51
|
Xu M, Liu P, Huang Q, Xu S, Dumont HJ, Han BP. High-quality genome of Diaphanosoma dubium provides insights into molecular basis of its broad ecological adaptation. iScience 2023; 26:106006. [PMID: 36798432 PMCID: PMC9926121 DOI: 10.1016/j.isci.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Diaphanosoma dubium Manuilova, 1964, is a widespread planktonic water flea in Asian freshwater. Although sharing similar ecological roles with species of Daphnia, studies on D. dubium and its congeners are still few and lacking a genome for the further studies. Here, we assembled a high quality and chromosome level genome of D. dubium by combining long reads sequencing and Hi-C technologies. The total length of assembled genome was 101.8 Mb, with 98.92 Mb (97.2%) anchored into 22 chromosomes. Through comparative genomic analysis, we found the genes, involved in anti-ROS, detoxification, protein digestion, germ cells regulation and protection, underwent expansion in D. dubium. These genes and their expansion helpfully explain its widespread geographical distribution and dominance in eutrophic waters. This study provides insight into the adaptive evolution of D. dubium at genomic perspectives, and the present high quality genomic resource will be a footstone for future omics studies of the species and its congeners.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ping Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Shaolin Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Henri J. Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Corresponding author
| |
Collapse
|
52
|
Hamza W, Hazzouri KM, Sudalaimuthuasari N, Amiri KMA, Neretina AN, Al Neyadi SES, Kotov AA. Genome Assembly of a Relict Arabian Species of Daphnia O. F. Müller (Crustacea: Cladocera) Adapted to the Desert Life. Int J Mol Sci 2023; 24:ijms24010889. [PMID: 36614331 PMCID: PMC9820869 DOI: 10.3390/ijms24010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
The water flea Daphnia O.F. Müller 1776 (Crustacea: Cladocera) is an important model of recent evolutionary biology. Here, we report a complete genome of Daphnia (Ctenodaphnia) arabica (Crustacea: Cladocera), recently described species endemic to deserts of the United Arab Emirates. In this study, genome analysis of D. arabica was carried out to investigate its genomic differences, complexity as well as its historical origins within the subgenus Daphnia (Ctenodaphnia). Hybrid genome assembly of D. arabica resulted in ~116 Mb of the assembled genome, with an N50 of ~1.13 Mb (BUSCO score of 99.2%). From the assembled genome, in total protein coding, 5374 tRNA and 643 rRNA genes were annotated. We found that the D. arabica complete genome differed from those of other Daphnia species deposited in the NCBI database but was close to that of D. cf. similoides. However, its divergence time estimate sets D. arabica in the Mesozoic, and our demographic analysis showed a great reduction in its genetic diversity compared to other Daphnia species. Interestingly, the population expansion in its diversity occurred during the megadrought climate around 100 Ka ago, reflecting the adaptive feature of the species to arid and drought-affected environments. Moreover, the PFAM comparative analysis highlights the presence of the important domain SOSS complex subunit C in D. arabica, which is missing in all other studied species of Daphnia. This complex consists of a few subunits (A, B, C) working together to maintain the genome stability (i.e., promoting the reparation of DNA under stress). We propose that this domain could play a role in maintaining the fitness and survival of this species in the desert environment. The present study will pave the way for future research to identify the genes that were gained or lost in this species and identify which of these were key factors to its adaptation to the harsh desert environment.
Collapse
Affiliation(s)
- Waleed Hamza
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (W.H.); (A.A.K.)
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M. A. Amiri
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Anna N. Neretina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Shamma E. S. Al Neyadi
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alexey A. Kotov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: (W.H.); (A.A.K.)
| |
Collapse
|
53
|
Randall TA, Kurtz DM. Assembly of a Draft Genome for the Mouse Ectoparasite Myocoptes musculinus. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:55-63. [PMID: 36755207 PMCID: PMC9936850 DOI: 10.30802/aalas-jaalas-22-000066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Myocoptes musculinus is a common ectoparasite of wild mice and is occasionally found on research mice. Infestations of research mice are often subclinical but can cause severe dermatitis. Perhaps more importantly, infestations can cause immunologic reactions that may alter research outcomes, and most animal research facilities strive to prevent or eliminate mites from their mouse colonies. M. musculinus infestations are currently detected by using microscopic evaluation of the fur and skin and PCR assays of pelt swabs targeting the rRNA genes of this mite. In our facility, we encountered multiple, false-positive 18S rRNA PCR results from a closed mouse colony. We could not identify the source of the false positives even after performing PCR analysis of other Myocoptes gene targets using assays developed from the few other target genomic sequences available for M. musculinus or Myocoptes japonensis in public databases. This situation highlighted the limited genetic resources available for development of diagnostic tests specific for this ectoparasite. To expand the available genetic resources, we generated a metagenome of M. musculinus derived by sequencing from fur plucks of an infected mouse. We also determined the completeness of this metagenome and compared it with those of related mites.
Collapse
Affiliation(s)
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina,Corresponding author.
| |
Collapse
|
54
|
Villeneuve DL, Le M, Hazemi M, Biales A, Bencic DC, Bush K, Flick R, Martinson J, Morshead M, Rodriguez KS, Vitense K, Flynn K. Pilot testing and optimization of a larval fathead minnow high throughput transcriptomics assay. Curr Res Toxicol 2022; 4:100099. [PMID: 36619288 PMCID: PMC9816907 DOI: 10.1016/j.crtox.2022.100099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Concentrations at which global gene expression profiles in cells or animals exposed to a test substance start to differ significantly from those of controls have been proposed as an alternative point of departure for use in screening level hazard assessment. The present study describes pilot testing of a high throughput compatible transcriptomics assay with larval fathead minnows. One day post hatch fathead minnows were exposed to eleven different concentrations of three metals, three selective serotonin reuptake inhibitors, and four neonicotinoid-like compounds for 24 h and concentration response modeling was applied to whole body gene expression data. Transcriptomics-based points of departure (tPODs) were consistently lower than effect concentrations reported in apical endpoint studies in fish. However, larval fathead minnow-based tPODs were not always lower than concentrations reported to elicit apical toxicity in other aquatic organisms like crustaceans or insects. Random in silico subsampling of data from the pilot assays was used to evaluate various assay design and acceptance considerations such as transcriptome coverage, number of replicate individuals to sequence per treatment, and minimum number of differentially expressed genes to produce a reliable tPOD estimate. Results showed a strong association between the total number of genes for which a concentration response relationship could be derived and the overall variability in the resulting tPOD estimates. We conclude that, for our current assay design and analysis pipeline, tPODs based on fewer than 15 differentially expressed genes are likely to be unreliable for screening and that interindividual variability in gene expression profiles appears to be a more significant driver of tPOD variability than sample size alone. Results represent initial steps toward developing high throughput transcriptomics assays for use in ecological hazard screening.
Collapse
Key Words
- BMD, Benchmark dose
- Benchmark dose
- Computational toxicology
- DEGs, Differentially expressed genes
- ECOTOX knowledgebase
- Fish
- HTTr, High throughput transcriptomics
- RIN, RNA integrity number
- RNA sequencing
- RNAseq, RNA sequencing
- SSRI, Selective serotonin reuptake inhibitor
- ToxCast, US EPA Toxicity Forecaster
- Transcriptomics-based point of departure
- cDNA, Complementary DNA
- eco-HTTr, Ecological high throughput transcriptomics
- tPOD, Transcriptomics-based point of departure
Collapse
Affiliation(s)
- Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA,Corresponding author at: U.S. EPA Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804-2595, USA.
| | - Michelle Le
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, US Environmental Protection Agency Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Monique Hazemi
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, US Environmental Protection Agency Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Adam Biales
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Cincinnati, OH 45220, USA
| | - David C. Bencic
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Cincinnati, OH 45220, USA
| | - Kendra Bush
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, US Environmental Protection Agency Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Robert Flick
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Cincinnati, OH 45220, USA
| | - John Martinson
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Cincinnati, OH 45220, USA
| | - Mackenzie Morshead
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, US Environmental Protection Agency Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Kelvin Santana Rodriguez
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, US Environmental Protection Agency Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Kelsey Vitense
- US Environmental Protection Agency, Scientific Computing and Data Curation Division, Duluth, MN 55804, USA
| | - Kevin Flynn
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| |
Collapse
|
55
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
56
|
Jeong H, Lee YH, Sayed AEDH, Jeong CB, Zhou B, Lee JS, Byeon E. Short- and long-term single and combined effects of microplastics and chromium on the freshwater water flea Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106348. [PMID: 36356355 DOI: 10.1016/j.aquatox.2022.106348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, we investigated the individual and combined effects of microplastics (MPs) and chromium (Cr) on the freshwater water flea Daphnia magna by measuring mortality, bioaccumulation, antioxidative response, multixenobiotic resistance activity, and sestrin-related mitochondrial biogenesis in short-term assays and in vivo endpoints including reproduction and adult survival rate in long-term assays. Exposure to MPs, Cr, and their combination caused significant deleterious effects and acute toxicity in D. magna. Alterations in oxidative stress occurred in the groups treated with MPs and Cr alone and together. However, upon co-exposure to MPs, the Cr concentration, measured by inductively coupled plasma optical emission spectroscopy, decreased, suggesting that MPs and Cr interact with each other. Based on enzymatic activities, we noted a decrease in MP egestion via inhibition of P-glycoprotein activity in the MP-exposed groups, and multidrug resistance-associated protein activity increased in some of the MP-exposed animals depending on Cr concentration. On the other hand, MP exposure seemed to lead to mitochondrial transcription dysfunction induced by Cr via sestrin-related mitochondrial biogenesis. Overall, these results indicate that co-exposure to MPs and Cr causes acute toxicity in D. magna but lacks the chronic toxicity (21 days) and mitochondrial dysfunction caused by Cr exposure alone.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
57
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
58
|
Smaali A, Berkani M, Benmatti H, Lakhdari N, Al Obaid S, Alharbi SA, Fakhreddine B, Ines A, Marouane F, Rezania S, Lakhdari N. Degradation of Azithromycin from aqueous solution using Chlorine-ferrous- oxidation: ANN-GA modeling and Daphnia magna biotoxicity test assessment. ENVIRONMENTAL RESEARCH 2022; 214:114026. [PMID: 35977588 DOI: 10.1016/j.envres.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZM), an antibacterial considered one of the most consumed drugs, especially during the period against the Covid 19 pandemic, and it is one of the persistent contaminants that can be released into aquatic ecosystems. The purpose of this study is to determine the efficacy of a Fenton-like process (chlorine/iron) for the degradation of AZM in an aqueous medium by determining the impact of several factors (the initial concentration of (FeSO4, NaClO, pollutant), and the initial pH) on the degradation rate. The Response Surface Methodology (RSM) based on the Box-Wilson design as well as the Artificial Neural Network (ANN) modeling combined with a genetic algorithm (GA) approaches were used to determine the optimal levels of the selected variables and the optimal rate of degradation. The quadratic model of multi-linear regression developed indicated that the optimal conditions were a concentration of chlorine of 600 μM, the concentration of AZM is 32.8 mg/L, the mass of the catalyst FeSO4 is 3.5 mg and a pH of 2.5, these optimal values gave a predicted and experimental yield of 64.05% and 70% respectively, the lack of fit test in RSM modeling (F0 = 3.31 which is inferior to Fcritic (0.05, 10.4) = 5.96) indicates that the true regression function is not linear therefore, the ANN-GA modeling as non-linear regression indicated that the optimal conditions were a concentration of chlorine of 256 μM, the concentration of AZM is 5 mg/L, the mass of the catalyst FeSO4 is 9.5 mg and a pH of 2.8, these optimal values gave a predicted and experimental yield of 79.69% and close to 80% respectively, Furthermore, biotoxicity tests were conducted to confirm the performance of our process using bio-indicators called daphnia (Daphnia magna), which demonstrated the efficacy of the like-Fenton process after 4 h of degradation.
Collapse
Affiliation(s)
- Anfel Smaali
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Hadjer Benmatti
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Belhadef Fakhreddine
- Laboratoire de Biologie et Environnement, Campus Chaab-Erssas, Biopole université des frères Mentouri Constantine 1, Ain Bey, 25000, Constantine, Algeria
| | - Amri Ines
- Laboratoire SARL HupPharma 25100, Constantine, Algeria
| | - Fateh Marouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| |
Collapse
|
59
|
Palecanda S, Iwanicki T, Steck M, Porter ML. Crustacean conundrums: a review of opsin diversity and evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210289. [PMID: 36058240 PMCID: PMC9441232 DOI: 10.1098/rstb.2021.0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/06/2022] [Indexed: 11/12/2022] Open
Abstract
Knowledge of crustacean vision is lacking compared to the more well-studied vertebrates and insects. While crustacean visual systems are typically conserved morphologically, the molecular components (i.e. opsins) remain understudied. This review aims to characterize opsin diversity across crustacean lineages for an integrated view of visual system evolution. Using publicly available data from 95 species, we identified opsin sequences and classified them by clade. Our analysis produced 485 putative visual opsins and 141 non-visual opsins. The visual opsins were separated into six clades: long wavelength sensitive (LWS), middle wavelength sensitive (MWS) 1 and 2, short wavelength or ultraviolet sensitive (SWS/UVS) and a clade of thecostracan opsins, with multiple LWS and MWS opsin copies observed. The SWS/UVS opsins were relatively conserved in most species. The crustacean classes Cephalocarida, Remipedia and Hexanauplia exhibited reduced visual opsin diversity compared to others, with the malacostracan decapods having the highest opsin diversity. Non-visual opsins were identified from all investigated classes except Cephalocarida. Additionally, a novel clade of non-visual crustacean-specific, R-type opsins (Rc) was discovered. This review aims to provide a framework for future research on crustacean vision, with an emphasis on the need for more work in spectral characterization and molecular analysis. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Sitara Palecanda
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Thomas Iwanicki
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mireille Steck
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Megan L. Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
60
|
Abdullahi M, Li X, Abdallah MAE, Stubbings W, Yan N, Barnard M, Guo LH, Colbourne JK, Orsini L. Daphnia as a Sentinel Species for Environmental Health Protection: A Perspective on Biomonitoring and Bioremediation of Chemical Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14237-14248. [PMID: 36169655 PMCID: PMC9583619 DOI: 10.1021/acs.est.2c01799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 05/14/2023]
Abstract
Despite available technology and the knowledge that chemical pollution damages human and ecosystem health, chemical pollution remains rampant, ineffectively monitored, rarely prevented, and only occasionally mitigated. We present a framework that helps address current major challenges in the monitoring and assessment of chemical pollution by broadening the use of the sentinel species Daphnia as a diagnostic agent of water pollution. And where prevention has failed, we propose the application of Daphnia as a bioremediation agent to help reduce hazards from chemical mixtures in the environment. By applying "omics" technologies to Daphnia exposed to real-world ambient chemical mixtures, we show improvements at detecting bioactive components of chemical mixtures, determining the potential effects of untested chemicals within mixtures, and identifying targets of toxicity. We also show that using Daphnia strains that naturally adapted to chemical pollution as removal agents of ambient chemical mixtures can sustainably improve environmental health protection. Expanding the use of Daphnia beyond its current applications in regulatory toxicology has the potential to improve both the assessment and the remediation of environmental pollution.
Collapse
Affiliation(s)
- Muhammad Abdullahi
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Xiaojing Li
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - William Stubbings
- School
of Geography, Earth and Environmental Sciences, the University of Birmingham, Birmingham B15 2TT, U.K.
| | - Norman Yan
- Department
of Biology, York University, and Friends of the Muskoka Watershed, Bracebridge, Ontario P1L 1T7, Canada
| | - Marianne Barnard
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Liang-Hong Guo
- Institute
of Environmental and Health Sciences, China
Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - John K. Colbourne
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Luisa Orsini
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
- The
Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, U.K.
| |
Collapse
|
61
|
Colbourne JK, Shaw JR, Sostare E, Rivetti C, Derelle R, Barnett R, Campos B, LaLone C, Viant MR, Hodges G. Toxicity by descent: A comparative approach for chemical hazard assessment. ENVIRONMENTAL ADVANCES 2022; 9:100287. [PMID: 39228468 PMCID: PMC11370884 DOI: 10.1016/j.envadv.2022.100287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Toxicology is traditionally divided between human and eco-toxicology. In the shared pursuit of environmental health, this separation does not account for discoveries made in the comparative studies of animal genomes. Here, we provide evidence on the feasibility of understanding the health impact of chemicals on all animals, including ecological keystone species and humans, based on a significant number of conserved genes and their functional associations to health-related outcomes across much of animal diversity. We test four conditions to understand the value of comparative genomics data to inform mechanism-based human and environmental hazard assessment: (1) genes that are most fundamental for health evolved early during animal evolution; (2) the molecular functions of pathways are better conserved among distantly related species than the individual genes that are members of these pathways; (3) the most conserved pathways among animals are those that cause adverse health outcomes when disrupted; (4) gene sets that serve as molecular signatures of biological processes or disease-states are largely enriched by evolutionarily conserved genes across the animal phylogeny. The concept of homology is applied in a comparative analysis of gene families and pathways among invertebrate and vertebrate species compared with humans. Results show that over 70% of gene families associated with disease are shared among the greatest variety of animal species through evolution. Pathway conservation between invertebrates and humans is based on the degree of conservation within vertebrates and the number of interacting genes within the human network. Human gene sets that already serve as biomarkers are enriched by evolutionarily conserved genes across the animal phylogeny. By implementing a comparative method for chemical hazard assessment, human and eco-toxicology converge towards a more holistic and mechanistic understanding of toxicity disrupting biological processes that are important for health and shared among animals (including humans).
Collapse
Affiliation(s)
- John K. Colbourne
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington 47405, USA
| | | | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Carlie LaLone
- US Environmental Protection Agency, Duluth 55804, USA
| | - Mark R. Viant
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| |
Collapse
|
62
|
Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecol Evol 2022; 12:e9319. [PMID: 36248677 PMCID: PMC9548574 DOI: 10.1002/ece3.9319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia has profound and diverse effects on aerobic organisms, disrupting oxidative phosphorylation and activating several protective pathways. Predictions have been made that exposure to mild intermittent hypoxia may be protective against more severe exposure and may extend lifespan. Here we report the lifespan effects of chronic, mild, intermittent hypoxia, and short-term survival in acute severe hypoxia in four clones of Daphnia magna originating from either permanent or intermittent habitats. We test the hypothesis that acclimation to chronic mild intermittent hypoxia can extend lifespan through activation of antioxidant and stress-tolerance pathways and increase survival in acute severe hypoxia through activation of oxygen transport and storage proteins and adjustment to carbohydrate metabolism. Unexpectedly, we show that chronic hypoxia extended the lifespan in the two clones originating from intermittent habitats but had the opposite effect in the two clones from permanent habitats, which also showed lower tolerance to acute hypoxia. Exposure to chronic hypoxia did not protect against acute hypoxia; to the contrary, Daphnia from the chronic hypoxia treatment had lower acute hypoxia tolerance than normoxic controls. Few transcripts changed their abundance in response to the chronic hypoxia treatment in any of the clones. After 12 h of acute hypoxia treatment, the transcriptional response was more pronounced, with numerous protein-coding genes with functionality in oxygen transport, mitochondrial and respiratory metabolism, and gluconeogenesis, showing upregulation. While clones from intermittent habitats showed somewhat stronger differential expression in response to acute hypoxia than those from permanent habitats, contrary to predictions, there were no significant hypoxia-by-habitat of origin or chronic-by-acute treatment interactions. GO enrichment analysis revealed a possible hypoxia tolerance role by accelerating the molting cycle and regulating neuron survival through upregulation of cuticular proteins and neurotrophins, respectively.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Morad C. Malek
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Cora E. Anderson
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Lev Y. Yampolsky
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
63
|
Cho H, Ryu CS, Lee SA, Adeli Z, Meupea BT, Kim Y, Kim YJ. Endocrine-disrupting potential and toxicological effect of para-phenylphenol on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113965. [PMID: 35994907 DOI: 10.1016/j.ecoenv.2022.113965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Several phenol derivatives are suspected endocrine disruptors and have received attention in risk assessment studies for several decades owing to the structural similarity between estrogens and phenolic compounds. We assessed the endocrine disrupting effect of the phenolic compound para-phenylphenol (PPP) through acute tests and evaluating chronic endpoints in an invertebrate model, Daphnia magna. Exposure of D. magna to PPP induced substantial adverse effects, namely, reduced fecundity, slowed growth rate, delayed first brood, and a reduction in neonate size. Furthermore, we investigated the mRNA expression of relevant genes to elucidate the mechanism of endocrine disruption by PPP. Exposure of D. magna to PPP induced the substantial downregulation of genes and markers related to reproduction and development, such as EcR-A, EcR-B, Jhe, and Vtg. Consequently, we demonstrated that PPP has an endocrine disrupting effect on reproduction and development in D. magna.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Zahra Adeli
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Brenda Tenou Meupea
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea
| |
Collapse
|
64
|
Li W, Wang F, Jiang S, Pan B, Liu Q, Xu Q. Morphological and molecular evolution of hadal amphipod’s eggs provides insights into embryogenesis under high hydrostatic pressure. Front Cell Dev Biol 2022; 10:987409. [PMID: 36172273 PMCID: PMC9511220 DOI: 10.3389/fcell.2022.987409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hadal zones are unique habitats characterized by high hydrostatic pressure (HHP) and scarce food supplies. The ability of eggs of species dwelling in hadal zones to develop into normal embryo under high hydrostatic pressure is an important evolutionary and developmental trait. However, the mechanisms underlying the development of eggs of hadal-dwelling species remain unknown due to the difficulty of sampling ovigerous females. Here, morphological and transcriptome analyses of eggs of the “supergiant” amphipod Alicella gigantea collected from the New Britain Trench were conducted. The morphology of A. gigantea eggs, including size, was assessed and the ultrastructure of the eggshell was investigated by scanning electron microscopy. Transcriptome sequencing and molecular adaptive evolution analysis of A. gigantea eggs showed that, as compared with shallow-water Gammarus species, genes exhibiting accelerated evolution and the positively selected genes were mostly related to pathways associated with “mitosis” and “chitin-based embryonic cuticle biosynthetic process”, suggesting that “normal mitosis maintenance” and “cuticle development and protection” are the two main adaptation strategies for survival of eggs in hadal environments. In addition, the concentration of trimethylamine oxide (TMAO), an important osmotic regulator, was significantly higher in the eggs of hadal amphipods as compared to those of shallow-water species, which might promote the eggs’ adaptation abilities. Morphological identification, evolutionary analysis, and the trimethylamine oxide concentration of A. gigantea eggs will facilitate a comprehensive overview of the piezophilic adaptation of embryos in hadal environments and provide a strategy to analyze embryogenesis under high hydrostatic pressure.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Faxiang Wang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qi Liu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
65
|
Nam SE, Bae DY, Ki JS, Ahn CY, Rhee JS. The importance of multi-omics approaches for the health assessment of freshwater ecosystems. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
66
|
Scheffer H, Coate JE, Ho EKH, Schaack S. Thermal stress and mutation accumulation increase heat shock protein expression in Daphnia. Evol Ecol 2022; 36:829-844. [PMID: 36193163 PMCID: PMC9522699 DOI: 10.1007/s10682-022-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Understanding the short- and long-term consequences of climate change is a major challenge in biology. For aquatic organisms, temperature changes and drought can lead to thermal stress and habitat loss, both of which can ultimately lead to higher mutation rates. Here, we examine the effect of high temperature and mutation accumulation on gene expression at two loci from the heat shock protein (HSP) gene family, HSP60 and HSP90. HSPs have been posited to serve as 'mutational capacitors' given their role as molecular chaperones involved in protein folding and degradation, thus buffering against a wide range of cellular stress and destabilization. We assayed changes in HSP expression across 5 genotypes of Daphnia magna, a sentinel species in ecology and environmental biology, with and without acute exposure to thermal stress and accumulated mutations. Across genotypes, HSP expression increased ~ 6× in response to heat and ~ 4× with mutation accumulation, individually. Both factors simultaneously (lineages with high mutation loads exposed to high heat) increased gene expression ~ 23×-much more than that predicted by an additive model. Our results corroborate suggestions that HSPs can buffer against not only the effects of heat, but also mutations-a combination of factors both likely to increase in a warming world. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10209-1.
Collapse
Affiliation(s)
- Henry Scheffer
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Jeremy E. Coate
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Eddie K. H. Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Sarah Schaack
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
67
|
Jankowski MD, Fairbairn DJ, Baller JA, Westerhoff BM, Schoenfuss HL. Using the Daphnia magna Transcriptome to Distinguish Water Source: Wetland and Stormwater Case Studies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2107-2123. [PMID: 35622010 PMCID: PMC9545677 DOI: 10.1002/etc.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
A major challenge in ecotoxicology is accurately and sufficiently measuring chemical exposures and biological effects given the presence of complex and dynamic contaminant mixtures in surface waters. It is impractical to quantify all chemicals in such matrices over space and time, and even if it were practical, concomitant biological effects would not be elucidated. Our study examined the performance of the Daphnia magna transcriptome to detect distinct responses across three water sources in Minnesota: laboratory (well) waters, wetland waters, and storm waters. Pyriproxyfen was included as a gene expression and male neonate production positive control to examine whether gene expression resulting from exposure to this well-studied juvenoid hormone analog can be detected in complex matrices. Laboratory-reared (<24 h) D. magna were exposed to a water source and/or pyriproxyfen for 16 days to monitor phenotypic changes or 96 h to examine gene expression responses using Illumina HiSeq 2500 (10 million reads per library, 50-bp paired end [2 × 50]). The results indicated that a unique gene expression profile was produced for each water source. At 119 ng/L pyriproxyfen (~25% effect concentration) for male neonate production, as expected, the Doublesex1 gene was up-regulated. In descending order, gene expression patterns were most discernable with respect to pyriproxyfen exposure status, season of stormwater sample collection, and wetland quality, as indicated by the index of biological integrity. However, the biological implications of the affected genes were not broadly clear given limited genome resources for invertebrates. Our study provides support for the utility of short-term whole-organism transcriptomic testing in D. magna to discern sample type, but highlights the need for further work on invertebrate genomics. Environ Toxicol Chem 2022;41:2107-2123. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mark D. Jankowski
- Minnesota Pollution Control AgencySt. PaulMinnesotaUSA
- Veterinary Population Medicine DepartmentUniversity of Minnesota—Twin CitiesSt. PaulMinnesotaUSA
- US Environmental Protection AgencySeattleWashingtonUSA
| | | | - Joshua A. Baller
- Minnesota Supercomputing InstituteUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| | | | - Heiko L. Schoenfuss
- Aquatic Toxicology LaboratorySt. Cloud State UniversitySt. CloudMinnesotaUSA
| |
Collapse
|
68
|
Identification and Evolution Analysis of the Complete Methyl Farnesoate Biosynthesis and Related Pathway Genes in the Mud Crab, Scylla paramamosain. Int J Mol Sci 2022; 23:ijms23169451. [PMID: 36012717 PMCID: PMC9409210 DOI: 10.3390/ijms23169451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.
Collapse
|
69
|
Wang Z, Zhang F, Jin Q, Wang Y, Wang W, Deng D. Transcriptome analysis of different life-history stages and screening of male-biased genes in Daphnia sinensis. BMC Genomics 2022; 23:589. [PMID: 35964016 PMCID: PMC9375365 DOI: 10.1186/s12864-022-08824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the life history of Daphnia, the reproductive mode of parthenogenesis and sexual reproduction alternate in aquatic ecosystem, which are often affected by environmental and genetic factors. Recently, the sex-biased genes are of great significance for clarifying the origin and evolution of reproductive transformation and the molecular regulation mechanism of sex determination in Daphnia. Although some genes on reproductive transition of Daphnia had been researched, molecular mechanism on the maintenance of sexually dimorphic phenotypes of Daphnia are still not well known, including differentially expressed genes in different life-history stages. Results In this study, four life-history stages of Daphnia sinensis, juvenile female (JF), parthenogenetic female (PF), sexual female (SF) and male (M), were performed for transcriptome, and male-biased genes were screened. A total of 110437 transcripts were obtained and assembled into 22996 unigenes. In the four life-history stages (JF, PF, SF and M), the number of unique unigenes is respectively 2863, 445, 437 and 586, and the number of common unigenes is 9708. The differentially expressed genes (DEGs) between male and other three female stages (M vs JF, M vs PF and M vs SF) were 4570, 4358 and 2855, respectively. GO gene enrichment analysis showed that the up-regulated genes in male were mainly enriched in hydrolase activity and peptidase activity. Thirty-six genes in male were significantly higher expression than in the three female stages, including one Doublesex (Dsx) gene, one laminin gene, five trypsin genes and one serine protease genes, and one chitin synthase gene and two chitinase genes. Conclusions Our results showed that thirty-six candidate genes may be as the male-biased genes involving in the maintenance of sexually dimorphic phenotypes. This work will provide a reference for further exploring the functional genes related to sex differentiation in Daphnia species. Moreover, according to previous investigations, we thought that the expression level of functional genes may be related to the life-history stages of organisms, and may be also affected by different Daphnia species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08824-x.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Feiyun Zhang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Qide Jin
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Yeping Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Wenping Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China.
| | - Daogui Deng
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China.
| |
Collapse
|
70
|
Ebert D. Daphnia as a versatile model system in ecology and evolution. EvoDevo 2022; 13:16. [PMID: 35941607 PMCID: PMC9360664 DOI: 10.1186/s13227-022-00199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Water fleas of the genus Daphnia have been a model system for hundreds of years and is among the best studied ecological model organisms to date. Daphnia are planktonic crustaceans with a cyclic parthenogenetic life-cycle. They have a nearly worldwide distribution, inhabiting standing fresh- and brackish water bodies, from small temporary pools to large lakes. Their predominantly asexual reproduction allows for the study of phenotypes excluding genetic variation, enabling us to separate genetic from non-genetic effects. Daphnia are often used in studies related to ecotoxicology, predator-induced defence, host–parasite interactions, phenotypic plasticity and, increasingly, in evolutionary genomics. The most commonly studied species are Daphnia magna and D. pulex, for which a rapidly increasing number of genetic and genomic tools are available. Here, I review current research topics, where the Daphnia model system plays a critical role.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
71
|
Gühmann M, Porter ML, Bok MJ. The Gluopsins: Opsins without the Retinal Binding Lysine. Cells 2022; 11:cells11152441. [PMID: 35954284 PMCID: PMC9368030 DOI: 10.3390/cells11152441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Opsins allow us to see. They are G-protein-coupled receptors and bind as ligand retinal, which is bound covalently to a lysine in the seventh transmembrane domain. This makes opsins light-sensitive. The lysine is so conserved that it is used to define a sequence as an opsin and thus phylogenetic opsin reconstructions discard any sequence without it. However, recently, opsins were found that function not only as photoreceptors but also as chemoreceptors. For chemoreception, the lysine is not needed. Therefore, we wondered: Do opsins exists that have lost this lysine during evolution? To find such opsins, we built an automatic pipeline for reconstructing a large-scale opsin phylogeny. The pipeline compiles and aligns sequences from public sources, reconstructs the phylogeny, prunes rogue sequences, and visualizes the resulting tree. Our final opsin phylogeny is the largest to date with 4956 opsins. Among them is a clade of 33 opsins that have the lysine replaced by glutamic acid. Thus, we call them gluopsins. The gluopsins are mainly dragonfly and butterfly opsins, closely related to the RGR-opsins and the retinochromes. Like those, they have a derived NPxxY motif. However, what their particular function is, remains to be seen.
Collapse
Affiliation(s)
- Martin Gühmann
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Correspondence:
| | - Megan L. Porter
- Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, University of Lund, 223 62 Lund, Sweden
| |
Collapse
|
72
|
Schröter L, Ventura N. Nanoplastic Toxicity: Insights and Challenges from Experimental Model Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201680. [PMID: 35810458 DOI: 10.1002/smll.202201680] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastic particles (NPs) can be produced or derived from the degradation of several daily used products and can therefore be found in the air, water, and food. Every day, these microscopic particles are confronted by different routes of exposure. Recent investigations have shown the internalization of these particles, differing in size and modification, in vivo in aquatic organisms and terrestrial organisms, as well as in vitro in different human cell lines. During the last years, the number of studies investigating the effects of NPs using widely different model systems and experimental approaches is exponentially growing, thus providing information about NPs, especially about polystyrene particle toxicity on health. To facilitate the grasping of the most relevant information, an overview is provided on the toxic effects of NPs coming from studies in cellular systems and in vivo in model organisms and on aspects which can be of particular relevance for particle toxicity (e.g., particle internalization mechanisms and structural modifications). Major achievements and gaps in the field as well as the point of view on how more systematic studies and exploitation of in vivo model organisms may improve the knowledge on important aspects of NPs are also pointed out.
Collapse
Affiliation(s)
- Laura Schröter
- IUF-Leibniz Institute for Environmental Medicine at the Heinrich Heine University Düsseldorf, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225, Düsseldorf, Germany
| |
Collapse
|
73
|
Grzesiuk M, Pietrzak B, Wacker A, Pijanowska J. Photosynthetic activity in both algae and cyanobacteria changes in response to cues of predation. FRONTIERS IN PLANT SCIENCE 2022; 13:907174. [PMID: 35958198 PMCID: PMC9358279 DOI: 10.3389/fpls.2022.907174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
A plethora of adaptive responses to predation has been described in microscopic aquatic producers. Although the energetic costs of these responses are expected, with their consequences going far beyond an individual, their underlying molecular and metabolic mechanisms are not fully known. One, so far hardly considered, is if and how the photosynthetic efficiency of phytoplankton might change in response to the predation cues. Our main aim was to identify such responses in phytoplankton and to detect if they are taxon-specific. We exposed seven algae and seven cyanobacteria species to the chemical cues of an efficient consumer, Daphnia magna, which was fed either a green alga, Acutodesmus obliquus, or a cyanobacterium, Synechococcus elongatus (kairomone and alarm cues), or was not fed (kairomone alone). In most algal and cyanobacterial species studied, the quantum yield of photosystem II increased in response to predator fed cyanobacterium, whereas in most of these species the yield did not change in response to predator fed alga. Also, cyanobacteria tended not to respond to a non-feeding predator. The modal qualitative responses of the electron transport rate were similar to those of the quantum yield. To our best knowledge, the results presented here are the broadest scan of photosystem II responses in the predation context so far.
Collapse
Affiliation(s)
- Małgorzata Grzesiuk
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Barbara Pietrzak
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
| | - Alexander Wacker
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Animal Ecology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Joanna Pijanowska
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
| |
Collapse
|
74
|
Oliver A, Cavalheri HB, Lima TG, Jones NT, Podell S, Zarate D, Allen E, Burton RS, Shurin JB. Phenotypic and transcriptional response of Daphnia pulicaria to the combined effects of temperature and predation. PLoS One 2022; 17:e0265103. [PMID: 35834446 PMCID: PMC9282536 DOI: 10.1371/journal.pone.0265103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Daphnia, an ecologically important zooplankton species in lakes, shows both genetic adaptation and phenotypic plasticity in response to temperature and fish predation, but little is known about the molecular basis of these responses and their potential interactions. We performed a factorial experiment exposing laboratory-propagated Daphnia pulicaria clones from two lakes in the Sierra Nevada mountains of California to normal or high temperature (15°C or 25°C) in the presence or absence of fish kairomones, then measured changes in life history and gene expression. Exposure to kairomones increased upper thermal tolerance limits for physiological activity in both clones. Cloned individuals matured at a younger age in response to higher temperature and kairomones, while size at maturity, fecundity and population intrinsic growth were only affected by temperature. At the molecular level, both clones expressed more genes differently in response to temperature than predation, but specific genes involved in metabolic, cellular, and genetic processes responded differently between the two clones. Although gene expression differed more between clones from different lakes than experimental treatments, similar phenotypic responses to predation risk and warming arose from these clone-specific patterns. Our results suggest that phenotypic plasticity responses to temperature and kairomones interact synergistically, with exposure to fish predators increasing the tolerance of Daphnia pulicaria to stressful temperatures, and that similar phenotypic responses to temperature and predator cues can be produced by divergent patterns of gene regulation.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Hamanda B. Cavalheri
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Thiago G. Lima
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Natalie T. Jones
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Daniela Zarate
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| | - Eric Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Jonathan B. Shurin
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
75
|
A thorough annotation of the krill transcriptome offers new insights for the study of physiological processes. Sci Rep 2022; 12:11415. [PMID: 35794144 PMCID: PMC9259678 DOI: 10.1038/s41598-022-15320-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe krill species Euphausia superba plays a critical role in the food chain of the Antarctic ecosystem. Significant changes in climate conditions observed in the Antarctic Peninsula region in the last decades have already altered the distribution of krill and its reproductive dynamics. A deeper understanding of the adaptation capabilities of this species is urgently needed. The availability of a large body of RNA-seq assays allowed us to extend the current knowledge of the krill transcriptome. Our study covered the entire developmental process providing information of central relevance for ecological studies. Here we identified a series of genes involved in different steps of the krill moulting cycle, in the reproductive process and in sexual maturation in accordance with what was already described in previous works. Furthermore, the new transcriptome highlighted the presence of differentially expressed genes previously unknown, playing important roles in cuticle development as well as in energy storage during the krill life cycle. The discovery of new opsin sequences, specifically rhabdomeric opsins, one onychopsin, and one non-visual arthropsin, expands our knowledge of the krill opsin repertoire. We have collected all these results into the KrillDB2 database, a resource combining the latest annotation of the krill transcriptome with a series of analyses targeting genes relevant to krill physiology. KrillDB2 provides in a single resource a comprehensive catalog of krill genes; an atlas of their expression profiles over all RNA-seq datasets publicly available; a study of differential expression across multiple conditions. Finally, it provides initial indications about the expression of microRNA precursors, whose contribution to krill physiology has never been reported before.
Collapse
|
76
|
Gessner EE, Shah MH, Ghent BN, Westbrook NE, van den Hurk P, Baldwin WS. The reproductive effects of the cancer chemotherapy agent, Carmofur, on Daphnia magna are mediated by its metabolite, 5-Fluorouracil. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:860-872. [PMID: 35579761 PMCID: PMC9233140 DOI: 10.1007/s10646-022-02551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Carmofur is an antineoplastic agent that inhibits ceramidase, a key enzyme in the sphingolipid pathway. Previous research suggests carmofur represses reproductive maturity in Daphnia magna. The purpose of this experiment was to confirm carmofur's effects on fecundity and reproductive maturity over two generations. A chronic toxicity test found reproductive maturity was delayed from 9 to 19 days by 0.80 μM carmofur with a 99.7% drop in reproduction, probably caused by delayed ovarian development. Second generation effects were even greater with 0% reproductive success at 0.40 μM. To our surprise, carmofur was not measured in the media by HPLC 24 h after exposure. Previous research indicated that carmofur is unstable in water and hydrolyzed into 5-fluorouracil (5-FU). Therefore, the chronic toxicity study was repeated with 5-FU and similar effects on reproductive maturity were observed at similar concentrations despite very different acute toxicities (48 h carmofur LC50 = 1.93 μM; 5-FU LC50 = 207 μM). 5-FU delayed reproductive maturity from 9 to 21 days with a 71.12% drop in reproduction at 0.80 μM and greater effects in the 2nd generation similar to carmofur. 5-FU was found stable in aquatic media and HPLC confirmed 5-FU was hydrolyzed from carmofur within 24 h. In conclusion, carmofur and 5-FU reduce fecundity because they delay reproductive maturity and ovarian development in Daphnia magna. We conclude that the reproductive effects observed after carmofur treatment are primarily mediated by its breakdown product, 5-FU. This further underscores the importance of measuring chemical concentrations and evaluating chemical metabolism and decomposition when determining toxicity, especially of chemotherapeutic agents.Clinical trials registration Not applicable.
Collapse
Affiliation(s)
- Emily E Gessner
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Manav H Shah
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Bricen N Ghent
- Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | | | | | | |
Collapse
|
77
|
Ma D, Ding Q, Guo Z, Xu C, Liang P, Zhao Z, Song S, Zheng HL. The genome of a mangrove plant, Avicennia marina, provides insights into adaptation to coastal intertidal habitats. PLANTA 2022; 256:6. [PMID: 35678934 DOI: 10.1007/s00425-022-03916-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/17/2022] [Indexed: 05/26/2023]
Abstract
Whole-genome duplication, gene family and lineage-specific genes analysis based on high-quality genome reveal the adaptation mechanisms of Avicennia marina to coastal intertidal habitats. Mangrove plants grow in a complex habitat of coastal intertidal zones with high salinity, hypoxia, etc. Therefore, it is an interesting question how mangroves adapt to the unique intertidal environment. Here, we present a chromosome-level genome of the Avicennia marina, a typical true mangrove with a size of 480.43 Mb, contig N50 of 11.33 Mb and 30,956 annotated protein-coding genes. We identified 621 Avicennia-specific genes that are mainly related to flavonoid and lignin biosynthesis, auxin homeostasis and response to abiotic stimulus. We found that A. marina underwent a novel specific whole-genome duplication, which is in line with a brief era of global warming that occurred during the paleocene-eocene maximum. Comparative genomic and transcriptomic analyses outline the distinct evolution and sophisticated regulations of A. marina adaptation to the intertidal environments, including expansion of photosynthesis and oxidative phosphorylation gene families, unique genes and pathways for antibacterial, detoxifying antioxidant and reactive oxygen species scavenging. In addition, we also analyzed salt gland secretion-related genes, and those involved in the red bark-related flavonoid biosynthesis, while significant expansions of key genes such as NHX, 4CL, CHS and CHI. High-quality genomes in future investigations will facilitate the understand of evolution of mangrove and improve breeding.
Collapse
Affiliation(s)
- Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiansu Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Pingping Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhizhu Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shiwei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
78
|
Barnard-Kubow KB, Becker D, Murray CS, Porter R, Gutierrez G, Erickson P, Nunez JCB, Voss E, Suryamohan K, Ratan A, Beckerman A, Bergland AO. Genetic Variation in Reproductive Investment Across an Ephemerality Gradient in Daphnia pulex. Mol Biol Evol 2022; 39:msac121. [PMID: 35642301 PMCID: PMC9198359 DOI: 10.1093/molbev/msac121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Species across the tree of life can switch between asexual and sexual reproduction. In facultatively sexual species, the ability to switch between reproductive modes is often environmentally dependent and subject to local adaptation. However, the ecological and evolutionary factors that influence the maintenance and turnover of polymorphism associated with facultative sex remain unclear. We studied the ecological and evolutionary dynamics of reproductive investment in the facultatively sexual model species, Daphnia pulex. We found that patterns of clonal diversity, but not genetic diversity varied among ponds consistent with the predicted relationship between ephemerality and clonal structure. Reconstruction of a multi-year pedigree demonstrated the coexistence of clones that differ in their investment into male production. Mapping of quantitative variation in male production using lab-generated and field-collected individuals identified multiple putative quantitative trait loci (QTL) underlying this trait, and we identified a plausible candidate gene. The evolutionary history of these QTL suggests that they are relatively young, and male limitation in this system is a rapidly evolving trait. Our work highlights the dynamic nature of the genetic structure and composition of facultative sex across space and time and suggests that quantitative genetic variation in reproductive strategy can undergo rapid evolutionary turnover.
Collapse
Affiliation(s)
- Karen B Barnard-Kubow
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Dörthe Becker
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Department of Biology, University of Marburg, Marburg, Germany
| | - Connor S Murray
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Robert Porter
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Grace Gutierrez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Joaquin C B Nunez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Erin Voss
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA
| | | | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Andrew Beckerman
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
79
|
Kim DH, Lee YH, Sayed AEDH, Choi IY, Lee JS. Genome-wide identification of 194 G protein-coupled receptor (GPCR) genes from the water flea Daphnia magna. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100983. [PMID: 35367896 DOI: 10.1016/j.cbd.2022.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
In crustaceans, G protein-coupled receptors (GPCRs) are the largest transmembrane receptor family and function by mediating various environmental stimuli in cells. Understanding GPCR signaling is crucial to better understanding of crustacean endocrinology. GPCRs evolved from early eukaryotes, and genome-wide identification of GPCRs in a particular taxon can provide insight into evolutionary tendencies and adaptive strategies of GPCR response to environmental stimuli. Here, we identified 194 full-length GPCR genes in the water flea Daphnia magna that can be divided into five distinct classes (A, B, C, F, and other). A strong orthologous relationship for amine, neuropeptide, and opsin receptors was found in the phylogenetic comparison of D. magna GPCRs to those of humans and two well-known insects (Drosophila melanogaster and Solenopsis invicta). Our results based on phylogenetic relationships suggest that most GPCRs subfamilies have undergone sporadic evolutionary processes for adaptation to environmental pressures. Despite the dynamics of GPCR evolution, some GPCRs are highly conserved between species. This study provides a better understanding of the evolution of GPCRs and expands our knowledge of the potential physiological mechanisms in D. magna in response to various environmental stimuli.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Ik-Young Choi
- Department of Agricultural Life Industry, College of Lifelong Learning, Kangwon National University, Chuncheon 24341, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
80
|
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Xiang J, Li X, Li F. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol 2022; 20:113. [PMID: 35562825 PMCID: PMC9107163 DOI: 10.1186/s12915-022-01302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Kou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin, 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xinzheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
81
|
Zhang X, Xuan J, Yao C, Gao Q, Wang L, Jin X, Li S. A deep learning approach for orphan gene identification in moso bamboo (Phyllostachys edulis) based on the CNN + Transformer model. BMC Bioinformatics 2022; 23:162. [PMID: 35513802 PMCID: PMC9069780 DOI: 10.1186/s12859-022-04702-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Orphan gene play an important role in the environmental stresses of many species and their identification is a critical step to understand biological functions. Moso bamboo has high ecological, economic and cultural value. Studies have shown that the growth of moso bamboo is influenced by various stresses. Several traditional methods are time-consuming and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting orphan genes is of great significance. Results In this paper, we propose a novel deep learning model (CNN + Transformer) for identifying orphan genes in moso bamboo. It uses a convolutional neural network in combination with a transformer neural network to capture k-mer amino acids and features between k-mer amino acids in protein sequences. The experimental results show that the average balance accuracy value of CNN + Transformer on moso bamboo dataset can reach 0.875, and the average Matthews Correlation Coefficient (MCC) value can reach 0.471. For the same testing set, the Balance Accuracy (BA), Geometric Mean (GM), Bookmaker Informedness (BM), and MCC values of the recurrent neural network, long short-term memory, gated recurrent unit, and transformer models are all lower than those of CNN + Transformer, which indicated that the model has the extensive ability for OG identification in moso bamboo. Conclusions CNN + Transformer model is feasible and obtains the credible predictive results. It may also provide valuable references for other related research. As our knowledge, this is the first model to adopt the deep learning techniques for identifying orphan genes in plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04702-1.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei, 230001, China.,College of Information and Computer Science, Anhui Agricultural University, Hefei, 230001, China
| | - Jinxiang Xuan
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei, 230001, China.,College of Information and Computer Science, Anhui Agricultural University, Hefei, 230001, China
| | - Chensong Yao
- Graduate School, Anhui Agricultural University, Hefei, 230036, China
| | - Qijuan Gao
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei, 230001, China
| | - Lianglong Wang
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei, 230001, China.,College of Information and Computer Science, Anhui Agricultural University, Hefei, 230001, China
| | - Xiu Jin
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei, 230001, China. .,College of Information and Computer Science, Anhui Agricultural University, Hefei, 230001, China.
| | - Shaowen Li
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei, 230001, China. .,College of Information and Computer Science, Anhui Agricultural University, Hefei, 230001, China.
| |
Collapse
|
82
|
Ohtsuki H, Norimatsu H, Makino T, Urabe J. Invasions of an obligate asexual daphnid species support the nearly neutral theory. Sci Rep 2022; 12:7305. [PMID: 35508526 PMCID: PMC9068809 DOI: 10.1038/s41598-022-11218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
To verify the "nearly neutral theory (NNT)," the ratio of nonsynonymous to synonymous substitutions (dN/dS) was compared among populations of different species. To determine the validity of NNT, however, populations that are genetically isolated from each other but share the same selection agents and differ in size should be compared. Genetically different lineages of obligate asexual Daphnia pulex invading Japan from North America are an ideal example as they satisfy these prerequisites. Therefore, we analyzed the whole-genome sequences of 18 genotypes, including those of the two independently invaded D. pulex lineages (JPN1 and JPN2) and compared the dN/dS ratio between the lineages. The base substitution rate of each genotype demonstrated that the JPN1 lineage having a larger distribution range diverged earlier and thus was older than the JPN2 lineage. Comparisons of the genotypes within lineages revealed that changes in dN/dS occurred after the divergence and were larger in the younger lineage, JPN2. These results imply that the JPN1 lineage has been more effectively subjected to purification selections, while slightly deteriorating mutations are less purged in JPN2 with smaller population size. Altogether, the lineage-specific difference in the dN/dS ratio for the obligate asexual D. pulex was well explained by the NNT.
Collapse
Affiliation(s)
- Hajime Ohtsuki
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirotomo Norimatsu
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Jotaro Urabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
83
|
Talu M, Seyoum A, Yitayew B, Aseffa A, Jass J, Mamo G, Olsson PE. Transcriptional responses of Daphnia magna exposed to Akaki river water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:349. [PMID: 35394223 PMCID: PMC8993723 DOI: 10.1007/s10661-022-09973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Pollution of the aquatic environment is a global problem, with industrial waste, farming effluents, sewage, and wastewater as the main contributors. Many pollutants are biologically active at low concentrations, resulting in sublethal effects, which makes it a highly complex situation and difficult to assess. In many places, such as the Akaki river in Ethiopia, the pollution situation has resulted in streams with minimal presence of invertebrates or vertebrates. As it is difficult to perform a complete chemical analysis of the waters, the present study focused on using gene expression analysis as a biological end point to determine the effects of Akaki river contaminants. The present study was conducted using the small planktonic crustacean Daphnia magna with toxicogenomic molecular markers. Daphnia magna neonates were exposed to Akaki water samples collected from two different sites on the river and analyzed for mortality and expression of genes involved in different biological pathways. Despite the poor quality of Akaki river water, 48 h acute toxicity tests showed no mortality. Interestingly, analysis of sublethal toxicogenomic responses showed that exposure to Akaki water altered the expression of 25 out of 37 genes involved in metal regulation, immune response, oxidative stress, respiration, reproduction, and development. The toxicogenomic data gives insight into the mechanisms involved in causing potential adverse effects to aquatic biota harboring the Akaki river system.
Collapse
Affiliation(s)
- Meron Talu
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
| | - Berhanu Yitayew
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
- College of Health Science Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden
| | - Gezahegne Mamo
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, 701 82, Orebro, Sweden.
| |
Collapse
|
84
|
Abdullahi M, Zhou J, Dandhapani V, Chaturvedi A, Orsini L. Historical exposure to chemicals reduces tolerance to novel chemical stress in Daphnia (waterflea). Mol Ecol 2022; 31:3098-3111. [PMID: 35377519 PMCID: PMC9321109 DOI: 10.1111/mec.16451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022]
Abstract
Until the last few decades, anthropogenic chemicals used in most production processes have not been comprehensively assessed for their risk and impact on wildlife and humans. They are transported globally and usually end up in the environment as unintentional pollutants, causing long‐term adverse effects. Modern toxicology practices typically use acute toxicity tests of unrealistic concentrations of chemicals to determine their safe use, missing pathological effects arising from long‐term exposures to environmentally relevant concentrations. Here, we study the transgenerational effect of environmentally relevant concentrations of five chemicals on the priority list of international regulatory frameworks on the keystone species Daphnia magna. We expose Daphnia genotypes resurrected from the sedimentary archive of a lake with a known history of chemical pollution to the five chemicals to understand how historical exposure to chemicals influences adaptive responses to novel chemical stress. We measure within‐ and transgenerational plasticity in fitness‐linked life history traits following exposure of “experienced” and “naive” genotypes to novel chemical stress. As the revived Daphnia originate from the same genetic pool sampled at different times in the past, we are able to quantify the long‐term evolutionary impact of chemical pollution by studying genome‐wide diversity and identifying functional pathways affected by historical chemical stress. Our results suggest that historical exposure to chemical stress causes reduced genome‐wide diversity, leading to lower cross‐generational tolerance to novel chemical stress. Lower tolerance is underpinned by reduced gene diversity at detoxification, catabolism and endocrine genes in experienced genotypes. We show that these genes sit within pathways that are conserved and potential chemical targets in other species, including humans.
Collapse
Affiliation(s)
- Muhammad Abdullahi
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Vignesh Dandhapani
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Anurag Chaturvedi
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT, UK.,The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK
| |
Collapse
|
85
|
Liu H, Jiang F, Wang S, Wang H, Wang A, Zhao H, Xu D, Yang B, Fan W. Chromosome-level genome of the globe skimmer dragonfly (Pantala flavescens). Gigascience 2022; 11:giac009. [PMID: 35373834 PMCID: PMC8978299 DOI: 10.1093/gigascience/giac009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The globe skimmer dragonfly (Pantala flavescens) is a notable Odonata insect distributed in nature fields and farmlands worldwide, and it is commonly recognized as a natural enemy because it preys on agricultural pests and health pests. As one of the sister groups of winged insects, odonatan species are key to understanding the evolution of insect wings. FINDINGS We present a high-quality reference genome of P. flavescens, which is the first chromosome-level genome in the Palaeoptera (Odonata and Ephemeroptera). The assembled genome size was 662 Mb, with a contig N50 of 16.2 Mb. Via Hi-C scaffolding, 648 Mb (97.9%) of contig sequences were clustered, ordered, and assembled into 12 large scaffolds, each corresponding to a natural chromosome. The X chromosome was identified by sequence coverage depth. The repetitive sequences and gene density of the X chromosome are similar to those of autosomal sequences, but the X chromosome shows a much lower degree of heterozygosity. Our analysis shows that the effective population size experienced 3 declining events, which may have been caused by climate change and environmental pollution. CONCLUSIONS The genome of P. flavescens provides more information on the biology and evolution of insects and will help for the use of this species in pest control.
Collapse
Affiliation(s)
- Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hanbo Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Boyuan Yang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
86
|
Fields PD, McTaggart S, Reisser CMO, Haag C, Palmer WH, Little TJ, Ebert D, Obbard DJ. Population-genomic analysis identifies a low rate of global adaptive fixation in the proteins of the cyclical parthenogen Daphnia magna. Mol Biol Evol 2022; 39:6542319. [PMID: 35244177 PMCID: PMC8963301 DOI: 10.1093/molbev/msac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Daphnia are well-established ecological and evolutionary models, and the interaction between D. magna and its microparasites is widely considered a paragon of the host-parasite coevolutionary process. Like other well-studied arthropods such as Drosophila melanogaster and Anopheles gambiae, D. magna is a small, widespread, and abundant species that is therefore expected to display a large long-term population size and high rates of adaptive protein evolution. However, unlike these other species, D. magna is cyclically asexual and lives in a highly structured environment (ponds and lakes) with moderate levels of dispersal, both of which are predicted to impact upon long-term effective population size and adaptive protein evolution. To investigate patterns of adaptive protein fixation, we produced the complete coding genomes of 36 D. magna clones sampled from across the European range (Western Palaearctic), along with draft sequences for the close relatives D. similis and D. lumholtzi, used as outgroups. We analyzed genome-wide patterns of adaptive fixation, with a particular focus on genes that have an a priori expectation of high rates, such as those likely to mediate immune responses, RNA interference against viruses and transposable elements, and those with a strongly male-biased expression pattern. We find that, as expected, D. magna displays high levels of diversity and that this is highly structured among populations. However, compared with Drosophila, we find that D. magna proteins appear to have a high proportion of weakly deleterious variants and do not show evidence of pervasive adaptive fixation across its entire range. This is true of the genome as a whole, and also of putative ‘arms race’ genes that often show elevated levels of adaptive substitution in other species. In addition to the likely impact of extensive, and previously documented, local adaptation, we speculate that these findings may reflect reduced efficacy of selection associated with cyclical asexual reproduction.
Collapse
Affiliation(s)
- Peter D Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Seanna McTaggart
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Céline M O Reisser
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France.,MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Christoph Haag
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - William H Palmer
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Tom J Little
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Darren J Obbard
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
87
|
Yakovlev MA, Vanselow DJ, Ngu MS, Zaino CR, Katz SR, Ding Y, Parkinson D, Wang SY, Ang KC, La Riviere P, Cheng KC. A wide-field micro-computed tomography detector: micron resolution at half-centimetre scale. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:505-514. [PMID: 35254315 PMCID: PMC8900834 DOI: 10.1107/s160057752101287x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Ideal three-dimensional imaging of complex samples made up of micron-scale structures extending over mm to cm, such as biological tissues, requires both wide field of view and high resolution. For existing optics and detectors used for micro-CT (computed tomography) imaging, sub-micron pixel resolution can only be achieved for fields of view of <2 mm. This article presents a unique detector system with a 6 mm field-of-view image circle and 0.5 µm pixel size that can be used in micro-CT units utilizing both synchrotron and commercial X-ray sources. A resolution-test pattern with linear microstructures and whole adult Daphnia magna were imaged at beamline 8.3.2 of the Berkeley Advanced Light Source. Volumes of 10000 × 10000 × 7096 isotropic 0.5 µm voxels were reconstructed over a 5.0 mm × 3.5 mm field of view. Measurements in the projection domain confirmed a 0.90 µm measured spatial resolution that is largely Nyquist-limited. This unprecedented combination of field of view and resolution dramatically reduces the need for sectional scans and computational stitching for large samples, ultimately offering the means to elucidate changes in tissue and cellular morphology in the context of larger, whole, intact model organisms and specimens. This system is also anticipated to benefit micro-CT imaging in materials science, microelectronics, agricultural science and biomedical engineering.
Collapse
Affiliation(s)
- Maksim A. Yakovlev
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Biomedical Sciences PhD Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Daniel J. Vanselow
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Mee Siing Ngu
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Carolyn R. Zaino
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Spencer R. Katz
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Yifu Ding
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Dula Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Khai Chung Ang
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Penn State Zebrafish Functional Genomics Core, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
88
|
Liu Z, Malinowski CR, Sepúlveda MS. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. CHEMOSPHERE 2022; 291:132941. [PMID: 34793845 DOI: 10.1016/j.chemosphere.2021.132941] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp. has emerged as an important freshwater model organism for risk assessment of nanoparticles because of its biological properties, including parthenogenetic reproduction; small size and short generation time; wide range of endpoints for ecotoxicological studies; known genome, useful for providing mechanistic information; and high sensitivity to environmental contaminants and other stressors. In this review, we (1) highlight the advantages of using Daphnia as an experimental model organism for nanotoxicity studies, (2) summarize the impacts of nanoparticle physicochemical characteristics on toxicity in relation to Daphnia, and (3) summarize the effects of nanoparticles (including nanoplastics) on Daphnia as well as mechanisms of toxicity, and (4) highlight research uncertainties and recommend future directions necessary to develop a deeper understanding of the fate and toxicity of nanoparticles and for the development of safer and more sustainable nanotechnology.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
89
|
Standage DS, Lai T, Brendel VP. iLoci: robust evaluation of genome content and organization for provisional and mature genome assemblies. NAR Genom Bioinform 2022; 4:lqac013. [PMID: 35211671 PMCID: PMC8862717 DOI: 10.1093/nargab/lqac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
We introduce a new framework for genome analyses based on parsing an annotated genome assembly into distinct interval loci (iLoci), available as open-source software as part of the AEGeAn Toolkit (https://github.com/BrendelGroup/AEGeAn). We demonstrate that iLoci provide an alternative coordinate system that is robust to changes in assembly and annotation versions and facilitates granular quality control of genome data. We discuss how statistics computed on iLoci reflect various characteristics of genome content and organization and illustrate how these statistics can be used to establish a baseline for assessment of the completeness and accuracy of the data. We also introduce a well-defined measure of relative genome compactness and compute other iLocus statistics that reveal genome-wide characteristics of gene arrangements in the whole genome context. Given the fast pace of assembly/annotation updates, our AEGeAn Toolkit fills a niche in computational genomics based on deriving persistent and species-specific genome statistics. Gene structure model-centric iLoci provide a precisely defined coordinate system that can be used to store assembly/annotation updates that reflect either stable or changed assessments. Large-scale application of the approach revealed species- and clade-specific genome organization in precisely defined computational terms, promising intriguing forays into the forces of shaping genome structure as more and more genome assemblies are being deposited.
Collapse
Affiliation(s)
- Daniel S Standage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tim Lai
- Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
| | - Volker P Brendel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
90
|
Fatimah RM, Adhitama N, Kato Y, Watanabe H. Development of transgenic Daphnia magna for visualizing homology-directed repair of DNA. Sci Rep 2022; 12:2497. [PMID: 35169221 PMCID: PMC8847417 DOI: 10.1038/s41598-022-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
In the crustacean Daphnia magna, studying homology-directed repair (HDR) is important to understand genome maintenance during parthenogenesis, effects of environmental toxicants on the genome, and improvement of HDR-mediated genome editing. Here we developed a transgenic D. magna that expresses green fluorescence protein (GFP) upon HDR occurrence. We utilized the previously established reporter plasmid named DR-GFP that has a mutated eGFP gene (SceGFP) and the tandemly located donor GFP gene fragment (iGFP). Upon double-strand break (DSB) introduction on SceGFP, the iGFP gene fragment acts as the HDR template and restores functional eGFP expression. We customized this reporter plasmid to allow bicistronic expression of the mCherry gene under the control of the D. magna EF1α-1 promoter/enhancer. By CRISPR/Cas-mediated knock-in of this plasmid via non-homologous joining, we generated the transgenic D. magna that expresses mCherry ubiquitously, suggesting that the DR-GFP reporter gene is expressed in most cells. Introducing DSB on the SceGFP resulted in eGFP expression and this HDR event could be detected by fluorescence, genomic PCR, and quantitative reverse-transcription PCR, suggesting this line could be used for evaluating HDR. The established reporter line might expand our understanding of the HDR mechanism and also improve the HDR-based gene-editing system in this species.
Collapse
Affiliation(s)
- Rizky Mutiara Fatimah
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
91
|
Evaluating Multiple Stressor Effects on Benthic–Pelagic Freshwater Communities in Systems of Different Complexities: Challenges in Upscaling. WATER 2022. [DOI: 10.3390/w14040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Upscaling of ecological effects from indoor microcosms to outdoor mesocosms bridging the gap between controlled laboratory conditions and highly complex natural environments poses several challenges: typical standard water types used in laboratory experiments are not feasible in large outdoor experiments. Additionally, moving from the micro- to meso-scale, biodiversity is enhanced. We performed an indoor microcosm experiment to determine the effects of agricultural run-off (ARO) on a defined benthic–pelagic community comprising primary producers and primary consumers, exposed to ambient summer temperature and +3.5 °C. Treatments were replicated in two water types (standard Volvic and Munich well water). We then scaled up to outdoor mesocosms using an ARO concentration gradient and +3 °C warming above ambient temperature, using Munich well water. We included the same benthic macroorganisms but more complex periphyton and plankton communities. All the functional groups were affected by stressors in the microcosms, and a shift from macrophyte to phytoplankton dominance was observed. While effects were present, they were less pronounced in the mesocosms, where a higher biodiversity may have modified the responses of the system to the stressors. The stressor effects observed in controlled experiments may thus be masked in more complex outdoor experiments, but should not be interpreted as “no effects”.
Collapse
|
92
|
Abstract
Opsins, the protein moieties of animal visual photo-pigments, have emerged as moonlighting proteins with diverse, light-dependent and -independent physiological functions. This raises the need to revise some basic assumptions concerning opsin expression, structure, classification, and evolution.
Collapse
Affiliation(s)
- Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College New York, USA
| | - Martin C Göpfert
- University of Göttingen, Department of Cellular Neurobiology, Germany
| |
Collapse
|
93
|
Lee TM, Westbury KM, Martyniuk CJ, Nelson WA, Moyes CD. Metabolic Phenotype of Daphnia Under Hypoxia: Macroevolution, Microevolution, and Phenotypic Plasticity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.822935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Daphnia is a freshwater crustacean that is able to upregulate hemoglobin (Hb) in response to hypoxia, imparting a red color. We combine multiple field surveys across season with a lab experiment to evaluate changes in the metabolic phenotype of Daphnia in relation to environmental hypoxia. Looking at the zooplankton community, we found that D. pulicaria was restricted to lakes with a hypoxic hypolimnion. Comparing D. pulicaria with different amounts of Hb, red animals showed higher mRNA levels for several Hb genes, whereas most glycolytic genes showed red/pale differences of less than 50%. We also observed seasonal changes in the metabolic phenotype that differed between red and pale animals. Hb was upregulated early in the season in hypoxic lakes, and a relationship between Hb and lactate dehydrogenase only emerged later in the season in a temporal pattern that was lake specific. To evaluate whether these differences were due to specific lake environments or microevolutionary differences, we tested the induction of genes under controlled hypoxia in isofemale lines from each of four lakes. We found a strong response to 18 h hypoxia exposure in both Hb and lactate dehydrogenase mRNA, although the magnitude of the acute response was greater than the steady state differences in mRNA levels between pale and red Daphnia. The baseline expression of Hb and lactate dehydrogenase also varied between isofemale lines with different lake origins. These results, in combination with comparison of glycogen measurements, suggests that Hb functions primarily to facilitate oxygen delivery, mitigating systemic hypoxia, rather than an oxygen store. The combination of lab and field studies suggest that the metabolic phenotype of the animal is influenced by both microevolutionary differences (within and between lakes) as well as the spatial and temporal environmental heterogeneity of the lakes. The differences between Daphnia species, and the unexpected lack of hypoxia sensitivity of select glycolytic genes provide evidence of macroevolutionary differences in metabolic strategies to cope with hypoxia.
Collapse
|
94
|
Toyota K, Watanabe H, Hirano M, Abe R, Miyakawa H, Song Y, Sato T, Miyagawa S, Tollefsen KE, Yamamoto H, Tatarazako N, Iguchi T. Juvenile hormone synthesis and signaling disruption triggering male offspring induction and population decline in cladocerans (water flea): Review and adverse outcome pathway development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106058. [PMID: 34965494 DOI: 10.1016/j.aquatox.2021.106058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/21/2023]
Abstract
Juvenile hormone (JH) are a family of multifunctional hormones regulating larval development, molting, metamorphosis, reproduction, and phenotypic plasticity in arthropods. Based on its importance in arthropod life histories, many insect growth regulators (IGRs) mimicking JH have been designed to control harmful insects in agriculture and aquaculture. These JH analogs (JHAs) may also pose hazards to nontarget species by causing unexpected endocrine-disrupting (ED) effects such as molting and metamorphosis defects, larval lethality, and disruption of the sexual identity. This critical review summarizes the current knowledge of the JH-mediated effects in the freshwater cladoceran crustaceans such as Daphnia species on JHA-triggered endocrine disruptive outputs to establish a systematic understanding of JHA effects. Based on the current knowledge, adverse outcome pathways (AOPs) addressing the JHA-mediated ED effects in cladoceran leading to male offspring production and subsequent population decline were developed. The weight of evidence (WoE) of AOPs was assessed according to established guidelines. The review and AOP development aim to present the current scientific understanding of the JH pathway and provide a robust reference for the development of tiered testing strategies and new risk assessment approaches for JHAs in future ecotoxicological research and regulatory processes.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado, Niigata 952-2135, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Masashi Hirano
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto City, Kumamoto 862-8652, Japan
| | - Ryoko Abe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Ås, Norway
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
95
|
Jia J, Dong C, Han M, Ma S, Chen W, Dou J, Feng C, Liu X. Multi-omics perspective on studying reproductive biology in Daphnia sinensis. Genomics 2022; 114:110309. [DOI: 10.1016/j.ygeno.2022.110309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
|
96
|
Vogt G. Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates. Naturwissenschaften 2022; 109:16. [PMID: 35099618 DOI: 10.1007/s00114-021-01782-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Animals can produce different phenotypes from the same genome during development, environmental adaptation and evolution, which is mediated by epigenetic mechanisms including DNA methylation. The obligatory parthenogenetic marbled crayfish, Procambarus virginalis, whose genome and methylome are fully established, proved very suitable to study this issue in detail. Comparison between developmental stages and DNA methylation revealed low expression of Dnmt methylation and Tet demethylation enzymes from the spawned oocyte to the 256 cell embryo and considerably increased expression thereafter. The global 5-methylcytosine level was 2.78% at mid-embryonic development and decreased slightly to 2.41% in 2-year-old adults. Genetically identical clutch-mates raised in the same uniform laboratory setting showed broad variation in morphological, behavioural and life history traits and differences in DNA methylation. The invasion of diverse habitats in tropical to cold-temperate biomes in the last 20 years by the marbled crayfish was associated with the expression of significantly different phenotypic traits and DNA methylation patterns, despite extremely low genetic variation on the whole genome scale, suggesting the establishment of epigenetic ecotypes. The evolution of marbled crayfish from its parent species Procambarus fallax by autotriploidy a few decades ago was accompanied by a significant increase in body size, fertility and life span, a 20% reduction of global DNA methylation and alteration of methylation in hundreds of genes, suggesting that epigenetic mechanisms were involved in speciation and fitness enhancement. The combined analysis of phenotypic traits and DNA methylation across multiple biological contexts in the laboratory and field in marbled crayfish may serve as a blueprint for uncovering the role of epigenetic mechanisms in shaping of phenotypes in macro-invertebrates.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| |
Collapse
|
97
|
Byeon E, Kim MS, Kim DH, Lee Y, Jeong H, Lee JS, Hong SA, Park JC, Kang HM, Sayed AEDH, Kato Y, Bae S, Watanabe H, Lee YH, Lee JS. The freshwater water flea Daphnia magna NIES strain genome as a resource for CRISPR/Cas9 gene targeting: The glutathione S-transferase omega 2 gene. AQUATIC TOXICOLOGY 2022; 242:106021. [PMID: 34856461 DOI: 10.1016/j.aquatox.2021.106021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The water flea Daphnia magna is a small freshwater planktonic animal in the Cladocera. In this study, we assembled the genome of the D. magna NIES strain, which is widely used for gene targeting but has no reported genome. We used the long-read sequenced data of the Oxford nanopore sequencing tool for assembly. Using 3,231 genetic markers, the draft genome of the D. magna NIES strain was built into ten linkage groups (LGs) with 483 unanchored contigs, comprising a genome size of 173.47 Mb. The N50 value of the genome was 12.54 Mb and the benchmarking universal single-copy ortholog value was 98.8%. Repeat elements in the D. magna NIES genome were 40.8%, which was larger than other Daphnia spp. In the D. magna NIES genome, 15,684 genes were functionally annotated. To assess the genome of the D. magna NIES strain for CRISPR/Cas9 gene targeting, we selected glutathione S-transferase omega 2 (GST-O2), which is an important gene for the biotransformation of arsenic in aquatic organisms, and targeted it with an efficient make-up (25.0%) of mutant lines. In addition, we measured reactive oxygen species and antioxidant enzymatic activity between wild type and a mutant of the GST-O2 targeted D. magna NIES strain in response to arsenic. In this study, we present the genome of the D. magna NIES strain using GST-O2 as an example of gene targeting, which will contribute to the construction of deletion mutants by CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Ah Hong
- Department of Chemistry, College of Nature Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut 71516, Egypt
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Sangsu Bae
- Department of Chemistry, College of Nature Sciences, Hanyang University, Seoul 04763, South Korea
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
98
|
Lee J, Cho BC, Park JS. Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities. Mar Genomics 2021; 61:100919. [PMID: 34965493 DOI: 10.1016/j.margen.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Brine shrimp Artemia franciscana, a commercially important species, can thrive in a wide range of salinities and is commonly found in hypersaline lakes and solar salterns. Transcriptome analysis can enhance the understanding of the adaptative mechanisms of brine shrimp in aquaculture. RNA sequencing (RNAseq) data was generated from A. franciscana adults that were salt-adapted for 2-4 weeks at five salinities: 35, 50, 100, 150, and 230 psu. Long-read isoform sequencing (IsoSeq) data was used to construct a high-quality transcriptome assembly. Also, the gene expression patterns in A. franciscana adults were examined. Notably, the transcriptional response of A. franciscana's acclimation to intermediate salinities (50-150 psu) displayed frequently and differentially U-shaped or inverted U-shaped expression patterns. In addition, the types of genes showing two nonmonotonic expression patterns were distinct from each other. The coordinated shifts in gene expression suggest different homeostatic strategies of A. franciscana at specific salinities; such strategies may enhance population fitness at extreme salinities. Our study should promote a scientific concept for the gene expression patterns of A. franciscana along a broad salinity gradient, and a variety of salinity and prey should be monitored for testing the gene expression pattern of this important aquaculture species.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jong Soo Park
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
99
|
Li J, Singh U, Bhandary P, Campbell J, Arendsee Z, Seetharam AS, Wurtele ES. Foster thy young: enhanced prediction of orphan genes in assembled genomes. Nucleic Acids Res 2021; 50:e37. [PMID: 34928390 PMCID: PMC9023268 DOI: 10.1093/nar/gkab1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins encoded by newly-emerged genes ('orphan genes') share no sequence similarity with proteins in any other species. They provide organisms with a reservoir of genetic elements to quickly respond to changing selection pressures. Here, we systematically assess the ability of five gene prediction pipelines to accurately predict genes in genomes according to phylostratal origin. BRAKER and MAKER are existing, popular ab initio tools that infer gene structures by machine learning. Direct Inference is an evidence-based pipeline we developed to predict gene structures from alignments of RNA-Seq data. The BIND pipeline integrates ab initio predictions of BRAKER and Direct inference; MIND combines Direct Inference and MAKER predictions. We use highly-curated Arabidopsis and yeast annotations as gold-standard benchmarks, and cross-validate in rice. Each pipeline under-predicts orphan genes (as few as 11 percent, under one prediction scenario). Increasing RNA-Seq diversity greatly improves prediction efficacy. The combined methods (BIND and MIND) yield best predictions overall, BIND identifying 68% of annotated orphan genes, 99% of ancient genes, and give the highest sensitivity score regardless dataset in Arabidopsis. We provide a light weight, flexible, reproducible, and well-documented solution to improve gene prediction.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA
| | - Urminder Singh
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Priyanka Bhandary
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Jacqueline Campbell
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agriculture Research Service, Ames, IA 50014, USA
| | - Zebulun Arendsee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Iowa State University, Ames, IA 50014, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
100
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|