51
|
Rogawski MA. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand 2013:9-18. [PMID: 23480151 DOI: 10.1111/ane.12099] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2013] [Indexed: 11/28/2022]
Abstract
Epileptic seizures occur as a result of episodic abnormal synchronous discharges in cerebral neuronal networks. Although a variety of non-conventional mechanisms may play a role in epileptic synchronization, cascading excitation within networks of synaptically connected excitatory glutamatergic neurons is a classical mechanism. As is the case throughout the central nervous system, fast synaptic excitation within and between brain regions relevant to epilepsy is mediated predominantly by AMPA receptors. By inhibiting glutamate-mediated excitation, AMPA receptor antagonists markedly reduce or abolish epileptiform activity in in vitro preparations and confer seizure protection in a broad range of animal seizure models. NMDA receptors may also contribute to epileptiform activity, but NMDA receptor blockade is not sufficient to eliminate epileptiform discharges. AMPA receptors move into and out of the synapse in a dynamic fashion in forms of synaptic plasticity, underlying learning and memory. Often, the trigger for these dynamic movements is the activation of NMDA receptors. While NMDA receptor antagonists inhibit these forms of synaptic plasticity, AMPA receptor antagonists do not impair synaptic plasticity and do not inhibit memory formation or retrieval. The demonstrated clinical efficacy of perampanel, a high-potency, orally active non-competitive AMPA receptor antagonist, supports the concept that AMPA receptors are critical to epileptic synchronization and the generation and spread of epileptic discharges in human epilepsy.
Collapse
Affiliation(s)
- M. A. Rogawski
- Department of Neurology; School of Medicine and Center for Neuroscience; University of California, Davis; Sacramento; CA; USA
| |
Collapse
|
52
|
Kvist T, Greenwood JR, Hansen KB, Traynelis SF, Bräuner-Osborne H. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology 2013; 75:324-36. [PMID: 23973313 DOI: 10.1016/j.neuropharm.2013.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/04/2013] [Accepted: 08/08/2013] [Indexed: 01/28/2023]
Abstract
NMDA receptors are ligand-gated ion channels that assemble into tetrameric receptor complexes composed of glycine-binding GluN1 and GluN3 subunits (GluN3A-B) and glutamate-binding GluN2 subunits (GluN2A-D). NMDA receptors can assemble as GluN1/N2 receptors and as GluN3-containing NMDA receptors, which are either glutamate/glycine-activated triheteromeric GluN1/N2/N3 receptors or glycine-activated diheteromeric GluN1/N3 receptors. The glycine-binding GluN1 and GluN3 subunits display strikingly different pharmacological selectivity profiles. However, the pharmacological characterization of GluN3-containing receptors has been hampered by the lack of methods and pharmacological tools to study GluN3 subunit pharmacology in isolation. Here, we have developed a method to study the pharmacology of GluN3 subunits in recombinant diheteromeric GluN1/N3 receptors by mutating the orthosteric ligand-binding pocket in GluN1. This method is suitable for performing compound screening and characterization of structure-activity relationship studies on GluN3 ligands. We have performed a virtual screen of the orthosteric binding site of GluN3A in the search for antagonists with selectivity for GluN3 subunits. In the subsequent pharmacological evaluation of 99 selected compounds, we identified 6-hydroxy-[1,2,5]oxadiazolo[3,4-b]pyrazin-5(4H)-one (TK80) a novel competitive antagonist with preference for the GluN3B subunit. Serendipitously, we also identified [2-hydroxy-5-((4-(pyridin-3-yl)thiazol-2-yl)amino]benzoic acid (TK13) and 4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (TK30), two novel non-competitive GluN3 antagonists. These findings demonstrate that structural differences between the orthosteric binding site of GluN3 and GluN1 can be exploited to generate selective ligands.
Collapse
Affiliation(s)
- Trine Kvist
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | | | - Kasper B Hansen
- Dept. of Pharmacology, Emory University School of Medicine, 5062 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Stephen F Traynelis
- Dept. of Pharmacology, Emory University School of Medicine, 5062 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Hans Bräuner-Osborne
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Fruebjergvej 3, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
53
|
Santhakumar V, Meera P, Karakossian MH, Otis TS. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition. PLoS One 2013; 8:e72976. [PMID: 23977374 PMCID: PMC3747091 DOI: 10.1371/journal.pone.0072976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 07/23/2013] [Indexed: 01/04/2023] Open
Abstract
GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants.
Collapse
Affiliation(s)
- Vijayalakshmi Santhakumar
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
54
|
Moore BS, Mirshahi UL, Ebersole TL, Mirshahi T. A conserved mechanism for gating in an ionotropic glutamate receptor. J Biol Chem 2013; 288:18842-52. [PMID: 23671286 DOI: 10.1074/jbc.m113.465187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ionotropic glutamate receptor (iGluR) channels control synaptic activity. The crystallographic structure of GluA2, the prototypical iGluR, reveals a clamshell-like ligand-binding domain (LBD) that closes in the presence of glutamate to open a gate on the pore lining α-helix. How LBD closure leads to gate opening remains unclear. Here, we show that bending the pore helix at a highly conserved alanine residue (Ala-621) below the gate is responsible for channel opening. Substituting Ala-621 with the smaller more flexible glycine resulted in a basally active, nondesensitizing channel with ∼39-fold increase in glutamate potency without affecting surface expression or binding. On GluA2(A621G), the partial agonist kainate showed efficacy similar to a full agonist, and competitive antagonists CNQX and DNQX acted as a partial agonists. Met-629 in GluA2 sits above the gate and is critical in transmitting LBD closure to the gate. Substituting Met-629 with the flexible glycine resulted in reduced channel activity and glutamate potency. The pore regions in potassium channels are structurally similar to iGluRs. Whereas potassium channels typically use glycines as a hinge for gating, iGluRs use the less flexible alanine as a hinge at a similar position to maintain low basal activity allowing for ligand-mediated gating.
Collapse
Affiliation(s)
- Bryn S Moore
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2621, USA
| | | | | | | |
Collapse
|
55
|
Wolter T, Steinbrecher T, Elstner M. Computational study of synthetic agonist ligands of ionotropic glutamate receptors. PLoS One 2013; 8:e58774. [PMID: 23536824 PMCID: PMC3607592 DOI: 10.1371/journal.pone.0058774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/06/2013] [Indexed: 01/24/2023] Open
Abstract
Neurological glutamate receptors are among the most important and intensely studied protein ligand binding systems in humans. They are crucial for the functioning of the central nervous system and involved in a variety of pathologies. Apart from the neurotransmitter glutamate, several artificial, agonistic and antagonistic ligands are known. Of particular interest here are novel photoswitchable agonists that would open the field of optogenetics to glutamate receptors. The receptor proteins are complex, membrane-bound multidomain oligomers that undergo large scale functional conformational changes, making detailed studies of their atomic structure challenging. Therefore, a thorough understanding of the microscopic details of ligand binding and receptor activation remains elusive in many cases. This topic has been successfully addressed by theoretical studies in the past and in this paper, we present extensive molecular dynamics simulation and free energy calculation results on the binding of AMPA and an AMPA derivative, which is the basis for designing light-sensitive ligands. We provide a two-step model for ligand binding domain activation and predict binding free energies for novel compounds in good agreement to experimental observations.
Collapse
Affiliation(s)
- Tino Wolter
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thomas Steinbrecher
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
56
|
AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting. Proc Natl Acad Sci U S A 2013; 110:5163-8. [PMID: 23479622 DOI: 10.1073/pnas.1218765110] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the transmembrane AMPA receptor-regulatory protein (TARP) family modulate AMPA receptor (AMPA-R) trafficking and function. AMPA-Rs consist of four pore-forming subunits. Previous studies show that TARPs are an integral part of the AMPA-R complex, acting as accessory subunits for mature receptors in vivo. The TARP/AMPA-R stoichiometry was previously measured indirectly and found to be variable and dependent on TARP expression level, with at most four TARPs associated with each AMPA-R complex. Here, we use a single-molecule technique in live cells that selectively images proteins located in the plasma membrane to directly count the number of TARPs associated with each AMPA-R complex. Although individual GFP-tagged TARP subunits are observed as freely diffusing fluorescent spots on the surface of Xenopus laevis oocytes when expressed alone, coexpression with AMPA-R-mCherry immobilizes the stargazin-GFP spots at sites of AMPA-R-mCherry, consistent with complex formation. We determined the number of TARP molecules associated with each AMPA-R by counting bleaching steps for three different TARP family members: γ-2, γ-3, and γ-4. We confirm that the TARP/AMPA-R stoichiometry depends on TARP expression level and discover that the maximum number of TARPs per AMPA-R complex falls into two categories: up to four γ-2 or γ-3 subunits, but rarely above two for γ-4 subunit. This unexpected AMPA-R/TARP stoichiometry difference has important implications for the assembly and function of TARP/AMPA-R complexes.
Collapse
|
57
|
Poulie CBM, Bunch L. Heterocycles as nonclassical bioisosteres of α-amino acids. ChemMedChem 2013; 8:205-15. [PMID: 23322633 DOI: 10.1002/cmdc.201200436] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 11/11/2022]
Abstract
Bioisosterism of α-amino acids is often accomplished by replacing the α-carboxylate with one of the many known carboxylic acid bioisosteres. However, bioisosterism of the whole α-amino acid moiety is accomplished with heterocyclic bioisosteres that often display an acidic function. In this Minireview, we summarized the reported heterocycles as nonclassical bioisosteres of α-amino acids, which include quinoxaline-2,4(1H)-dione, quinoxaline-2,3(1H)-dione and quinolin-2(1H)-one, azagrevellin and azepine-derived structures. The binding mode of the crystalized bioisosteres were compared with those of the crystalized α-amino acids that bind in the same domain, and where no data on the crystal structure were available, the displacement studies of known orthosteric ligands were used. The reported bioisosteres share the following essential structural features for mimicking α-amino acids: an aromatic ring system joined to a lactam ring system with an acidic feature next to the lactam carbonyl, where this acidic feature together with the lactam carbonyl can mimic the α-carboxylate, and the lactam nitrogen together with the aromatic ring system can mimic the α-ammonium. The majority of these heterocycles can be prepared from three common corresponding starting materials: the corresponding anilines, isatins or anthranilic esters. The data collected here show the potential of this class of bioisosteres in the design of glutamate receptor ligands and beyond.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
58
|
Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci 2012; 13:675-86. [PMID: 22948074 DOI: 10.1038/nrn3335] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kainate receptors are a family of ionotropic glutamate receptors whose physiological roles differ from those of other subtypes of glutamate receptors in that they predominantly serve as modulators, rather than mediators, of synaptic transmission. Neuronal kainate receptors exhibit unusually slow kinetic properties that have been difficult to reconcile with the behaviour of recombinant kainate receptors. Recently, however, the neuropilin and tolloid-like 1 (NETO1) and NETO2 proteins were identified as auxiliary kainate receptor subunits that shape both the biophysical properties and synaptic localization of these receptors.
Collapse
|
59
|
Semenov A, Möykkynen T, Coleman SK, Korpi ER, Keinänen K. Autoinactivation of the stargazin-AMPA receptor complex: subunit-dependency and independence from physical dissociation. PLoS One 2012; 7:e49282. [PMID: 23166629 PMCID: PMC3498123 DOI: 10.1371/journal.pone.0049282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
Agonist responses and channel kinetics of native α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are modulated by transmembrane accessory proteins. Stargazin, the prototypical accessory protein, decreases desensitization and increases agonist potency at AMPA receptors. Furthermore, in the presence of stargazin, the steady-state responses of AMPA receptors show a gradual decline at higher glutamate concentrations. This "autoinactivation" has been assigned to physical dissociation of the stargazin-AMPA receptor complex and suggested to serve as a protective mechanism against overactivation. Here, we analyzed autoinactivation of GluA1-A4 AMPA receptors (all flip isoform) expressed in the presence of stargazin. Homomeric GluA1, GluA3, and GluA4 channels showed pronounced autoinactivation indicated by the bell-shaped steady-state dose response curves for glutamate. In contrast, homomeric GluA2i channels did not show significant autoinactivation. The resistance of GluA2 to autoinactivation showed striking dependence on the splice form as GluA2-flop receptors displayed clear autoinactivation. Interestingly, the resistance of GluA2-flip containing receptors to autoinactivation was transferred onto heteromeric receptors in a dominant fashion. To examine the relationship of autoinactivation to physical separation of stargazin from the AMPA receptor, we analyzed a GluA4-stargazin fusion protein. Notably, the covalently linked complex and separately expressed proteins expressed a similar level of autoinactivation. We conclude that autoinactivation is a subunit and splice form dependent property of AMPA receptor-stargazin complexes, which involves structural rearrangements within the complex rather than any physical dissociation.
Collapse
Affiliation(s)
- Artur Semenov
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tommi Möykkynen
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Sarah K. Coleman
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Esa R. Korpi
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Kari Keinänen
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
60
|
Ahmed AH, Hamada M, Shinada T, Ohfune Y, Weerasinghe L, Garner PP, Oswald RE. The structure of (-)-kaitocephalin bound to the ligand binding domain of the (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor, GluA2. J Biol Chem 2012; 287:41007-13. [PMID: 23076153 DOI: 10.1074/jbc.m112.416362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system, and excessive stimulation of these receptors is involved in a variety of neurological disorders and neuronal damage from stroke. The development of new subtype-specific antagonists would be of considerable therapeutic interest. Natural products can provide important new lead compounds for drug discovery. The only natural product known to inhibit glutamate receptors competitively is (-)-kaitocephalin, which was isolated from the fungus Eupenicillium shearii and found to protect CNS neurons from excitotoxicity. Previous work has shown that it is a potent antagonist of some subtypes of glutamate receptors (AMPA and NMDA, but not kainate). The structure of kaitocephalin bound to the ligand binding domain of the AMPA receptor subtype, GluA2, is reported here. The structure suggests how kaitocephalin can be used as a scaffold to develop more selective and high affinity antagonists for glutamate receptors.
Collapse
Affiliation(s)
- Ahmed H Ahmed
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Oja SS, Saransaari P. Modulation of taurine release in glucose-free media by glutamate receptors in hippocampal slices from developing and adult mice. Amino Acids 2012; 44:533-42. [DOI: 10.1007/s00726-012-1368-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 07/12/2012] [Indexed: 12/23/2022]
|
62
|
Chang PKY, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease - advantages, caveats, and future outlook. Eur J Neurosci 2012; 35:1908-16. [DOI: 10.1111/j.1460-9568.2012.08165.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Bats C, Soto D, Studniarczyk D, Farrant M, Cull-Candy SG. Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat Neurosci 2012; 15:853-61. [PMID: 22581185 PMCID: PMC3427011 DOI: 10.1038/nn.3107] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of calcium-permeable AMPA receptors (CP-AMPARs) is important for normal synaptic transmission, plasticity and pathological changes. Although the involvement of transmembrane AMPAR regulatory proteins (TARPs) in trafficking of calcium-impermeable AMPARs (CI-AMPARs) has been extensively studied, their role in the surface expression and function of CP-AMPARs remains unclear. We examined AMPAR-mediated currents in cerebellar stellate cells from stargazer mice, which lack the prototypical TARP stargazin (g-2). We found a marked increase in the contribution of CP-AMPARs to synaptic responses, indicating that, unlike CI-AMPARs, these can localize at synapses in the absence of g-2. In contrast with CP-AMPARs in extrasynaptic regions, synaptic CP-AMPARs displayed an unexpectedly low channel conductance and strong block by intracellular spermine, suggesting that they were ‘TARPless’. As a proof of principle that TARP association is not an absolute requirement for AMPAR clustering at synapses, miniature excitatory postsynaptic currents mediated by TARPless AMPARs were readily detected in stargazer granule cells following knockdown of their only other TARP, g-7.
Collapse
Affiliation(s)
- Cécile Bats
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart G. Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
64
|
Jackson AC, Nicoll RA. Stargazing from a new vantage--TARP modulation of AMPA receptor pharmacology. J Physiol 2012; 589:5909-10. [PMID: 22174138 DOI: 10.1113/jphysiol.2011.223495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Alexander C Jackson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
65
|
Holley SM, Ahmed AH, Srinivasan J, Murthy SE, Weiland GA, Oswald RE, Nowak LM. The loss of an electrostatic contact unique to AMPA receptor ligand binding domain 2 slows channel activation. Biochemistry 2012; 51:4015-27. [PMID: 22512472 PMCID: PMC3353734 DOI: 10.1021/bi3001837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ligand-gated ion channels undergo conformational changes that transfer the energy of agonist binding to channel opening. Within ionotropic glutamate receptor (iGluR) subunits, this process is initiated in their bilobate ligand binding domain (LBD) where agonist binding to lobe 1 favors closure of lobe 2 around the agonist and allows formation of interlobe hydrogen bonds. AMPA receptors (GluAs) differ from other iGluRs because glutamate binding causes an aspartate-serine peptide bond in a flexible part of lobe 2 to rotate 180° (flipped conformation), allowing these residues to form cross-cleft H-bonds with tyrosine and glycine in lobe 1. This aspartate also contacts the side chain of a lysine residue in the hydrophobic core of lobe 2 by a salt bridge. We investigated how the peptide flip and electrostatic contact (D655-K660) in GluA3 contribute to receptor function by examining pharmacological and structural properties with an antagonist (CNQX), a partial agonist (kainate), and two full agonists (glutamate and quisqualate) in the wildtype and two mutant receptors. Alanine substitution decreased the agonist potency of GluA3(i)-D655A and GluA3(i)-K660A receptor channels expressed in HEK293 cells and differentially affected agonist binding affinity for isolated LBDs without changing CNQX affinity. Correlations observed in the crystal structures of the mutant LBDs included the loss of the D655-K660 electrostatic contact, agonist-dependent differences in lobe 1 and lobe 2 closure, and unflipped D(A)655-S656 bonds. Glutamate-stimulated activation was slower for both mutants, suggesting that efficient energy transfer of agonist binding within the LBD of AMPA receptors requires an intact tether between the flexible peptide flip domain and the rigid hydrophobic core of lobe 2.
Collapse
Affiliation(s)
- Sandra M. Holley
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Ahmed H. Ahmed
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Jayasri Srinivasan
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Swetha E. Murthy
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214 USA
| | - Gregory A. Weiland
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Robert E. Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Linda M. Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA,Corresponding Author: Linda M. Nowak, Department of Molecular Medicine, C3-117 Veterinary Medical Center, Cornell University, Ithaca, NY 14853, phone: (607) 253-3655,
| |
Collapse
|
66
|
Molecular dynamics simulations for glutamate-binding and cleft-closing processes of the ligand-binding domain of GluR2. Biophys Chem 2012; 162:35-44. [DOI: 10.1016/j.bpc.2011.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/12/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022]
|
67
|
Synaptic Plasticity Regulated by Protein–Protein Interactions and Posttranslational Modifications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:1-43. [DOI: 10.1016/b978-0-12-394308-8.00001-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Gullo F, Maffezzoli A, Dossi E, Lecchi M, Wanke E. Classifying heterogeneity of spontaneous up-states: a method for revealing variations in firing probability, engaged neurons and Fano factor. J Neurosci Methods 2011; 203:407-17. [PMID: 22037594 DOI: 10.1016/j.jneumeth.2011.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 11/26/2022]
Abstract
The dynamics of spontaneous and sensory-evoked up-states have been recently compared, in multi-site recordings in vivo and found to have similarities and differences. Also in vitro, this is evident because we here describe a novel computational method to classify into statistically different states the spontaneous reverberating activity recorded from long-term (12-18 days-in vitro) cultured cortical neurons (from 60-site multi-electrode arrays, MEA). State classification was performed by spike number time histograms (SNTH, or other burst features) of excitatory and inhibitory neuron clusters and revealed that in novel identified states the number of engaged neurons or up-state duration can change. To improve the characterization of each state we also computed the firing spike histograms (FSH) which revealed a new facet of the firing probability of clusters. In exemplary functional experiments we show that: (i) up to 6-7 states can be safely categorized during several hours of recordings without observing spike rate changes, (ii) they disappear after a short pharmacological stimulation being replaced with novel states active and living up to 6-8 h, (iii) antagonists in the nM range can split the activity of a homogeneous network into the chronological coexistence of 2 states, one completely different and one not significantly different from control state. In conclusion, we believe that this novel procedure better characterizes the number of functional states of a network and opens up the possibility of predicting the elementary "vocabulary" used by small networks of neurons.
Collapse
Affiliation(s)
- Francesca Gullo
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | |
Collapse
|
69
|
Straub C, Tomita S. The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr Opin Neurobiol 2011; 22:488-95. [PMID: 21993243 DOI: 10.1016/j.conb.2011.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 02/06/2023]
Abstract
At excitatory synapses in the brain, glutamate released from nerve terminals binds to glutamate receptors to mediate signaling between neurons. Glutamate receptors expressed in heterologous cells show ion channel activity. Recently, native glutamate receptors were shown to contain auxiliary subunits that modulate the trafficking and/or channel properties. The AMPA receptor (AMPAR) can contain TARP and CNIHs as the auxiliary subunits, whereas kainate receptor (KAR) can contain the Neto auxiliary subunit. Each of these auxiliary subunits uniquely modulates the glutamate receptors, and determines properties of native glutamate receptors. A thorough elucidation of the properties of native glutamate receptor complexes is indispensable for the understanding of the molecular machinery that regulates glutamate receptors and excitatory synaptic transmission in the brain.
Collapse
Affiliation(s)
- Christoph Straub
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States
| | | |
Collapse
|
70
|
Ahmed AH, Wang S, Chuang HH, Oswald RE. Mechanism of AMPA receptor activation by partial agonists: disulfide trapping of closed lobe conformations. J Biol Chem 2011; 286:35257-66. [PMID: 21846932 PMCID: PMC3186401 DOI: 10.1074/jbc.m111.269001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/08/2011] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which agonist binding to an ionotropic glutamate receptor leads to channel opening is a central issue in molecular neurobiology. Partial agonists are useful tools for studying the activation mechanism because they produce full channel activation with lower probability than full agonists. Structural transitions that determine the efficacy of partial agonists can provide information on the trigger that begins the channel-opening process. The ligand-binding domain of AMPA receptors is a bilobed structure, and the closure of the lobes is associated with channel activation. One possibility is that partial agonists sterically block full lobe closure but that partial degrees of closure trigger the channel with a lower probability. Alternatively, full lobe closure may be required for activation, and the stability of the fully closed state could determine efficacy with the fully closed state having a lower stability when bound to partial relative to full agonists. Disulfide-trapping experiments demonstrated that even extremely low efficacy ligands such as 6-cyano-7-nitroquinoxaline-2,3-dione can produce a full lobe closure, presumably with low probability. The results are consistent the hypothesis that the efficacy is determined at least in part by the stability of the state in which the lobes are fully closed.
Collapse
Affiliation(s)
| | - Shu Wang
- Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Huai-Hu Chuang
- Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
71
|
Szymańska E, Frydenvang K, Contreras-Sanz A, Pickering DS, Frola E, Serafimoska Z, Nielsen B, Kastrup JS, Johansen TN. A New Phenylalanine Derivative Acts as an Antagonist at the AMPA Receptor GluA2 and Introduces Partial Domain Closure: Synthesis, Resolution, Pharmacology, and Crystal Structure. J Med Chem 2011; 54:7289-98. [DOI: 10.1021/jm200862h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ewa Szymańska
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Maclean DM, Bowie D. Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation. J Physiol 2011; 589:5383-90. [PMID: 21969453 DOI: 10.1113/jphysiol.2011.219485] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic AMPA receptors are greatly influenced by a family of transmembrane AMPA receptor regulatory proteins (TARPs) which control trafficking, channel gating and pharmacology. The prototypical TARP, stargazin (or γ2), shifts the blocking ability of several AMPAR-selective compounds including the commonly used quinoxalinedione antagonists, CNQX and NBQX. Stargazin's effect on CNQX is particularly intriguing as it not only apparently lowers the potency of block, as with NBQX, but also renders it a partial agonist. Given this, agonist behaviour by CNQX has been speculated to account for its weaker blocking effect on AMPAR-TARP complexes. Here we show that this is not the case. The apparent effect of stargazin on CNQX antagonism can be almost entirely explained by an increase in the apparent affinity for l-glutamate (l-Glu), a full agonist and neurotransmitter at AMPAR synapses. Partial agonism at best plays a minor role but not through channel gating per se but rather because CNQX elicits AMPAR desensitization. Our study reveals that CNQX is best thought of as a non-competitive antagonist at glutamatergic synapses due to the predominance of non-equilibrium conditions. Consequently, CNQX primarily reports the proportion of AMPARs available for activation but may also impose additional block by receptor desensitization.
Collapse
Affiliation(s)
- David M Maclean
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Québec, Canada H3G 0B1
| | | |
Collapse
|
73
|
Abstract
Pore-forming subunits of ion channels show channel activity in heterologous cells. However, recombinant and native channels often differ in their channel properties. These discrepancies are resolved by the identification of channel auxiliary subunits. In this review article, an auxiliary subunit of ligand-gated ion channels is defined using four criteria: (1) as a Non-pore-forming subunit, (2) direct and stable interaction with a pore-forming subunit, (3) modulation of channel properties and/or trafficking in heterologous cells, (4) necessity in vivo. We focus particularly on three classes of ionotropic glutamate receptors and their transmembrane interactors. Precise identification of auxiliary subunits and reconstruction of native glutamate receptors will open new directions to understanding the brain and its functions.
Collapse
Affiliation(s)
- Dan Yan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
74
|
Abstract
The properties of synaptic AMPA receptors (AMPARs) depend on their subunit composition and association with transmembrane AMPAR regulatory proteins (TARPs). Although both GluA2 incorporation and TARP association have been shown to influence AMPAR channel conductance, the manner in which different TARPs modulate the mean channel conductance of GluA2-containing AMPARs is unknown. Using ultrafast agonist application and nonstationary fluctuation analysis, we found that TARP subtypes differentially increase the mean channel conductance, but not the peak open probability, of recombinant GluA2-containing AMPARs. TARP γ-8, in particular, enhances mean channel conductance to a greater degree than γ-2, γ-3, or γ-4. We then examined the action of a use-dependent antagonist of GluA2-containing AMPARs, philanthotoxin-74 (PhTx-74), on recombinant AMPARs and on GluA2-containing AMPARs in cerebellar granule neurons from stargazer mice transfected with TARPs. We found that the rate and extent of channel block varies with TARP subtype, in a manner that correlates linearly with mean channel conductance. Furthermore, block of GluA2-containing AMPARs by polyamine toxins varied depending on whether channels were activated by the full agonist glutamate or the partial agonist kainate, consistent with conductance state-dependent block. Block of GluA2-lacking AMPARs by PhTx-433 is also modulated by TARP association and is a function of agonist efficacy. Our data indicate that channel block by polyamine toxins is sensitive to the mean channel conductance of AMPARs, which varies with TARP subtype and agonist efficacy. Furthermore, our results illustrate the utility of polyamine toxins as sensitive probes of AMPAR channel conductance and suggest the possibility that TARPs may influence their channel properties by selectively stabilizing specific channel conformations, rather than altering the pore structure.
Collapse
|
75
|
Jackson AC, Nicoll RA. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 2011; 70:178-99. [PMID: 21521608 DOI: 10.1016/j.neuron.2011.04.007] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) underlie rapid, excitatory synaptic signaling throughout the CNS. After years of intense research, our picture of iGluRs has evolved from them being companionless in the postsynaptic membrane to them being the hub of dynamic supramolecular signaling complexes, interacting with an ever-expanding litany of other proteins that regulate their trafficking, scaffolding, stability, signaling, and turnover. In particular, the discovery that transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that are critical determinants of their trafficking, gating, and pharmacology has changed the way we think about iGluR function. Recently, a number of novel transmembrane proteins have been uncovered that may also serve as iGluR auxiliary proteins. Here we review pivotal developments in our understanding of the role of TARPs in AMPA receptor trafficking and gating, and provide an overview of how newly discovered transmembrane proteins expand our view of iGluR function in the CNS.
Collapse
Affiliation(s)
- Alexander C Jackson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
76
|
Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. J Neurosci 2011; 31:3939-52. [PMID: 21411637 DOI: 10.1523/jneurosci.5134-10.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the cerebellar cortex, parallel fiber-to-stellate cell (PF-SC) synapses exhibit a form of synaptic plasticity manifested as a switch in the subunit composition of synaptic AMPA receptors (AMPARs) from calcium-permeable, GluA2-lacking to calcium-impermeable, GluA2-containing receptors. Here, we examine the role of stargazin (γ-2), canonical member of the transmembrane AMPAR regulatory protein (TARP) family, in the regulation of GluA2-lacking AMPARs and synaptic plasticity in SCs from epileptic and ataxic stargazer mutant mice. We found that AMPAR-mediated synaptic transmission is severely diminished in stargazer SCs, and that the rectification index (RI) of AMPAR current is reduced. Activity-dependent plasticity in the rectification of synaptic AMPARs is also impaired in stargazer SCs. Despite the dramatic loss in synaptic AMPARs, extrasynaptic AMPARs are preserved. We then examined the role of stargazin in regulating the rectification of extrasynaptic AMPARs in nucleated patches and found, in contrast to previous reports, that wild-type extrasynaptic AMPARs have moderate RI values (average RI = 0.38), while those in stargazer SCs are low (average RI = 0.24). The GluA2-lacking AMPAR blocker, philanthotoxin-433 (PhTx-433), was used as an alternative measure of GluA2 content in wild-type and stargazer SCs. Despite the difference in RI, PhTx-433 sensitivity of both synaptic and extrasynaptic AMPARs remains unchanged, suggesting that the dramatic changes in RI and the impairment in synaptic plasticity observed in the stargazer mouse are not the result of a specific impairment in GluA2 trafficking. Together, these data suggest that stargazin regulates compartment-specific AMPAR trafficking, as well as activity-dependent plasticity in synaptic AMPAR rectification at cerebellar PF-SC synapses.
Collapse
|
77
|
Shinohara Y. Quantification of postsynaptic density proteins: glutamate receptor subunits and scaffolding proteins. Hippocampus 2011; 22:942-53. [PMID: 21594948 DOI: 10.1002/hipo.20950] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2011] [Indexed: 11/11/2022]
Abstract
The postsynaptic density (PSD) protein complex has long been a major target of proteomics in neuroscience. As the number of glutamate receptors on a synapse is one of the main determinants of synaptic efficacy, determining the absolute numbers of receptors in the PSD is necessary for estimating the amplitude of the excitatory postsynaptic current (EPSC) in individual synapses. Moreover, as the receptor molecules are embedded in a macromolecular complex within the PSD, stoichiometry between the receptors and other PSD proteins could help explain the functional and regional specialization of the synapses and their possible roles in synaptic plasticity. Here, I review various studies concerned with the quantification of PSD proteins.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- RIKEN Brain Science Institute, Hinase Research Unit, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
78
|
Postila PA, Ylilauri M, Pentikäinen OT. Full and partial agonism of ionotropic glutamate receptors indicated by molecular dynamics simulations. J Chem Inf Model 2011; 51:1037-47. [PMID: 21500800 DOI: 10.1021/ci2000055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are synaptic proteins that facilitate signal transmission in the central nervous system. Extracellular iGluR cleft closure is linked to receptor activation; however, the mechanism underlying partial agonism is not entirely understood. Full agonists close the bilobed ligand-binding domain (LBD), while antagonists prevent closure; the transmembrane ion channel either opens or stays closed, respectively. Although some bulky partial agonists produce intermediate iGluR-LBD closure, the available crystal structures also imply that the cleft can be shut with certain partial agonists. Recently, we have shown that the iGluR-LBD closure stage can be recreated by inserting a ligand into the closed cleft and simulating the ligand-receptor complex with molecular dynamics. Our simulations indicate that partial agonist binding does not necessarily prevent full receptor cleft closure; instead, it destabilizes cleft closure. Interdomain hydrogen bonds were studied thoroughly, and one hydrogen bond, in particular, was consistently disrupted by bound partial agonists. Accordingly, the simulation protocol presented here can be used to categorize compounds in silico as partial or full agonists for iGluRs.
Collapse
Affiliation(s)
- Pekka A Postila
- Department of Biological and Environmental Science, P.O. Box 35, University of Jyväskylä , FI-40014, Finland
| | | | | |
Collapse
|
79
|
|
80
|
Schober DA, Gill MB, Yu H, Gernert DL, Jeffries MW, Ornstein PL, Kato AS, Felder CC, Bredt DS. Transmembrane AMPA receptor regulatory proteins and cornichon-2 allosterically regulate AMPA receptor antagonists and potentiators. J Biol Chem 2011; 286:13134-42. [PMID: 21343286 DOI: 10.1074/jbc.m110.212522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMPA receptors mediate fast excitatory transmission in the brain. Neuronal AMPA receptors comprise GluA pore-forming principal subunits and can associate with multiple modulatory components, including transmembrane AMPA receptor regulatory proteins (TARPs) and CNIHs (cornichons). AMPA receptor potentiators and non-competitive antagonists represent potential targets for a variety of neuropsychiatric disorders. Previous studies showed that the AMPA receptor antagonist GYKI-53655 displaces binding of a potentiator from brain receptors but not from recombinant GluA subunits. Here, we asked whether AMPA receptor modulatory subunits might resolve this discrepancy. We find that the cerebellar TARP, stargazin (γ-2), enhances the binding affinity of the AMPA receptor potentiator [(3)H]-LY450295 and confers sensitivity to displacement by non-competitive antagonists. In cerebellar membranes from stargazer mice, [(3)H]-LY450295 binding is reduced and relatively resistant to displacement by non-competitive antagonists. Coexpression of AMPA receptors with CNIH-2, which is expressed in the hippocampus and at low levels in the cerebellar Purkinje neurons, confers partial sensitivity of [(3)H]-LY450295 potentiator binding to displacement by non-competitive antagonists. Autoradiography of [(3)H]-LY450295 binding to stargazer and γ-8-deficient mouse brain sections, demonstrates that TARPs regulate the pharmacology of allosteric AMPA potentiators and antagonists in the cerebellum and hippocampus, respectively. These studies demonstrate that accessory proteins define AMPA receptor pharmacology by functionally linking allosteric AMPA receptor potentiator and antagonist sites.
Collapse
Affiliation(s)
- Douglas A Schober
- Discovery Neuroscience Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, Qian YW, Nisenbaum ES, Tomita S, Bredt DS. Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron 2011; 68:1082-96. [PMID: 21172611 DOI: 10.1016/j.neuron.2010.11.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 11/17/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) and cornichon proteins (CNIH-2/3) independently modulate AMPA receptor trafficking and gating. However, the potential for interactions of these subunits within an AMPA receptor complex is unknown. Here, we find that TARPs γ-4, γ-7, and γ-8, but not γ-2, γ-3, or γ-5, cause AMPA receptors to "resensitize" upon continued glutamate application. With γ-8, resensitization occurs with all GluA subunit combinations; however, γ-8-containing hippocampal neurons do not display resensitization. In recombinant systems, CNIH-2 abrogates γ-8-mediated resensitization and modifies AMPA receptor pharmacology and gating to match that of hippocampal neurons. In hippocampus, γ-8 and CNIH-2 associate in postsynaptic densities and CNIH-2 protein levels are markedly diminished in γ-8 knockout mice. Manipulating neuronal CNIH-2 levels modulates the electrophysiological properties of extrasynaptic and synaptic γ-8-containing AMPA receptors. Thus, γ-8 and CNIH-2 functionally interact with common hippocampal AMPA receptor complexes to modulate synergistically kinetics and pharmacology.
Collapse
Affiliation(s)
- Akihiko S Kato
- Department of Neuroscience, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2612] [Impact Index Per Article: 186.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating. Proc Natl Acad Sci U S A 2010; 107:16315-9. [PMID: 20805473 DOI: 10.1073/pnas.1011706107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamate receptors of the AMPA subtype (AMPARs) mediate fast synaptic transmission in the brain. These ionotropic receptors rely on auxiliary subunits known as transmembrane AMPAR regulatory proteins (TARPs) for both trafficking and gating. Recently, a second family of AMPAR binding proteins, referred to as cornichons, were identified and also proposed to function as auxiliary subunits. Cornichons are transmembrane proteins that modulate AMPAR function in expression systems much like TARPs. In the present study we compare the role of cornichons in controlling AMPA receptor function in neurons and HEK cells to that of TARPs. Cornichons mimic some, but not all, of the actions of TARPs in HEK cells; their role in neurons, however, is more limited. Although expressed cornichons can affect the trafficking of AMPARs, they were not detected on the surface of neurons and failed to alter the kinetics of endogenous AMPARs. This neuronal role is more consistent with that of an endoplasmic reticulum (ER) chaperone rather than a bona fide auxiliary subunit.
Collapse
|
84
|
Pøhlsgaard J, Frydenvang K, Madsen U, Kastrup JS. Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators. Neuropharmacology 2010; 60:135-50. [PMID: 20713069 DOI: 10.1016/j.neuropharm.2010.08.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/22/2010] [Accepted: 08/07/2010] [Indexed: 11/24/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) constitute a family of ligand-gated ion channels that are essential for mediating fast synaptic transmission in the central nervous system. These receptors play an important role for the development and function of the nervous system, and are essential in learning and memory. However, iGluRs are also implicated in or have causal roles for several brain disorders, e.g. epilepsy, Alzheimer's disease, Parkinson's disease and schizophrenia. Their involvement in neurological diseases has stimulated widespread interest in their structure and function. Since the first publication in 1998 of the structure of a recombinant soluble protein comprising the ligand-binding domain of GluA2 extensive studies have afforded numerous crystal structures of wildtype and mutant proteins including different ligands. The structural information obtained combined with functional data have led to models for receptor activation and desensitization by agonists, inhibition by antagonists and block of desensitization by positive allosteric modulators. Furthermore, the structural and functional studies have formed a powerful platform for the design of new selective compounds.
Collapse
Affiliation(s)
- Jacob Pøhlsgaard
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
85
|
Talpalar AE, Kiehn O. Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CpG. Front Neural Circuits 2010; 4. [PMID: 20844601 PMCID: PMC2938926 DOI: 10.3389/fncir.2010.00019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/12/2010] [Indexed: 11/13/2022] Open
Abstract
Locomotion is a fundamental motor act that, to a large degree, is controlled by central pattern-generating (CPG) networks in the spinal cord. Glutamate is thought to be responsible for most of the excitatory input to and the excitatory activity within the locomotor CPG. However, previous studies in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors (GluRs) in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad range of ionotropic GluRs in the control of locomotor speed and intrinsic locomotor network function. We show that non-NMDA (non-NMDARs) and NMDA receptor (NMDAR) systems may independently mediate locomotor-like activity and that these receptors set different speeds of locomotor-like activity through mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDARs are more important than non-NMDARs for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor activity. This study reveals that a diversity of ionotropic GluRs tunes the network to perform at different locomotor speeds and provides multiple levels for potential regulation and plasticity.
Collapse
Affiliation(s)
- Adolfo E Talpalar
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | |
Collapse
|
86
|
Shelley C, Cull-Candy SG. Desensitization and models of receptor-channel activation. J Physiol 2010; 588:1395-7. [PMID: 20436045 DOI: 10.1113/jphysiol.2010.188664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chris Shelley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
87
|
Sumioka A, Yan D, Tomita S. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 2010; 66:755-67. [PMID: 20547132 DOI: 10.1016/j.neuron.2010.04.035] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2010] [Indexed: 01/25/2023]
Abstract
Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guanylate kinases. Among the three classes of ionotropic glutamate receptors (AMPA, NMDA, and kainate type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively charged lipid bilayers in a phosphorylation-dependent manner and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction.
Collapse
Affiliation(s)
- Akio Sumioka
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
88
|
AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron 2010; 66:768-80. [PMID: 20547133 DOI: 10.1016/j.neuron.2010.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2010] [Indexed: 11/24/2022]
Abstract
Central nervous system synapses undergo activity-dependent alterations to support learning and memory. Long-term depression (LTD) reflects a sustained reduction of the synaptic AMPA receptor content based on targeted clathrin-mediated endocytosis. Here we report a current-independent form of AMPA receptor signaling, fundamental for LTD. We found that AMPA receptors directly interact via the GluA2 subunit with the synaptic protein BRAG2, which functions as a guanine-nucleotide exchange factor (GEF) for the coat-recruitment GTPase Arf6. BRAG2-mediated catalysis, controlled by ligand-binding and tyrosine phosphorylation of GluA2, activates Arf6 to internalize synaptic AMPA receptors upon LTD induction. Furthermore, acute blockade of the GluA2-BRAG2 interaction and targeted deletion of BRAG2 in mature hippocampal CA1 pyramidal neurons prevents LTD in CA3-to-CA1 cell synapses, irrespective of the induction pathway. We conclude that BRAG2-mediated Arf6 activation triggered by AMPA receptors is the convergent step of different forms of LTD, thus providing an essential mechanism for the control of vesicle formation by endocytic cargo.
Collapse
|
89
|
Alushin GM, Jane D, Mayer ML. Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists. Neuropharmacology 2010; 60:126-34. [PMID: 20558186 DOI: 10.1016/j.neuropharm.2010.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
The availability of crystal structures for the ligand binding domains of ionotropic glutamate receptors, combined with their key role in synaptic function in the normal and diseased brain, offers a unique selection of targets for pharmaceutical research compared to other drug targets for which the atomic structure of the ligand binding site is not known. Currently only a few antagonist structures have been solved, and these reveal ligand specific conformational changes that hinder rational drug design. Here we report high resolution crystal structures for three kainate receptor GluK1 antagonist complexes which reveal new and unexpected modes of binding, highlighting the continued need for experimentally determined receptor-ligand complexes.
Collapse
Affiliation(s)
- Gregory M Alushin
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, DHHS, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
90
|
Santamaria F, Gonzalez J, Augustine GJ, Raghavachari S. Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. PLoS Comput Biol 2010; 6:e1000780. [PMID: 20485563 PMCID: PMC2869312 DOI: 10.1371/journal.pcbi.1000780] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 04/09/2010] [Indexed: 11/19/2022] Open
Abstract
One mechanism of information storage in neurons is believed to be determined by the strength of synaptic contacts. The strength of an excitatory synapse is partially due to the concentration of a particular type of ionotropic glutamate receptor (AMPAR) in the post-synaptic density (PSD). AMPAR concentration in the PSD has to be plastic, to allow the storage of new memories; but it also has to be stable to preserve important information. Although much is known about the molecular identity of synapses, the biophysical mechanisms by which AMPAR can enter, leave and remain in the synapse are unclear. We used Monte Carlo simulations to determine the influence of PSD structure and activity in maintaining homeostatic concentrations of AMPARs in the synapse. We found that, the high concentration and excluded volume caused by PSD molecules result in molecular crowding. Diffusion of AMPAR in the PSD under such conditions is anomalous. Anomalous diffusion of AMPAR results in retention of these receptors inside the PSD for periods ranging from minutes to several hours in the absence of strong binding of receptors to PSD molecules. Trapping of receptors in the PSD by crowding effects was very sensitive to the concentration of PSD molecules, showing a switch-like behavior for retention of receptors. Non-covalent binding of AMPAR to anchored PSD molecules allowed the synapse to become well-mixed, resulting in normal diffusion of AMPAR. Binding also allowed the exchange of receptors in and out of the PSD. We propose that molecular crowding is an important biophysical mechanism to maintain homeostatic synaptic concentrations of AMPARs in the PSD without the need of energetically expensive biochemical reactions. In this context, binding of AMPAR with PSD molecules could collaborate with crowding to maintain synaptic homeostasis but could also allow synaptic plasticity by increasing the exchange of these receptors with the surrounding extra-synaptic membrane. One of the most accepted theories of information storage in neurons is that it is partially localized in the strength of synaptic contacts. Evidence suggests that at the cellular level, in combination with other cellular mechanisms, this is implemented by increasing or decreasing the concentration of a particular type of membrane molecules. Two opposing mechanisms have to coexist in synapses to allow them to store information. On one hand, synapses have to be flexible, to allow the storage of new memories. On the other hand, synapses have to be stable to preserve previously learned information. Although much is known about the molecular identity of synapses, the biophysical mechanisms by which molecules can enter, leave and remain in the synapse are unclear. Our modeling work uses fundamental biophysical principles to quantify the effects of molecular collisions and biochemical reactions. Our results show that molecular collisions alone, between the diffusing proteins with anchored molecules in the synapse, can replicate known experimental results. Molecular collision in combination with biochemical binding can be fundamental biophysical principles used by synapses for the formation and preservation of memories.
Collapse
Affiliation(s)
- Fidel Santamaria
- Biology Department, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail: (FS); (SR)
| | - Jossina Gonzalez
- Biology Department, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - George J. Augustine
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sridhar Raghavachari
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (FS); (SR)
| |
Collapse
|
91
|
Tomita S. Regulation of ionotropic glutamate receptors by their auxiliary subunits. Physiology (Bethesda) 2010; 25:41-9. [PMID: 20134027 DOI: 10.1152/physiol.00033.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate receptors are major excitatory receptors in the brain. Recent findings have established auxiliary subunits of glutamate receptors as critical modulators of synaptic transmission, synaptic plasticity, and neurological disorder. The elucidation of the molecular rules governing glutamate receptors and subunits will improve our understanding of synapses and of neural-circuit regulation in the brain.
Collapse
Affiliation(s)
- Susumu Tomita
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
92
|
Kato AS, Gill MB, Yu H, Nisenbaum ES, Bredt DS. TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci 2010; 33:241-8. [PMID: 20219255 DOI: 10.1016/j.tins.2010.02.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 11/30/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are the first identified auxiliary subunits for a neurotransmitter-gated ion channel. Although initial studies found that stargazin, the prototypical TARP, principally chaperones AMPA receptors, subsequent research demonstrated that it also regulates AMPA receptor kinetics and synaptic waveforms. Recent studies have identified a diverse collection of TARP isoforms--types Ia, Ib II--that distinctly regulate AMPA receptor trafficking, gating and neuropharmacology. These TARP isoforms are heterogeneously expressed in specific neuronal populations and can differentially sculpt synaptic transmission and plasticity. Whole-genome analyses also link multiple TARP loci to childhood epilepsy, schizophrenia and bipolar disorder. TARPs emerge as vital components of excitatory synapses that participate both in signal transduction and in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Akihiko S Kato
- Department of Neuroscience, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285-0510, USA
| | | | | | | | | |
Collapse
|
93
|
Ni X, Martin-Caraballo M. Differential effect of glutamate receptor blockade on dendritic outgrowth in chicken lumbar motoneurons. Neuropharmacology 2010; 58:593-604. [PMID: 19995566 DOI: 10.1016/j.neuropharm.2009.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 11/25/2022]
|
94
|
Lee SH, Govindaiah G, Cox CL. Selective excitatory actions of DNQX and CNQX in rat thalamic neurons. J Neurophysiol 2010; 103:1728-34. [PMID: 20107128 DOI: 10.1152/jn.00540.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thalamic reticular nucleus (TRN) consists of GABA-containing neurons that form reciprocal synaptic connections with thalamic relay nuclei. Excitatory synaptic innervation of TRN neurons arises from glutamatergic afferents from thalamocortical relay neurons and deep layer corticothalamic neurons, and they produce excitation via both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Quinoxaline derivatives [e.g., 6,7-dinitroquinoxaline-2,3-dione (DNQX), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] have routinely been used as non-NMDA receptor antagonists over the last two decades. In this study, we examined whether quinoxaline derivatives alter the intrinsic properties of thalamic neurons in light of recent findings indicating that these compounds can alter neuronal excitability in hippocampal and cerebellar neurons via transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs). Whole cell recordings were obtained from TRN and ventrobasal (VB) thalamic relay neurons in vitro. DNQX and CNQX produced a consistent depolarization in all TRN neurons tested. The depolarization persisted in tetrodotoxin and low Ca²+/high Mg²+ conditions, suggesting a postsynaptic site of action. In contrast, DNQX and CNQX produced little or no change in VB thalamocortical relay neurons. The nonspecific ionotropic glutamate receptor antagonist, kynurenic acid, and the selective AMPAR antagonist, 4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-5-yl)-benzenamine hydrochloride, blocked the DNQX-mediated depolarizations. Our results indicate that the DNQX- and CNQX-mediated depolarizations are mediated by AMPAR but not kainate receptors in TRN neurons. The AMPAR-positive allosteric modulator, trichloromethiazide, potentiated the DNQX-mediated depolarization in TRN neurons but did not unmask any excitatory actions of DNQX/CNQX in relay neurons. This selective action may not only reveal a differential TARP distribution among thalamic neurons but also may provide insight into distinct characteristics of AMPA receptors of thalamic neurons that could be exploited by future pharmacological development. Furthermore, these data suggest that quinoxaline derivatives could modulate synaptic transmission and alter neuronal excitability.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
95
|
Fleming JJ, England PM. Developing a complete pharmacology for AMPA receptors: a perspective on subtype-selective ligands. Bioorg Med Chem 2010; 18:1381-7. [PMID: 20096591 DOI: 10.1016/j.bmc.2009.12.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/19/2009] [Accepted: 12/31/2009] [Indexed: 01/15/2023]
Abstract
AMPA receptors are a family of ligand-gated ion channels that play central roles in rapid neural signaling and in regulation of synaptic strength. Additionally, these receptors are implicated in a number of major psychiatric and neurological diseases. A comprehensive understanding of the roles that AMPA receptors play in the mammalian nervous system has been hampered by the dearth of ligands available to select between individual AMPA receptors subtypes. Here we provide a perspective on opportunities for developing a complete pharmacology for AMPA receptors.
Collapse
Affiliation(s)
- James J Fleming
- Department of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
96
|
Liu Y, Formisano L, Savtchouk I, Takayasu Y, Szabó G, Zukin RS, Liu SJ. A single fear-inducing stimulus induces a transcription-dependent switch in synaptic AMPAR phenotype. Nat Neurosci 2009; 13:223-31. [PMID: 20037575 PMCID: PMC3140064 DOI: 10.1038/nn.2474] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 11/20/2009] [Indexed: 11/09/2022]
Abstract
Changes in emotional state are known to alter neuronal excitability and can modify learning and memory formation. Such experience–dependent neuronal plasticity can be long-lasting and is thought to involve the regulation of gene transcription. Here we show that a single fear-inducing stimulus increases GluR2 mRNA abundance and promotes synaptic incorporation of GluR2-containing AMPA receptors (AMPARs) in mouse cerebellar stellate cells. The switch in synaptic AMPAR phenotype is mediated by noradrenaline and action potential prolongation. The subsequent rise in intracellular Ca2+ and activation of Ca2+-sensitive ERK /MAPK signaling trigger new GluR2 gene transcription and a switch in the synaptic AMPAR phenotype from GluR2-lacking, Ca2+-permeable, to GluR2-containing Ca2+-impermeable receptors on the order of hours. The change in glutamate receptor phenotype alters synaptic efficacy in cerebellar stellate cells. Thus, a single fear-inducing stimulus can induce a long-term change in synaptic receptor phenotype and may alter the activity of an inhibitory neural network.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Sager C, Terhag J, Kott S, Hollmann M. C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function. J Biol Chem 2009; 284:32413-24. [PMID: 19773551 DOI: 10.1074/jbc.m109.039891] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors are essential players in fast synaptic transmission in the vertebrate central nervous system. Their synaptic delivery and localization as well as their electrophysiological properties are regulated by transmembrane AMPA receptor regulatory proteins (TARPs). However, the exact mechanisms of how the four originally designated TARPs (gamma2, gamma3, gamma4, and gamma8) modulate AMPA receptor function remain largely unknown. Previous studies suggested the C-terminal domain (CTD) of gamma2 to mediate increased trafficking and reduced desensitization of AMPA receptors. As it remained unclear whether these findings extend to other TARPs, we set out to investigate and compare the role of the CTDs of the four original TARPs in AMPA receptor modulation. To address this issue, we replaced the TARP CTDs with the CTD of the homologous subunit gamma1, a voltage-dependent calcium channel subunit expressed in skeletal muscle that lacks TARP properties. We analyzed the impact of the resulting chimeras on GluR1 functional properties in Xenopus oocytes and HEK293 cells. Interestingly, the CTDs of all TARPs not only modulate the extent and kinetics of desensitization but also modulate agonist potencies of AMPA receptors. Furthermore, the CTDs are required for TARP-induced modulation of AMPA receptor gating, including conversion of antagonists to partial agonists and constitutive channel openings. Strikingly, we found a special role of the cytoplasmic tail of gamma4, suggesting that the underlying mechanisms of modulation of AMPA receptor function are different among the TARPs. We propose that the intracellularly located CTD is the origin of TARP-specific functional modulation and not merely a facilitator of trafficking.
Collapse
Affiliation(s)
- Charlotte Sager
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Germany
| | | | | | | |
Collapse
|
98
|
Schmidt C, Klein C, Hollmann M. Xenopus laevis Oocytes Endogenously Express All Subunits of the Ionotropic Glutamate Receptor Family. J Mol Biol 2009; 390:182-95. [DOI: 10.1016/j.jmb.2009.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 01/27/2023]
|
99
|
Möykkynen TP, Coleman SK, Keinänen K, Lovinger DM, Korpi ER. Ethanol increases desensitization of recombinant GluR-D AMPA receptor and TARP combinations. Alcohol 2009; 43:277-84. [PMID: 19560629 DOI: 10.1016/j.alcohol.2009.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/24/2009] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
Abstract
Glutamate receptors are important target molecules of the acute effect of ethanol. We studied ethanol sensitivity of homomeric GluR-D receptors expressed in human embryonic kidney 293 cells and examined whether recently discovered transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory proteins (TARPs) affect ethanol sensitivity. Coexpression of the TARPs, stargazin, and gamma4 increased the time constant (tau-value) of current decay in the presence of agonist, thus slowing the onset of desensitization and increasing the steady-state current. Ethanol produced less inhibition of the peak current than the steady-state current for all types of the GluR-D receptors. In addition, ethanol concentration-dependently accelerated the rate of desensitization, measured as the tau-value of fast decay of peak current. This effect was enhanced with coexpression of TARPs. The recovery from desensitization was slowed down by coexpression of gamma4 but ethanol did not affect this process in any GluR-D combination. The results support the idea that increased desensitization is an important mechanism in the ethanol inhibition of AMPA receptors and indicate that coexpression of TARPs can alter this effect of ethanol.
Collapse
|
100
|
Ahmed AH, Thompson MD, Fenwick MK, Romero B, Loh AP, Jane DE, Sondermann H, Oswald RE. Mechanisms of antagonism of the GluR2 AMPA receptor: structure and dynamics of the complex of two willardiine antagonists with the glutamate binding domain. Biochemistry 2009; 48:3894-903. [PMID: 19284741 PMCID: PMC2693247 DOI: 10.1021/bi900107m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ionotropic glutamate receptors mediate the majority of vertebrate excitatory synaptic transmission. The development of selective antagonists for glutamate receptor subtypes is of interest in the treatment of a variety of neurological disorders. This study presents the crystal structure of the binding domain of GluR2 bound to two antagonists (UBP277 and UBP282) that are derivatives of the natural product, willardiine. The antagonists bind to one lobe of the protein with interactions similar to agonists. Interaction with the second lobe differs between the two antagonists, resulting in a different position of the uracil ring and different orientations of the bilobed structure. UBP277 binding produces a stable lobe orientation that is similar to the apo state, but the binding of UBP282 produces the largest hyperextension of the lobes yet reported for an AMPA receptor. The carboxyethyl (UBP277) and carboxybenzyl (UBP282) substituents in the N(3) position keep the lobes separated by a "foot-in-the-door" mechanism and the internal dynamics are minimal compared to the CNQX-bound form of the protein (which makes minimal contacts with one of the two lobes). In contrast to the antagonists CNQX and DNQX, UBP277 and UBP282 produce complexes with higher thermal stability, but affinities that are more than 100-fold lower. These structures support the idea that antagonism is associated with the overall orientation of the lobes rather than with specific interactions, and antagonism can rise either from specific interactions with both lobes ("foot-in-the-door" mechanism) or from the lack of extensive interactions with one of the two lobes.
Collapse
Affiliation(s)
- Ahmed H. Ahmed
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | | | - Michael K. Fenwick
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Bethsabe Romero
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Adrienne P. Loh
- Department of Chemistry, University of Wisconsin-La Crosse, La Crosse, WI 54601 USA
| | - David E. Jane
- Department of Physiology & Pharmacology, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol BS8 1TD UK
| | - Holger Sondermann
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Robert E. Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA,Corresponding author; telephone: 1-607-253-3877; fax: 1-607-253-3659;
| |
Collapse
|