51
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
52
|
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 2018; 1442:17-34. [PMID: 30008181 DOI: 10.1111/nyas.13930] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
Articular chondrocytes are quiescent, fully differentiated cells responsible for the homeostasis of adult articular cartilage by maintaining cellular survival functions and the fine-tuned balance between anabolic and catabolic functions. This balance requires phenotypic stability that is lost in osteoarthritis (OA), a disease that affects and involves all joint tissues and especially impacts articular cartilage structural integrity. In OA, articular chondrocytes respond to the accumulation of injurious biochemical and biomechanical insults by shifting toward a degradative and hypertrophy-like state, involving abnormal matrix production and increased aggrecanase and collagenase activities. Hypertrophy is a necessary, transient developmental stage in growth plate chondrocytes that culminates in bone formation; in OA, however, chondrocyte hypertrophy is catastrophic and it is believed to initiate and perpetuate a cascade of events that ultimately result in permanent cartilage damage. Emphasizing changes in DNA methylation status and alterations in NF-κB signaling in OA, this review summarizes the data from the literature highlighting the loss of phenotypic stability and the hypertrophic differentiation of OA chondrocytes as central contributing factors to OA pathogenesis.
Collapse
Affiliation(s)
- Purva Singh
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| |
Collapse
|
53
|
Iosef C, Liu M, Ying L, Rao SP, Concepcion KR, Chan WK, Oman A, Alvira CM. Distinct roles for IκB kinases alpha and beta in regulating pulmonary endothelial angiogenic function during late lung development. J Cell Mol Med 2018; 22:4410-4422. [PMID: 29993183 PMCID: PMC6111877 DOI: 10.1111/jcmm.13741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/13/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary angiogenesis is essential for alveolarization, the final stage of lung development that markedly increases gas exchange surface area. We recently demonstrated that activation of the nuclear factor kappa-B (NFκB) pathway promotes pulmonary angiogenesis during alveolarization. However, the mechanisms activating NFκB in the pulmonary endothelium, and its downstream targets are not known. In this study, we sought to delineate the specific roles for the NFκB activating kinases, IKKα and IKKβ, in promoting developmental pulmonary angiogenesis. Microarray analysis of primary pulmonary endothelial cells (PECs) after silencing IKKα or IKKβ demonstrated that the 2 kinases regulate unique panels of genes, with few shared targets. Although silencing IKKα induced mild impairments in angiogenic function, silencing IKKβ induced more severe angiogenic defects and decreased vascular cell adhesion molecule expression, an IKKβ regulated target essential for both PEC adhesion and migration. Taken together, these data show that IKKα and IKKβ regulate unique genes in PEC, resulting in differential effects on angiogenesis upon inhibition, and identify IKKβ as the predominant regulator of pulmonary angiogenesis during alveolarization. These data suggest that therapeutic strategies to specifically enhance IKKβ activity in the pulmonary endothelium may hold promise to enhance lung growth in diseases marked by altered alveolarization.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA.,Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Liu
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lihua Ying
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shailaja P Rao
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine R Concepcion
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Westin K Chan
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Andrew Oman
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Cristina M Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
54
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
55
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
56
|
Slotta C, Storm J, Pfisterer N, Henkel E, Kleinwächter S, Pieper M, Ruiz-Perera LM, Greiner JFW, Kaltschmidt B, Kaltschmidt C. IKK1/2 protect human cells from TNF-mediated RIPK1-dependent apoptosis in an NF-κB-independent manner. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1025-1033. [PMID: 29630899 DOI: 10.1016/j.bbamcr.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023]
Abstract
TNF signaling is directly linked to cancer development and progression. A broad range of tumor cells is able to evade cell death induced by TNF impairing the potential anti-cancer value of TNF in therapy. Although sensitizing cells to TNF-induced death therefore has great clinical implications, detailed mechanistic insights into TNF-mediated human cell death still remain unknown. Here, we analyzed human cells by applying CRISPR/Cas9n to generate cells deficient of IKK1, IKK2, IKK1/2 and RELA. Despite stimulation with TNF resulted in impaired NF-κB activation in all genotypes compared to wildtype cells, increased cell death was observable only in IKK1/2-double-deficient cells. Cell death could be detected by Caspase-3 activation and binding of Annexin V. TNF-induced programmed cell death in IKK1/2-/- cells was further shown to be mediated via RIPK1 in a predominantly apoptotic manner. Our findings demonstrate the IKK complex to protect from TNF-induced cell death in human cells independently to NF-κB RelA suggesting IKK1/2 to be highly promising targets for cancer therapy.
Collapse
Affiliation(s)
- Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany; Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Jonathan Storm
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Nina Pfisterer
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Elena Henkel
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Svenja Kleinwächter
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Maren Pieper
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Lucia M Ruiz-Perera
- Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany; Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany.
| |
Collapse
|
57
|
Cadieux-Dion M, Safina NP, Engleman K, Saunders C, Repnikova E, Raje N, Canty K, Farrow E, Miller N, Zellmer L, Thiffault I. Novel heterozygous pathogenic variants in CHUK in a patient with AEC-like phenotype, immune deficiencies and 1q21.1 microdeletion syndrome: a case report. BMC MEDICAL GENETICS 2018. [PMID: 29523099 PMCID: PMC5845372 DOI: 10.1186/s12881-018-0556-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ectodermal dysplasias (ED) are a group of diseases that affects the development or function of the teeth, hair, nails and exocrine and sebaceous glands. One type of ED, ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC or Hay-Wells syndrome), is an autosomal dominant disease characterized by the presence of skin erosions affecting the palms, soles and scalp. Other clinical manifestations include ankyloblepharon filiforme adnatum, cleft lip, cleft palate, craniofacial abnormalities and ectodermal defects such as sparse wiry hair, nail changes, dental changes, and subjective hypohydrosis. CASE PRESENTATION We describe a patient presenting clinical features reminiscent of AEC syndrome in addition to recurrent infections suggestive of immune deficiency. Genetic testing for TP63, IRF6 and RIPK4 was negative. Microarray analysis revealed a 2 MB deletion on chromosome 1 (1q21.1q21.2). Clinical exome sequencing uncovered compound heterozygous variants in CHUK; a maternally-inherited frameshift variant (c.1365del, p.Arg457Aspfs*6) and a de novo missense variant (c.1388C > A, p.Thr463Lys) on the paternal allele. CONCLUSIONS To our knowledge, this is the fourth family reported with CHUK-deficiency and the second patient with immune abnormalities. This is the first case of CHUK-deficiency with compound heterozygous pathogenic variants, including one variant that arose de novo. In comparison to cases found in the literature, this patient demonstrates a less severe phenotype than previously described.
Collapse
Affiliation(s)
- Maxime Cadieux-Dion
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.
| | - Nicole P Safina
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA
| | - Kendra Engleman
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA.,University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA
| | - Elena Repnikova
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Nikita Raje
- Pediatric Allergy, Asthma and Immunology Clinic, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Kristi Canty
- Dermatology Clinic, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Emily Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Neil Miller
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Lee Zellmer
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA
| |
Collapse
|
58
|
Zhu F, Hu Y. Integrity of IKK/NF-κB Shields Thymic Stroma That Suppresses Susceptibility to Autoimmunity, Fungal Infection, and Carcinogenesis. Bioessays 2018. [PMID: 29522649 DOI: 10.1002/bies.201700131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A pathogenic connection between autoreactive T cells, fungal infection, and carcinogenesis has been demonstrated in studies of human autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) as well as in a mouse model in which kinase-dead Ikkα knock-in mice develop impaired central tolerance, autoreactive T cell-mediated autoimmunity, chronic fungal infection, and esophageal squamous cell carcinoma, which recapitulates APECED. IκB kinase α (IKKα) is one subunit of the IKK complex required for NF-κB activation. IKK/NF-κB is essential for central tolerance establishment by regulating the development of medullary thymic epithelial cells (mTECs) that facilitate the deletion of autoreactive T cells in the thymus. In this review, we extensively discuss the pathogenic roles of inborn errors in the IKK/NF-κB loci in the phenotypically related diseases APECED, immune deficiency syndrome, and severe combined immunodeficiency; differentiate how IKK/NF-κB components, through mTEC (stroma), T cells/leukocytes, or epithelial cells, contribute to the pathogenesis of infectious diseases, autoimmunity, and cancer; and highlight the medical significance of IKK/NF-κB in these diseases.
Collapse
Affiliation(s)
- Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| |
Collapse
|
59
|
Alameda JP, Navarro M, Ramírez Á, Page A, Suárez-Cabrera C, Moreno-Maldonado R, Paramio JM, del Carmen Fariña M, Del Río M, Fernández-Aceñero MJ, Bravo A, de Los Llanos Casanova M. IKKα regulates the stratification and differentiation of the epidermis: implications for skin cancer development. Oncotarget 2018; 7:76779-76792. [PMID: 28881859 PMCID: PMC5363549 DOI: 10.18632/oncotarget.12527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
IKKα plays a mandatory role in keratinocyte differentiation and exerts an important task in non-melanoma skin cancer development. However, it is not fully understood how IKKα exerts these functions. To analyze in detail the role of IKKα in epidermal stratification and differentiation, we have generated tridimensional (3D) cultures of human HaCaT keratinocytes and fibroblasts in fibrin gels, obtaining human skin equivalents that comprise an epidermal and a dermal compartments that resembles both the structure and differentiation of normal human skin. We have found that IKKα expression must be strictly regulated in epidermis, as alterations in its levels lead to histological defects and promote the development of malignant features. Specifically, we have found that the augmented expression of IKKα results in increased proliferation and clonogenicity of human keratinocytes, and leads to an accelerated and altered differentiation, augmented ability of invasive growth, induction of the expression of oncogenic proteins (Podoplanin, Snail, Cyclin D1) and increased extracellular matrix proteolytic activity. All these characteristics make keratinocytes overexpressing IKKα to be at a higher risk of developing skin cancer. Comparison of genetic profile obtained by analysis of microarrays of RNA of skin equivalents from both genotypes supports the above described findings.
Collapse
Affiliation(s)
- Josefa P Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | | | - Jesús M Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | | | - Marcela Del Río
- Epithelial Biomedicine Division, CIEMAT-CIBERER (U714), Madrid, Spain.,Department of Bioengineering, Carlos III University (UC3M), Leganés, Madrid, Spain.,Cátedra Fundación Jiménez Díaz (IIS-FJD) of Regenerative Medicine and Tissue Bioengineer, Madrid, Spain
| | | | - Ana Bravo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - María de Los Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| |
Collapse
|
60
|
Song NY, Zhu F, Wang Z, Willette-Brown J, Xi S, Sun Z, Su L, Wu X, Ma B, Nussinov R, Xia X, Schrump DS, Johnson PF, Karin M, Hu Y. IKKα inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways. Proc Natl Acad Sci U S A 2018; 115:E812-E821. [PMID: 29311298 PMCID: PMC5789942 DOI: 10.1073/pnas.1717520115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two distinct and predominant types of human lung cancer. IκB kinase α (IKKα) has been shown to suppress lung SCC development, but its role in ADC is unknown. We found inactivating mutations and homologous or hemizygous deletions in the CHUK locus, which encodes IKKα, in human lung ADCs. The CHUK deletions significantly reduced the survival time of patients with lung ADCs harboring KRAS mutations. In mice, lung-specific Ikkα ablation (IkkαΔLu ) induces spontaneous ADCs and promotes KrasG12D-initiated ADC development, accompanied by increased cell proliferation, decreased cell senescence, and reactive oxygen species (ROS) accumulation. IKKα deletion up-regulates NOX2 and down-regulates NRF2, leading to ROS accumulation and blockade of cell senescence induction, which together accelerate ADC development. Pharmacologic inhibition of NADPH oxidase or ROS impairs KrasG12D-mediated ADC development in IkkαΔLu mice. Therefore, IKKα modulates lung ADC development by controlling redox regulatory pathways. This study demonstrates that IKKα functions as a suppressor of lung ADC in human and mice through a unique mechanism that regulates tumor cell-associated ROS metabolism.
Collapse
Affiliation(s)
- Na-Young Song
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Sichuan Xi
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Zhonghe Sun
- Laboratory of Molecular Technology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Ling Su
- Laboratory of Molecular Technology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Xiaolin Wu
- Laboratory of Molecular Technology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Buyong Ma
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Ruth Nussinov
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - David S Schrump
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702;
| |
Collapse
|
61
|
Alameda JP, Gaspar M, Ramírez Á, Navarro M, Page A, Suárez-Cabrera C, Fernández MG, Mérida JR, Paramio JM, García-Fernández RA, Fernández-Aceñero MJ, Casanova ML. Deciphering the role of nuclear and cytoplasmic IKKα in skin cancer. Oncotarget 2018; 7:29531-47. [PMID: 27121058 PMCID: PMC5045415 DOI: 10.18632/oncotarget.8792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Nonmelanoma skin cancers (NMSC) are the most common human malignancies. IKKα is an essential protein for skin development and is also involved in the genesis and progression of NMSC, through mechanisms not fully understood. While different studies show that IKKα protects against skin cancer, others indicate that it promotes NMSC. To resolve this controversy we have generated two models of transgenic mice expressing the IKKα protein in the nucleus (N-IKKα mice) or the cytoplasm (C-IKKα mice) of keratinocytes. Chemical skin carcinogenesis experiments show that tumors developed by both types of transgenic mice exhibit histological and molecular characteristics that make them more prone to progression and invasion than those developed by Control mice. However, the mechanisms through which IKKα promotes skin tumors are different depending on its subcellular localization; while IKKα of cytoplasmic localization increases EGFR, MMP-9 and VEGF-A activities in tumors, nuclear IKKα causes tumor progression through regulation of c-Myc, Maspin and Integrin-α6 expression. Additionally, we have found that N-IKKα skin tumors mimic the characteristics associated to aggressive human skin tumors with high risk to metastasize. Our results show that IKKα has different non-overlapping roles in the nucleus or cytoplasm of keratinocytes, and provide new targets for intervention in human NMSC progression.
Collapse
Affiliation(s)
- Josefa P Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", 28041 Madrid, Spain
| | - Miriam Gaspar
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", 28041 Madrid, Spain
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", 28041 Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", 28041 Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", 28041 Madrid, Spain
| | - M Guadalupe Fernández
- Department of Human Anatomy and Embriology, Facultad de Medicina, UCM, 28040 Madrid, Spain
| | - Jose R Mérida
- Department of Human Anatomy and Embriology, Facultad de Medicina, UCM, 28040 Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", 28041 Madrid, Spain
| | - Rosa A García-Fernández
- Department of Animal Medicine and Surgery, Facultad de Veterinaria, UCM, 28040 Madrid, Spain
| | | | - M Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", 28041 Madrid, Spain
| |
Collapse
|
62
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
63
|
Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M. A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell 2017; 171:1692-1706.e18. [PMID: 29153837 PMCID: PMC5733393 DOI: 10.1016/j.cell.2017.10.033] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/02/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022]
Abstract
Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.
Collapse
Affiliation(s)
- Dean Clift
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - William A McEwan
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Larisa I Labzin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Vera Konieczny
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Binyam Mogessie
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Leo C James
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Melina Schuh
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
64
|
Annibaldi A, Meier P. Checkpoints in TNF-Induced Cell Death: Implications in Inflammation and Cancer. Trends Mol Med 2017; 24:49-65. [PMID: 29217118 DOI: 10.1016/j.molmed.2017.11.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine that coordinates tissue homeostasis by regulating cytokine production, cell survival, and cell death. However, how life and death decisions are made in response to TNF is poorly understood. Many inflammatory pathologies are now recognized to be driven by aberrant TNF-induced cell death, which, in most circumstances, depends on the kinase Receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Recent advances have identified ubiquitin (Ub)-mediated phosphorylation of RIPK1 as belonging to crucial checkpoints for cell fate in inflammation and infection. A better understanding of these checkpoints might lead to new approaches for the treatment of chronic inflammatory diseases fueled by aberrant RIPK1-induced cell death, and/or reveal novel strategies for anticancer immunotherapies, harnessing the ability of RIPK1 to trigger immunogenic cell death.
Collapse
Affiliation(s)
- Alessandro Annibaldi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London, SW3 6JB, UK.
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
65
|
Zeitvogel J, Jokmin N, Rieker S, Klug I, Brandenberger C, Werfel T. GATA3 regulates FLG and FLG2 expression in human primary keratinocytes. Sci Rep 2017; 7:11847. [PMID: 28928464 PMCID: PMC5605628 DOI: 10.1038/s41598-017-10252-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
GATA3 is a transcription factor with an important role in atopic diseases because of its role in the differentiation of Th2 lymphocytes. Moreover, GATA3 is expressed in keratinocytes and has a role in keratinocyte differentiation and the establishment of the epidermal barrier. In this study, we investigated the role of GATA3 in keratinocytes in the context of epidermal barrier integrity under inflammatory skin conditions. When analysing skin samples from atopic dermatitis and psoriasis patients or healthy controls, we detected decreased expression of GATA3 in the stratum spinosum and stratum granulosum of atopic dermatitis and psoriasis patients when compared to healthy controls. Our cell cultures experiments revealed that a downregulation in GATA3 by shRNA leads to a significant reduction of filaggrin mRNA under atopic dermatitis-like conditions in keratinocytes. Overexpression of GATA3 in keratinocytes reversed this effect and significantly upregulated filaggrin and, furthermore, filaggrin-2 mRNA expression. Our results demonstrate that GATA3 is involved in the regulation of filaggrin and filaggrin-2 expression during inflammatory conditions in the skin. Thus, GATA3 may be of special importance for the establishment and maintenance of an intact epidermal barrier, especially in atopic dermatitis.
Collapse
Affiliation(s)
- Jana Zeitvogel
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany.
| | - Neele Jokmin
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| | - Samira Rieker
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| | - Ilona Klug
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
66
|
The NF-κB Family of Transcription Factors and Its Role in Thyroid Physiology. VITAMINS AND HORMONES 2017; 106:195-210. [PMID: 29407436 DOI: 10.1016/bs.vh.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nuclear factor (NF)-κB signaling pathway controls a variety of important biological functions, including immune and inflammatory responses, differentiation, cell growth, tumorigenesis, and apoptosis. Two distinct pathways of NF-κB activation are known. The classical, canonical pathway is found virtually in all mammalian cells and NF-κB activation is mediated by the IKK complex, consisting of the IKK1/IKKα and IKK2/IKKβ catalytic kinase subunits and the NF-κB essential modulator (NEMO)/IKKγ protein. The NF-κB-driven transcriptional responses to many different stimuli have been widely characterized in the pathophysiology of the mammalian immune system, mainly because this transcription factor regulates the expression of cytokines, growth factors, and effector enzymes in response to ligation of cellular receptors involved in immunity and inflammation. However, an impressive literature produced in the last two decades shows that NF-κB signaling plays an important role also outside of the immune system, performing different roles and functions depending on the type of tissue and organ. In thyroid, NF-κB signaling is crucial for thyrocytes survival and expression of critical thyroid markers, including Nis, Ttf1, Pax8, Tpo, and thyroglobulin, making this transcription factor essential for maintenance of normal thyroid function.
Collapse
|
67
|
Hammond NL, Dixon J, Dixon MJ. Periderm: Life-cycle and function during orofacial and epidermal development. Semin Cell Dev Biol 2017; 91:75-83. [PMID: 28803895 DOI: 10.1016/j.semcdb.2017.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022]
Abstract
Development of the secondary palate involves a complex series of embryonic events which, if disrupted, result in the common congenital anomaly cleft palate. The secondary palate forms from paired palatal shelves which grow initially vertically before elevating to a horizontal position above the tongue and fusing together in the midline via the medial edge epithelia. As the epithelia of the vertical palatal shelves are in contact with the mandibular and lingual epithelia, pathological fusions between the palate and the mandible and/or the tongue must be prevented. This function is mediated by the single cell layered periderm which forms in a distinct and reproducible pattern early in embryogenesis, exhibits highly polarised expression of adhesion complexes, and is shed from the outer surface as the epidermis acquires its barrier function. Disruption of periderm formation and/or function underlies a series of birth defects that exhibit multiple inter-epithelial adhesions including the autosomal dominant popliteal pterygium syndrome and the autosomal recessive cocoon syndrome and Bartsocas Papas syndrome. Genetic analyses of these conditions have shown that IRF6, IKKA, SFN, RIPK4 and GRHL3, all of which are under the transcriptional control of p63, play a key role in periderm formation. Despite these observations, the medial edge epithelia must rapidly acquire the capability to fuse if the palatal shelves are not to remain cleft. This process is driven by TGFβ3-mediated, down-regulation of p63 in the medial edge epithelia which allows periderm migration out of the midline epithelial seam and reduces the proliferative potential of the midline epithelial seam thereby preventing cleft palate. Together, these findings indicate that periderm plays a transient but fundamental role during embryogenesis in preventing pathological adhesion between intimately apposed, adhesion-competent epithelia.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Jill Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Michael J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
68
|
Kousa YA, Moussa D, Schutte BC. IRF6 expression in basal epithelium partially rescues Irf6 knockout mice. Dev Dyn 2017. [PMID: 28643456 DOI: 10.1002/dvdy.24537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mutations in IRF6, CHUK (IKKA), and RIPK4 can lead to a disease spectrum that includes cutaneous, limb, and craniofacial malformations. Loss of these alleles in the mouse leads to perinatal lethality and severe cutaneous, limb, and craniofacial defects also. Genetic rescue in the mouse has been shown for Ikka and Ripk4. RESULTS Here, we show partial genetic rescue of Irf6 knockout embryos using the KRT14 promoter to drive Irf6 expression in the basal epithelium. In contrast to Irf6 knockout embryos, rescue embryos survive the immediate perinatal period. Macroscopic examination reveals rescue of skin adhesions between the axial and appendicular skeleton. Unexpectedly, KRT14-driven Irf6 expression does not completely rescue orofacial clefting and adhesions between the palate and tongue, suggesting the importance of cell-autonomous IRF6 expression in periderm. Like knockout embryos, Irf6 rescue embryos also have persistent esophageal adhesions, which likely contribute to postnatal demise. CONCLUSIONS Together, these data suggest that targeted expression of IRF6 can significantly reduce disease severity, but that a minimum level of Irf6 in both periderm and basal epithelial cells is necessary for orofacial development. Therefore, homologous human and mouse phenotypes are observed for IRF6, IKKA, and RIPK4. In this work, we show that altering the expression level of IRF6 dramatically modified this phenotype in utero. Developmental Dynamics 246:670-681, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Youssef A Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Pediatric Residency Program, Children's National Health System, Washington, DC
| | - Dina Moussa
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Brian C Schutte
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan.,Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| |
Collapse
|
69
|
Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines 2017; 5:biomedicines5020026. [PMID: 28587092 PMCID: PMC5489812 DOI: 10.3390/biomedicines5020026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.
Collapse
Affiliation(s)
- Carlota Colomer
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Laura Marruecos
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Vert
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| |
Collapse
|
70
|
Wang YS, Hsi E, Cheng HY, Hsu SH, Liao YC, Juo SHH. Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis. Oncotarget 2017; 8:101026-101041. [PMID: 29254143 PMCID: PMC5731853 DOI: 10.18632/oncotarget.18197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/29/2017] [Indexed: 12/15/2022] Open
Abstract
Transformation of macrophages to foam cells contributes to atherosclerosis. Here, we report that let-7g reduces macrophage transformation and alleviates foam cell apoptosis by suppressing both canonical and non-canonical NF-κB pathways. In the canonical pathway, let-7g inhibits phosphorylation of IKKβ and IκB, down-regulates SREBF2 and miR-33a, and up-regulates ABCA1. In the non-canonical pathway, let-7g directly knocks down MEKK1, IKKα and ablates IKKα phosphorylation. Let-7g's effects in macrophages can be almost completely blocked by inactivation of NF-κB signaling, which suggests that let-7g's effects are primarily mediated through the suppression of NF-κB pathways. NF-κB has been reported to directly activate lin28 transcription, and lin28 is a well-known negative regulator for let-7 biogenesis. Therefore, there is negative feedback between NF-κB and let-7g. Additional macrophages-specific NF-κB knockout in the apoE deficiency mice reduces atherosclerotic lesion by 85%. Let-7g also suppresses p53-dependent apoptosis. Altogether, sufficient let-7g levels are important to prevent NF-κB over-activation in macrophages and to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yung-Song Wang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Edward Hsi
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yun Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Suh-Hang H Juo
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
71
|
Khandelwal KD, Ockeloen CW, Venselaar H, Boulanger C, Brichard B, Sokal E, Pfundt R, Rinne T, van Beusekom E, Bloemen M, Vriend G, Revencu N, Carels CEL, van Bokhoven H, Zhou H. Identification of a de novo variant in CHUK in a patient with an EEC/AEC syndrome-like phenotype and hypogammaglobulinemia. Am J Med Genet A 2017; 173:1813-1820. [PMID: 28513979 DOI: 10.1002/ajmg.a.38274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/08/2017] [Indexed: 11/10/2022]
Abstract
The cardinal features of Ectrodactyly, Ectodermal dysplasia, Cleft lip/palate (EEC), and Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndromes are ectodermal dysplasia (ED), orofacial clefting, and limb anomalies. EEC and AEC are caused by heterozygous mutations in the transcription factor p63 encoded by TP63. Here, we report a patient with an EEC/AEC syndrome-like phenotype, including ankyloblepharon, ED, cleft palate, ectrodactyly, syndactyly, additional hypogammaglobulinemia, and growth delay. Neither pathogenic mutations in TP63 nor CNVs at the TP63 locus were identified. Exome sequencing revealed de novo heterozygous variants in CHUK (conserved helix-loop-helix ubiquitous kinase), PTGER4, and IFIT2. While the variant in PTGER4 might contribute to the immunodeficiency and growth delay, the variant in CHUK appeared to be most relevant for the EEC/AEC-like phenotype. CHUK is a direct target gene of p63 and encodes a component of the IKK complex that plays a key role in NF-κB pathway activation. The identified CHUK variant (g.101980394T>C; c.425A>G; p.His142Arg) is located in the kinase domain which is responsible for the phosphorylation activity of the protein. The variant may affect CHUK function and thus contribute to the disease phenotype in three ways: (1) the variant exhibits a dominant negative effect and results in an inactive IKK complex that affects the canonical NF-κB pathway; (2) it affects the feedback loop of the canonical and non-canonical NF-κB pathways that are CHUK kinase activity-dependent; and (3) it disrupts NF-κB independent epidermal development that is often p63-dependent. Therefore, we propose that the heterozygous CHUK variant is highly likely to be causative to the EEC/AEC-like and additional hypogammaglobulinemia phenotypes in the patient presented here.
Collapse
Affiliation(s)
- Kriti D Khandelwal
- Department of Orthodontics and Craniofacial Biology, Radboud university medical center, Nijmegen, The Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud university medical center, Nijmegen, The Netherlands
| | - Cécile Boulanger
- Department of Pediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Bénédicte Brichard
- Department of Pediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Etienne Sokal
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Brussels, Belgium
| | - Rolph Pfundt
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud university medical center, Nijmegen, The Netherlands
| | - Gerrit Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicole Revencu
- Centre for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud university medical center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Department of Cognitive Neurosciences, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
72
|
Zhu F, Willette-Brown J, Song NY, Lomada D, Song Y, Xue L, Gray Z, Zhao Z, Davis SR, Sun Z, Zhang P, Wu X, Zhan Q, Richie ER, Hu Y. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis. Cell Host Microbe 2017; 21:478-493.e7. [PMID: 28407484 PMCID: PMC5868740 DOI: 10.1016/j.chom.2017.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/30/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
Humans with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a T cell-driven autoimmune disease caused by impaired central tolerance, are susceptible to chronic fungal infection and esophageal squamous cell carcinoma (ESCC). However, the relationship between autoreactive T cells and chronic fungal infection in ESCC development remains unclear. We find that kinase-dead Ikkα knockin mice develop APECED-like phenotypes, including impaired central tolerance, autoreactive T cells, chronic fungal infection, and ESCCs expressing specific human ESCC markers. Using this model, we investigated the link between ESCC and fungal infection. Autoreactive CD4 T cells permit fungal infection and incite tissue injury and inflammation. Antifungal treatment or autoreactive CD4 T cell depletion rescues, whereas oral fungal administration promotes, ESCC development. Inhibition of inflammation or epidermal growth factor receptor (EGFR) activity decreases fungal burden. Fungal infection is highly associated with ESCCs in non-autoimmune human patients. Therefore, autoreactive T cells and chronic fungal infection, fostered by inflammation and epithelial injury, promote ESCC development.
Collapse
Affiliation(s)
- Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Na-Young Song
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Dakshayani Lomada
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- Department of Pathology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zane Gray
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Sean R Davis
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhonghe Sun
- Laboratory of Molecular Technology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Xiaolin Wu
- Laboratory of Molecular Technology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
73
|
Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci 2017; 130:975-988. [PMID: 28122935 PMCID: PMC5358334 DOI: 10.1242/jcs.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Although the functions of H2O2 in epidermal wound repair are conserved throughout evolution, the underlying signaling mechanisms are largely unknown. In this study we used human keratinocytes (HEK001) to investigate H2O2-dependent wound repair mechanisms. Scratch wounding led to H2O2 production in two or three cell layers at the wound margin within ∼30 min and subsequent cysteine modification of proteins via sulfenylation. Intriguingly, exogenous H2O2 treatment resulted in preferential sulfenylation of keratinocytes that adopted a migratory phenotype and detached from neighboring cells, suggesting that one of the primary functions of H2O2 is to stimulate signaling factors involved in cell migration. Based on previous findings that revealed epidermal growth factor receptor (EGFR) involvement in H2O2-dependent cell migration, we analyzed oxidation of a candidate upstream target, the inhibitor of κB kinase α (IKKα; encoded by CHUK), as a mechanism of action. We show that IKKα is sulfenylated at a conserved cysteine residue in the kinase domain, which correlates with de-repression of EGF promoter activity and increased EGF expression. Thus, this indicates that IKKα promotes migration through dynamic interactions with the EGF promoter depending on the redox state within cells. Summary: This study provides a newly identified mechanism by which H2O2-dependent oxidation of the inhibitor of κB kinase α and de-repression of epidermal growth factor promoter activity stimulates keratinocyte migration.
Collapse
Affiliation(s)
- Thomas S Lisse
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA .,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| |
Collapse
|
74
|
Gendron C, Schwentker A, van Aalst JA. Genetic Advances in the Understanding of Microtia. J Pediatr Genet 2016; 5:189-197. [PMID: 27895971 DOI: 10.1055/s-0036-1592422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Microtia is a genetic condition affecting the external ears and presents clinically along a wide spectrum: minimally affected ears are small with minor shape abnormalities; extremely affected ears lack all identifiable structures, with the most extreme being absence of the entire external ear. Multiple genetic causes have been linked to microtia in both animal models and humans, which are improving our understanding of the condition and may lead to the identification of a unified cause for the condition. Microtia is also a prominent feature of several genetic syndromes, the study of which has provided further insight into the possible causes and genetic mechanisms of the condition. This article reviews our current understanding of microtia including epidemiological characteristics, classification systems, environmental and genetic causative factors leading to microtia. Despite our increased understanding of the genetics of microtia, we do not have a means of preventing the condition and still rely on complex staged, surgical correction.
Collapse
Affiliation(s)
- Craig Gendron
- Craniofacial and Pediatric Plastic Surgery, Saskatoon Health Region of Saskatchewan, Saskatoon, Canada
| | - Ann Schwentker
- Division of Plastic Surgery, University of Cincinnati, Cincinnati, Ohio, United States
| | - John A van Aalst
- Division of Plastic Surgery, University of Cincinnati, Cincinnati, Ohio, United States
| |
Collapse
|
75
|
Guolong Zhang, Ghosh S. Molecular mechanisms of NF-κB activation induced by bacterial lipopolysaccharide through Toll-like receptors. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519000060060701] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Septic shock, caused by exaggerated host responses to various microbial products typified by lipopolysaccharide (LPS), remains the leading cause of death in trauma patients. Gaining insight into the nature of host interactions with LPS will certainly facilitate attempts to develop effective anti-sepsis drugs. Tremendous progress has been made during the past few years in understanding the mechanisms of pathogen-induced host responses. Toll-like receptor (TLR) 4 and 2 have been implicated as major receptors for signaling initiated by LPS and many other microbial products following their binding to CD14. In addition, many signaling intermediates involved in LPSinduced cell activation, particularly activation of the transcription factor NF-κB, have been identified and characterized. Further investigations with these molecules will certainly reward us with more effective therapeutic drugs to treat septic shock as well as many other inflammatory and infectious disorders.
Collapse
Affiliation(s)
- Guolong Zhang
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sankar Ghosh
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
76
|
Mildner M, Bauer R, Mlitz V, Ballaun C, Tschachler E. Matriptase-1 expression is lost in psoriatic skin lesions and is downregulated by TNFα in vitro. J Dtsch Dermatol Ges 2016; 13:1165-74. [PMID: 26513078 DOI: 10.1111/ddg.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Matriptase-1 participates in terminal keratinocyte (KC) differentiation. Knockdown of matriptase-1 in skin equivalent cultures leads to impaired KC differentiation and retention of nuclei in the stratum corneum. Here, we investigated the expression and regulation of matriptase-1 in psoriatic skin and in KC in vitro. PATIENTS AND METHODS Matriptase-1 expression in healthy and psoriatic skin and its regulation in skin equivalents were analyzed by Western blotting, immunofluorescence staining, qRT-PCR, and activity assays. Involvement of the nuclear factor kappa B (NFκB) signaling pathway was investigated by adenoviral overexpression of a dominant-negative form of IKK2. RESULTS Matriptase-1 expression was detected in the stratum granulosum of healthy human skin and in skin equivalent cultures. Its expression and activity was strongly reduced in lesional skin of patients with psoriasis. Addition of TNFα to skin equivalent cultures resulted in complete loss of matriptase-1 expression accompanied by disturbed KC differentiation. Mechanistically, we were able to show that TNFα-induced downregulation of matriptase-1 was inhibited by blocking the IKK2/NFκB signaling pathway. CONCLUSIONS Given that matriptase-1 participates in terminal KC differentiation, its absence in psoriatic skin lesions indicates that this contributes to the barrier disturbances in this disease. Our data suggests that blocking the IKK2/NFκB-pathway represents a potential target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claudia Ballaun
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
77
|
Kawasaki M, Kawasaki K, Oommen S, Blackburn J, Watanabe M, Nagai T, Kitamura A, Maeda T, Liu B, Schmidt-Ullrich R, Akiyama T, Inoue JI, Hammond NL, Sharpe PT, Ohazama A. Regional regulation of Filiform tongue papillae development by Ikkα/Irf6. Dev Dyn 2016; 245:937-46. [DOI: 10.1002/dvdy.24427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maiko Kawasaki
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - Katsushige Kawasaki
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
- Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Shelly Oommen
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - James Blackburn
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - Momoko Watanabe
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Division of Oral and Maxillofacial Surgery; Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Takahiro Nagai
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Division of Oral and Maxillofacial Surgery; Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Atsushi Kitamura
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Division of Oral and Maxillofacial Surgery; Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Bigang Liu
- Department of Molecular Carcinogenesis; UT MD Anderson Cancer Center; Smithville Texas
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - Taishin Akiyama
- Division of Cellular and Molecular Biology; Institute of Medical Science, University of Tokyo; Minato-ku Tokyo Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology; Institute of Medical Science, University of Tokyo; Minato-ku Tokyo Japan
| | - Nigel L. Hammond
- Faculty of Life Sciences and School of Dentistry, Manchester Academic Health Sciences Centre, University of Manchester; Manchester United Kingdom
| | - Paul T. Sharpe
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| | - Atsushi Ohazama
- Division of Oral Anatomy; Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute, Kings College London; London United Kingdom
| |
Collapse
|
78
|
Talele TT. The "Cyclopropyl Fragment" is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J Med Chem 2016; 59:8712-8756. [PMID: 27299736 DOI: 10.1021/acs.jmedchem.6b00472] [Citation(s) in RCA: 565] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, there has been an increasing use of the cyclopropyl ring in drug development to transition drug candidates from the preclinical to clinical stage. Important features of the cyclopropane ring are, the (1) coplanarity of the three carbon atoms, (2) relatively shorter (1.51 Å) C-C bonds, (3) enhanced π-character of C-C bonds, and (4) C-H bonds are shorter and stronger than those in alkanes. The present review will focus on the contributions that a cyclopropyl ring makes to the properties of drugs containing it. Consequently, the cyclopropyl ring addresses multiple roadblocks that can occur during drug discovery such as (a) enhancing potency, (b) reducing off-target effects,
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
79
|
Osorio FG, Soria-Valles C, Santiago-Fernández O, Freije JMP, López-Otín C. NF-κB signaling as a driver of ageing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:133-74. [PMID: 27572128 DOI: 10.1016/bs.ircmb.2016.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NF-κB signaling exerts essential roles in immunity and cellular stress responses, regulating many functions related with organism innate defense. Besides, NF-κB altered signaling has been causally linked to ageing and diverse pathological conditions. We discuss herein the functional involvement of this signaling pathway in ageing, visiting recent experimental evidence about NF-κB activation in this complex process, its functional consequences and the novel biological functions raised from these works. Moreover, we discuss ageing intervention strategies based on NF-κB inhibition, which have demonstrated to be effective at delaying and even reverting different ageing manifestations in human and mouse models of both normal and accelerated ageing. Altogether, the current evidence supports that NF-κB activation constitutes a driving force of the ageing process and a preferential target for rejuvenation-aimed approaches.
Collapse
Affiliation(s)
- F G Osorio
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Oviedo, Oviedo, Spain
| | - C Soria-Valles
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Oviedo, Oviedo, Spain
| | - O Santiago-Fernández
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Oviedo, Oviedo, Spain
| | - J M P Freije
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Oviedo, Oviedo, Spain
| | - C López-Otín
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
80
|
Dainichi T, Hayden MS, Park SG, Oh H, Seeley JJ, Grinberg-Bleyer Y, Beck KM, Miyachi Y, Kabashima K, Hashimoto T, Ghosh S. PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division. Cell Rep 2016; 15:1615-23. [PMID: 27184845 DOI: 10.1016/j.celrep.2016.04.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/17/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022] Open
Abstract
Asymmetric cell division (ACD) in a perpendicular orientation promotes cell differentiation and organizes the stratified epithelium. However, the upstream cues regulating ACD have not been identified. Here, we report that phosphoinositide-dependent kinase 1 (PDK1) plays a critical role in establishing ACD in the epithelium. Production of phosphatidyl inositol triphosphate (PIP3) is localized to the apical side of basal cells. Asymmetric recruitment of atypical protein kinase C (aPKC) and partitioning defective (PAR) 3 is impaired in PDK1 conditional knockout (CKO) epidermis. PDK1(CKO) keratinocytes do not undergo calcium-induced activation of aPKC or IGF1-induced activation of AKT and fail to differentiate. PDK1(CKO) epidermis shows decreased expression of Notch, a downstream effector of ACD, and restoration of Notch rescues defective expression of differentiation-induced Notch targets in vitro. We therefore propose that PDK1 signaling regulates the basal-to-suprabasal switch in developing epidermis by acting as both an activator and organizer of ACD and the Notch-dependent differentiation program.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Matthew S Hayden
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Sung-Gyoo Park
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Hyunju Oh
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - John J Seeley
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Kristen M Beck
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Yoshiki Miyachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takashi Hashimoto
- Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka 830-0011, Japan
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
81
|
Espín-Palazón R, Traver D. The NF-κB family: Key players during embryonic development and HSC emergence. Exp Hematol 2016; 44:519-27. [PMID: 27132652 DOI: 10.1016/j.exphem.2016.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 02/07/2023]
Abstract
The nuclear factor-κB (NF-κB) family is a crucial transcription factor group known mainly for its role in the regulation of the immune system and its response to infection in vertebrates. The signaling pathway leading to NF-κB activation and translocation to the nucleus to exert its function as a transcription factor is well conserved among Kingdom Animalia, which has helped to elucidate other roles that NF-κB plays in other biological contexts such as developmental biology. The manipulation of NF-κB members in a diverse range of animal models results in severe developmental defects during embryogenesis, very often leading to embryonic lethality. Defects include dorsal-ventral patterning and limb, liver, skin, lung, neural, notochord, muscle, skeletal, and hematopoietic defects. Here, we recapitulate the research that has been done to address the role that NF-κB plays during embryonic development, in particular to emphasize its recently discovered role in the specification of hematopoietic stem cells (HSCs), the foundation of the hematopoietic system in vertebrates.
Collapse
Affiliation(s)
- Raquel Espín-Palazón
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA.
| |
Collapse
|
82
|
Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κB Signaling in Health and Disease. Trends Mol Med 2016; 22:414-429. [PMID: 27068135 DOI: 10.1016/j.molmed.2016.03.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Noncanonical NF-κB signaling differs from canonical NF-κB signaling by being activated through different cell surface receptors, cytoplasmic adaptors, and NF-κB dimers. Under normal physiological conditions, this noncanonical pathway has been implicated in diverse biological processes, including lymphoid organogenesis, B cell maturation, osteoclast differentiation, and various functions of other immune cells. Recently, dysfunction of this pathway has also been causally associated with numerous immune-mediated pathologies and human malignancies. Here, we summarize the core elements as well as the recently identified novel regulators of the noncanonical NF-κB signaling pathway. The involvement of this pathway in different pathologies and the potential therapeutic options that are currently envisaged are also discussed.
Collapse
Affiliation(s)
- Gökhan Cildir
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Kee Chung Low
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| |
Collapse
|
83
|
Marien E, Meister M, Muley T, del Pulgar TG, Derua R, Spraggins JM, Van de Plas R, Vanderhoydonc F, Machiels J, Binda MM, Dehairs J, Willette-Brown J, Hu Y, Dienemann H, Thomas M, Schnabel PA, Caprioli RM, Lacal JC, Waelkens E, Swinnen JV. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget 2016; 7:12582-97. [PMID: 26862848 PMCID: PMC4914306 DOI: 10.18632/oncotarget.7179] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 01/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer death. Beyond first line treatment, few therapeutic options are available, particularly for squamous cell carcinoma (SCC). Here, we have explored the phospholipidomes of 30 human SCCs and found that they almost invariably (in 96.7% of cases) contain phospholipids with longer acyl chains compared to matched normal tissues. This trait was confirmed using in situ 2D-imaging MS on tissue sections and by phospholipidomics of tumor and normal lung tissue of the L-IkkαKA/KA mouse model of lung SCC. In both human and mouse, the increase in acyl chain length in cancer tissue was accompanied by significant changes in the expression of acyl chain elongases (ELOVLs). Functional screening of differentially expressed ELOVLs by selective gene knockdown in SCC cell lines followed by phospholipidomics revealed ELOVL6 as the main elongation enzyme responsible for acyl chain elongation in cancer cells. Interestingly, inhibition of ELOVL6 drastically reduced colony formation of multiple SCC cell lines in vitro and significantly attenuated their growth as xenografts in vivo in mouse models. These findings identify acyl chain elongation as one of the most common traits of lung SCC discovered so far and pinpoint ELOVL6 as a novel potential target for cancer intervention.
Collapse
Affiliation(s)
- Eyra Marien
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Michael Meister
- Thoraxklinik at University Hospital Heidelberg, Translational Research Unit, Heidelberg, Germany
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
| | - Thomas Muley
- Thoraxklinik at University Hospital Heidelberg, Translational Research Unit, Heidelberg, Germany
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
| | | | - Rita Derua
- KU Leuven – University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, Leuven, Belgium
| | - Jeffrey M. Spraggins
- Vanderbilt University Medical Center, Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN, USA
| | - Raf Van de Plas
- Vanderbilt University Medical Center, Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN, USA
- Delft University of Technology, Delft Center for Systems and Control, Delft, The Netherlands
| | - Frank Vanderhoydonc
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Jelle Machiels
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Maria Mercedes Binda
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Abdominal Surgical Oncology, Leuven, Belgium
| | - Jonas Dehairs
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Jami Willette-Brown
- National Cancer Institute, Centre for Cancer Research, Cancer and Inflammation Program, Frederick, MD, USA
| | - Yinling Hu
- National Cancer Institute, Centre for Cancer Research, Cancer and Inflammation Program, Frederick, MD, USA
| | - Hendrik Dienemann
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, Department of Surgery, Heidelberg, Germany
| | - Michael Thomas
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, Department of Thoracic Oncology, Heidelberg, Germany
| | - Philipp A. Schnabel
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
- University of The Saarland, Institut für Allgemeine und Spezielle Pathologie, Homburg/Saar, Germany
| | - Richard M. Caprioli
- Vanderbilt University Medical Center, Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN, USA
| | - Juan Carlos Lacal
- Fundación Jiménez Díaz, Division of Translational Oncology, Madrid, Spain
| | - Etienne Waelkens
- KU Leuven – University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, Leuven, Belgium
| | - Johannes V. Swinnen
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| |
Collapse
|
84
|
Babaev VR, Ding L, Zhang Y, May JM, Lin PC, Fazio S, Linton MF. Macrophage IKKα Deficiency Suppresses Akt Phosphorylation, Reduces Cell Survival, and Decreases Early Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:598-607. [PMID: 26848161 DOI: 10.1161/atvbaha.115.306931] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The IκB kinase (IKK) is an enzyme complex that initiates the nuclear factor κB transcription factor cascade, which is important in regulating multiple cellular responses. IKKα is directly associated with 2 major prosurvival pathways, PI3K/Akt and nuclear factor κB, but its role in cell survival is not clear. Macrophages play critical roles in the pathogenesis of atherosclerosis, yet the impact of IKKα signaling on macrophage survival and atherogenesis remains unclear. APPROACH AND RESULTS Here, we demonstrate that genetic IKKα deficiency, as well as pharmacological inhibition of IKK, in mouse macrophages significantly reduces Akt S(473) phosphorylation, which is accompanied by suppression of mTOR complex 2 signaling. Moreover, IKKα null macrophages treated with lipotoxic palmitic acid exhibited early exhaustion of Akt signaling compared with wild-type cells. This was accompanied by a dramatic decrease in the resistance of IKKα(-/-) monocytes and macrophages to different proapoptotic stimuli compared with wild-type cells. In vivo, IKKα deficiency increased macrophage apoptosis in atherosclerotic lesions and decreased early atherosclerosis in both female and male low-density lipoprotein receptor (LDLR)(-/-) mice reconstituted with IKKα(-/-) hematopoietic cells and fed with the Western diet for 8 weeks compared with control LDLR(-/-) mice transplanted with wild-type cells. CONCLUSIONS Hematopoietic IKKα deficiency in mouse suppresses Akt signaling, compromising monocyte/macrophage survival and this decreases early atherosclerosis.
Collapse
Affiliation(s)
- Vladimir R Babaev
- From the Atherosclerosis Research Unit, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., M.R.F.L.) and Pharmacology (M.R.F.L.), Vanderbilt University Medical Center, Nashville, TN; Center for Cancer Research, National Cancer Institute, Frederick, MD (P.C.L.); and Department of Medicine, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR (S.F.).
| | - Lei Ding
- From the Atherosclerosis Research Unit, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., M.R.F.L.) and Pharmacology (M.R.F.L.), Vanderbilt University Medical Center, Nashville, TN; Center for Cancer Research, National Cancer Institute, Frederick, MD (P.C.L.); and Department of Medicine, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR (S.F.)
| | - Youmin Zhang
- From the Atherosclerosis Research Unit, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., M.R.F.L.) and Pharmacology (M.R.F.L.), Vanderbilt University Medical Center, Nashville, TN; Center for Cancer Research, National Cancer Institute, Frederick, MD (P.C.L.); and Department of Medicine, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR (S.F.)
| | - James M May
- From the Atherosclerosis Research Unit, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., M.R.F.L.) and Pharmacology (M.R.F.L.), Vanderbilt University Medical Center, Nashville, TN; Center for Cancer Research, National Cancer Institute, Frederick, MD (P.C.L.); and Department of Medicine, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR (S.F.)
| | - P Charles Lin
- From the Atherosclerosis Research Unit, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., M.R.F.L.) and Pharmacology (M.R.F.L.), Vanderbilt University Medical Center, Nashville, TN; Center for Cancer Research, National Cancer Institute, Frederick, MD (P.C.L.); and Department of Medicine, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR (S.F.)
| | - Sergio Fazio
- From the Atherosclerosis Research Unit, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., M.R.F.L.) and Pharmacology (M.R.F.L.), Vanderbilt University Medical Center, Nashville, TN; Center for Cancer Research, National Cancer Institute, Frederick, MD (P.C.L.); and Department of Medicine, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR (S.F.)
| | - MacRae F Linton
- From the Atherosclerosis Research Unit, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., M.R.F.L.) and Pharmacology (M.R.F.L.), Vanderbilt University Medical Center, Nashville, TN; Center for Cancer Research, National Cancer Institute, Frederick, MD (P.C.L.); and Department of Medicine, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR (S.F.)
| |
Collapse
|
85
|
NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1348-8643(15)00038-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
86
|
Mildner M, Bauer R, Mlitz V, Ballaun C, Tschachler E. Matriptase-1-Expression ist in psoriatischen Hautläsionen reduziert und wird in vitro durch TNFα herabreguliert. J Dtsch Dermatol Ges 2015. [DOI: 10.1111/ddg.80_12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Mildner
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Reinhard Bauer
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Veronika Mlitz
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Claudia Ballaun
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Erwin Tschachler
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| |
Collapse
|
87
|
Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, Giansanti P, Heck AJR, Dejardin E, Vandenabeele P, Bertrand MJM. NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Mol Cell 2015; 60:63-76. [PMID: 26344099 DOI: 10.1016/j.molcel.2015.07.032] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 06/15/2015] [Accepted: 07/30/2015] [Indexed: 11/27/2022]
Abstract
TNF is a master pro-inflammatory cytokine. Activation of TNFR1 by TNF can result in both RIPK1-independent apoptosis and RIPK1 kinase-dependent apoptosis or necroptosis. These cell death outcomes are regulated by two distinct checkpoints during TNFR1 signaling. TNF-mediated NF-κB-dependent induction of pro-survival or anti-apoptotic molecules is a well-known late checkpoint in the pathway, protecting cells from RIPK1-independent death. On the other hand, the molecular mechanism regulating the contribution of RIPK1 to cell death is far less understood. We demonstrate here that the IKK complex phosphorylates RIPK1 at TNFR1 complex I and protects cells from RIPK1 kinase-dependent death, independent of its function in NF-κB activation. We provide in vitro and in vivo evidence that inhibition of IKKα/IKKβ or its upstream activators sensitizes cells to death by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We therefore report on an unexpected, NF-κB-independent role for the IKK complex in protecting cells from RIPK1-dependent death downstream of TNFR1.
Collapse
Affiliation(s)
- Yves Dondelinger
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Sandrine Jouan-Lanhouet
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Tatyana Divert
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Emilie Theatre
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Methusalem Program, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium.
| |
Collapse
|
88
|
Olivotto E, Otero M, Marcu KB, Goldring MB. Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open 2015; 1:e000061. [PMID: 26557379 PMCID: PMC4632142 DOI: 10.1136/rmdopen-2015-000061] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA), a whole-joint disease driven by abnormal biomechanics and attendant cell-derived and tissue-derived factors, is a rheumatic disease with the highest prevalence, representing a severe health burden with a tremendous economic impact. Members of the nuclear factor κB (NF-κB) family orchestrate mechanical, inflammatory and oxidative stress-activated processes, thus representing a potential therapeutic target in OA disease. The two pivotal kinases, IκB kinase (IKK) α and IKKβ, activate NF-κB dimers that might translocate to the nucleus and regulate the expression of specific target genes involved in extracellular matrix remodelling and terminal differentiation of chondrocytes. IKKα, required for the activation of the so-called non-canonical pathway, has a number of NF-κB-independent and kinase-independent functions in vivo and in vitro, including controlling chondrocyte hypertrophic differentiation and collagenase activity. In this short review, we will discuss the role of NF-κB signalling in OA pathology, with emphasis on the functional effects of IKKα that are independent of its kinase activity and NF-κB activation.
Collapse
Affiliation(s)
- Eleonora Olivotto
- Laboratory RAMSES-Research, Innovation & Technology Department , Rizzoli Orthopedic Research Institute , Bologna , Italy
| | - Miguel Otero
- Research Division , Hospital for Special Surgery and Weill Cornell Medical College , New York , USA
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department , Stony Brook University , Stony Brook , USA
| | - Mary B Goldring
- Research Division , Hospital for Special Surgery and Weill Cornell Medical College , New York , USA
| |
Collapse
|
89
|
Gollasch B, Basmanav FB, Nanda A, Fritz G, Mahmoudi H, Thiele H, Wehner M, Wolf S, Altmüller J, Nürnberg P, Frank J, Betz RC. Identification of a novel mutation inRIPK4in a kindred with phenotypic features of Bartsocas-Papas and CHAND syndromes. Am J Med Genet A 2015; 167A:2555-62. [DOI: 10.1002/ajmg.a.37233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/15/2015] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Arti Nanda
- Genetic Skin Diseases Clinic; As'ad Al-Hamad Dermatology Center; Al-Sabah Hospital Kuwait
| | - Günter Fritz
- Department of Neuropathology; Neurozentrum; University of Freiburg; Freiburg Germany
| | | | - Holger Thiele
- Cologne Center for Genomics (CCG); University of Cologne; Cologne Germany
| | - Maria Wehner
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - Sabrina Wolf
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG); University of Cologne; Cologne Germany
- Institute of Human Genetics; University of Cologne; Cologne Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG); University of Cologne; Cologne Germany
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
| | - Jorge Frank
- Division of Dermatogenetics and Skin Cancer Center; Department of Dermatology; University of Düsseldorf; Düsseldorf Germany
| | - Regina C. Betz
- Institute of Human Genetics; University of Bonn; Bonn Germany
| |
Collapse
|
90
|
Senegas A, Gautheron J, Maurin AGD, Courtois G. IKK-related genetic diseases: probing NF-κB functions in humans and other matters. Cell Mol Life Sci 2015; 72:1275-87. [PMID: 25432706 PMCID: PMC11113297 DOI: 10.1007/s00018-014-1793-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022]
Abstract
The transcription factor NF-κB plays a key role in numerous physiological processes such as inflammation, immunity, cell proliferation or control of cell death. Its activation is tightly controlled by a kinase complex, IκB kinase (IKK), composed of three core proteins: IKK1/IKKα, IKK2/IKKβ and NEMO/IKKγ. The first two are structurally related kinases whereas the third one is a regulatory subunit exhibiting affinity for upstream activators modified by polyubiquitin chains. Over the years, several inherited diseases caused by mutations of each of the three subunits of IKK have been identified in humans together with diseases caused by mutations of several of its substrates. They are associated with very specific and complex phenotypes involving a broad range of abnormalities such as impaired innate and acquired immune response, perturbed skin development and defects of the central nervous system. Here, we summarize the diverse clinical, cellular and molecular manifestations of IKK-related genetic diseases and show that studying patient-related mutations affecting the IKK subunits and some of their substrates offers the opportunity to understand the various functions of NF-κB in humans, complementing studies performed with mouse models. This analysis also provides glimpses about putative functions of IKK subunits that may be NF-κB-independent.
Collapse
Affiliation(s)
- Anna Senegas
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Jérémie Gautheron
- Department of Gastroenterology, University Hospital RWTH Aachen, Aachen, Germany
| | - Alice Gentil Dit Maurin
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Gilles Courtois
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
91
|
Park H, Shin Y, Choe H, Hong S. Computational Design and Discovery of Nanomolar Inhibitors of IκB Kinase β. J Am Chem Soc 2015; 137:337-48. [DOI: 10.1021/ja510636t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hwangseo Park
- Department
of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Yongje Shin
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science
(IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Hyeonjeong Choe
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science
(IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Sungwoo Hong
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science
(IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| |
Collapse
|
92
|
Arepalli SK, Choi M, Jung JK, Lee H. Novel NF-κB inhibitors: a patent review (2011 – 2014). Expert Opin Ther Pat 2015; 25:319-34. [DOI: 10.1517/13543776.2014.998199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
93
|
Narayanan MJ, Rangasamy S, Narayanan V. Incontinentia pigmenti (Bloch–Sulzberger syndrome). NEUROCUTANEOUS SYNDROMES 2015; 132:271-80. [DOI: 10.1016/b978-0-444-62702-5.00020-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
94
|
The Role of BMP Signaling and NF-κB Signaling on Osteoblastic Differentiation, Cancer Development, and Vascular Diseases—Is the Activation of NF-κB a Friend or Foe of BMP Function? BONE MORPHOGENIC PROTEIN 2015; 99:145-70. [DOI: 10.1016/bs.vh.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
95
|
Lopez B, Maisonet TM, Londhe VA. Alveolar NF-κB signaling regulates endotoxin-induced lung inflammation. Exp Lung Res 2014; 41:103-14. [PMID: 25517107 DOI: 10.3109/01902148.2014.977461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM The alveolar epithelium participates in host defense through inflammatory pathways that activate NF-κB. Lung infections involving endotoxins trigger acute respiratory distress syndrome (ARDS) in adult and pediatric patients. The purpose of this study was to test the hypothesis that overexpression of NF-κB would worsen and conditional deletion of NF-κB signaling would improve endotoxin-induced lung inflammation using transgenic mouse models. MATERIALS AND METHODS Two previously described transgenic mouse models were used in which overexpression of the RelA/p65 subunit of NF-κB was targeted to the lung epithelium using an SPC promoter (SPC-RelA) and conditional deletion of the IKKβ molecule involved in NF-κB signaling was targeted to the lung epithelium using Nkx2.1(Cre) (Nkx2.1(Cre);IKKβ(F/F)). Adult transgenic and control mice were injected with intratracheal lipopolysaccharide (LPS) or saline followed by lung harvest at 48 h. Collected tissue included whole lungs from transgenic and control mice which was processed for analysis of BAL, lung histology, chemokine expression, and markers of cell apoptosis as well as collection of freshly isolated AECII cells from wild type mice for additional chemokine and apoptotic marker analysis. RESULTS SPC-RelA mice showed significant increases in lung inflammation and injury following LPS injection with increased neutrophil recruitment as compared to wild type and saline treated controls. In contrast, Nkx2.1(Cre); IKKβ(F/F) mice showed markedly decreased lung inflammation and injury with decreased neutrophil recruitment as compared to controls. In both models, lung inflammation was associated with increased cell apoptosis and these findings were confirmed in freshly isolated AECII cells in wild type mice following LPS injection. CONCLUSIONS Overexpression of NF-κB targeted to the lung epithelium worsened lung inflammation and injury in response to LPS exposure while conditional deletion of NF-κB signaling reduced lung inflammation. Lung inflammation and injury were associated with increased cell apoptosis.
Collapse
Affiliation(s)
- Benjamin Lopez
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California , Los Angeles, California , USA
| | | | | |
Collapse
|
96
|
A novel RIPK4-IRF6 connection is required to prevent epithelial fusions characteristic for popliteal pterygium syndromes. Cell Death Differ 2014; 22:1012-24. [PMID: 25430793 DOI: 10.1038/cdd.2014.191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/04/2023] Open
Abstract
Receptor-interacting protein kinase 4 (RIPK4)-deficient mice have epidermal defects and fusion of all external orifices. These are similar to Bartsocas-Papas syndrome and popliteal pterygium syndrome (PPS) in humans, for which causative mutations have been documented in the RIPK4 and IRF6 (interferon regulatory factor 6) gene, respectively. Although genetically distinct, these syndromes share the anomalies of marked pterygia, syndactyly, clefting and hypoplastic genitalia. Despite the strong resemblance of these two syndromes, no molecular connection between the transcription factor IRF6 and the kinase RIPK4 was known and the mechanism underlying the phenotype was unclear. Here we describe that RIPK4 deficiency in mice causes epithelial fusions associated with abnormal periderm development and aberrant ectopic localization of E-cadherin on the apical membrane of the outer peridermal cell layers. In Xenopus, RIPK4 depletion causes the absence of ectodermal epiboly and concomitant gastrulation defects that phenocopy ectopic expression of dominant-negative IRF6. We found that IRF6 controls RIPK4 expression and that wild-type, but not kinase-dead, RIPK4 can complement the gastrulation defect in Xenopus caused by IRF6 malfunctioning. In contrast to the mouse, we observed only minor effects on cadherin membrane expression in Xenopus RIPK4 morphants. However, gastrulation defects were associated with a virtual absence of cortical actin in the ectodermal cells that face the blastocoel cavity and this was phenocopied in embryos expressing dominant-negative IRF6. A role for RIPK4 in actin cytoskeleton organization was also revealed in mouse epidermis and in human epithelial HaCaT cells. In conclusion, we showed that in mice RIPK4 is implicated in cortical actin organization and in E-cadherin localization or function, which can explain the characteristic epithelial fusions observed in PPSs. In addition, we provide a novel molecular link between IRF6 and RIPK4 that unifies the different PPSs to a common molecular pathway.
Collapse
|
97
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
98
|
IKKα negatively regulates ASC-dependent inflammasome activation. Nat Commun 2014; 5:4977. [PMID: 25266676 PMCID: PMC4298287 DOI: 10.1038/ncomms5977] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/12/2014] [Indexed: 02/07/2023] Open
Abstract
The inflammasomes are multiprotein complexes that activate caspase-1 in response to infections and stress, resulting in the secretion of pro-inflammatory cytokines. Here we report that IKKα is a critical negative regulator of ASC-dependent inflammasomes. IKKα controls the inflammasome at the level of the adaptor ASC, which interacts with IKKα in the nucleus of resting macrophages in an IKKα kinase-dependent manner. Loss of IKKα kinase activity results in inflammasome hyperactivation. Mechanistically, the downstream nuclear effector IKKi facilitates translocation of ASC from the nucleus to the perinuclear area during inflammasome activation. ASC remains under the control of IKKα in the perinuclear area following translocation of the ASC/IKKα complex. Signal 2 of NLRP3 activation leads to inhibition of IKKα kinase activity through the recruitment of PP2A, allowing ASC to participate in NLRP3 inflammasome assembly. Taken together, these findings reveal a IKKi-IKKα-ASC axis that serves as a common regulatory mechanism for ASC-dependent inflammasomes.
Collapse
|
99
|
Espinosa L, Bigas A, Mulero MC. Novel functions of chromatin-bound IκBα in oncogenic transformation. Br J Cancer 2014; 111:1688-92. [PMID: 25233399 PMCID: PMC4453743 DOI: 10.1038/bjc.2014.84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/19/2013] [Accepted: 01/24/2014] [Indexed: 01/30/2023] Open
Abstract
The nuclear factor-κB (NF-κB) signalling pathway participates in a multitude of biological processes, which imply the requirement of a complex and precise regulation. IκB (for Inhibitor of kappaB) proteins, which bind and retain NF-κB dimers in the cytoplasm, are the main contributors to negative regulation of NF-κB under non-stimulation conditions. Nevertheless, increasing evidences indicate that IκB proteins exert specific nuclear roles that directly contribute to the control of gene transcription. In particular, hypophosphorylated IκBβ can bind the promoter region of TNFα leading to persistent gene transcription in macrophages and contributing to the regulation of the inflammatory response. Recently, we demonstrated that phosphorylated and SUMOylated IκBα reside in the nucleus of the cells where it binds to chromatin leading to specific transcriptional repression. Mechanistically, IκBα associates and regulates Polycomb Repressor Complex activity, a function that is evolutionary conserved from flies to mammals, as indicate the homeotic phenotype of Drosophila mutants. Here we discuss the implications of chromatin-bound IκBα function in the context of tumorigenesis.
Collapse
Affiliation(s)
- L Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| | - M C Mulero
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader, 88, Barcelona 08003, Spain
| |
Collapse
|
100
|
Richardson RJ, Hammond NL, Coulombe PA, Saloranta C, Nousiainen HO, Salonen R, Berry A, Hanley N, Headon D, Karikoski R, Dixon MJ. Periderm prevents pathological epithelial adhesions during embryogenesis. J Clin Invest 2014; 124:3891-900. [PMID: 25133425 DOI: 10.1172/jci71946] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/03/2014] [Indexed: 12/13/2022] Open
Abstract
Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in IKKA, revealed an absence of periderm. Together, these data indicate that periderm plays a transient but fundamental role during embryogenesis by acting as a protective barrier that prevents pathological adhesion between immature, adhesion-competent epithelia. Furthermore, this study suggests that failure of periderm formation underlies a series of devastating birth defects, including popliteal pterygium syndrome, cocoon syndrome, and Bartsocas-Papas syndrome.
Collapse
|