomipramine hydrochloride, cyclophosphamide, nimodipine, quinidine, terfenadine and verapamil hydrochloride) and two non-cardiovascular toxicity drugs (gentamicin sulphate and tetracycline hydrochloride) in zebrafish using six specific phenotypic endpoints: heart rate, heart rhythm, pericardial edema, circulation, hemorrhage and thrombosis. All the tested drugs were delivered into zebrafish by direct soaking and yolk sac microinjection, respectively, and cardiovascular toxicity was quantitatively or qualitatively assessed at 4 and 24 h post drug treatment. The results showed that aspirin accelerated the zebrafish heart rate (tachycardia), whereas clomipramine hydrochloride, cyclophosphamide, nimodipine, quinidine, terfenadine and verapamil hydrochloride induced bradycardia. Quinidine and terfenadine also caused atrioventricular (AV) block. Nimodipine treatment resulted in atrial arrest with much slower but regular ventricular heart beating. All the tested human cardiotoxic drugs also induced pericardial edema and circulatory disturbance in zebrafish. There was no sign of cardiovascular toxicity in zebrafish treated with non-cardiotoxic drugs gentamicin sulphate and tetracycline hydrochloride. The overall prediction success rate for cardiotoxic drugs and non-cardiotoxic drugs in zebrafish were 100% (9/9) as compared with human results, suggesting that zebrafish is an excellent animal model for rapid in vivo cardiovascular toxicity screening. The procedures we developed in this report for assessing cardiovascular toxicity in zebrafish were suitable for drugs delivered by either soaking or microinjection.
Collapse
Affiliation(s)
- Jun-Jing Zhu
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, Zhejiang Province, 311231, China
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ceinos RM, Torres-Nuñez E, Chamorro R, Novoa B, Figueras A, Ruane NM, Rotllant J. Critical Role of the Matricellular Protein SPARC in Mediating Erythroid Progenitor Cell Development in Zebrafish. Cells Tissues Organs 2012. [DOI: 10.1159/000343291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
76
|
Nesan D, Vijayan MM. Embryo exposure to elevated cortisol level leads to cardiac performance dysfunction in zebrafish. Mol Cell Endocrinol 2012; 363:85-91. [PMID: 22842336 DOI: 10.1016/j.mce.2012.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/19/2012] [Accepted: 07/19/2012] [Indexed: 11/17/2022]
Abstract
In zebrafish (Danio rerio), de novo cortisol synthesis commences only after hatching, providing an interesting model to study the effects of maternal stress and abnormal cortisol deposition on embryo development and performance. We hypothesized that elevated cortisol levels during pre-hatch embryogenesis compromise cardiac performance in developing zebrafish. Cortisol was microinjected into one-cell embryos to elevate basal cortisol levels during embryogenesis. Elevated embryo cortisol content increased heart deformities, including pericardial edema and malformed chambers, and lowered resting heartbeat post-hatch. This phenotype coincided with suppression of key cardiac genes, including nkx2.5, cardiac myosin light chain 1, cardiac troponin type T2A, and calcium transporting ATPase, underpinning a mechanistic link to heart malformation. The attenuation of the heartbeat response to a secondary stressor post-hatch also confirms a functional reduction in cardiac performance. Altogether, high cortisol content during embryogenesis, mimicking increased deposition due to maternal stress, decreases cardiac performance and may reduce zebrafish offspring survival.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
77
|
de Esch C, Slieker R, Wolterbeek A, Woutersen R, de Groot D. Zebrafish as potential model for developmental neurotoxicity testing. Neurotoxicol Teratol 2012; 34:545-53. [DOI: 10.1016/j.ntt.2012.08.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
|
78
|
Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, Lengerke C. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 2012; 1266:124-37. [PMID: 22901264 DOI: 10.1111/j.1749-6632.2012.06575.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish has become a powerful vertebrate model for genetic studies of embryonic development and organogenesis and increasingly for studies in cancer biology. Zebrafish facilitate the performance of reverse and forward genetic approaches, including mutagenesis and small molecule screens. Moreover, several studies report the feasibility of xenotransplanting human cells into zebrafish embryos and adult fish. This model provides a unique opportunity to monitor tumor-induced angiogenesis, invasiveness, and response to a range of treatments in vivo and in real time. Despite the high conservation of gene function between fish and humans, concern remains that potential differences in zebrafish tissue niches and/or missing microenvironmental cues could limit the relevance and translational utility of data obtained from zebrafish human cancer cell xenograft models. Here, we summarize current data on xenotransplantation of human cells into zebrafish, highlighting the advantages and limitations of this model in comparison to classical murine models of xenotransplantation.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Hematology and Oncology, University of Tübingen Medical Center II, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Pharmacological manipulation of blood and lymphatic vascularization in ex vivo-cultured mouse embryos. Nat Protoc 2012; 7:1970-82. [PMID: 23060242 DOI: 10.1038/nprot.2012.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Formation of new blood and lymphatic vessels is involved in many physiological and pathological processes, including organ and tumor growth, cancer cell metastasis, fluid drainage and lymphedema. Therefore, the ability to manipulate vascularization in a mammalian system is of particular interest to researchers. Here we describe a method for pharmacological manipulation of de novo and sprouting blood and lymphatic vascular development in ex vivo-cultured mouse embryos. The described protocol can also be used to evaluate the properties of pharmacological agents in growing mammalian tissues and to manipulate other developmental processes. The whole procedure, from embryo isolation to image quantification, takes 3-5 d, depending on the analysis and age of the embryos.
Collapse
|
80
|
Ohn J, Tsai HJ, Liebling M. Joint dynamic imaging of morphogenesis and function in the developing heart. Organogenesis 2012; 5:248-55. [PMID: 20539745 DOI: 10.4161/org.5.4.10568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/07/2009] [Accepted: 11/09/2009] [Indexed: 01/28/2023] Open
Abstract
In the developing heart, time-lapse imaging is particularly challenging. Changes in heart morphology due to tissue growth or long-term reorganization are difficult to follow because they are much subtler than the rapid shape changes induced by the heartbeat. Therefore, imaging heart development usually requires slowing or stopping the heart. This, however, leads to information loss about the unperturbed heart shape and the dynamics of heart function. To overcome this limitation, we have developed a non-invasive heart imaging technique to jointly document heart function (at fixed stages of development) as well as its morphogenesis (at any fixed phase in the heartbeat) that does not require stopping or slowing the heart. We review the challenges for imaging heart development and our methodology, which is based on computationally combining and analyzing multiple high-speed image sequences acquired throughout the course of development. We present results obtained in the developing zebrafish heart. Image analysis of the acquired data yielded blood flow velocity maps and made it possible to follow the relative movement of individual cells over several hours.
Collapse
Affiliation(s)
- Jungho Ohn
- Electrical & Computer Engineering; University of California; Santa Barbara, CA USA
| | | | | |
Collapse
|
81
|
Tobia C, Chiodelli P, Nicoli S, Dell'era P, Buraschi S, Mitola S, Foglia E, van Loenen PB, Alewijnse AE, Presta M. Sphingosine-1-phosphate receptor-1 controls venous endothelial barrier integrity in zebrafish. Arterioscler Thromb Vasc Biol 2012; 32:e104-16. [PMID: 22837470 DOI: 10.1161/atvbaha.112.250035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Endothelial sphingosine-1-phosphate (S1P) receptor-1 (S1P(1)) affects different vascular functions, including blood vessel maturation and permeability. Here, we characterized the role of the zS1P(1) ortholog in vascular development in zebrafish. METHODS AND RESULTS zS1P(1) is expressed in dorsal aorta and posterior cardinal vein of zebrafish embryos at 24 to 30 hours postfertilization. zS1P(1) downregulation by antisense morpholino oligonucleotide injection causes early pericardial edema, lack of blood circulation, alterations of posterior cardinal vein structure, and late generalized edema. Also, zS1P(1) morphants are characterized by downregulation of vascular endothelial cadherin (VE-cadherin) and Eph receptor EphB4a expression and by disorganization of zonula occludens 1 junctions in posterior cardinal vein endothelium, with no alterations of dorsal aorta endothelium. VE-cadherin knockdown results in similar vascular alterations, whereas VE-cadherin overexpression is sufficient to rescue venous vascular integrity defects and EphB4a downregulation in zS1P(1) morphants. Finally, S1P(1) small interfering RNA transfection and the S1P(1) antagonist (R)-3-amino-(3-hexylphenylamino)-4-oxobutylphosphonic acid (W146) cause EPHB4 receptor down-modulation in human umbilical vein endothelial cells and the assembly of zonula occludens 1 intercellular contacts is prevented by the EPHB4 antagonist TNYL-RAW peptide in these cells. CONCLUSIONS The data demonstrate a nonredundant role of zS1P(1) in the regulation of venous endothelial barrier in zebrafish and identify a S1P(1)/VE-cadherin/EphB4a genetic pathway that controls venous vascular integrity.
Collapse
Affiliation(s)
- Chiara Tobia
- Department of Biomedical Sciences and Biotechnology, Unit of General Pathology and Immunology, School of Medicine, University of Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wen D, Liu A, Chen F, Yang J, Dai R. Validation of visualized transgenic zebrafish as a high throughput model to assay bradycardia related cardio toxicity risk candidates. J Appl Toxicol 2012; 32:834-42. [PMID: 22744888 DOI: 10.1002/jat.2755] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 11/09/2022]
Abstract
Drug-induced QT prolongation usually leads to torsade de pointes (TdP), thus for drugs in the early phase of development this risk should be evaluated. In the present study, we demonstrated a visualized transgenic zebrafish as an in vivo high-throughput model to assay the risk of drug-induced QT prolongation. Zebrafish larvae 48 h post-fertilization expressing green fluorescent protein in myocardium were incubated with compounds reported to induce QT prolongation or block the human ether-a-go-go-related gene (hERG) K⁺ current. The compounds sotalol, indapaminde, erythromycin, ofoxacin, levofloxacin, sparfloxacin and roxithromycin were additionally administrated by microinjection into the larvae yolk sac. The ventricle heart rate was recorded using the automatic monitoring system after incubation or microinjection. As a result, 14 out of 16 compounds inducing dog QT prolongation caused bradycardia in zebrafish. A similar result was observed with 21 out of 26 compounds which block hERG current. Among the 30 compounds which induced human QT prolongation, 25 caused bradycardia in this model. Thus, the risk of compounds causing bradycardia in this transgenic zebrafish correlated with that causing QT prolongation and hERG K⁺ current blockage in established models. The tendency that high logP values lead to high risk of QT prolongation in this model was indicated, and non-sensitivity of this model to antibacterial agents was revealed. These data suggest application of this transgenic zebrafish as a high-throughput model to screen QT prolongation-related cardio toxicity of the drug candidates.
Collapse
Affiliation(s)
- Dingsheng Wen
- South China University of Technology, Guangzhou 510641, China
| | | | | | | | | |
Collapse
|
83
|
Hawliczek A, Nota B, Cenijn P, Kamstra J, Pieterse B, Winter R, Winkens K, Hollert H, Segner H, Legler J. Developmental toxicity and endocrine disrupting potency of 4-azapyrene, benzo[b]fluorene and retene in the zebrafish Danio rerio. Reprod Toxicol 2012; 33:213-23. [DOI: 10.1016/j.reprotox.2011.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
|
84
|
Abstract
The morphology, muscle mechanics, fluid dynamics, conduction properties, and molecular biology of the developing embryonic heart have received much attention in recent years due to the importance of both fluid and elastic forces in shaping the heart as well as the striking relationship between the heart's evolution and development. Although few studies have directly addressed the connection between fluid dynamics and heart development, a number of studies suggest that fluids may play a key role in morphogenic signaling. For example, fluid shear stress may trigger biochemical cascades within the endothelial cells of the developing heart that regulate chamber and valve morphogenesis. Myocardial activity generates forces on the intracardiac blood, creating pressure gradients across the cardiac wall. These pressures may also serve as epigenetic signals. In this article, the fluid dynamics of the early stages of heart development is reviewed. The relevant work in cardiac morphology, muscle mechanics, regulatory networks, and electrophysiology is also reviewed in the context of intracardial fluid dynamics.
Collapse
|
85
|
Willaert A, Khatri S, Callewaert BL, Coucke PJ, Crosby SD, Lee JGH, Davis EC, Shiva S, Tsang M, De Paepe A, Urban Z. GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFβ signaling. Hum Mol Genet 2011; 21:1248-59. [PMID: 22116938 DOI: 10.1093/hmg/ddr555] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Growth factor signaling results in dramatic phenotypic changes in cells, which require commensurate alterations in cellular metabolism. Mutations in SLC2A10/GLUT10, a member of the facilitative glucose transporter family, are associated with altered transforming growth factor-β (TGFβ) signaling in patients with arterial tortuosity syndrome (ATS). The objective of this work was to test whether SLC2A10/GLUT10 can serve as a link between TGFβ-related transcriptional regulation and metabolism during development. In zebrafish embryos, knockdown of slc2a10 using antisense morpholino oligonucleotide injection caused a wavy notochord and cardiovascular abnormalities with a reduced heart rate and blood flow, which was coupled with an incomplete and irregular vascular patterning. This was phenocopied by treatment with a small-molecule inhibitor of TGFβ receptor (tgfbr1/alk5). Array hybridization showed that the changes at the transcriptome level caused by the two treatments were highly correlated, revealing that a reduced tgfbr1 signaling is a key feature of ATS in early zebrafish development. Interestingly, a large proportion of the genes, which were specifically dysregulated after glut10 depletion gene and not by tgfbr1 inhibition, play a major role in mitochondrial function. Consistent with these results, slc2a10 morphants showed decreased respiration and reduced TGFβ reporter gene activity. Finally, co-injection of antisense morpholinos targeting slc2a10 and smad7 (a TGFβ inhibitor) resulted in a partial rescue of smad7 morphant phenotypes, suggesting scl2a10/glut10 functions downstream of smads. Taken together, glut10 is essential for cardiovascular development by facilitating both mitochondrial respiration and TGFβ signaling.
Collapse
Affiliation(s)
- Andy Willaert
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Planar cell polarity signaling pathway in congenital heart diseases. J Biomed Biotechnol 2011; 2011:589414. [PMID: 22131815 PMCID: PMC3205795 DOI: 10.1155/2011/589414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/31/2011] [Indexed: 12/14/2022] Open
Abstract
Congenital heart disease (CHD) is a common cardiac disorder in humans. Despite many advances in the understanding of CHD and the identification of many associated genes, the fundamental etiology for the majority of cases remains unclear. The planar cell polarity (PCP) signaling pathway, responsible for tissue polarity in Drosophila and gastrulation movements and cardiogenesis in vertebrates, has been shown to play multiple roles during cardiac differentiation and development. The disrupted function of PCP signaling is connected to some CHDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of CHD.
Collapse
|
87
|
“Fishing” for endothelial microRNA functions and dysfunction. Vascul Pharmacol 2011; 55:60-8. [DOI: 10.1016/j.vph.2011.08.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022]
|
88
|
Huang Q, Fang C, Wu X, Fan J, Dong S. Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:71-77. [PMID: 21684243 DOI: 10.1016/j.aquatox.2011.05.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 05/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant and has been widely detected in the sea water. However, toxic effects of PFOS on cardiac development in marine organisms have not been reported. In the present study, we investigated the toxicity of PFOS on the cardiac development using Oryzias melastigma embryos. The embryos at 2 days post-fertilization (dpf) were continuous exposed to PFOS (1, 4 and 16 mg/L) for various periods, cardiac function and morphology were examined at different developmental stages. The results showed that exposure to 4 and 16 mg/L PFOS resulted in enlarged the sinus venosus (SV)-bulbus arteriosus (BA) distance and altered the heart rate. We further investigated eight heart-development related genes to test the effects of PFOS on molecular level. Seven genes were first cloned in O. melastigma and their temporal expression patterns were assayed. Most of the genes were highly expressed in the 6dpf, which is the critical stage for heart development. Their expression levels upon PFOS exposure were studied. The expressions of GATA4 and NKX2.5 were significantly down-regulated while COX-2, FGF8 and ATPase were significantly up-regulated at 6dpf. Our results showed for the first time that PFOS exposure affected the expression of cardiac development-related genes, development and function of heart in the marine medaka.
Collapse
Affiliation(s)
- Qiansheng Huang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | | | | | | |
Collapse
|
89
|
Pan K, Deem MW. A multi-scale model for correlation in B cell VDJ usage of zebrafish. Phys Biol 2011; 8:055006. [PMID: 21832808 DOI: 10.1088/1478-3975/8/5/055006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.
Collapse
Affiliation(s)
- Keyao Pan
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | | |
Collapse
|
90
|
Huang Q, Fang C, Chen Y, Wu X, Ye T, Lin Y, Dong S. Embryonic exposure to low concentration of bisphenol A affects the development of Oryzias melastigma larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2506-2514. [PMID: 22718145 DOI: 10.1007/s11356-012-1034-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/07/2012] [Indexed: 06/01/2023]
Abstract
The prevalence of bisphenol A (BPA) in the environment has attracted increasing attention because of the toxicity of this manmade pollutant. However, the toxicity related to cardiac development remains largely unknown. In the present paper, we investigated the cardiac toxicity of BPA using marine medaka (Oryzias melastigma) embryos. At 2 days postfertilization (dpf), the embryos were continuously exposed to a low concentration of BPA (200 μg/L) for the whole embryonic stage. Heart rate and sinus venosus (SV)-bulbus arteriosus (BA) distance were measured under microscopy. The mRNA expression levels of genes were quantified by SYBR real-time RT-PCR, and hematoxylin and eosin (H&E) staining was used to examine the histology of fish larvae hearts. Neither the heart rate nor the SV-BA distance of the embryos was affected by BPA exposure. However, the mRNA expression levels of Na(+)-K(+)-ATPase, BMP4, COX-1, FGF8, GATA4, and NKX2.5 were all downregulated at the critical developmental stages (6 and 10 dpf). Interestingly, the mRNA expression levels of COX-2 and LERP were significantly upregulated at 10 dpf. The mRNA expressions of inflammation-related genes (TNFα, IL1β, SOD, and CCL11) were all significantly upregulated after exposure. Moreover, we found that both the body length and the body width decreased in the larvae after embryonic exposure to BPA. The distributed foci of inflammation were observed in the juveniles after 2 weeks' depuration. Exposure to BPA at embryonic stages could alter the expression of heart development-related genes and inflammation-related genes of O. melastigma. The larvae hatched from exposed embryos showed the foci of inflammation in the heart ventricles and the decrease of the body length and width.
Collapse
Affiliation(s)
- Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
91
|
Lu JW, Hsia Y, Tu HC, Hsiao YC, Yang WY, Wang HD, Yuh CH. Liver development and cancer formation in zebrafish. ACTA ACUST UNITED AC 2011; 93:157-72. [DOI: 10.1002/bdrc.20205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
92
|
Schnabel K, Wu CC, Kurth T, Weidinger G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 2011; 6:e18503. [PMID: 21533269 PMCID: PMC3075262 DOI: 10.1371/journal.pone.0018503] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/02/2011] [Indexed: 12/17/2022] Open
Abstract
In mammals, myocardial cell death due to infarction results in scar formation and little regenerative response. In contrast, zebrafish have a high capacity to regenerate the heart after surgical resection of myocardial tissue. However, whether zebrafish can also regenerate lesions caused by cell death has not been tested. Here, we present a simple method for induction of necrotic lesions in the adult zebrafish heart based on cryoinjury. Despite widespread tissue death and loss of cardiomyocytes caused by these lesions, zebrafish display a robust regenerative response, which results in substantial clearing of the necrotic tissue and little scar formation. The cellular mechanisms underlying regeneration appear to be similar to those activated in response to ventricular resection. In particular, the epicardium activates a developmental gene program, proliferates and covers the lesion. Concomitantly, mature uninjured cardiomyocytes become proliferative and invade the lesion. Our injury model will be a useful tool to study the molecular mechanisms of natural heart regeneration in response to necrotic cell death.
Collapse
Affiliation(s)
- Kristin Schnabel
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Chi-Chung Wu
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Gilbert Weidinger
- Biotechnology Center and Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
93
|
Krill D, Madden J, Huncik K, Moeller PD. Induced thyme product prevents VEGF-induced migration in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2010; 403:275-81. [DOI: 10.1016/j.bbrc.2010.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
94
|
Chou MY, Hung JC, Wu LC, Hwang SPL, Hwang PP. Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell Mol Life Sci 2010; 68:2797-809. [PMID: 21104292 PMCID: PMC3142547 DOI: 10.1007/s00018-010-0593-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/31/2010] [Accepted: 11/05/2010] [Indexed: 10/25/2022]
Abstract
The present study using zebrafish as a model explores the role of isotocin, a homolog of oxytocin, in controlling ion regulatory mechanisms. Double-deionized water treatment for 24 h significantly stimulated isotocin mRNA expression in zebrafish embryos. Whole-body Cl(-), Ca(2+), and Na(+) contents, mRNA expressions of ion transporters and ionocyte-differentiation related transcription factors, and the number of skin ionocytes decreased in isotocin morphants. In contrast, overexpression of isotocin caused an increase in ionocyte numbers. Isotocin morpholino caused significant suppression of foxi3a mRNA expression, while isotocin cRNA stimulated foxi3a mRNA expressions at the tail-bud stage of zebrafish embryos. The density of P63 (an epidermal stem cell marker)-positive cells was downregulated by isotocin morpholinos and was upregulated by isotocin cRNA. Taken together, isotocin stimulates the proliferation of epidermal stem cells and differentiation of ionocyte progenitors by regulating the P63 and Foxi3a transcription factors, consequently enhancing the functional activities of ionocytes.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
95
|
Xie J, Farage E, Sugimoto M, Anand-Apte B. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:76. [PMID: 20653957 PMCID: PMC2914679 DOI: 10.1186/1471-213x-10-76] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/23/2010] [Indexed: 02/07/2023]
Abstract
Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB) and blood-retinal (BRB) barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP) in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP) zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.
Collapse
Affiliation(s)
- Jing Xie
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
96
|
Xu Z, Li Y, Xiang Q, Pei Z, Liu X, Lu B, Chen L, Wang G, Pang J, Lin Y. Design and synthesis of novel xyloketal derivatives and their vasorelaxing activities in rat thoracic aorta and angiogenic activities in zebrafish angiogenesis screen. J Med Chem 2010; 53:4642-53. [PMID: 20481602 DOI: 10.1021/jm1001502] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of xyloketal derivatives (1-21) were designed and prepared. The majority of the compounds demonstrated vasorelaxation action on 60 mM KCl-induced contractions rat isolated aortic rings in a concentration-dependent manner, and the action is mediated by both endothelium-independent and endothelium-dependent mechanisms. Compounds 9, 12, 13, 14, 15, and 19 showed higher vasorelaxation activities comparing with the lead compound 3. In addition, these derivatives had potential protective action against oxLDL-induced endothelial oxidative injury and enhanced NO production in HUVECs without toxic effects. The NO release was completely inhibited by eNOS inhibitor L-NAME. Furthermore, 3 significantly promoted the angiogenesis in zebrafish in a concentration-dependent manner at 0.1, 1, and 10 muM. Compounds 9, 12, 14, 16, 20, and 21 exhibited stronger angiogenic activities than 3. Therefore, xyloketal derivatives are unique compounds with multiple pharmacological properties and may have potential implications in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Zhongliang Xu
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kohli V, Elezzabi AY. Prospects and developments in cell and embryo laser nanosurgery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:11-25. [PMID: 20049775 DOI: 10.1002/wnan.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, there has been increasing interest in the application of femtosecond (fs) laser pulses to the study of cells, tissues and embryos. This review explores the developments that have occurred within the last several years in the fields of cell and embryo nanosurgery. Each of the individual studies presented in this review clearly demonstrates the nondestructiveness of fs laser pulses, which are used to alter both cellular and subcellular sites within simple cells and more complicated multicompartmental embryos. The ability to manipulate these model systems noninvasively makes applied fs laser pulses an invaluable tool for developmental biologists, geneticists, cryobiologists, and zoologists. We are beginning to see the integration of this tool into life sciences, establishing its status among molecular and genetic cell manipulation methods. More importantly, several studies demonstrating the versatility of applied fs laser pulses have established new collaborations among physicists, engineers, and biologists with the common intent of solving biological problems.
Collapse
Affiliation(s)
- Vikram Kohli
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Abdulhakem Y Elezzabi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
98
|
Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting HG. Vascular morphogenesis in the zebrafish embryo. Dev Biol 2009; 341:56-65. [PMID: 19895803 DOI: 10.1016/j.ydbio.2009.10.035] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 12/31/2022]
Abstract
During embryonic development, the vertebrate vasculature is undergoing vast growth and remodeling. Blood vessels can be formed by a wide spectrum of different morphogenetic mechanisms, such as budding, cord hollowing, cell hollowing, cell wrapping and intussusception. Here, we describe the vascular morphogenesis that occurs in the early zebrafish embryo. We discuss the diversity of morphogenetic mechanisms that contribute to vessel assembly, angiogenic sprouting and tube formation in different blood vessels and how some of these complex cell behaviors are regulated by molecular pathways.
Collapse
Affiliation(s)
- Elín Ellertsdóttir
- Department of Cell Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
99
|
Iwanami N, Okada M, Hoa VQ, Seo Y, Mitani H, Sasaki T, Shimizu N, Kondoh H, Furutani-Seiki M, Takahama Y. Ethylnitrosourea-induced thymus-defective mutants identify roles of KIAA1440, TRRAP, and SKIV2L2 in teleost organ development. Eur J Immunol 2009; 39:2606-16. [PMID: 19670383 DOI: 10.1002/eji.200939362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The thymus is an organ where T lymphocytes develop. Thymus development requires interactions of cells derived from three germ layers. However, the molecular mechanisms that control thymus development are not fully understood. To identify the genes that regulate thymus development, we previously carried out a large-scale screening for ethylnitrosourea-induced mutagenesis using medaka, Oryzias latipes, and established a panel of recessive thymus-lacking mutants. Here we report the identification of three genes responsible for these mutations. We found that the mutations in KIAA1440, TRRAP, and SKIV2L2 caused the defects in distinct steps of thymus development. We also found that these genes were widely expressed in many organs and that the mutations in these genes caused defects in the development of various other organs. These results enabled us to identify previously unknown roles of widely expressed genes in medaka organ development. The possible reasons why thymus-defective teleost mutants could be used to identify widely expressed genes and future strategies to increase the likelihood of identifying genes that specifically regulate thymus development are discussed.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Liver development in zebrafish (Danio rerio). J Genet Genomics 2009; 36:325-34. [PMID: 19539242 DOI: 10.1016/s1673-8527(08)60121-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 12/17/2022]
Abstract
Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.
Collapse
|