51
|
Almarasy AA, Hayasaki T, Abiko Y, Kawabata Y, Akasaka S, Fujimori A. Comparison of characteristics of single-walled carbon nanotubes obtained by super-growth CVD and improved-arc discharge methods pertaining to interfacial film formation and nanohybridization with polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
52
|
Ren S, Feng R, Cheng S, Wang Q, Zheng Z. Synergistic Catalytic Acceleration of MXene/MWCNTs as Decorating Materials for Ultrasensitive Detection of Morphine. ELECTROANAL 2021. [DOI: 10.1002/elan.202100039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shufang Ren
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province Gansu University of Political Science and Law Lanzhou China 730070
| | - Runyan Feng
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China 730070
| | - Shounian Cheng
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China 730070
| | - Qingtao Wang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China 730070
| | - Zhixiang Zheng
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province Gansu University of Political Science and Law Lanzhou China 730070
| |
Collapse
|
53
|
Ito H, Murata T, Fujisaki M, Tsuji R, Morita Y. High Capacity and Energy Density Organic Lithium-Ion Battery Based on Buckypaper with Stable π-Radical. CHEMSUSCHEM 2021; 14:1377-1387. [PMID: 33403780 DOI: 10.1002/cssc.202002851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Owing to an increasing demand on high performance and rare-metal free energy storage systems, organic rechargeable battery has attracted much attention. To increase the capacity of the whole battery, we have fabricated coin-type buckypaper cells composed of a trioxotriangulene neutral radical derivative (H3 TOT) and single-walled carbon nanotubes as a cathode and lithium metal plate as an anode without current collector. The cells exhibited a stable charge-discharge behavior even at a 90 wt % H3 TOT content with a high-rate performance of 10 C originating from high electrical conductivity of H3 TOT. Furthermore, based on the four-stage redox ability of H3 TOT, the H3 TOT 90 wt % cathode showed a high capacity of approximately 260 mAh g-1 and a high energy density of 546 Wh g-1 . In view of the simple fabrication of the cathode and excellent performance, TOT-based buckypaper will open a new strategy for the flexible cells for next-generation energy storages.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Megumi Fujisaki
- Material Solutions New Research Engine, KANEKA Corporation, Techno-Alliance Building, Osaka University, Yamadaoka 2-8, Suita, Osaka, Japan
| | - Ryotaro Tsuji
- Material Solutions New Research Engine, KANEKA Corporation, Techno-Alliance Building, Osaka University, Yamadaoka 2-8, Suita, Osaka, Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| |
Collapse
|
54
|
Daneshvar F, Chen H, Noh K, Sue HJ. Critical challenges and advances in the carbon nanotube-metal interface for next-generation electronics. NANOSCALE ADVANCES 2021; 3:942-962. [PMID: 36133297 PMCID: PMC9417627 DOI: 10.1039/d0na00822b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 05/25/2023]
Abstract
Next-generation electronics can no longer solely rely on conventional materials; miniaturization of portable electronics is pushing Si-based semiconductors and metallic conductors to their operational limits, flexible displays will make common conductive metal oxide materials obsolete, and weight reduction requirement in the aerospace industry demands scientists to seek reliable low-density conductors. Excellent electrical and mechanical properties, coupled with low density, make carbon nanotubes (CNTs) attractive candidates for future electronics. However, translating these remarkable properties into commercial macroscale applications has been disappointing. To fully realize their great potential, CNTs need to be seamlessly incorporated into metallic structures or have to synergistically work alongside them which is still challenging. Here, we review the major challenges in CNT-metal systems that impede their application in electronic devices and highlight significant breakthroughs. A few key applications that can capitalize on CNT-metal structures are also discussed. We specifically focus on the interfacial interaction and materials science aspects of CNT-metal structures.
Collapse
Affiliation(s)
- Farhad Daneshvar
- Intel Ronler Acres Campus, Intel Corp. 2501 NE Century Blvd Hillsboro Oregon 97124 USA
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| | - Hengxi Chen
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| | - Kwanghae Noh
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| | - Hung-Jue Sue
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
55
|
Uchida T, Tsugawa N, Yoshida S, Tohnai N. Crystallization of single-walled carbon nanotubes from a dilute solution. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
56
|
Xie A, Wang H, Zhu J, Chang J, Gu L, Liu C, Yang Y, Ren Y, Luo S. A caffeic acid sensor based on CuZnO /MWCNTs composite modified electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Lee SH, Rho WY, Chang H, Lee JH, Kim J, Lee SH, Jun BH. Carbon Nanomaterials for Biomedical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1309:257-276. [PMID: 33782876 DOI: 10.1007/978-981-33-6158-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of carbon-based nanomaterials (CNs) with outstanding properties has been rising in many scientific and industrial application fields. These CNs represent a tunable alternative for applications with biomolecules, which allow interactions in either covalent or noncovalent way. Diverse carbon-derived nanomaterial family exhibits unique features and has been widely exploited in various biomedical applications, including biosensing, diagnosis, cancer therapy, drug delivery, and tissue engineering. In this chapter, we aim to present an overview of CNs with a particular interest in intrinsic structural, electronic, and chemical properties. In particular, the detailed properties and features of CNs and its derivatives, including carbon nanotube (CNT), graphene, graphene oxide (GO), and reduced GO (rGO) are summarized. The interesting biomedical applications are also reviewed in order to offer an overview of the possible fields for scientific and industrial applications of CNs.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Hanyang University, Ansan, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
58
|
Yoo HJ, Kim DH, Shin D, Oh Y, Lee S, Lee JY, Choi YJ, Lee SH, Lee KS, Kim Y, Cho K. Recent developments in pre-treatment and analytical techniques for synthetic polymers by MALDI-TOF mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5767-5800. [PMID: 33241791 DOI: 10.1039/d0ay01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A great deal of effort has been expended to develop accurate means of determining the properties of synthetic polymers using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Many studies have focused on the importance of sample pre-treatment to obtain accurate analysis results. This review discusses the history of synthetic polymer characterization and highlights several applications of MALDI-TOF MS that recognize the importance of pre-treatment technologies. The subject area is of significance in the field of analytical chemistry, especially for users of the MALDI technique. Since the 2000s, many such technologies have been developed that feature improved methods and conditions, including solvent-free systems. In addition, the recent diversification of matrix types and the development of carbon-based matrix materials are described herein together with the current status and future directions of MALDI-TOF MS hardware and software development. We provide a summary of processes used for obtaining the best analytical results with synthetic polymeric materials using MALDI-TOF MS.
Collapse
Affiliation(s)
- Hee-Jin Yoo
- Center for Research Equipment, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28119, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Li J, Wang C, Zhang B, Wang Z, Yu W, Chen Y, Liu X, Guo Z, Zhang H. Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49281-49296. [PMID: 33100013 DOI: 10.1021/acsami.0c13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creative integration of sp-hybridized carbon atoms into artificial carbon graphdiyne has led to graphdiyne with superior properties in terms of uniformly distributed pores, ambipolar carrier transport, natural bandgap, and broadband absorption. Consequently, graphdiyne, regarded as a promising carbon material, has garnered particular attention in light-matter interactions. Light-matter interactions play an important role in optical information technology and meet the increasing demand for various energy sources. Herein, the status and challenges in nonlinear photonic and optoelectronic applications of graphdiyne, which are still in the infancy stage, are summarized. Furthermore, the bottleneck and perspective of graphdiyne in these aspects are discussed. It is therefore anticipated that this review could promote the development of graphdiyne in photonic and optoelectronic fields.
Collapse
Affiliation(s)
- Jiaofu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Cong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhenhong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050, P. R. China
| | - Yong Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
60
|
Yaghoubi A, Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J Control Release 2020; 327:198-224. [DOI: 10.1016/j.jconrel.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
|
61
|
Chazaro-Ruiz LF, Olvera-Sosa M, Vidal G, Rangel-Mendez JR, Palestino G, Perez F, Zhang W. Synthesis of Bamboo-like Multiwall Carbon Nanotube-Poly(Acrylic Acid-co-Itaconic Acid)/NaOH Composite Hydrogel and its Potential Application for Electrochemical Detection of Cadmium(II). BIOSENSORS 2020; 10:bios10100147. [PMID: 33086517 PMCID: PMC7603206 DOI: 10.3390/bios10100147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 05/06/2023]
Abstract
A poly(acrylic acid-co-itaconic acid) (PAA-co-IA)/NaOH hydrogel containing bamboo-type multiwall carbon nanotubes (B-MWCNTs) doped with nitrogen (PAA-co-IA/NaOH/B-MWCNTs) was synthesized and characterized by SEM, absorption of water, point of zero charges, infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The possible use of the PAA-co-IA/NaOH/B-MWCNT hydrogel as an electrode modifier and pre-concentrator agent for Cd(II) sensing purposes was then evaluated using carbon paste electrodes via differential pulse voltammetry. The presence of the B-MWCNTs in the hydrogel matrix decreased its degree of swelling, stabilized the structure of the swollen gel, and favored the detection of 3 ppb Cd(II), which is comparable to the World Health Organization's allowable maximum value in drinking water. A calibration curve was obtained in the concentration range of 2.67 × 10-8 to 6.23 × 10-7 M (i.e., 3 and 70 ppb) to determine a limit of detection (LOD) of 19.24 μgL-1 and a sensitivity of 0.15 μC ppb-1. Also, the Zn(II), Hg(II), Pb(II) and Cu(II) ions interfered moderately on the determination of Cd(II).
Collapse
Affiliation(s)
- Luis F. Chazaro-Ruiz
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí C.P. 78216, SLP, Mexico; (G.V.); (J.R.R.-M.)
- Correspondence: (L.F.C.-R.); (W.Z.)
| | - Miguel Olvera-Sosa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, San Luis Potosí C.P. 78210, Mexico; (M.O.-S.); (G.P.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
| | - Gabriela Vidal
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí C.P. 78216, SLP, Mexico; (G.V.); (J.R.R.-M.)
| | - J. Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí C.P. 78216, SLP, Mexico; (G.V.); (J.R.R.-M.)
| | - Gabriela Palestino
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, San Luis Potosí C.P. 78210, Mexico; (M.O.-S.); (G.P.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
| | - Fatima Perez
- CONACYT—Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí C.P. 78216, SLP, Mexico;
| | - Wei Zhang
- College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, UK
- Correspondence: (L.F.C.-R.); (W.Z.)
| |
Collapse
|
62
|
Kim H, Gao S, Hahm MG, Ahn CW, Jung HY, Jung YJ. Graphitic Nanocup Architectures for Advanced Nanotechnology Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1862. [PMID: 32957578 PMCID: PMC7558418 DOI: 10.3390/nano10091862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The synthesis of controllable hollow graphitic architectures can engender revolutionary changes in nanotechnology. Here, we present the synthesis, processing, and possible applications of low aspect ratio hollow graphitic nanoscale architectures that can be precisely engineered into morphologies of (1) continuous carbon nanocups, (2) branched carbon nanocups, and (3) carbon nanotubes-carbon nanocups hybrid films. These complex graphitic nanocup-architectures could be fabricated by using a highly designed short anodized alumina oxide nanochannels, followed by a thermal chemical vapor deposition of carbon. The highly porous film of nanocups is mechanically flexible, highly conductive, and optically transparent, making the film attractive for various applications such as multifunctional and high-performance electrodes for energy storage devices, nanoscale containers for nanogram quantities of materials, and nanometrology.
Collapse
Affiliation(s)
- Hyehee Kim
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; (H.K.); (S.G.)
| | - Sen Gao
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; (H.K.); (S.G.)
| | - Myung Gwan Hahm
- Department of Materials Science and Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, Korea;
| | - Chi Won Ahn
- National Nanofab Center, KAIST, 291 Daehak-Ro, Yusung-Gu, Daejeon 34141, Korea;
| | - Hyun Young Jung
- Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongnam 52725, Korea;
| | - Yung Joon Jung
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; (H.K.); (S.G.)
- National Nanofab Center, KAIST, 291 Daehak-Ro, Yusung-Gu, Daejeon 34141, Korea;
| |
Collapse
|
63
|
Zhu Y, Hagerman ME. Atomic force microscopy studies of LAPONITE® directed self-assembly of single-walled carbon nanotubes in electronic nanonetworks. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
64
|
Carbon nanotubes grafted with β-cyclodextrin by an ultrasonication method and its demulsification performance in oily wastewater. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Sun Z, Fang S, Hu YH. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem Rev 2020; 120:10336-10453. [PMID: 32852197 DOI: 10.1021/acs.chemrev.0c00083] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon materials, with their diverse allotropes, have played significant roles in our daily life and the development of material science. Following 0D C60 and 1D carbon nanotube, 2D graphene materials, with their distinctively fascinating properties, have been receiving tremendous attention since 2004. To fulfill the efficient utilization of 2D graphene sheets in applications such as energy storage and conversion, electrochemical catalysis, and environmental remediation, 3D structures constructed by graphene sheets have been attempted over the past decade, giving birth to a new generation of graphene materials called 3D graphene materials. This review starts with the definition, classifications, brief history, and basic synthesis chemistries of 3D graphene materials. Then a critical discussion on the design considerations of 3D graphene materials for diverse applications is provided. Subsequently, after emphasizing the importance of normalized property characterization for the 3D structures, approaches for 3D graphene material synthesis from three major types of carbon sources (GO, hydrocarbons and inorganic carbon compounds) based on GO chemistry, hydrocarbon chemistry, and new alkali-metal chemistry, respectively, are comprehensively reviewed with a focus on their synthesis mechanisms, controllable aspects, and scalability. At last, current challenges and future perspectives for the development of 3D graphene materials are addressed.
Collapse
Affiliation(s)
- Zhuxing Sun
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States.,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
66
|
Torrinha Á, Oliveira TMBF, Ribeiro FW, Correia AN, Lima-Neto P, Morais S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1268. [PMID: 32610509 PMCID: PMC7408367 DOI: 10.3390/nano10071268] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023]
Abstract
Pharmaceuticals, as a contaminant of emergent concern, are being released uncontrollably into the environment potentially causing hazardous effects to aquatic ecosystems and consequently to human health. In the absence of well-established monitoring programs, one can only imagine the full extent of this problem and so there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. Carbon-based nanomaterials are the most used nanostructures in (bio)sensors construction attributed to their facile and well-characterized production methods, commercial availability, reduced cost, high chemical stability, and low toxicity. However, most importantly, their relatively good conductivity enabling appropriate electron transfer rates-as well as their high surface area yielding attachment and extraordinary loading capacity for biomolecules-have been relevant and desirable features, justifying the key role that they have been playing, and will continue to play, in electrochemical (bio)sensor development. The present review outlines the contribution of carbon nanomaterials (carbon nanotubes, graphene, fullerene, carbon nanofibers, carbon black, carbon nanopowder, biochar nanoparticles, and graphite oxide), used alone or combined with other (nano)materials, to the field of environmental (bio)sensing, and more specifically, to pharmaceutical pollutants analysis in waters and aquatic species. The main trends of this field of research are also addressed.
Collapse
Affiliation(s)
- Álvaro Torrinha
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, 63048-080 Juazeiro do Norte, CE, Brazil;
| | - Francisco W.P. Ribeiro
- Instituto de Formação de Educadores, Universidade Federal do Cariri, Rua Olegário Emídio de Araújo, S/N, Centro, 63260-000 Brejo Santo - CE, Brazil;
| | - Adriana N. Correia
- GELCORR, Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60455-970 Fortaleza-CE, Brazil; (A.N.C.); (P.L.-N.)
| | - Pedro Lima-Neto
- GELCORR, Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60455-970 Fortaleza-CE, Brazil; (A.N.C.); (P.L.-N.)
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| |
Collapse
|
67
|
Chen J, Xie J, Zhang Z, Wang F, Hu J, Li H. Rapid and accurate determination of carboxyl groups in carbon materials by headspace gas chromatography. J Chromatogr A 2020; 1621:461062. [PMID: 32291078 DOI: 10.1016/j.chroma.2020.461062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/05/2020] [Accepted: 03/22/2020] [Indexed: 11/29/2022]
Abstract
This paper reports a novel and rapid method for determining carboxyl groups in carbon materials by headspace gas chromatography (HS-GC). Taking carboxylated carbon nanotubes (CNTs) as an example, the experiment based on GC measurement of carbon dioxide (CO2) generated by complete reaction between carboxyl groups and sodium bicarbonate in a sealed vial, which showed that carboxyl groups in CNTs could be completely transformed into CO2 under the equilibrium temperature at 60 °C for 10 min. The relative standard deviation (RSD) of this method in the repeatability test was less than 1.52%, and the limit of quantitation (LOQ) for carboxyl content was 0.014 mmol/g in CNTs. More significantly, appropriate ultrasound of the sample before headspace injection could greatly improve the detection efficiency by reducing the equilibrium time. All in all, the HS-GC method provides an automated and accurate analysis for testing carboxyl groups in carbon materials, and it is of profound significance to develop a new way for quantitative research of carbon materials.
Collapse
Affiliation(s)
- Junjun Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junxian Xie
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhili Zhang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Furong Wang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jian Hu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hailong Li
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
68
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
69
|
Burhan H, Ay H, Kuyuldar E, Sen F. Monodisperse Pt-Co/GO anodes with varying Pt: Co ratios as highly active and stable electrocatalysts for methanol electrooxidation reaction. Sci Rep 2020; 10:6114. [PMID: 32273553 PMCID: PMC7145861 DOI: 10.1038/s41598-020-63247-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
Abstract
The intense demand for alternative energy has led to efforts to find highly efficient and stable electrocatalysts for the methanol oxidation reaction. For this purpose, herein, graphene oxide-based platinum-cobalt nanoparticles (Pt100-xCox@GO NPs) were synthesized in different ratios and the synthesized nanoparticles were used directly as an efficient electrocatalyst for methanol oxidation reaction (MOR). The characterizations for the determination of particle size and surface composition of nanoparticles were performed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The structure of the catalysts was detected as face-centered cubic and the dispersion of them on graphene oxide was homogenous (distributed narrowly (4.01 ± 0.51 nm)). Cyclic voltammetry (CV) and chronoamperometry (CA) was utilized for testing electrocatalytic activities of all prepared NPs for the methanol oxidation reaction. It was detected that the newly produced NPs were more active and stable than commercially existing Pt(0)/Co nanomaterial in methanol electro-oxidation in acidic media.
Collapse
Affiliation(s)
- Hakan Burhan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Hasan Ay
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Esra Kuyuldar
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
70
|
Soldatov AP. Conception of Nanosized Membrane Reactors for Hydrogenation with Accumulated Hydrogen. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
71
|
Abiko Y, Hayasaki T, Hirayama S, Almarasy AA, Fujimori A. Fabrication of organo-modified carbon nanotube with excellent heat resistance and preparation of its polymer-based nanocomposite by simple melt compounding. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03180-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
72
|
Zhang F, Liu G, Yuan J, Wang Z, Tang T, Fu S, Zhang H, Man Z, Xing F, Xu X. 2D graphdiyne: an excellent ultraviolet nonlinear absorption material. NANOSCALE 2020; 12:6243-6249. [PMID: 32150179 DOI: 10.1039/c9nr10704e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With an sp2-hybridized carbon atom structure, graphene is recognized as a nonlinear absorption (NLA) material, which has motivated scientists to explore new allotropes of carbon. Different from graphene, graphdiyne (GDY) consists of sp- and sp2-hybridized carbon atoms. An sp-hybridized carbon-carbon triple bond structure will bring in novel nonlinear optical properties, which are different from other allotropes of carbon. In this study, we investigated the broadband NLA properties (ultraviolet-infrared waveband) of GDY nanosheets, exfoliated using a liquid-phase exfoliation (LPE) method. The short ultraviolet cut-off wavelength (around 200 nm-220 nm) forebodes the potential application of GDY as an ultraviolet optical material. The outstanding NLA resulting in an ultraviolet waveband attests that the GDY nanosheets are veritable ultraviolet NLA materials, which have potential applications in ultraviolet optics. Our study broadens the application scopes of nanomaterials.
Collapse
Affiliation(s)
- Fang Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Guowei Liu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Junjie Yuan
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Zhengping Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Tianhong Tang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Huanian Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Zhongsheng Man
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xinguang Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
73
|
Poorsargol M, Razmara Z, Amiri MM. The role of hydroxyl and carboxyl functional groups in adsorption of copper by carbon nanotube and hybrid graphene–carbon nanotube: insights from molecular dynamic simulation. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00214-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
74
|
Alshahrani AA, Algamdi MS, Alsohaimi IH, Nghiem LD, Tu KL, Al-Rawajfeh AE, in het Panhuis M. The rejection of mono- and di-valent ions from aquatic environment by MWNT/chitosan buckypaper composite membranes: Influences of chitosan concentrations. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
76
|
Guo Y, Werner M, Fleury JB, Baulin VA. Unexpected Cholesterol-Induced Destabilization of Lipid Membranes near Transmembrane Carbon Nanotubes. PHYSICAL REVIEW LETTERS 2020; 124:038001. [PMID: 32031854 DOI: 10.1103/physrevlett.124.038001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Cholesterol is a crucial component of mammalian cell membranes that takes part in many vital processes. It is generally accepted that cholesterol stabilizes the membrane and induces transitions into ordered states. In contrast to expectations, we demonstrate that cholesterol can destabilize the membrane by creating a nanodomain around a perpendicularly embedded ultrashort carbon nanotube (CNT), and we show that cholesterol triggers the translocation of an ultrashort CNT through the cell membrane. Using atomistic simulations, we report the existence of a nanoscale domain around an ultrashort carbon nanotube within a crossover distance of 0.9 nm from the surface of the nanotube, where the properties of the bilayer are different from the bulk: the domain is characterized by increased fluctuations, increased thickness, and increased order of the lipids with respect to the bulk. Cholesterol decreases the thickness and order of lipids and increases the fluctuations with respect to a pure lipid bilayer. Experimentally, we confirm that cholesterol nanodomains provoke spontaneous translocation of nanotubes through a lipid bilayer even for low membrane tensions. A specially designed microfluidic device allows us to trace the kinetic pathway of the translocation process and establish the threshold cholesterol concentration of 20% for translocation. The reported nanoscale cholesterol-induced membrane restructuring near the ultrashort CNT in lipid membranes enables precise control and specific targeting of a membrane using cholesterol. As an example, it may allow for specific targeting between cholesterol-rich mammalian cells and cholesterol-poor bacterial cells.
Collapse
Affiliation(s)
- Yachong Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Marco Werner
- Leibniz-Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Jean Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avinguda dels Paisos Catalans, 43007 Tarragona, Spain
| |
Collapse
|
77
|
Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydr Polym 2020; 234:115888. [PMID: 32070508 DOI: 10.1016/j.carbpol.2020.115888] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
In recent years, extensive efforts have been devoted to electronic miniaturization and integration. Accordingly, heating up of electronics has become a critical problem that needs to be urgently solved by efficient and reliable thermal management. Electronic device substrates made of cellulose nanofibrils (CNFs) exhibit outstanding flexibility, mechanical properties, and optical properties. Combining CNFs with high-thermal-conductivly fillers is an effective thermal management technique. This paper focuses on the thermal management of electronic devices and highlights the potential of CNF-based materials for efficient thermal management of energy storage electronic such as supercapacitors, lithium-ion batteries and solar cells. A high-thermal-conductivity composite material for electronic devices can be obtained by combining CNFs as the framework material with carbon nanotubes, graphene, and inorganic nitrides. Moreover, The research progress in the application of CNFs-based materials for supercapacitors, lithium-ion batteries and solar cells is highlighted, and the emerging challenges of different CNFs-based energy storage devices are discussed.
Collapse
|
78
|
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020; 378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.
Collapse
Affiliation(s)
- Viviana Negri
- Departamento de Biotecnología y Farmacia, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Jesús Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, c/Dr. Esquerdo 56, 28007, Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, c/Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
79
|
Kim H, Ramalingam M, Balakumar V, Zhang X, Gao W, Son YA, Bradford PD. Chemically interconnected ternary AgNP/polypyrrole/functionalized buckypaper composites as high-energy-density supercapacitor electrodes. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
80
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
81
|
Akagi K. Interdisciplinary Chemistry Based on Integration of Liquid Crystals and Conjugated Polymers: Development and Progress. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190092] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kazuo Akagi
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
82
|
Ji M, Mason ML, Modarelli DA, Parquette JR. Threading carbon nanotubes through a self-assembled nanotube. Chem Sci 2019; 10:7868-7877. [PMID: 31853346 PMCID: PMC6844271 DOI: 10.1039/c9sc02313e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Achieving the co-assembly of more than one component represents an important challenge in the drive to create functional self-assembled nanomaterials. Multicomponent nanomaterials comprised of several discrete, spatially sorted domains of components with high degrees of internal order are particularly important for applications such as optoelectronics. In this work, single-walled carbon nanotubes (SWNTs) were threaded through the inner channel of nanotubes formed by the bolaamphiphilic self-assembly of a naphthalenediimide-lysine (NDI-Bola) monomer. The self-assembly process was driven by electrostatic interactions, as indicated by ζ-potential measurements, and cation-π interactions between the surface of the SWNT and the positively charged, NDI-Bola nanotube interior. To increase the threading efficiency, the NDI-Bola nanotubes were fragmented into shortened segments with lengths of <100 nm via sonication-induced shear, prior to co-assembly with the SWNTs. The threading process created an initial composite nanostructure in which the SWNTs were threaded by multiple, shortened segments of the NDI-Bola nanotube that progressively re-elongated along the SWNT surface into a continuous radial coating around the SWNT. The resultant composite structure displayed NDI-Bola wall thicknesses twice that of the parent nanotube, reflecting a bilayer wall structure, as compared to the monolayer structure of the parent NDI-Bola nanotube. As a final, co-axial outer layer, poly(p-phenyleneethynylene) (PPE-SO3Na, M W = 5.76 × 104, PDI - 1.11) was wrapped around the SWNT/NDI-Bola composite resulting in a three-component (SWNT/NDI-Bola/PPE-SO3Na) composite nanostructure.
Collapse
Affiliation(s)
- Mingyang Ji
- Department of Chemistry , The Ohio State University , 100 W. 18th Ave. , Columbus , Ohio 43210 , USA .
| | - McKensie L Mason
- Department of Chemistry , The Ohio State University , 100 W. 18th Ave. , Columbus , Ohio 43210 , USA .
| | - David A Modarelli
- Department of Chemistry , Center for Laser and Optical Spectroscopy , Knight Chemical Laboratory , The University of Akron , Akron , Ohio 44325-3601 , USA
| | - Jon R Parquette
- Department of Chemistry , The Ohio State University , 100 W. 18th Ave. , Columbus , Ohio 43210 , USA .
| |
Collapse
|
83
|
Tao S, Feng T, Zheng C, Zhu S, Yang B. Carbonized Polymer Dots: A Brand New Perspective to Recognize Luminescent Carbon-Based Nanomaterials. J Phys Chem Lett 2019; 10:5182-5188. [PMID: 31424936 DOI: 10.1021/acs.jpclett.9b01384] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Carbon dots (CDs), as emerging luminescent nanomaterials, possess excellent but complex properties, bringing about extensive attention and a lot of controversy. In this Perspective, we put forward the concept of "carbonized polymer dots" and emphasize the important role of polymerization and carbonization during the formation of CDs. We explore the common characters and clarify the complicated relationship of CDs, based on the reasonable classification of graphene quantum dots, carbon quantum dots, and carbonized polymer dots. Moreover, different perspectives are provided for comprehensive analysis about the essence of CDs, including quantum dots, molecules, and polymers. The photoluminescence mechanism has been classified into molecule state, carbon core state, surface/edge state, and cross-link enhanced emission effect for further understanding of complicated phenomena.
Collapse
Affiliation(s)
- Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chengyu Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, United States
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
84
|
Torrinha Á, Montenegro MC, Araújo AN. Conjugation of glucose oxidase and bilirubin oxidase bioelectrodes as biofuel cell in a finger-powered microfluidic platform. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
85
|
Characterization of Capillary Pressure–Saturation Relationships for Double-Porosity Medium Using Light Transmission Visualization Technique. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01322-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
86
|
Gan L, Xu C, Yang J, Ma Y, Cai J, Watanabe A. Facile Preparation of Holey Carbon Nanotubes Assisted by Ag Nanoparticle Catalysts for High-performance Micro-supercapacitors. CHEM LETT 2019. [DOI: 10.1246/cl.190094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Gan
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, P. R. China
| | - Cigang Xu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, P. R. China
| | - Jiangrong Yang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, P. R. China
| | - Yunfeng Ma
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - Jinguang Cai
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, P. R. China
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
87
|
Le T, Subramanian R, Ajala O, Pellegrin P, Depan D. The mobility of PEG chains versus micellar stability towards the formation of PE‐b‐PEG nanohybrid shish‐kebab on carbon nanotubes. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tuan Le
- Department of Chemical EngineeringUniversity of Louisiana at Lafayette Lafayette LA 70503 U.S.A
| | - Ramalingam Subramanian
- Department of Chemical EngineeringUniversity of Louisiana at Lafayette Lafayette LA 70503 U.S.A
| | - Oluwakemi Ajala
- Department of Chemical EngineeringUniversity of Louisiana at Lafayette Lafayette LA 70503 U.S.A
| | - Padma Pellegrin
- Department of Chemical EngineeringUniversity of Louisiana at Lafayette Lafayette LA 70503 U.S.A
| | - Dilip Depan
- Department of Chemical EngineeringUniversity of Louisiana at Lafayette Lafayette LA 70503 U.S.A
| |
Collapse
|
88
|
Kim HB, Jin B, Patel DK, Kim JW, Kim J, Seonwoo H, Lim KT. Enhanced Osteogenesis of Human Mesenchymal Stem Cells in Presence of Single-Walled Carbon Nanotubes. IEEE Trans Nanobioscience 2019; 18:463-468. [DOI: 10.1109/tnb.2019.2914127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
89
|
Li Y, Wu X, Kim M, Fortner J, Qu H, Wang Y. Fluorescent Ultrashort Nanotubes from Defect-Induced Chemical Cutting. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:4536-4544. [PMID: 32742079 PMCID: PMC7394297 DOI: 10.1021/acs.chemmater.9b01196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrashort single-walled carbon nanotubes (SWCNTs) that fluoresce brightly in the shortwave infrared could open exciting opportunities in high-resolution bioimaging and sensing. However, this material remains largely unexplored due to the synthetic challenge. Here, we describe a high-yield synthesis of fluorescent ultrashort nanotubes based on a fundamentally new understanding of defect-induced chemical etching of SWCNTs. We first implant fluorescent sp3 quantum defects along the nanotube sidewalls and then oxidatively cut the nanotubes into ultrashort pieces using hydrogen peroxide. This simple two-step process leads to the synthesis of fluorescent ultrashort nanotubes with a narrow length distribution (38 ± 18 nm) and a yield as high as 57%. Despite their ultrashort length, the cut SWCNTs fluoresce brightly in the shortwave infrared at wavelengths characteristic of the sp3 defects, which provides a spectral fingerprint allowing us to uncover new insights into this defect-induced cutting process. Quantum chemical computations suggest that this etching reaction occurs selectively at the defect sites where hydroxyl radicals (•OH) attack the surrounding electron-rich carbon atoms. This work reveals fundamental insights into defect chemistry and makes fluorescent ultrashort nanotubes synthetically accessible for both basic and applied studies of this largely unexplored but rich class of synthetic molecular nanostructures.
Collapse
Affiliation(s)
| | | | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
90
|
Synthesis of "Dahlia-Like" Hydrophilic Fluorescent Carbon Nanohorn as a Bio-Imaging PROBE. Int J Mol Sci 2019; 20:ijms20122977. [PMID: 31216698 PMCID: PMC6628057 DOI: 10.3390/ijms20122977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 12/16/2022] Open
Abstract
Carbon nanohorns (CNH) were synthesized by a simple conventional hydrothermal method in this study. The CNHs were prepared by the chemical oxidation from the carbonation of Nafion (catalyst) with heparin (carbon resource). The formation of CNH involved two major steps, as described followed. First, the formation of carbon nanorice (CNR) was achieved by carbonation and self-assembly of heparin inside the Nafion structure. Second, the further oxidation of CNR resulted the heterogeneous and porous micelle domains showed at the outer layer of the CNR particles. These porous domains exhibited hydrophobic carbon and resulted self-assembly of the CNR to form the structure of CNHs. The resulting CNHs aggregated into a “dahlia-like” morphology with fluorescence in a diameter of 50–200 nm. The “dahlia-like” CNH showed better fluorescence (450nm) than CNR particles because of the presence of more structural defect. These findings suggest that the hydrophilic fluorescent carbon nanohorns (HFCNHs) synthesized in this study have the potential to be used for in vitro bio-imaging
Collapse
|
91
|
Sharma S, Naskar S, Kuotsu K. A review on carbon nanotubes: Influencing toxicity and emerging carrier for platinum based cytotoxic drug application. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Negative Impact of Adjacent Coordination on Direct Electrochemistry and Enzymatic Catalysis of Laccase Immobilization onto Multi-wall Carbon Nanotubes Functionalized by Perylene Derivative. Macromol Res 2019. [DOI: 10.1007/s13233-019-7131-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
93
|
Wu L, Dong Y, Zhao J, Ma D, Huang W, Zhang Y, Wang Y, Jiang X, Xiang Y, Li J, Feng Y, Xu J, Zhang H. Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807981. [PMID: 30730064 DOI: 10.1002/adma.201807981] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/15/2019] [Indexed: 05/19/2023]
Abstract
Graphdiyne is a new carbon allotrope comprising sp- and sp2 -hybridized carbon atoms arranged in a 2D layered structure. In this contribution, 2D graphdiyne is demonstrated to exhibit a strong light-matter interaction with high stability to achieve a broadband Kerr nonlinear optical response, which is useful for nonreciprocal light propagation in passive photonic diodes. Furthermore, advantage of the unique Kerr nonlinearity of 2D graphdiyne is taken and a nonreciprocal light propagation device is proposed based on the novel similarity comparison method. Graphdiyne has demonstrated a large nonlinear refractive index in the order of ≈10-5 cm2 W-1 , comparing favorably to that of graphene. Based on the strong Kerr nonlinearity of 2D graphdiyne, a nonlinear photonic diode that breaks time-reversal symmetry is demonstrated to realize the unidirectional excitation of Kerr nonlinearity, which can be regarded as a significant demonstration of a graphdiyne-based prototypical application in nonlinear photonics and might suggest an important step toward versatile graphdiyne-based advanced passive photonics devices in the future.
Collapse
Affiliation(s)
- Leiming Wu
- Faculty of Information Technology, Macau University of Science and Technology, Macao, 519020, P. R. China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuze Dong
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Jinlai Zhao
- Faculty of Information Technology, Macau University of Science and Technology, Macao, 519020, P. R. China
| | - Dingtao Ma
- Faculty of Information Technology, Macau University of Science and Technology, Macao, 519020, P. R. China
| | - Weichun Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yunzheng Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiantao Jiang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuanjiang Xiang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jianqing Li
- Faculty of Information Technology, Macau University of Science and Technology, Macao, 519020, P. R. China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
94
|
Dwivedee BP, Soni S, Bhimpuria R, Laha JK, Banerjee UC. Tailoring a robust and recyclable nanobiocatalyst by immobilization of Pseudomonas fluorescens lipase on carbon nanofiber and its application in synthesis of enantiopure carboetomidate analogue. Int J Biol Macromol 2019; 133:1299-1310. [PMID: 30940586 DOI: 10.1016/j.ijbiomac.2019.03.231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Pseudomonas fluorescens lipase (PFL) was covalently immobilized on carbon nanofiber (CNF) using 1‑ethyl‑3‑[3‑dimethylaminopropyl] carbodiimide (EDC)/N‑hydroxysuccinimide (NHS). Surface functionalization of carbon nanofiber augments dispersibility as well as efficiency of covalent immobilization. Crucial parameters for immobilization such as pH, enzyme-support ratio, reaction time and mixing rate were optimized using one factor at a time (OFAT) approach. The nanobiocatalyst prepared under optimized conditions demonstrated a ten-fold increase in enzyme activity and the advantage of high thermal stability (up to 85 °C) along with 10 cycles of reusability. Subsequently practical application of the nanobiocatalyst was explored in the kinetic resolution of racemic 1‑phenylethanol into (S)‑1‑phenylethanol [C = 49.1%, eep = 99.5%, ees = 98.5% and E value = 151.4] followed by Mitsunobu reaction with a substituted pyrrole, giving an enantiopure (R)-carboetomidate analogue (yield = 83%).
Collapse
Affiliation(s)
- Bharat P Dwivedee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Surbhi Soni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Rohan Bhimpuria
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
95
|
Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. J Control Release 2019; 297:79-90. [PMID: 30659906 DOI: 10.1016/j.jconrel.2019.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tumour-specific, immuno-based therapeutic interventions can be considered as safe and effective approaches for cancer therapy. Exploitation of nano-vaccinology to intensify the cancer vaccine potency may overcome the need for administration of high vaccine doses or additional adjuvants and therefore could be a more efficient approach. Carbon nanotube (CNT) can be described as carbon sheet(s) rolled up into a cylinder that is nanometers wide and nanometers to micrometers long. Stemming from the observed capacities of CNTs to enter various types of cells via diversified mechanisms utilising energy-dependent and/or passive routes of cell uptake, the use of CNTs for the delivery of therapeutic agents has drawn increasing interests over the last decade. Here we review the previous studies that demonstrated the possible benefits of these cylindrical nano-vectors as cancer vaccine delivery systems as well as the obstacles their clinical application is facing.
Collapse
Affiliation(s)
- Hatem A F M Hassan
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Sandra S Diebold
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Lesley A Smyth
- School of Health, Sport and Biosciences, University of East London, Stratford Campus, Water Lane, London E15 4LZ, United Kingdom
| | - Adam A Walters
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Giovanna Lombardi
- School of Immunology and Microbial Sciences, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
96
|
Makinde ZO, Mashazi P, Khene S. Electrocatalytic behavior of single walled carbon nanotubes with alkylthio-substituted cobalt binuclear phthalocyanines towards oxidation of 4-chlorophenols. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work describes the adsorption of synthesized cobalt mono (CoPc) and binuclear phthalocyanines (CoBiPc) with single walled carbon nanotubes (SWCNT) to form SWCNT-CoPc or SWCNT-CoBiPc as non-covalent conjugates onto glassy carbon electrodes (GCE). The cobalt complexes and their SWCNT-conjugate-modified electrodes were studied for their electrocatalytic oxidation towards 4-chlorophenol. All modified electrodes showed improved catalytic current and stability towards the detection of 4-chlorophenol. The best activity was observed for the SWCNT-CoBiPc2 system in terms of current response and the SWCNT-CoBiPc1 system in terms of resistance to electrode fouling.
Collapse
Affiliation(s)
- Zainab O. Makinde
- Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Philani Mashazi
- Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Samson Khene
- Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
97
|
Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019; 9:57. [PMID: 30729081 PMCID: PMC6352626 DOI: 10.1007/s13205-019-1577-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/13/2023] Open
Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
Collapse
Affiliation(s)
- Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| | - Sahil Nagpal
- Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Mahero Ayesha Shah
- Julius Maximilians Universität Würzburg, Faculty of medicine Uniklinik, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ananya Srivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana Mahendergarh, Haryana, 123031 India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities 2004 Folwell Ave, Saint Paul, MN 55108 USA
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
98
|
Rathod V, Tripathi R, Joshi P, Jha PK, Bahadur P, Tiwari S. Paclitaxel Encapsulation into Dual-Functionalized Multi-Walled Carbon Nanotubes. AAPS PharmSciTech 2019; 20:51. [PMID: 30617845 DOI: 10.1208/s12249-018-1218-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/08/2018] [Indexed: 01/31/2023] Open
Abstract
This work reports the synthesis of multi-walled carbon nanotubes (CNTs) from xylene/ferrocene using catalytic chemical vapor deposition technique. Following characterization using transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and Raman spectroscopy, CNT surface was dual-functionalized using ethylenediamine and phenylboronic acid groups. Average diameter of CNTs was calculated to be 16.5 nm. EDX spectra confirmed the existence of carbonaceous deposits on the tube's surface. Scattered electron diffraction and X-ray peak broadening calculations showed consistent inter-planer distance of the grown CNTs. Chemical functionalization, confirmed from FT-IR and Raman spectra, showed an enhanced dispersibility of CNTs in water. We describe the changes in the first- and second-order regions of the Raman spectra following the encapsulation of an anti-cancer drug, paclitaxel (PLX), into the free volume of functionalized CNTs. High PLX loading, achieved through its non-covalent π-π stacking within the CNT interior, is confirmed through the blue-shifted, softened G band in the Raman spectrum. While not addressed here, we will exploit this dual functionalization tactic to elaborate the relative role of attached moieties in the affinity interaction of CNTs with extra-cellular sialic acid, a biological target showing metastatic stage-dependent over-expression in colon cancer cells.
Collapse
|
99
|
Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Mikrochim Acta 2019; 186:50. [DOI: 10.1007/s00604-018-3110-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022]
|
100
|
Zhang J, Peng CA. Migration of mesenchymal stem cells tethered with carbon nanotubes under a chemotactic gradient. RSC Adv 2019; 9:7156-7164. [PMID: 35519939 PMCID: PMC9061108 DOI: 10.1039/c8ra09768b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/24/2019] [Indexed: 12/11/2022] Open
Abstract
Carbon nanotubes (CNTs) have been extensively studied for photothermal ablation of malignant cells due to their ability to absorb near-infrared (NIR) laser light and convert it to thermal energy for the lysis of tumor cells. Functionalizing CNTs with tumor-targeting moieties can facilitate the delivery to tumor sites. Instead of using targeting moieties, mesenchymal stem cells (MSCs) have been considered as vehicles to deliver therapeutic agents to cancer cells. In this study, the effects of attaching CNTs to MSCs on cell migration in response to a chemotactic gradient were investigated. Multiwalled carbon nanotubes (MWCNTs) were functionalized with streptavidin–fluorescein isothiocyanate (SA–FITC). The surface of human MSCs was biotinylated by culturing MSCs with biotin–lipid containing medium. CNTs were then attached on the outer cell membrane of biotinylated MSCs through SA–biotin binding. Fluorescence microscopy confirmed CNTs were located on the surface of MSCs. Various amounts of CNTs anchored on the membrane of MSCs were used to examine the effects of CNTs on MSC proliferation and migration. Our transwell migration assay showed that 4.26 ng CNT per cell is the threshold value that would not affect the migration speed of CNT-tagged MSCs toward the established gradient of chemoattractant SDF-1α. Chemotactic migration of biotinylated mesenchymal stem cells tethered with streptavidin-functionalized carbon nanotubes.![]()
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biological Engineering
- University of Idaho
- Moscow
- USA
| | - Ching-An Peng
- Department of Biological Engineering
- University of Idaho
- Moscow
- USA
| |
Collapse
|