51
|
Anderson JW, Adediran SA, Charlier P, Nguyen-Distèche M, Frère JM, Nicholas RA, Pratt RF. On the substrate specificity of bacterial DD-peptidases: evidence from two series of peptidoglycan-mimetic peptides. Biochem J 2003; 373:949-55. [PMID: 12723972 PMCID: PMC1223535 DOI: 10.1042/bj20030217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 04/29/2003] [Accepted: 04/30/2003] [Indexed: 11/17/2022]
Abstract
The reactions between bacterial DD-peptidases and beta-lactam antibiotics have been studied for many years. Less well understood are the interactions between these enzymes and their natural substrates, presumably the peptide moieties of peptidoglycan. In general, remarkably little activity has previously been demonstrated in vitro against potential peptide substrates, although in many cases the peptides employed were non-specific and not homologous with the relevant peptidoglycan. In this paper, the specificity of a panel of DD-peptidases against elements of species-specific D-alanyl-D-alanine peptides has been assessed. In two cases, those of soluble, low-molecular-mass DD-peptidases, high activity against the relevant peptides has been demonstrated. In these cases, the high specificity is towards the free N-terminus of the peptidoglycan fragment. With a number of other enzymes, particularly high-molecular-mass DD-peptidases, little or no activity against these peptides was observed. In separate experiments, the reactivity of the enzymes against the central, largely invariant, peptide stem was examined. None of the enzymes surveyed showed high activity against this structural element although weak specificity in the expected direction towards the one structural variable (D-gammaGln versus D-gammaGlu) was observed. The current state of understanding of the activity of these enzymes in vitro is discussed.
Collapse
Affiliation(s)
- John W Anderson
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Silvaggi NR, Anderson JW, Brinsmade SR, Pratt RF, Kelly JA. The crystal structure of phosphonate-inhibited D-Ala-D-Ala peptidase reveals an analogue of a tetrahedral transition state. Biochemistry 2003; 42:1199-208. [PMID: 12564922 DOI: 10.1021/bi0268955] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
D-Alanyl-D-alanine carboxypeptidase/transpeptidases (DD-peptidases) are beta-lactam-sensitive enzymes that are responsible for the final peptidoglycan cross-linking step in bacterial cell wall biosynthesis. A highly specific tripeptide phosphonate inhibitor was designed with a side chain corresponding to a portion of the Streptomyces R61 peptidoglycan. This compound was found to be a slow, irreversible inactivator of the DD-peptidase. Molecular modeling suggested that although a pentacoordinated intermediate of the phosphonylation reaction would not interact strongly with the enzyme, a tetracoordinated phosphonyl enzyme might be analogous to a transition state in the reaction with peptide substrates. To investigate this possibility, the crystal structure of the phosphonyl enzyme was determined. The 1.1 A resolution structure shows that the inhibitor has phosphonylated the catalytic serine (Ser62). One of the phosphonyl oxygens is noncovalently bound in the oxyanion hole, while the other is solvated by two water molecules. The conserved hydroxyl group of Tyr159 forms a strong hydrogen bond with the latter oxygen atom (2.77 A). This arrangement is interpreted as being analogous to the transition state for the formation of the tetrahedral intermediate in the deacylation step of the carboxypeptidase reaction. The proximity of Tyr159 to the solvated phosphonyl oxygen suggests that the tyrosine anion acts as a general base for deacylation. This transition state analogue structure is compared to the structures of noncovalent DD-peptidase reaction intermediates and phosphonylated beta-lactamases. These comparisons show that specific substrate binding to the peptidase induces a conformational change in the active site that places Ser62 in an optimal position for catalysis. This activated conformation relaxes as the reaction proceeds.
Collapse
Affiliation(s)
- Nicholas R Silvaggi
- Department of Molecular and Cell Biology and Institute for Materials Science, University of Connecticut, Storrs, Connecticut 06269-3125, and Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459-0180
| | | | | | | | | |
Collapse
|
53
|
Sun T, Nukaga M, Mayama K, Braswell EH, Knox JR. Comparison of beta-lactamases of classes A and D: 1.5-A crystallographic structure of the class D OXA-1 oxacillinase. Protein Sci 2003; 12:82-91. [PMID: 12493831 PMCID: PMC2312410 DOI: 10.1110/ps.0224303] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 10/08/2002] [Accepted: 10/09/2002] [Indexed: 01/25/2023]
Abstract
The crystallographic structure of the Escherichia coli OXA-1 beta-lactamase has been established at 1.5-A resolution and refined to R = 0.18. The 28.2-kD oxacillinase is a class D serine beta-lactamase that is especially active against the penicillin-type beta-lactams oxacillin and cloxacillin. In contrast to the structures of OXA-2, OXA-10, and OXA-13 belonging to other subclasses, the OXA-1 molecule is monomeric rather than dimeric and represents the subclass characterized by an enlarged Omega loop near the beta-lactam binding site. The 6-residue hydrophilic insertion in this loop cannot interact directly with substrates and, instead, projects into solvent. In this structure at pH 7.5, carboxylation of the conserved Lys 70 in the catalytic site is observed. One oxygen atom of the carboxylate group is hydrogen bonded to Ser 120 and Trp 160. The other oxygen atom is more exposed and hydrogen bonded to the Ogamma of the reactive Ser 67. In the overlay of the class D and class A binding sites, the carboxylate group is displaced ca. 2.6 A from the carboxylate group of Glu 166 of class A enzymes. However, each group is equidistant from the site of the water molecule expected to function in hydrolysis, and which could be activated by the carboxylate group of Lys 70. In this ligand-free OXA-1 structure, no water molecule is seen in this site, so the water molecule must enter after formation of the acyl-Ser 67 intermediate.
Collapse
Affiliation(s)
- Tao Sun
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
54
|
Goffin C, Ghuysen JM. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 2002; 66:702-38, table of contents. [PMID: 12456788 PMCID: PMC134655 DOI: 10.1128/mmbr.66.4.702-738.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial acyltransferases of the SxxK superfamily vary enormously in sequence and function, with conservation of particular amino acid groups and all-alpha and alpha/beta folds. They occur as independent entities (free-standing polypeptides) and as modules linked to other polypeptides (protein fusions). They can be classified into three groups. The group I SxxK D,D-acyltransferases are ubiquitous in the bacterial world. They invariably bear the motifs SxxK, SxN(D), and KT(S)G. Anchored in the plasma membrane with the bulk of the polypeptide chain exposed on the outer face of it, they are implicated in the synthesis of wall peptidoglycans of the most frequently encountered (4-->3) type. They are inactivated by penicillin and other beta-lactam antibiotics acting as suicide carbonyl donors in the form of penicillin-binding proteins (PBPs). They are components of a morphogenetic apparatus which, as a whole, controls multiple parameters such as shape and size and allows the bacterial cells to enlarge and duplicate their particular pattern. Class A PBP fusions comprise a glycosyltransferase module fused to an SxxK acyltransferase of class A. Class B PBP fusions comprise a linker, i.e., protein recognition, module fused to an SxxK acyltransferase of class B. They ensure the remodeling of the (4-->3) peptidoglycans in a cell cycle-dependent manner. The free-standing PBPs hydrolyze D,D peptide bonds. The group II SxxK acyltransferases frequently have a partially modified bar code, but the SxxK motif is invariant. They react with penicillin in various ways and illustrate the great plasticity of the catalytic centers. The secreted free-standing PBPs, the serine beta-lactamases, and the penicillin sensors of several penicillin sensory transducers help the D,D-acyltransferases of group I escape penicillin action. The group III SxxK acyltransferases are indistinguishable from the PBP fusion proteins of group I in motifs and membrane topology, but they resist penicillin. They are referred to as Pen(r) protein fusions. Plausible hypotheses are put forward on the roles that the Pen(r) protein fusions, acting as L,D-acyltransferases, may play in the (3-->3) peptidoglycan-synthesizing molecular machines. Shifting the wall peptidoglycan from the (4-->3) type to the (3-->3) type could help Mycobacterium tuberculosis and Mycobacterium leprae survive by making them penicillin resistant.
Collapse
Affiliation(s)
- Colette Goffin
- Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | | |
Collapse
|
55
|
Deka RK, Machius M, Norgard MV, Tomchick DR. Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem 2002; 277:41857-64. [PMID: 12196546 DOI: 10.1074/jbc.m207402200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syphilis is a complex sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. T. pallidum has remained exquisitely sensitive to penicillin, but the mode of action and lethal targets for beta-lactams are still unknown. We previously identified the T. pallidum 47-kDa lipoprotein (Tp47) as a penicillin-binding protein (PBP). Tp47 contains three hypothetical consensus motifs (SVTK, TEN, and KTG) that typically form the active center of other PBPs. Yet, in this study, mutations of key amino acids within these motifs failed to abolish the penicillin binding activity of Tp47. The crystal structure of Tp47 at a resolution of 1.95 A revealed a fold different from any other known PBP; Tp47 is predominantly beta-sheet, in contrast to the alpha/beta-fold common to other PBPs. It comprises four distinct domains: two complex beta-sheet-containing N-terminal domains and two C-terminal domains that adopt immunoglobulin-like folds. The three hypothetical PBP signature motifs do not come together to form a typical PBP active site. Furthermore, Tp47 is unusual in that it displays beta-lactamase activity (k(cat) for penicillin = 271 +/- 6 s(-1)), a feature that hindered attempts to identify the active site in Tp47 by co-crystallization and mass spectrometric techniques. Taken together, Tp47 does not fit the classical structural and mechanistic paradigms for PBPs, and thus Tp47 appears to represent a new class of PBP.
Collapse
Affiliation(s)
- Ranjit K Deka
- Departments of Microbiology and Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | |
Collapse
|
56
|
McDonough MA, Anderson JW, Silvaggi NR, Pratt RF, Knox JR, Kelly JA. Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. J Mol Biol 2002; 322:111-22. [PMID: 12215418 DOI: 10.1016/s0022-2836(02)00742-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Penicillin-binding proteins (PBPs), the target enzymes of beta-lactam antibiotics such as penicillins and cephalosporins, catalyze the final peptidoglycan cross-linking step of bacterial cell-wall biosynthesis. beta-Lactams inhibit this reaction because they mimic the D-alanyl-D-alanine peptide precursors of cell-wall structure. Prior crystallographic studies have described the site of beta-lactam binding and inhibition, but they have failed to show the binding of D-Ala-D-Ala substrates. We present here the first high-resolution crystallographic structures of a PBP, D-Ala-D-Ala-peptidase of Streptomyces sp. strain R61, non-covalently complexed with a highly specific fragment (glycyl-L-alpha-amino-epsilon-pimelyl-D-Ala-D-Ala) of the cell-wall precursor in both enzyme-substrate and enzyme-product forms. The 1.9A resolution structure of the enzyme-substrate Henri-Michaelis complex was achieved by using inactivated enzyme, which was formed by cross-linking two catalytically important residues Tyr159 and Lys65. The second structure at 1.25A resolution of the uncross-linked, active form of the DD-peptidase shows the non-covalent binding of the two products of the carboxypeptidase reaction. The well-defined substrate-binding site in the two crystallographic structures shows a subsite that is complementary to a portion of the natural cell-wall substrate that varies among bacterial species. In addition, the structures show the displacement of 11 water molecules from the active site, the location of residues responsible for substrate binding, and clearly demonstrate the necessity of Lys65 and or Tyr159 for the acylation step with the donor peptide. Comparison of the complexed structures described here with the structures of other known PBPs suggests the design of species-targeted antibiotics as a counter-strategy towards beta-lactamase-elicited bacterial resistance.
Collapse
Affiliation(s)
- Michael A McDonough
- Department of Molecular and Cell Biology and Institute for Materials Science, University of Connecticut, Storrs 06269-3125, USA
| | | | | | | | | | | |
Collapse
|
57
|
Summers AO. Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 2002; 34 Suppl 3:S85-92. [PMID: 11988878 DOI: 10.1086/340245] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Several important aspects of the antimicrobial resistance problem have not been treated extensively in previous monographs on this subject. This section very briefly updates information on these topics and suggests how this information is of value in assessing the contributions of human and agricultural use of antimicrobial agents on the problem of increasing antimicrobial resistance. The overall themes are (1) that propagation of resistance is an ecological problem, and thus (2) that ameliorating this problem requires recognition of long-established information on the commensal microbiota of mammals, as well as that of recent molecular understanding of the genetic agents involved in the movement of resistance genes.
Collapse
Affiliation(s)
- Anne O Summers
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
58
|
Luthy L, Grutter MG, Mittl PRE. The crystal structure of Helicobacter pylori cysteine-rich protein B reveals a novel fold for a penicillin-binding protein. J Biol Chem 2002; 277:10187-93. [PMID: 11777911 DOI: 10.1074/jbc.m108993200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colonization of the gastric mucosa with the spiral-shaped Gram-negative proteobacterium Helicobacter pylori is probably the most common chronic infection in humans. The genomes of H. pylori strains J99 and 26695 have been completely sequenced. Functional and three-dimensional structural information is available for less than one third of all open reading frames. We investigated the function and three-dimensional structure of a member from a family of cysteine-rich hypothetical proteins that are unique to H. pylori and Campylobacter jejuni. The structure of H. pylori cysteine-rich protein (Hcp) B possesses a modular architecture consisting of four alpha/alpha-motifs that are cross-linked by disulfide bridges. The Hcp repeat is similar to the tetratricopeptide repeat, which is frequently found in protein/protein interactions. In contrast to the tetratricopeptide repeat, the Hcp repeat is 36 amino acids long. HcpB is capable of binding and hydrolyzing 6-amino penicillinic acid and 7-amino cephalosporanic acid derivatives. The HcpB fold is distinct from the fold of any known penicillin-binding protein, indicating that the Hcp proteins comprise a new family of penicillin-binding proteins. The putative penicillin binding site is located in an amphipathic groove on the concave side of the molecule.
Collapse
Affiliation(s)
- Lucas Luthy
- Biochemisches Institut, Universität Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
59
|
Wagner UG, Petersen EI, Schwab H, Kratky C. EstB from Burkholderia gladioli: a novel esterase with a beta-lactamase fold reveals steric factors to discriminate between esterolytic and beta-lactam cleaving activity. Protein Sci 2002; 11:467-78. [PMID: 11847270 PMCID: PMC2373480 DOI: 10.1110/ps.33002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Esterases form a diverse class of enzymes of largely unknown physiological role. Because many drugs and pesticides carry ester functions, the hydrolysis of such compounds forms at least one potential biological function. Carboxylesterases catalyze the hydrolysis of short chain aliphatic and aromatic carboxylic ester compounds. Esterases, D-alanyl-D-alanine-peptidases (DD-peptidases) and beta-lactamases can be grouped into two distinct classes of hydrolases with different folds and topologically unrelated catalytic residues, the one class comprising of esterases, the other one of beta-lactamases and DD-peptidases. The chemical reactivities of esters and beta-lactams towards hydrolysis are quite similar, which raises the question of which factors prevent esterases from displaying beta-lactamase activity and vice versa. Here we describe the crystal structure of EstB, an esterase isolated from Burkholderia gladioli. It shows the protein to belong to a novel class of esterases with homology to Penicillin binding proteins, notably DD-peptidase and class C beta-lactamases. Site-directed mutagenesis and the crystal structure of the complex with diisopropyl-fluorophosphate suggest Ser75 within the "beta-lactamase" Ser-x-x-Lys motif to act as catalytic nucleophile. Despite its structural homology to beta-lactamases, EstB shows no beta-lactamase activity. Although the nature and arrangement of active-site residues is very similar between EstB and homologous beta-lactamases, there are considerable differences in the shape of the active site tunnel. Modeling studies suggest steric factors to account for the enzyme's selectivity for ester hydrolysis versus beta-lactam cleavage.
Collapse
Affiliation(s)
- Ulrike G Wagner
- Institut für Chemie, Strukturbiologie, Karl-Franzens-Universität, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
60
|
Beadle BM, Nicholas RA, Shoichet BK. Interaction energies between beta-lactam antibiotics and E. coli penicillin-binding protein 5 by reversible thermal denaturation. Protein Sci 2001; 10:1254-9. [PMID: 11369864 PMCID: PMC2374021 DOI: 10.1110/ps.52001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Penicillin-binding proteins (PBPs) catalyze the final stages of bacterial cell wall biosynthesis. PBPs form stable covalent complexes with beta-lactam antibiotics, leading to PBP inactivation and ultimately cell death. To understand more clearly how PBPs recognize beta-lactam antibiotics, it is important to know their energies of interaction. Because beta-lactam antibiotics bind covalently to PBPs, these energies are difficult to measure through binding equilibria. However, the noncovalent interaction energies between beta-lactam antibiotics and a PBP can be determined through reversible denaturation of enzyme-antibiotic complexes. Escherichia coli PBP 5, a D-alanine carboxypeptidase, was reversibly denatured by temperature in an apparently two-state manner with a temperature of melting (T(m)) of 48.5 degrees C and a van't Hoff enthalpy of unfolding (H(VH)) of 193 kcal/mole. The binding of the beta-lactam antibiotics cefoxitin, cloxacillin, moxalactam, and imipenem all stabilized the enzyme significantly, with T(m) values as high as +4.6 degrees C (a noncovalent interaction energy of +2.7 kcal/mole). Interestingly, the noncovalent interaction energies of these ligands did not correlate with their second-order acylation rate constants (k(2)/K'). These rate constants indicate the potency of a covalent inhibitor, but they appear to have little to do with interactions within covalent complexes, which is the state of the enzyme often used for structure-based inhibitor design.
Collapse
Affiliation(s)
- B M Beadle
- Department of Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, Illinois 60611-3008, USA
| | | | | |
Collapse
|
61
|
Petersen EI, Valinger G, Sölkner B, Stubenrauch G, Schwab H. A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J Biotechnol 2001; 89:11-25. [PMID: 11472796 DOI: 10.1016/s0168-1656(01)00284-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The gene (estB) encoding for a novel esterase (EstB) from Burkholderia gladioli (formerly Pseudomonas marginata) NCPPB 1891 was cloned in Escherichia coli. Sequence analysis showed an open reading frame encoding a polypeptide of 392 amino acid residues, with a molecular mass of about 42 kDa. Comparison of the amino acid sequence with those of other homologous enzymes indicated homologies to beta-lactamases, penicillin binding proteins and DD-peptidases. The serine residue (Ser(75)) which is located within a present class A beta-lactamase motif ([F,Y]-X-[L,I,V,M,F,Y]-X-S-[T,V]-X-K-X-X-X-X-[A,G,L]-X-X-[L,C]) was identified by site-directed mutagenesis to represent the active nucleophile. A second serine residue (Ser(149)) which is located within a G-x-S-x-G motif which is typically found in esterases and lipases was demonstrated not to play a significant role in enzyme function. The estB gene was overexpressed in E. coli using a tac promoter-based expression system. Investigation of EstB protein with respect to the ability to hydrolyse beta-lactam substrates clearly demonstrated that this protein has no beta-lactamase activity. The recombinant enzyme is active on triglycerides and on nitrophenyl esters with acyl chain lengths up to C6. The preference for short chain length substrates indicated that EstB is a typical carboxylesterase. As a special feature EstB esterase was found to have high deacetylation activity on cephalosporin derivatives.
Collapse
Affiliation(s)
- E I Petersen
- Institut für Biotechnologie, AG Genetik, SFB Biokatalyse, Technische Universität Graz, Petersgasse 12, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
62
|
Davies C, White SW, Nicholas RA. Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-A resolution. J Biol Chem 2001; 276:616-23. [PMID: 10967102 DOI: 10.1074/jbc.m004471200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase, cleaving the C-terminal d-alanine residue from cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acyl-enzyme complex (t(12) approximately 9 min). A Gly-105 --> Asp mutation in PBP 5 markedly impairs this beta-lactamase activity (deacylation), with only minor effects on acylation, and promotes accumulation of a covalent complex with peptide substrates. To gain further insight into the catalytic mechanism of PBP 5, we determined the three-dimensional structure of the G105D mutant form of soluble PBP 5 (termed sPBP 5') at 2.3 A resolution. The structure is composed of two domains, a penicillin binding domain with a striking similarity to Class A beta-lactamases (TEM-1-like) and a domain of unknown function. In addition, the penicillin-binding domain contains an active site loop spatially equivalent to the Omega loop of beta-lactamases. In beta-lactamases, the Omega loop contains two amino acids involved in catalyzing deacylation. This similarity may explain the high beta-lactamase activity of wild-type PBP 5. Because of the low rate of deacylation of the G105D mutant, visualization of peptide substrates bound to the active site may be possible.
Collapse
Affiliation(s)
- C Davies
- School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
63
|
Anderson JW, Pratt RF. Dipeptide binding to the extended active site of the Streptomyces R61 D-alanyl-D-alanine-peptidase: the path to a specific substrate. Biochemistry 2000; 39:12200-9. [PMID: 11015198 DOI: 10.1021/bi001295w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial cell walls are cross-linked in the final step of biosynthesis by specific D-alanyl-D-alanine(DD)-peptidases/transpeptidases. The natural substrates of these enzymes should therefore be segments of peptidoglycan, but high specificity for such structures has yet to be demonstrated. The binding of dipeptides to the extended substrate binding site of the Streptomyces R61 DD-peptidase has been studied by means of a fluorescent beta-lactam probe. It was found that dipeptides of structure Gly-L-Xaa have affinity for a subsite adjacent to the beta-lactam binding site. Hydrophobic peptides such as Gly-L-Met and Gly-L-aminocaprylic acid had the greatest affinity for this site, with dissociation constants in each case of 0.19 mM. A combination of this motif with the C-terminal D-alanyl-D-alanine moiety required of a DD-peptidase substrate yielded a new substrate, glycyl-L-alpha-amino-epsilon-pimelyl-D-alanyl-D-alanine. Steady-state kinetic measurements established this compound as the most specific peptide substrate yet discovered for a DD-peptidase by at least 3 orders of magnitude (k(cat) = 69 s(-1), K(m) = 7.9 microM, k(cat)/K(m) = 8.7 x 10(6) s(-1) M(-1)); acylation was rate-determining at saturation. This substrate, presumably not coincidentally, contains the acyl donor and acceptor moieties, appropriately separated, of the Streptomyces peptidoglycan structure. This general method of approach should be of value in the search for specific substrates and inhibitors (antibiotics) of other DD-peptidases.
Collapse
Affiliation(s)
- J W Anderson
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
64
|
Bompard-Gilles C, Remaut H, Villeret V, Prangé T, Fanuel L, Delmarcelle M, Joris B, Frère J, Van Beeumen J. Crystal structure of a D-aminopeptidase from Ochrobactrum anthropi, a new member of the 'penicillin-recognizing enzyme' family. Structure 2000; 8:971-80. [PMID: 10986464 DOI: 10.1016/s0969-2126(00)00188-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. RESULTS The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. CONCLUSIONS Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique.
Collapse
Affiliation(s)
- C Bompard-Gilles
- Laboratorium voor Eiwitbiochemie en Eiwitengineering, Rijksuniversiteit-Gent, K.L. Ledeganckstraat, 35, B-9000, Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Mittl PR, Lüthy L, Hunziker P, Grütter MG. The cysteine-rich protein A from Helicobacter pylori is a beta-lactamase. J Biol Chem 2000; 275:17693-9. [PMID: 10748053 DOI: 10.1074/jbc.m001869200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the large number of hypothetical proteins within the genomes of Helicobacter pylori, there is a family of unique and highly disulfide-bridged proteins, designated family 12, for which no function could originally be assigned. Sequence analysis revealed that members of this family possess a modular architecture of alpha/beta-units and a stringent pattern of cysteine residues. The H. pylori cysteine-rich protein A (HcpA), which is a member of this family, was expressed and refolded from inclusion bodies. Six pairs of cysteine residues, which are separated by exactly seven residues, form disulfide bridges. HcpA is a beta-lactamase. It slowly hydrolyzes 6-aminopenicillinic acid and 7-aminocephalosporanic acid (ACA) derivatives. The turnover for 6-aminopenicillinic acid derivatives is 2-3 times greater than for ACA derivatives. The enzyme is efficiently inhibited by cloxacillin and oxacillin but not by ACA derivatives or metal chelators. We suggest that all family 12 members possess similar activities and might be involved in the synthesis of the cell wall peptidoglycan. They might also be responsible for amoxicillin resistance of certain H. pylori strains.
Collapse
Affiliation(s)
- P R Mittl
- Biochemisches Institut, Universität Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
66
|
Alvarez-Idaboy J, González-Jonte R, Hernández-Laguna A, Smeyers Y. Reaction mechanism of the acyl-enzyme formation in β-lactam hydrolysis by means of quantum chemical modeling. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(00)00351-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Claus H, Martin HH, Jantos CA, König H. A search for beta-lactamase in chlamydiae, mycoplasmas, planctomycetes, and cyanelles: bacteria and bacterial descendants at different phylogenetic positions and stages of cell wall development. Microbiol Res 2000; 155:1-6. [PMID: 10830893 DOI: 10.1016/s0944-5013(00)80015-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bacteria from different phylogenetic positions such as chlamydiae, mycoplasmas, planctomycetes and also endosymbiotic murein-containing cyanelles were investigated for the production of beta-lactamases. No beta-lactamase activity was found in bacteria lacking murein such as Chlamydia pneumoniae, Mycoplasma pneumoniae, Pirellula marina and Planctomyces maris. In the murein-containing cyanelles of Cyanophora paradoxa no beta-lactamase activity could be detected.
Collapse
Affiliation(s)
- H Claus
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität, Mainz, Germany.
| | | | | | | |
Collapse
|
68
|
Vanwetswinkel S, Avalle B, Fastrez J. Selection of beta-lactamases and penicillin binding mutants from a library of phage displayed TEM-1 beta-lactamase randomly mutated in the active site omega-loop. J Mol Biol 2000; 295:527-40. [PMID: 10623544 DOI: 10.1006/jmbi.1999.3376] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A combinatorial library of mutants of the phage displayed TEM-1 lactamase was generated in the region encompassing residues 163 to 171 of the active site Omega-loop. Two in vitro selection protocols were designed to extract from the library phage-enzymes characterised by a fast acylation by benzyl-penicillin (PenG) to yield either stable or very unstable acyl-enzymes. The critical step of the selections was the kinetically controlled labelling of the phages by reaction with either a biotinylated penicillin derivative or a biotinylated penicillin sulfone, i.e. a beta-lactamase suicide substrate; the biotinylated phages were recovered by panning on immobilised streptavidin. As labelling with biotinylated suicide substrates tends to select enzymes that do not turnover, a counter-selection against penicillin binding mutants was introduced to extract the beta-lactamases. The selected phage-enzymes were characterised by sequencing to identify conserved residues and by kinetic analysis of the reaction with benzyl-penicillin. Several penicillin binding mutants, in which the essential Glu166 is replaced by Asn, were shown to be acylated very fast by PenG, the acylation being characterised by biphasic kinetics. These data are interpreted by a kinetic scheme in which the enzymes exist in two interconvertible conformations. The rate constant of the conformational change suggests that it involves an isomerisation of the peptide bond between residues 166 and 167 and controls a conformation of the Omega-loop compatible with fast acylation of the active site serine residue.
Collapse
Affiliation(s)
- S Vanwetswinkel
- Université Catholique de Louvain, Laboratoire de Biochimie Physique et des Biopolymères, Place L. Pasteur, 1 Bte 1B, Louvain-la-Neuve, B1348, Belgium
| | | | | |
Collapse
|
69
|
Abergel C, Bouveret E, Claverie JM, Brown K, Rigal A, Lazdunski C, Bénédetti H. Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution. Structure 1999; 7:1291-300. [PMID: 10545334 DOI: 10.1016/s0969-2126(00)80062-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The periplasmic protein TolB from Escherichia coli is part of the Tol-PAL (peptidoglycan-associated lipoprotein) multiprotein complex used by group A colicins to penetrate and kill cells. TolB homologues are found in many gram-negative bacteria and the Tol-PAL system is thought to play a role in bacterial envelope integrity. TolB is required for lethal infection by Salmonella typhimurium in mice. RESULTS The crystal structure of the selenomethionine-substituted TolB protein from E. coli was solved using multiwavelength anomalous dispersion methods and refined to 1. 95 A. TolB has a two-domain structure. The N-terminal domain consists of two alpha helices, a five-stranded beta-sheet floor and a long loop at the back of this floor. The C-terminal domain is a six-bladed beta propeller. The small, possibly mobile, contact area (430 A(2)) between the two domains involves residues from the two helices and the first and sixth blades of the beta propeller. All available genomic sequences were used to identify new TolB homologues in gram-negative bacteria. The TolB structure was then interpreted using the observed conservation pattern. CONCLUSIONS The TolB beta-propeller C-terminal domain exhibits sequence similarities to numerous members of the prolyl oligopeptidase family and, to a lesser extent, to class B metallo-beta-lactamases. The alpha/beta N-terminal domain shares a structural similarity with the C-terminal domain of transfer RNA ligases. We suggest that the TolB protein might be part of a multiprotein complex involved in the recycling of peptidoglycan or in its covalent linking with lipoproteins.
Collapse
Affiliation(s)
- C Abergel
- Information Génétique et Structurale, CNRS-UMR 1889 Institut de Biologie Structurale et Microbiologie 31 Chemin Joseph Aiguier, Marseille, 13402, Cedex 20, France.
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The synthesis of monocyclic pyrazolidinones, which show moderate antibacterial activity, are described.
Collapse
Affiliation(s)
- E Couloigner
- Chimie et Biologie de Substances Actives, CNRS-UMR 175, Quimper, France
| | | | | |
Collapse
|
71
|
Wilkinson AS, Ward S, Kania M, Page MG, Wharton CW. Multiple conformations of the acylenzyme formed in the hydrolysis of methicillin by Citrobacter freundii beta-lactamase: a time-resolved FTIR spectroscopic study. Biochemistry 1999; 38:3851-6. [PMID: 10194295 DOI: 10.1021/bi990030i] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-resolved infrared difference spectroscopy has been used to show that the carbonyl group of the acylenzyme reaction intermediate in the Citrobacter freundii beta-lactamase-catalyzed hydrolysis of methicillin can assume at least four conformations. A single-turnover experiment shows that all four conformations decline during deacylation with essentially the same rate constant. The conformers are thus in exchange on the reaction time scale, assuming that deacylation takes place only from the conformation which is most strongly hydrogen bonded or from a more minor species not visible in these experiments. All conformers have the same (10 cm-1) narrow bandwidth compared with a model ethyl ester in deuterium oxide (37 cm-1) which shows that all conformers are well ordered relative to free solution. The polarity of the carbonyl group environment in the conformers varies from 'ether-like' to strongly hydrogen bonding (20 kJ/mol), presumably in the oxyanion hole of the enzyme. From the absorption intensities, it is estimated that the conformers are populated approximately proportional to the hydrogen bonding strength at the carbonyl oxygen. A change in the difference spectrum at 1628 cm-1 consistent with a perturbation (relaxation) of protein beta-sheet occurs slightly faster than deacylation. Consideration of chemical model reactions strongly suggests that neither enamine nor imine formation in the acyl group is a plausible explanation of the change seen at 1628 cm-1. A turnover reaction supports the above conclusions and shows that the conformational relaxation occurs as the substrate is exhausted and the acylenzymes decline. The observation of multiple conformers is discussed in relation to the poor specificity of methicillin as a substrate of this beta-lactamase and in terms of X-ray crystallographic structures of acylenzymes where multiple forms are not apparently observed (or modeled). Infrared spectroscopy has shown itself to be a useful method for assessment of the uniqueness of enzyme-substrate interactions in physiological turnover conditions as well as for determination of ordering, hydrogen bonding, and protein perturbation.
Collapse
Affiliation(s)
- A S Wilkinson
- School of Biochemistry, University of Birmingham, U.K
| | | | | | | | | |
Collapse
|
72
|
Adediran SA, Pratt RF. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase. Biochemistry 1999; 38:1469-77. [PMID: 9931012 DOI: 10.1021/bi982308x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Beta-secondary and solvent deuterium kinetic isotope effects have been determined for the steady-state kinetic parameters V/K and V for turnover of a series of acyclic substrates by the DD-peptidase of Streptomyces R61 and the class C beta-lactamase of Enterobacter cloacae P99. Although these enzymes are evolutionarily related and have very similar tertiary and active site structure, they are functionally very different-the former efficiently catalyzes the hydrolysis of beta-lactams but not acyclic peptides while vice versa applies to the latter. The measured kinetic isotope effects reveal both similarities and differences in the steady-state transition states for turnover of the various substrates by these enzymes. In most cases, inverse beta-secondary isotope effects were observed, reflecting typical acyl-transfer transition states. With one substrate, however, m-[[(phenylacetyl)glycyl]oxy]benzoic acid, isotope effects on V/K of very close to unity were obtained for both enzymes. These were interpreted in terms of acylation transition state conformations where the extent of beta-CH hyperconjugation was similar to that in the free substrate. Differences in deacylation transition states (V) between the two enzymes with this substrate were interpreted in terms of different acyl-enzyme conformations. Solvent deuterium kinetic isotope effects on V/K were uniformly small, some even inverse, for both enzymes and with all substrates tested. At face value, this suggests the counterintuitive conclusion that little proton transfer occurs in acylation transition states in all of these instances. Closer analysis, however, suggests that for ester and amide (and probably beta-lactam) substrates, this result probably arises from an increase in proton fractionation factors on substrate binding being offset by their decrease in the acylation transition state. The former event derives from proton rearrangement on substrate binding and the latter, presumably, from general acid/base catalysis. This result may be general to all beta-lactam-recognizing enzymes. The solvent isotope effects also suggest that, at least for the P99 beta-lactamase, the acylation transition state of a thioester substrate does not involve proton transfer. This can be interpreted in terms of the rate-determining breakdown of a tetrahedral intermediate where no protonation of the leaving thiolate is required. Deacylation transition states of both enzymes appear to involve significant proton transfer, presumably arising from general acid/base catalysis.
Collapse
Affiliation(s)
- S A Adediran
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
73
|
Huang X, Gaballa A, Cao M, Helmann JD. Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W. Mol Microbiol 1999; 31:361-71. [PMID: 9987136 DOI: 10.1046/j.1365-2958.1999.01180.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis sigW gene encodes an extracytoplasmic function (ECF) sigma factor that is expressed in early stationary phase from a sigW-dependent autoregulatory promoter, PW. Using a consensus-based search procedure, we have identified 15 operons preceded by promoters similar in sequence to PW. At least 14 of these promoters are dependent on sigma W both in vivo and in vitro as judged by lacZ reporter fusions, run-off transcription assays and nucleotide resolution start site mapping. We conclude that sigma W controls a regulon of more than 30 genes, many of which encode membrane proteins of unknown function. The sigma W regulon includes a penicillin binding protein (PBP4*) and a co-transcribed amino acid racemase (RacX), homologues of signal peptide peptidase (YteI), flotillin (YuaG), ABC transporters (YknXYZ), non-haem bromoperoxidase (YdjP), epoxide hydrolase (YfhM) and three small peptides with structural similarities to bacteriocin precursor polypeptides. We suggest that sigma W activates a large stationary-phase regulon that functions in detoxification, production of anti-microbial compounds or both.
Collapse
Affiliation(s)
- X Huang
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | |
Collapse
|
74
|
Hao J, Kendrick KE. Visualization of penicillin-binding proteins during sporulation of Streptomyces griseus. J Bacteriol 1998; 180:2125-32. [PMID: 9555895 PMCID: PMC107139 DOI: 10.1128/jb.180.8.2125-2132.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used fluorescein-tagged beta-lactam antibiotics to visualize penicillin-binding proteins (PBPs) in sporulating cultures of Streptomyces griseus. Six PBPs were identified in membranes prepared from growing and sporulating cultures. The binding activity of an 85-kDa PBP increased fourfold by 10 to 12 h of sporulation, at which time the sporulation septa were formed. Cefoxitin inhibited the interaction of the fluorescein-tagged antibiotics with the 85-kDa PBP and also prevented septum formation during sporulation but not during vegetative growth. The 85-kDa PBP, which was the predominant PBP in membranes of cells that were undergoing septation, preferentially bound fluorescein-6-aminopenicillanic acid (Flu-APA). Fluorescence microscopy showed that the sporulation septa were specifically labeled by Flu-APA; this interaction was blocked by prior exposure of the cells to cefoxitin at a concentration that interfered with septation. We hypothesize that the 85-kDa PBP is involved in septum formation during sporulation of S. griseus.
Collapse
Affiliation(s)
- J Hao
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
75
|
Matagne A, Lamotte-Brasseur J, Frère JM. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J 1998; 330 ( Pt 2):581-98. [PMID: 9480862 PMCID: PMC1219177 DOI: 10.1042/bj3300581] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
beta-Lactamases are the main cause of bacterial resistance to penicillins, cephalosporins and related beta-lactam compounds. These enzymes inactivate the antibiotics by hydrolysing the amide bond of the beta-lactam ring. Class A beta-lactamases are the most widespread enzymes and are responsible for numerous failures in the treatment of infectious diseases. The introduction of new beta-lactam compounds, which are meant to be 'beta-lactamase-stable' or beta-lactamase inhibitors, is thus continuously challenged either by point mutations in the ubiquitous TEM and SHV plasmid-borne beta-lactamase genes or by the acquisition of new genes coding for beta-lactamases with different catalytic properties. On the basis of the X-ray crystallography structures of several class A beta-lactamases, including that of the clinically relevant TEM-1 enzyme, it has become possible to analyse how particular structural changes in the enzyme structures might modify their catalytic properties. However, despite the many available kinetic, structural and mutagenesis data, the factors explaining the diversity of the specificity profiles of class A beta-lactamases and their amazing catalytic efficiency have not been thoroughly elucidated. The detailed understanding of these phenomena constitutes the cornerstone for the design of future generations of antibiotics.
Collapse
Affiliation(s)
- A Matagne
- Centre for Protein Engineering and Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | | | | |
Collapse
|
76
|
Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998. [PMID: 9449253 DOI: 10.1093/jac/42.1.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- I Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA
| | | |
Collapse
|
77
|
Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998; 42:1-17. [PMID: 9449253 PMCID: PMC105448 DOI: 10.1128/aac.42.1.1] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- I Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, USA
| | | |
Collapse
|
78
|
Abstract
The Protein Data Bank contains a number of structures for which only the coordinates of the Calpha atoms have been deposited. Although many tools are available for the validation of all-atom protein models, hardly any of these can be used to assess the quality of models for which only Calpha coordinates are available. Two rapid and simple tests to assess the quality of the Calpha backbone of a protein model are described, one based on the distribution of Calpha-Calpha distances, and the other on the two-dimensional distribution of the angles and dihedrals formed by sequential Calpha atoms. Expected distributions were derived by analysing a set of 1343 high-resolution, all-atom protein models. The distance criterion is useful to discriminate between refined and unrefined models, whereas the angle/dihedral criterion can be used to discriminate between normal and possibly problematic Calpha models. The method has been applied to a set of 88 Calpha-only models from the Protein Data Bank. The tracing of two of the models that are outliers in this analysis has recently been shown to be incorrect. Other applications of the method are discussed.
Collapse
Affiliation(s)
- G J Kleywegt
- Biomedical Centre, Uppsala University, Uppsala, SE-751 24, Sweden
| |
Collapse
|
79
|
Henderson TA, Young KD, Denome SA, Elf PK. AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J Bacteriol 1997; 179:6112-21. [PMID: 9324260 PMCID: PMC179516 DOI: 10.1128/jb.179.19.6112-6121.1997] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two proteins that bind penicillin were observed in Escherichia coli infected with lambda phages 141, 142, 650, and 651 from the Kohara genomic library. These phages carry chromosomal DNA fragments that do not contain any known penicillin binding protein (PBP) genes, indicating that unrecognized gene products were exhibiting penicillin binding activity. The genes encoding these proteins were subcloned, sequenced, and identified. One gene was ampC, which encodes a chromosomal class C beta-lactamase. The second gene was located at about 8.5 min on the E. coli genomic map and is a previously uncharacterized open reading frame, here named ampH, that encodes a protein closely related to the class C beta-lactamases. The predicted AmpH protein is similar in length to AmpC, but there are extensive alterations in the amino acid sequence between the SXXK and YXN motifs of the two proteins. AmpH bound strongly to penicillin G, cefoxitin, and cephalosporin C; was temperature sensitive; and disappeared from cells after overnight incubation in stationary phase. Although closely related to AmpC and other class C beta-lactamases, AmpH showed no beta-lactamase activity toward the substrate nitrocefin. Mutation of the ampC and/or ampH genes in E. coli lacking PBPs 1a and 5 produced morphologically aberrant cells, particularly in cell filaments induced by aztreonam. Thus, these two members of the beta-lactamase family exhibit characteristics similar to those of the classical PBPs, and their absence affects cell morphology. These traits suggest that AmpC and AmpH may play roles in the normal course of peptidoglycan synthesis, remodeling, or recycling.
Collapse
Affiliation(s)
- T A Henderson
- Department of Microbiology and Immunology, School of Medicine, University of North Dakota, Grand Forks 58202-9037, USA
| | | | | | | |
Collapse
|
80
|
Bulychev A, Massova I, Miyashita K, Mobashery S. Nuances of Mechanisms and Their Implications for Evolution of the Versatile β-Lactamase Activity: From Biosynthetic Enzymes to Drug Resistance Factors. J Am Chem Soc 1997. [DOI: 10.1021/ja963708f] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alexey Bulychev
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Irina Massova
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Kazuyuki Miyashita
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Shahriar Mobashery
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
81
|
Massova I, Mobashery S. Molecular Bases for Interactions between β-Lactam Antibiotics and β-Lactamases. Acc Chem Res 1997. [DOI: 10.1021/ar960007e] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Irina Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| | - Shahriar Mobashery
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| |
Collapse
|
82
|
Knox JR, Moews PC, Frere JM. Molecular evolution of bacterial beta-lactam resistance. CHEMISTRY & BIOLOGY 1996; 3:937-47. [PMID: 8939710 DOI: 10.1016/s1074-5521(96)90182-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Two groups of penicillin-destroying enzymes, the class A and class C beta-lactamases, may have evolved from bacterial transpeptidases that transfer X-D-Ala-D-Ala peptides to the growing peptidoglycan during cell wall synthesis. Both the transpeptidases and the beta-lactamases are acylated by beta-lactam antibiotics such as penicillin, which mimic the peptide, but breakdown and removal of the antibiotic is much faster in the beta-lactamases, which lack the ability to process D-Ala-D-Ala peptides. Stereochemical factors driving this evolution in specificity are examined. RESULTS We have compared the crystal structures of two classes of beta-lactamases and a beta-lactam-sensitive D-alanyl-D-alanine carboxy-peptidase/transpeptidase (DD-peptidase). The class C beta-lactamase is more similar to the DD-peptidase than to another beta-lactamase of class A. CONCLUSIONS The two classes of beta-lactamases appear to have developed from an ancestral protein along separate evolutionary paths. Structural differentiation of the beta-lactamases from the DD-peptidases appears to follow differences in substrate shapes. The structure of the class A beta-lactamase has been further optimized to exclude D-alanyl peptides and process penicillin substrates with near catalytic perfection.
Collapse
Affiliation(s)
- J R Knox
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269-3125, USA.
| | | | | |
Collapse
|
83
|
Abstract
An affinity gel matrix containing an enzyme (DD-peptidase) with specific beta-lactam binding properties was characterized with respect to its binding and reactivity behavior with penicillin. The data show that immobilization of DDP by reaction with the enzymes susceptible amino groups resulted in changes in catalytic activity on a tripeptide substrate, penicillin binding efficiency and pH stability of drug binding. Properties unaffected by immobilization were the drug-enzyme complex stability, binding reaction mechanism, drug selectivity and method of complex desorption. The affinity of DDP for penicillin-G was investigated by surface plasmon resonance. These characteristics were compared with those of the soluble enzyme. Conditions for elution of the bound drug were determined and a method for immobilizing Streptomyces DDP by which its binding site structure is sustained was also evaluated.
Collapse
Affiliation(s)
- G Y Eng
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA 19038, USA
| | | |
Collapse
|
84
|
Taibi-Tronche P, Massova I, Vakulenko SB, Lerner SA, Mobashery S. Evidence for Structural Elasticity of Class A β-Lactamases in the Course of Catalytic Turnover of the Novel Cephalosporin Cefepime. J Am Chem Soc 1996. [DOI: 10.1021/ja9529753] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pascale Taibi-Tronche
- Contribution from the Departments of Chemistry, Medicine, and Biochemistry, Wayne State University, Detroit, Michigan 48202
| | - Irina Massova
- Contribution from the Departments of Chemistry, Medicine, and Biochemistry, Wayne State University, Detroit, Michigan 48202
| | - Sergei B. Vakulenko
- Contribution from the Departments of Chemistry, Medicine, and Biochemistry, Wayne State University, Detroit, Michigan 48202
| | - Stephen A. Lerner
- Contribution from the Departments of Chemistry, Medicine, and Biochemistry, Wayne State University, Detroit, Michigan 48202
| | - Shahriar Mobashery
- Contribution from the Departments of Chemistry, Medicine, and Biochemistry, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
85
|
Henze UU, Berger-Bächi B. Staphylococcus aureus penicillin-binding protein 4 and intrinsic beta-lactam resistance. Antimicrob Agents Chemother 1995; 39:2415-22. [PMID: 8585719 PMCID: PMC162958 DOI: 10.1128/aac.39.11.2415] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Increased levels of production of penicillin-binding protein PBP 4 correlated with in vitro acquired intrinsic beta-lactam resistance in a mutant derived from a susceptible strain of Staphylococcus aureus, strain SG511 Berlin. Truncation of the PBP 4 C-terminal membrane anchor abolished the PBP 4 content of cell membrane preparations as well as the resistance phenotype. A single nucleotide change and a 90-nucleotide deletion, comprising a 14-nucleotide inverted repeat in the noncoding pbp4 gene promoter proximal region, were the only sequence differences between the resistant mutant and the susceptible parent. These mutations were thought to be responsible for the observed overproduction of PBP 4 in the intrinsically beta-lactam-resistant mutant. The pbp4 gene was flanked upstream by the open reading frame abcA, coding for an ATP-binding cassette transporter-like protein showing similarities to eukaryotic multidrug transporters and downstream by a glycerol 3-phosphate cytidyltransferase (tagD)-like open reading frame presumably involved in teichoic acid synthesis. The abcA-pbp4-tagD gene cluster was located in the SmaI-D fragment in the S. aureus 8325 chromosome in close proximity to the RNA polymerase gene rpoB.
Collapse
Affiliation(s)
- U U Henze
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | | |
Collapse
|
86
|
Nishizawa M, Shimizu M, Ohkawa H, Kanaoka M. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Appl Environ Microbiol 1995; 61:3208-15. [PMID: 7574629 PMCID: PMC167599 DOI: 10.1128/aem.61.9.3208-3215.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene coding for a novel esterase which stereoselectively hydrolyzes the (+)-trans (1R,3R) stereoisomer of ethyl chrysanthemate was cloned from Arthrobacter globiformis SC-6-98-28 and overexpressed in Escherichia coli. The cellular content of the active enzyme reached 33% of the total soluble protein in the recombinant E. coli JM105 cells and 5.6 g/liter of culture by high-density cell cultivation. The hydrolytic activity of the recombinant E. coli cells for ethyl chrysanthemate reached 605 mumol of chrysanthemic acid per min per g of dry cells, which is approximately 2,500-fold higher than that of A. globiformis cells. The stereoselective hydrolysis by the recombinant E. coli cells was efficient at substrate concentrations of up to 40% by removing the produced chrysanthemic acid by ultrafiltration. The (+)-trans-chrysanthemic acid produced had 100% optical purity. The amino acid sequence of the esterase was found to be similar to that of several class C beta-lactamases, D,D-carboxypeptidase, D-aminopeptidase, 6-aminohexanoate-dimer hydrolase, and Pseudomonas esterase. The sequence comparison also suggested that the Ser-X-X-Lys motif in the esterase was at the active site of the enzyme.
Collapse
Affiliation(s)
- M Nishizawa
- Biotechnology Laboratory, Takarazuka Research Center, Sumitomo Chemical Co., Ltd., Hyogo, Japan
| | | | | | | |
Collapse
|
87
|
Kuzin AP, Liu H, Kelly JA, Knox JR. Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases. Biochemistry 1995; 34:9532-40. [PMID: 7626623 DOI: 10.1021/bi00029a030] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two clinically-important beta-lactam antibiotics, cephalothin and cefotaxime, have been observed by X-ray crystallography bound to the reactive Ser62 of the D-alanyl-D-alanine carboxypeptidase/transpeptidase of Streptomyces sp. R61. Refinement of the two crystal structures produced R factors for 3 sigma (F) data of 0.166 (to 1.8 A) and 0.170 (to 2.0 A) for the cephalothin and cefotaxime complexes, respectively. In each complex, a water molecule is within 3.1 and 3.6 A of the acylated beta-lactam carbonyl carbon atom, but is poorly activated by active site residues for nucleophilic attack and deacylation. This apparent lack of good stereochemistry for facile hydrolysis is in accord with the long half-lives of cephalosporin intermediates in solution (20-40 h) and the efficacy of these beta-lactams as inhibitors of bacterial cell wall synthesis. Different hydrogen binding patterns of the two cephalosporins to Thr301 are consistent with the low cefotaxime affinity of an altered penicillin-binding protein, PBP-2x, reported in cefotaxime-resistant strains of Streptococcus pneumoniae, and with the ability of mutant class A beta-lactamases to hydrolyze third-generation cephalosporins.
Collapse
Affiliation(s)
- A P Kuzin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA
| | | | | | | |
Collapse
|
88
|
Abstract
The efficiency of beta-lactam antibiotics, which are among our most useful chemotherapeutic weapons, is continuously challenged by the emergence of resistant bacterial strains. This is most often due to the production of beta-lactamases by the resistant cells. These enzymes inactivate the antibiotics by hydrolysing the beta-lactam amide bond. The elucidation of the structures of some beta-lactamases by X-ray crystallography has provided precious insights into their catalytic mechanisms and revealed unsuspected similarities with the DD-transpeptidases, the bacterial enzymes which constitute the lethal targets of beta-lactams. Despite numerous kinetic, structural and site-directed mutagenesis studies, we have not completely succeeded in explaining the diversity of the specificity profiles of beta-lactamases and their surprising catalytic power. The solutions to these problems represent the cornerstones on which better antibiotics can be designed, hopefully on a rational basis.
Collapse
Affiliation(s)
- J M Frère
- Laboratoire d'Enzymologie and Centre d'Ingénierie des Protéines, Institut de Chimie, Université de Liège, Sart Tilman, Belgium
| |
Collapse
|
89
|
Sanschagrin F, Couture F, Levesque RC. Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D beta-lactamases. Antimicrob Agents Chemother 1995; 39:887-93. [PMID: 7785990 PMCID: PMC162648 DOI: 10.1128/aac.39.4.887] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We determined the nucleotide sequence of the blaOXA-3(pMG25) gene from Pseudomonas aeruginosa. The bla structural gene encoded a protein of 275 amino acids representing one monomer of 31,879 Da for the OXA-3 enzyme. Comparisons between the OXA-3 nucleotide and amino acid sequences and those of class A, B, C, and D beta-lactamases were performed. An alignment of the eight known class D beta-lactamases including OXA-3 demonstrated the presence of conserved amino acids. In addition, conserved motifs composed of identical amino acids typical of penicillin-recognizing proteins and specific class D motifs were identified. These conserved motifs were considered for possible roles in the structure and function of oxacillinases. On the basis of the alignment and identity scores, a dendrogram was constructed. The phylogenetic data obtained revealed five groups of class D beta-lactamases with large evolutionary distances between each group.
Collapse
Affiliation(s)
- F Sanschagrin
- Département de Microbiologie, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|
90
|
Matagne A, Frère JM. Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A beta-lactamases. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:109-27. [PMID: 7819278 DOI: 10.1016/0167-4838(94)00177-i] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Class A beta-lactamases represent a family of well studied enzymes. They are responsible for many antibiotic resistance phenomena and thus for numerous failures in clinical chemotherapy. Despite the facts that five structures are known at high resolution and that detailed analyses of enzymes modified by site-directed mutagenesis have been performed, their exact catalytic mechanism remains controversial. This review attempts to summarize and to discuss the many available data.
Collapse
Affiliation(s)
- A Matagne
- Laboratoire d'Enzymologie et Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | |
Collapse
|
91
|
Seltzer S, Farber PA. Microbiologic factors in endodontology. ORAL SURGERY, ORAL MEDICINE, AND ORAL PATHOLOGY 1994; 78:634-45. [PMID: 7838473 DOI: 10.1016/0030-4220(94)90178-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of microorganisms in the cause of endodontic lesions has been intensively investigated. Bacterial components such as endotoxin and other cell wall components are implicated in the development of pulpal and periapical inflammation. Newer anaerobic microbiologic techniques have facilitated accurate and reproducible identification of endodontic pathogens, some of which have been reclassified. This article reviews and correlates newer microbiologic findings with clinical symptoms.
Collapse
Affiliation(s)
- S Seltzer
- Department of Endodontology, School of Dentistry, Temple University, Philadelphia, Pa
| | | |
Collapse
|
92
|
van der Linden MP, de Haan L, Dideberg O, Keck W. Site-directed mutagenesis of proposed active-site residues of penicillin-binding protein 5 from Escherichia coli. Biochem J 1994; 303 ( Pt 2):357-62. [PMID: 7980393 PMCID: PMC1137335 DOI: 10.1042/bj3030357] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser44), Lys47, Ser110-Gly-Asn, Asp175 and Lys213-Thr-Gly were identified as the residues making up the conserved boxes of this protein family. To determine the role of these residues, they were replaced using site-directed mutagenesis. The mutant proteins were assayed for their penicillin-binding capacity and DD-carboxypeptidase activity. The Ser44Cys and the Ser44Gly mutants showed a complete loss of both penicillin-binding capacity and DD-carboxypeptidase activity. The Lys47Arg mutant also lost its DD-carboxypeptidase activity but was able to bind and hydrolyse penicillin, albeit at a considerably reduced rate. Mutants in the Ser110-Gly-Asn fingerprint were affected in both acylation and deacylation upon reaction with penicillin and lost their DD-carboxypeptidase activity with the exception of Asn112Ser and Asn112Thr. The Asp175Asn mutant showed wild-type penicillin-binding but a complete loss of DD-carboxypeptidase activity. Mutants of Lys213 lost both penicillin-binding and DD-carboxypeptidase activity except for Lys213His, which still bound penicillin with a k+2/K' of 0.2% of the wild-type value. Mutation of His216 and Thr217 also had a strong effect on DD-carboxypeptidase activity. Thr217Ser and Thr217Ala showed augmented hydrolysis rates for the penicillin acyl-enzyme. This study reveals the residues in the conserved fingerprints to be very important for both DD-carboxypeptidase activity and penicillin-binding, and confirms them to play crucial roles in catalysis.
Collapse
Affiliation(s)
- M P van der Linden
- BIOSON Research Institute, Department of Biochemistry, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
93
|
Xu Y, Pratt R. β-lactam-recognizing enzymes exhibit different structural specificity in acyclic amide and ester substrates: a starting point in β-lactamase evolution? Bioorg Med Chem Lett 1994. [DOI: 10.1016/0960-894x(94)85027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
94
|
Xu Y, Soto G, Adachi H, van der Linden MP, Keck W, Pratt RF. Relative specificities of a series of beta-lactam-recognizing enzymes towards the side-chains of penicillins and of acyclic thioldepsipeptides. Biochem J 1994; 302 ( Pt 3):851-6. [PMID: 7945212 PMCID: PMC1137308 DOI: 10.1042/bj3020851] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In an attempt to understand more of the subtle differences between bacterial beta-lactamases and DD-peptidases, comparisons have been made between the specificities of these enzymes towards the phenylacetyl side chain, generally thought to be favoured by beta-lactamases, and the NN'-diacetyl-L-lysyl side chain, widely employed in low-molecular-mass substrates of DD-peptidases. These comparisons were carried out with both a penicillin and an acyclic thioldepsipeptide reaction nucleus and employing a range of both beta-lactamases and DD-peptidases. Rather contrary to general expectations, a general preference for reaction of both groups of enzymes with penicillins rather than thioldepsipeptides was observed and for the phenylacetyl rather than the NN'-diacetyl-L-lysyl side chain. Quantitative comparisons suggested that the side chains of penicillins may be bound in relatively similar sites in all of the enzymes whereas the side chains of thioldepsipeptides are more heterogeneously bound, both with respect to each other and to the comparable side chains of penicillins.
Collapse
Affiliation(s)
- Y Xu
- Department of Chemistry, Wesleyan University, Middletown, CT 06459
| | | | | | | | | | | |
Collapse
|
95
|
Wilkin JM, Dubus A, Joris B, Frère JM. The mechanism of action of DD-peptidases: the role of Threonine-299 and -301 in the Streptomyces R61 DD-peptidase. Biochem J 1994; 301 ( Pt 2):477-83. [PMID: 8042992 PMCID: PMC1137106 DOI: 10.1042/bj3010477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The side chains of residues Thr299 and Thr301 in the Streptomyces R61 DD-peptidase have been modified by site-directed mutagenesis. These amino acids are part of a beta-strand which forms a wall of the active-site cavity. Thr299 corresponds to the second residue of the Lys-Thr(Ser)-Gly triad, highly conserved in active-site beta-lactamases and penicillin-binding proteins (PBPs). Modification of Thr301 resulted only in minor alterations of the catalytic and penicillin-binding properties of the enzyme. No selective decrease of the rate of acylation was observed for any particular class of compounds. By contrast, the loss of the hydroxy group of the residue in position 299 yielded a seriously impaired enzyme. The rates of inactivation by penicillins were decreased 30-50-fold, whereas the reactions with cephalosporins were even more affected. The efficiency of hydrolysis against the peptide substrate was also seriously decreased. More surprisingly, the mutant was completely unable to catalyse transpeptidation reactions. The conservation of an hydroxylated residue in this position in PBPs is thus easily explained by these results.
Collapse
Affiliation(s)
- J M Wilkin
- Centre d'Ingéniérie des protéines, Université de Liège, Belgium
| | | | | | | |
Collapse
|
96
|
Lobkovsky E, Billings EM, Moews PC, Rahil J, Pratt RF, Knox JR. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Biochemistry 1994; 33:6762-72. [PMID: 8204611 DOI: 10.1021/bi00188a004] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The crystal structure of a complex formed on reaction of the Enterobacter cloacae P99 cephalosporinase (beta-lactamase) with a phosphonate monoester inhibitor, m-carboxyphenyl [[N-[(p-iodophenyl)acetyl]amino]methyl]phosphonate, has been obtained at 2.3-A resolution. The structure shows that the inhibitor has phosphonylated the active site serine (Ser64) with loss of the m-carboxyphenol leaving group. The inhibitor is positioned in the active site in a way that can be interpreted in terms of a transition-state analog. The arylacetamido side chain is placed as anticipated from analogous beta-lactamoyl complexes of penicillin-recognizing enzymes, with the amino group hydrogen-bonded to the backbone carbonyl of Ser318 (of the B3 beta-strand) and to the amides of Gln120 and Asn152. There is support in the asymmetry of the hydrogen bonding of this side chain to the protein and in the 2-fold disorder of the benzyl group for the considerable breadth in substrate specificity exhibited by class C beta-lactamases. One phosphonyl oxygen atom is in the oxyanion hole, hydrogen-bonded to main-chain NH groups of Ser318 and Ser64, while the other oxygen is solvated, not within hydrogen-bonding distance of any amino acid side chain. The closest active site functional group to the solvated oxygen atom is the Tyr150 hydroxyl group (3.4A); Lys67 and Lys315 are quite distant (4.3 and 5.7 A, respectively). Rather, Tyr150 and Lys67 are more closely associated with Ser64O gamma (2.9 and 3.3 A). This arrangement is interpreted in terms of the transition state for breakdown of the tetrahedral intermediate in the deacylation step of catalysis, where the Tyr150 phenol seems the most likely general acid. Thus, Tyr150, as the phenoxide anion, would be the general base catalyst in acylation, as proposed by Oefner et al. [Nature (1990) 343, 284-288]. The structure is compared with that of a similar phosphonate derivative of a class A beta-lactamase [Chen et al. (1993) J. Mol. Biol. 234, 165-178], and mechanistic comparisons are made. The sensitivity of serine beta-lactamases, as opposed to serine proteinases, toward inhibition by phosphonate monoanions is supported by electrostatic calculations showing a net positive potential only in the catalytic sites of the beta-lactamases.
Collapse
Affiliation(s)
- E Lobkovsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125
| | | | | | | | | | | |
Collapse
|
97
|
|
98
|
Bishop RE, Weiner JH. Complementation of growth defect in an ampC deletion mutant of Escherichia coli. FEMS Microbiol Lett 1993; 114:349-54. [PMID: 8288112 DOI: 10.1111/j.1574-6968.1993.tb06597.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
beta-Lactamase genes of class-A (Rtem) and class-C (ampC) were placed under control of an inducible tac-promoter and expressed in Escherichia coli. Expression of RTEM had no observable effect on the growth properties of E. coli strains HB101 (ampC+) or MI1443 (delta ampC). E. coli MI1443 exhibited a decline in growth rate at mid-exponential phase which could be delayed by expression of AmpC at early-exponential phase. AmpC expression otherwise inhibited growth, particularly during the transition into exponential phase where growth was prevented altogether. We suggest that the AmpC beta-lactamase, but not RTEM, may have an additional cellular function as a peptidoglycan hydrolase.
Collapse
Affiliation(s)
- R E Bishop
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
99
|
A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74256-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
100
|
Ledent P, Raquet X, Joris B, Van Beeumen J, Frère JM. A comparative study of class-D beta-lactamases. Biochem J 1993; 292 ( Pt 2):555-62. [PMID: 8389139 PMCID: PMC1134246 DOI: 10.1042/bj2920555] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Three class-D beta-lactamases (OXA2, OXA1 and PSE2) were produced and purified to protein homogeneity. 6 beta-Iodopenicillanate inactivated the OXA2 enzyme without detectable turnover. Labelling of the same beta-lactamase with 6 beta-iodo[3H]penicillanate allowed the identification of Ser-70 as the active-site serine residue. In agreement with previous reports, the apparent M(r) of the OXA2 enzyme as determined by molecular-sieve filtration, was significantly higher than that deduced from the gene sequence, but this was not due to an equilibrium between a monomer and a dimer. The heterogeneity of the OXA2 beta-lactamase on ion-exchange chromatography contrasted with the similarity of the catalytic properties of the various forms. A first overview of the enzymic properties of the three 'oxacillinases' is presented. With the OXA2 enzyme, 'burst' kinetics, implying branched pathways, seemed to prevail with many substrates.
Collapse
Affiliation(s)
- P Ledent
- Laboratoire d'Enzymologie, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|