51
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
52
|
Niu C, Xiao F, Yuan K, Hu X, Lin W, Ma R, Zhang X, Huang Z. Nardosinone Suppresses RANKL-Induced Osteoclastogenesis and Attenuates Lipopolysaccharide-Induced Alveolar Bone Resorption. Front Pharmacol 2017; 8:626. [PMID: 28955231 PMCID: PMC5601052 DOI: 10.3389/fphar.2017.00626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2017] [Accepted: 08/25/2017] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that damages the integrity of the tooth-supporting tissues, known as the periodontium, and comprising the gingiva, periodontal ligament and alveolar bone. In this study, the effects of nardosinone (Nd) on bone were tested in a model of lipopolysaccharide (LPS)-induced alveolar bone loss, and the associated mechanisms were elucidated. Nd effectively suppressed LPS-induced alveolar bone loss and reduced osteoclast (OC) numbers in vivo. Nd suppressed receptor activator of nuclear factor-κB ligand (RANKL)-mediated OC differentiation, bone resorption, and F-actin ring formation in a dose-dependent manner. Further investigation revealed that Nd suppressed osteoclastogenesis by suppressing the ERK and JNK signaling pathways, scavenging reactive oxygen species, and suppressing the activation of PLCγ2 that consequently affects the expression and/or activity of the OC-specific transcription factors, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). In addition, Nd significantly reduced the expression of OC-specific markers in mouse bone marrow-derived pre-OCs, including c-Fos, cathepsin K (Ctsk), VATPase d2, and Nfatc1. Collectively, these findings suggest that Nd has beneficial effects on bone, and the suppression of OC number implies that the effect is exerted directly on osteoclastogenesis.
Collapse
Affiliation(s)
- Chenguang Niu
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Keyong Yuan
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - XuChen Hu
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Wenzhen Lin
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Rui Ma
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhengwei Huang
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
53
|
de Aquino SG, Talbot J, Sônego F, Turato WM, Grespan R, Avila-Campos MJ, Cunha FQ, Cirelli JA. The aggravation of arthritis by periodontitis is dependent of IL-17 receptor A activation. J Clin Periodontol 2017; 44:881-891. [PMID: 28498497 DOI: 10.1111/jcpe.12743] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/08/2017] [Indexed: 01/22/2023]
Abstract
AIM To evaluate whether Porphyromonas gingivalis-induced periodontitis aggravates the antigen-induced arthritis (AIA) model, and whether this effect is dependent on the Th17/IL-17 signalling pathway. MATERIALS AND METHODS Antigen-induced arthritis was triggered by local injection of methylated bovine serum albumin into the knee joint of previously immunized C57BL/6 wild-type (WT) and IL-17 receptor A (IL-17RA)-knockout mice. Periodontal disease in naïve or arthritic mice was induced by oral infection with P. gingivalis. Animals were sacrificed 7, 15 and 30 days after infection. Alveolar bone loss, joint histopathology, articular hyperalgesia and joint cytokine production were assessed, in addition to the proportion of Th17 and Treg cells isolated from the inguinal lymph nodes. RESULTS No influence of experimentally-induced arthritis was found on the alveolar bone resorption induced by P. gingivalis. However, mice with experimentally-induced arthritis that were exposed to P. gingivalis presented higher joint damage and Th17 frequencies when compared to non-infected mice. The aggravation of arthritis by periodontitis was accompanied by increased TNF and IL-17 production and articular neutrophil infiltration, whereas arthritis aggravation and changes in neutrophil infiltration were absent in IL-17RA-deficient mice. CONCLUSION The effects of P. gingivalis-induced periodontitis on arthritis are dependent on Th17 expansion and IL-17RA signalling, which lead to increased neutrophil infiltration into the joints.
Collapse
Affiliation(s)
- Sabrina G de Aquino
- Department of Diagnosis and Oral Surgery, School of Dentistry at Araraquara, Univ. Estadual Paulista - UNESP, Araraquara, Brazil.,Department of Clinical and Social Dentistry, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Jhimmy Talbot
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fabiane Sônego
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Walter M Turato
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Renata Grespan
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil.,Department of Physiology, Biological and Health Science Center, Federal University of Sergipe, Aracajú, Brazil
| | - Mario J Avila-Campos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Oral Surgery, School of Dentistry at Araraquara, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| |
Collapse
|
54
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
55
|
Mohieldin EAM, Muddathir AM, Mitsunaga T. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:224. [PMID: 28427461 PMCID: PMC5399347 DOI: 10.1186/s12906-017-1735-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/19/2016] [Accepted: 04/08/2017] [Indexed: 12/26/2022]
Abstract
Background Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Methods Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. Results About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at the concentration of 10 μg/ml against MMP-9. Additionally, MMP-9 was significantly inhibited by terchebulin with IC50 value of 6.7 μM. Conclusions To the best of our knowledge, flavogalonic acid dilactone and terchebulin were isolated from C. hartmannianium bark for the first time in this study. Because of terchebulin and some crude extracts acting on P. gingivalis bacteria and MMP-9 enzyme that would make them promising natural preference for preventing and treating periodontal diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1735-y) contains supplementary material, which is available to authorized users.
Collapse
|
56
|
Shikama Y, Kudo Y, Ishimaru N, Funaki M. Potential Role of Free Fatty Acids in the Pathogenesis of Periodontitis and Primary Sjögren's Syndrome. Int J Mol Sci 2017; 18:ijms18040836. [PMID: 28420093 PMCID: PMC5412420 DOI: 10.3390/ijms18040836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
Clinical studies have shown that metabolic disorders such as type 2 diabetes and dyslipidemia are associated with increased risk of oral-related diseases, such as periodontitis and Sjögren’s syndrome. Although changes in the immune system are critical in both of these metabolic disorders and oral-related diseases, the mechanism underlying the interaction between these diseases remains largely unknown. Obesity and type 2 diabetes are known to be associated with higher concentrations of free fatty acids in blood. Among free fatty acids, saturated fatty acids such as palmitic acid have been demonstrated to induce inflammatory responses mainly via the innate immune systems, and to be involved in the pathogenesis of type 2 diabetes in tissues such as adipose tissue, liver, pancreas, and skeletal muscle. Here, we highlight recent advances in evidence for the potential involvement of palmitic acid in the pathogenesis of periodontitis and Sjögren’s syndrome, and discuss the possibility that improvement of the lipid profile could be a new strategy for the treatment of these diseases.
Collapse
Affiliation(s)
- Yosuke Shikama
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan.
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Makoto Funaki
- Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
57
|
Taniguchi M, Ochiai A. Characterization and production of multifunctional cationic peptides derived from rice proteins. Biosci Biotechnol Biochem 2017; 81:634-650. [DOI: 10.1080/09168451.2016.1277944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Abstract
Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
58
|
Boutin S, Hagenfeld D, Zimmermann H, El Sayed N, Höpker T, Greiser HK, Becher H, Kim TS, Dalpke AH. Clustering of Subgingival Microbiota Reveals Microbial Disease Ecotypes Associated with Clinical Stages of Periodontitis in a Cross-Sectional Study. Front Microbiol 2017; 8:340. [PMID: 28298910 PMCID: PMC5331054 DOI: 10.3389/fmicb.2017.00340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2016] [Accepted: 02/17/2017] [Indexed: 01/06/2023] Open
Abstract
Periodontitis is characterized by chronic inflammation associated with alteration of the oral microbiota. In contrast to previous microbiome studies focusing a priori on comparison between extreme phenotypes, our study analyzed a random sample of 85 people. The aim of this study was to link microbial differences to disease’s prevalence and severity. Using next generation sequencing of 16S rRNA amplicons and cluster analysis, we observed that the population can be divided into two major ecotypes: One mainly contained periodontal healthy/mild periodontitis individuals whereas the second ecotype showed a heterogeneous microbial distribution and clustered into three distinct sub-ecotypes. Those sub-ecotypes differed with respect to the frequency of diseased patients and displayed a gradual change in distinct subgingival microbiota that goes along with clinical disease symptoms. In ecotype 2, the subgroup with no clinical signs of disease was linked to an increase of F. nucleatum vincentii but also several other species, while only in “end-stage” dysbiosis classical red complex bacteria gained overweight. Therefore, the microbial disease ecotypes observed in our population can lead to an establishment of an early microbial risk profile for clinically healthy patients.
Collapse
Affiliation(s)
- Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital HeidelbergHeidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)Heidelberg, Germany
| | - Daniel Hagenfeld
- Department of Periodontology and Restorative Dentistry, University Hospital MünsterMünster, Germany; Section of Periodontology, Department of Conservative Dentistry, University Hospital HeidelbergHeidelberg, Germany
| | - Heiko Zimmermann
- Institute of Public Health, Epidemiology and Biostatistics, Heidelberg University Heidelberg, Germany
| | - Nihad El Sayed
- Section of Periodontology, Department of Conservative Dentistry, University Hospital Heidelberg Heidelberg, Germany
| | - Tanja Höpker
- Division of Cancer Epidemiology, German Cancer Research Center Heidelberg, Germany
| | - Halina K Greiser
- Division of Cancer Epidemiology, German Cancer Research Center Heidelberg, Germany
| | - Heiko Becher
- Institute of Public Health, Epidemiology and Biostatistics, Heidelberg UniversityHeidelberg, Germany; Institute of Medical Biostatistics and Epidemiology, University Hospital Hamburg-EppendorfHamburg, Germany
| | - Ti-Sun Kim
- Section of Periodontology, Department of Conservative Dentistry, University Hospital Heidelberg Heidelberg, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital HeidelbergHeidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)Heidelberg, Germany
| |
Collapse
|
59
|
Rath H, Stumpp SN, Stiesch M. Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials. PLoS One 2017; 12:e0172095. [PMID: 28187188 PMCID: PMC5302373 DOI: 10.1371/journal.pone.0172095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2016] [Accepted: 01/31/2017] [Indexed: 11/28/2022] Open
Abstract
Since the introduction of modern dental implants in the 1980s, the number of inserted implants has steadily increased. Implant systems have become more sophisticated and have enormously enhanced patients’ quality of life. Although there has been tremendous development in implant materials and clinical methods, bacterial infections are still one of the major causes of implant failure. These infections involve the formation of sessile microbial communities, called biofilms. Biofilms possess unique physical and biochemical properties and are hard to treat conventionally. There is a great demand for innovative methods to functionalize surfaces antibacterially, which could be used as the basis of new implant technologies. Present, there are few test systems to evaluate bacterial growth on these surfaces under physiological flow conditions. We developed a flow chamber model optimized for the assessment of dental implant materials. As a result it could be shown that biofilms of the five important oral bacteria Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans, can be reproducibly formed on the surface of titanium, a frequent implant material. This system can be run automatically in combination with an appropriate microscopic device and is a promising approach for testing the antibacterial effect of innovative dental materials.
Collapse
Affiliation(s)
- Henryke Rath
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Sascha Nico Stumpp
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
60
|
Nakayama K. [The type IX secretion system and the type V pilus in the phylum Bacteroidetes]. Nihon Saikingaku Zasshi 2017; 72:219-227. [PMID: 29109335 DOI: 10.3412/jsb.72.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
Many bacteria symbiotic and parasitic in humans are included in the genera Bacteroides, Prevotella, Porphyromonas and others, which belong to the phylum Bacteroidetes. We have been studying gingipain, a major secretory protease of Porphyromonas gingivalis which is a periodontopathogenic bacterium belonging to the genus Porphyromonas, and pili which contribute to host colonization in the bacterium. In the process, it was found that gingipain was secreted by a system not reported previously. Furthermore, this secretion system was found to exist widely in the Bacteroidetes phylum bacteria and closely related to the gliding motility of bacteroidete bacteria, and it was named the Por secretion system (later renamed the type IX secretion system). Regarding P. gingivalis pili, it was found that the pilus protein is transported as a lipoprotein to the cell surface, and the pilus formation occurs due to degradation by arginine-gingipain. Pili with this novel formation mechanism was found to be widely present in bacteria belonging to the class Bacteroidia in the phylum Bacteroidetes and was named the type V pili.
Collapse
Affiliation(s)
- Koji Nakayama
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
61
|
Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways. Molecules 2016; 21:molecules21111508. [PMID: 27834922 PMCID: PMC6273372 DOI: 10.3390/molecules21111508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/09/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that leads to destruction of tooth supporting tissues. Porphyromonas gingivalis (P. gingivalis), especially its lipopolysaccharides (LPS), is one of major pathogens that cause periodontitis. Bee venom (BV) has been widely used as a traditional medicine for various diseases. Previous studies have demonstrated the anti-inflammatory, anti-bacterial effects of BV. However, a direct role and cellular mechanism of BV on periodontitis-like human keratinocytes have not been explored. Therefore, we investigated the anti-inflammatory mechanism of BV against P. gingivalis LPS (PgLPS)-induced HaCaT human keratinocyte cell line. The anti-inflammatory effect of BV was demonstrated by various molecular biological methods. The results showed that PgLPS increased the expression of Toll-like receptor (TLR)-4 and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and interferon (IFN)-γ. In addition, PgLPS induced activation of the signaling pathways of inflammatory cytokines-related transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). BV effectively inhibited those pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. These results suggest that administration of BV attenuates PgLPS-induced inflammatory responses. Furthermore, BV may be a useful treatment to anti-inflammatory therapy for periodontitis.
Collapse
|
62
|
Agosto LM, Hirnet JB, Michaels DH, Shaik-Dasthagirisaheb YB, Gibson FC, Viglianti G, Henderson AJ. Porphyromonas gingivalis-mediated signaling through TLR4 mediates persistent HIV infection of primary macrophages. Virology 2016; 499:72-81. [PMID: 27639573 PMCID: PMC5126732 DOI: 10.1016/j.virol.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P. gingivalis. This diminished viral replication was due partly to a decrease in the expression of integrated HIV provirus. HIV repression depended upon signaling through TLR4 as knock-down of TLR4 with siRNA rescued HIV expression. Importantly, HIV expression was reactivated upon removal of P. gingivalis. Our observations suggest that exposure of macrophages to Gram-negative bacteria influence the establishment and maintenance of HIV persistence in macrophages through a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA.
| | - Juliane B Hirnet
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Michaels
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
63
|
Graves DT, Naguib G, Huafei Lu, Desta T, Amar S. Porphyromonas gingivalis fimbriae are pro-inflammatory but do not play a prominent role in the innate immune response to P. gingivalis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110010501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
The fimA gene encodes the major fimbrial protein of Porphyromonas gingivalis. It has been shown to stimulate adhesion to salivary proteins and other bacteria. It is also thought to play a major role in invading and stimulating host cells. To determine whether the fimA gene represents one of the principal molecules of P. gingivalis that induces inflammation, we tested purified FimA protein and a mutant P. gingivalis (DPG3) that lacks the fimA gene versus wild-type (WT) P. gingivalis. When injected into connective tissue of the scalp, purified FimA protein induced TNF-α and MIP-2 expression confirming that it is pro-inflammatory. WT P. gingivalis induced TNF-α expression and recruitment of PMNs in the same model. However, DPG3 P. gingivalis stimulated TNF expression and PMN recruitment to the same extent. The latter was consistent with similar induction of the chemokine MIP-2. Similar results were obtained with diabetic mice that have a more prolonged inflammatory response to bacterial stimulation. These results indicate that FimA is a potent inducer of inflammatory cytokine expression but, in the context of P. gingivalis infection, it is not a principal stimulator of the innate host response.
Collapse
Affiliation(s)
- Dana T. Graves
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts, USA,
| | - Ghada Naguib
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts, USA
| | - Huafei Lu
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts, USA
| | - Tesfahun Desta
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts, USA
| | - Salomon Amar
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
64
|
Bacterial profile and bone healing in rats receiving cancer therapeutic doses of bisphosphonates and corticosteroids: a pilot study. Int J Oral Maxillofac Surg 2016; 45:1162-9. [DOI: 10.1016/j.ijom.2015.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2015] [Revised: 11/18/2015] [Accepted: 12/23/2015] [Indexed: 11/21/2022]
|
65
|
Du A, Zhao S, Wan L, Liu T, Peng Z, Zhou Z, Liao Z, Fang H. MicroRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS. J Cell Mol Med 2016; 20:1329-38. [PMID: 26987780 PMCID: PMC4929301 DOI: 10.1111/jcmm.12819] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2015] [Accepted: 01/23/2016] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease which is caused by bacterial infection and leads to the destruction of periodontal tissues and resorption of alveolar bone. Thus, special attention should be paid to the mechanism under lipopolysaccharide (LPS)-induced periodontitis because LPS is the major cause of periodontitis. However, to date, miRNA expression in the LPS-induced periodontitis has not been well characterized. In this study, we investigated miRNA expression patterns in LPS-treated periodontal ligament cells (PDLCs). Through miRNA array and differential analysis, 22 up-regulated miRNAs and 28 down-regulated miRNAs in LPS-treated PDLCs were identified. Seven randomly selected up-regulated (miR-21-5p, 498, 548a-5p) and down-regulated (miR-495-3p, 539-5p, 34c-3p and 7a-2-3p) miRNAs were examined by qRT-PCR, and the results proved the accuracy of the miRNA array. Moreover, targets of these deregulated miRNAs were analysed using the miRWalk database. Database for Annotation, Visualization and Integration Discovery software were performed to analyse the Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway of differential expression miRNAs, and the results shown that Toll-like receptor signalling pathway, cAMP signalling pathway, transforming growth factor-beta signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway and other pathways were involved in the molecular mechanisms underlying LPS-induced periodontitis. In conclusion, this study provides clues for enhancing our understanding of the mechanisms and roles of miRNAs as key regulators of LPS-induced periodontitis.
Collapse
Affiliation(s)
- Anqing Du
- Department of Stomatology, JinShan Hospital, FuDan University, JinShan District, ShangHai, China
| | - Sen Zhao
- Department of Orthodontics, Dental Hospital of HeNan Province, ZhengZhou University, ZhengZhou, HeNan, China
| | - LingYun Wan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, ChengDu, China
| | - TianTao Liu
- Key Laboratory of Oral Medicine, GuangZhou Institute of Oral Disease, Stomatology Hospital of GuangZhou Medical University, GuangZhou, China
| | - Zaoxia Peng
- Department of Stomatology, The First Teaching Hospital of Xinjiang Medical University, Urumqi, China
| | - ZiYu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhengyu Liao
- Affliated Stomatological Hospital of NanChang University, NanChang, JiangXi Province, China
| | - Huan Fang
- Department of Pharmacy, JinShan Hospital, FuDan University, JinShan District, ShangHai, China
| |
Collapse
|
66
|
Taniguchi M, Matsuhashi Y, Abe TK, Ishiyama Y, Saitoh E, Kato T, Ochiai A, Tanaka T. Contribution of cationic amino acids toward the inhibition of Arg-specific cysteine proteinase (Arg-gingipain) by the antimicrobial dodecapeptide, CL(14-25), from rice protein. Biopolymers 2016; 102:379-89. [PMID: 25046435 DOI: 10.1002/bip.22525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2014] [Revised: 06/11/2014] [Accepted: 06/28/2014] [Indexed: 11/11/2022]
Abstract
CL(14-25), a dodecapeptide, exhibits antimicrobial activity against Porphyromonas gingivalis with the 50% growth-inhibitory concentration (IC50 ) value of 145 µM, and arginine-specific gingipain (Rgp)-inhibitory activity. Kinetic analysis revealed that CL(14-25) is a mixed-type inhibitor, with inhibition constants (Ki and Ki ' values) of 1.4 × 10(-6) M and 4.3 × 10(-6) M, respectively. To elucidate the contributions of four cationic amino acid residues at the N- and C-termini of CL(14-25) toward Rgp-inhibitory activity, we investigated the Rgp-inhibitory activities of truncated and alanine-substituted analogs of CL(14-25). Rgp-inhibitory activities significantly decreased by truncated analogs, CL(15-25) and CL(16-25), whereas those of CL(14-24) and CL(14-23) were almost as high as that of CL(14-25). Rgp-inhibitory activities of alanine-substituted analogs, CL(R14A) and CL(R14A, R15A) also significantly decreased, whereas those of CL(K25A) and CL(R24A, K25A) were higher than that of CL(14-25). These results suggest that the arginine residue at position 15 substantially contributes to the Rgp-inhibitory activity and that the arginine residue at position 14 plays important roles in exerting Rgp-inhibitory activity. In this study, we demonstrated that CL(K25A) was a potent, dual function, peptide inhibitor candidate, exhibiting Rgp-inhibitory activity with Ki and Ki ' of 9.6 × 10(-7) M and 1.9 × 10(-6) M, respectively, and antimicrobial activity against P. gingivalis with an IC50 value of 51 µM.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan; Center for Transdisciplinary Research, Niigata University, Niigata, 950-2181, Japan
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
BACKGROUND/PURPOSE Few studies have investigated the periodontal status of Taiwanese pregnant women. This study aimed to investigate the periodontal status of pregnant women and to examine its relation to oral hygiene. MATERIAL AND METHODS This study randomly recruited 477 pregnant women. Among them, 203 women were in their first trimester. Forty-six women completed the study to the end of their third trimester. We also recruited 160 nonpregnant women as the control group. Clinical periodontal parameters were recorded and included probing pocket depth [PPD (mm)], clinical attachment level [CAL (mm)], gingival index simplified [GI-s (%)], and plaque index [PI (%)]. RESULTS The GI-s of the pregnant group (PG) was higher than that of the control group [CG; (i.e., nonpregnant)], but only the third trimester was statistically significantly different (P < 0.001).The full mouth dental PI was higher in the PG than in the CG (P < 0.001), particularly in the interproximal areas. The mean PPD was greater in the PG than in the CG (P < 0.001) in all tooth areas. The mean CAL was higher in the PG than in the CG (P < 0.001), but no difference existed between the different trimesters. The CG had a higher percentage of sites with a shallow PPD, compared to the PG (P < 0.001); the PG had a higher percentage of sites with a PPD of 4-6 mm, compared to the CG (P < 0.001). Only the PI of the full mouth and lingual tooth surfaces in the third trimester were better than in the first trimester throughout the pregnancy. CONCLUSION Gingival inflammation in pregnant women is positively correlated with the increased deposition of a dental plaque biofilm.
Collapse
Affiliation(s)
- Chuan-Chen Ho
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Ming-Yung Chou
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
68
|
Takayama S, Hashimoto K, Kokubu E, Taniguchi M, Tajima K, Ochiai A, Saitoh E, Saito A, Ishihara K, Kato T. Inhibitory effects of a novel cationic dodecapeptide [CL(14–25)] derived from cyanate lyase of rice on endotoxic activities of LPSs from Escherichia coli and periodontopathic Aggregatibacter actinomycetemcomitans. Microb Pathog 2016; 94:2-11. [DOI: 10.1016/j.micpath.2015.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/30/2022]
|
69
|
Taniguchi M, Takahashi N, Takayanagi T, Ikeda A, Ishiyama Y, Saitoh E, Kato T, Ochiai A, Tanaka T. Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide (CL(14-25)), a partial sequence of cyanate lyase from rice. Biopolymers 2016; 102:58-68. [PMID: 23982951 DOI: 10.1002/bip.22399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2013] [Revised: 07/26/2013] [Accepted: 08/20/2013] [Indexed: 11/07/2022]
Abstract
The antimicrobial activity of analogs obtained by substituting arginine and lysine in CL(14-25), a cationic α-helical dodecapeptide, with alanine against Porphyromonas gingivalis, a periodontal pathogen, varied significantly depending on the number and position of cationic amino acids. The alanine-substituted analogs had no hemolytic activity, even at a concentration of 1 mM. The antimicrobial activities of CL(K20A) and CL(K20A, K25A) were 3.8-fold and 9.1-fold higher, respectively, than that of CL(14-25). The antimicrobial activity of CL(R15A) was slightly lower than that of CL(14-25), suggesting that arginine at position 15 is not essential but is important for the antimicrobial activity. The experiments in which the alanine-substituted analogs bearing the replacement of arginine at position 24 and/or lysine at position 25 were used showed that arginine at position 24 was crucial for the antimicrobial activity whenever lysine at position 25 was substituted with alanine. Helical wheel projections of the alanine-substituted analogs indicate that the hydrophobicity in the vicinity of leucine at position 16 and alanines at positions 18 and/or 21 increased by substituting lysine at positions 20 and 25 with alanine, respectively. The degrees of diSC3 -5 release from P. gingivalis cells and disruption of GUVs induced by the alanine-substituted analogs with different positive charges were not closely related to their antimicrobial activities. The enhanced antimicrobial activities of the alanine-substituted analogs appear to be mainly attributable to the changes in properties such as hydrophobicity and amphipathic propensity due to alanine substitution and not to their extents of positive charge (cationicity).
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan; Center for Transdisciplinary Research, Niigata University, Niigata, 950-2181, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Whereas no single animal model can reproduce the complexity of periodontitis, different aspects of the disease can be addressed by distinct models. Despite their limitations, animal models are essential for testing the biological significance of in vitro findings and for establishing cause-and-effect relationships relevant to clinical observations, which are typically correlative. We provide evidence that animal-based studies have generated a durable framework for dissecting the mechanistic basis of periodontitis. These studies have solidified the etiologic role of bacteria in initiating the inflammatory response that leads to periodontal bone loss and have identified key mediators (IL-1, TNF, prostaglandins, complement, RANKL) that induce inflammatory breakdown. Moreover, animal studies suggest that dysbiosis, rather than individual bacterial species, are important in initiating periodontal bone loss and have introduced the concept that organisms previously considered commensals can play important roles as accessory pathogens or pathobionts. These studies have also provided insight as to how systemic conditions, such as diabetes or leukocyte adhesion deficiency, contribute to tissue destruction. In addition, animal studies have identified and been useful in testing therapeutic targets.
Collapse
Affiliation(s)
- George Hajishengallis
- a Department of Microbiology; Penn Dental Medicine; University of Pennsylvania ; Philadelphia , PA , USA
| | | | | |
Collapse
|
71
|
Aroonrerk N, Niyomtham N, Yingyoungnarongkul BE. Anti-Inflammation of N-Benzyl-4-Bromobenzamide in Lipopolysaccharide-Induced Human Gingival Fibroblasts. Med Princ Pract 2016; 25:130-6. [PMID: 26536614 PMCID: PMC5588337 DOI: 10.1159/000442164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/01/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To evaluate the effect of N-benzyl-4-bromobenzamide (NBBA) on lipopolysaccharide (LPS)-induced IL-6 and prostaglandin E2 (PGE2) production in human gingival fibroblasts (HGFs). MATERIAL AND METHODS The benzamide compound was synthesized. The condition for IL-6 production of HGFs after induction with LPS was optimized. The HGFs were incubated with NBBA (10 µg/ml) for 30 min before LPS (1 μg/ml) was added. After 24 h of incubation time, the culture media were harvested and their IL-6 and PGE2 contents were determined using an enzyme-linked immunosorbent assay. Prednisolone (PDS) and NS-398 were used as positive controls. Statistical analysis of the IL-6 and PGE2 contents was performed using the ANOVA test followed by the Tukey multiple-comparisons test to compare replicate means. p < 0.001 was considered statistically significant. RESULTS The maximum IL-6 production was achieved when HGFs were exposed to 1 μg/ml of LPS for 24 h, which was inhibited by the IL-6 immunosuppressant PDS. The benzamide compound, NBBA, exhibited a potent anti-IL-6 activity with inhibition of 35.6 ± 0.5%, significantly different from in the LPS-induced HGFs (p < 0.001). In addition, it inhibited 75.6 ± 0.52% PGE2 production. Cell viability was not significantly affected by treatment with NBBA at a concentration <10 µg/ml (p < 0.001). CONCLUSIONS NBBA exhibited an inhibitory effect on the production of IL-6 and PGE2 in LPS-induced HGFs. It could serve as a compound with inhibiting inflammatory activity in periodontal disease.
Collapse
Affiliation(s)
- Nuntana Aroonrerk
- Department of Stomatology, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
- *Dr. Nuntana Aroonrerk, Department of Stomatology, Faculty of Dentistry, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110 (Thailand), E-Mail
| | - Nattisa Niyomtham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Boon-ek Yingyoungnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| |
Collapse
|
72
|
Saita M, Kaneko J, Sato T, Takahashi SS, Wada-Takahashi S, Kawamata R, Sakurai T, Lee MCI, Hamada N, Kimoto K, Nagasaki Y. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials 2016; 76:292-301. [DOI: 10.1016/j.biomaterials.2015.10.077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023]
|
73
|
Bhawal UK, Lee HJ, Arikawa K, Shimosaka M, Suzuki M, Toyama T, Sato T, Kawamata R, Taguchi C, Hamada N, Nasu I, Arakawa H, Shibutani K. Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss. Int J Oral Sci 2015; 7:242-9. [PMID: 26674426 PMCID: PMC5153593 DOI: 10.1038/ijos.2015.28] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/01/2015] [Indexed: 11/15/2022] Open
Abstract
Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. Periodontitis is an inflammatory disease characterized by extensive bone resorption. In this study, we investigated the effects of sodium fluoride (NaF) on osteoclastogenesis induced by Porphyromonas gingivalis, an important colonizer of the oral cavity that has been implicated in periodontitis. NaF strongly inhibited the P. gingivalis-induced alveolar bone loss. That effect was accompanied by decreased levels of cathepsin K, interleukin (IL)-1β, matrix metalloproteinase 9 (MMP9), and tartrate-resistant acid phosphatase, which were up-regulated during P. gingivalis-induced osteoclastogenesis. Consistent with the in vivo anti-osteoclastogenic effect, NaF inhibited osteoclast formation caused by the differentiation factor RANKL (receptor activator of nuclear factor κB ligand) and macrophage colony-stimulating factor (M-CSF). The RANKL-stimulated induction of the transcription factor nuclear factor of activated T cells (NFAT) c1 was also abrogated by NaF. Taken together, our data demonstrate that NaF inhibits RANKL-induced osteoclastogenesis by reducing the induction of NFATc1, ultimately leading to the suppressed expression of cathepsin K and MMP9. The in vivo effect of NaF on the inhibition of P. gingivalis-induced osteoclastogenesis strengthens the potential usefulness of NaF for treating periodontal diseases.
Collapse
Affiliation(s)
- Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Department of Oral Health, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Hye-Jin Lee
- Department of Dental Hygiene, Howon University, Gunsan, Korea
| | - Kazumune Arikawa
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Michiharu Shimosaka
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Masatoshi Suzuki
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Toshizo Toyama
- Department of Infection Control, Division of Microbiology, Kanagawa Dental University, Yokosuka, Japan
| | - Takenori Sato
- Department of Infection Control, Division of Microbiology, Kanagawa Dental University, Yokosuka, Japan
| | - Ryota Kawamata
- Department of Radiopraxis Science, Kanagawa Dental University, Yokosuka, Japan
| | - Chieko Taguchi
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Nobushiro Hamada
- Department of Infection Control, Division of Microbiology, Kanagawa Dental University, Yokosuka, Japan
| | - Ikuo Nasu
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Hirohisa Arakawa
- Department of Oral Health, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Koh Shibutani
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| |
Collapse
|
74
|
Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Investig 2015; 20:1203-16. [PMID: 26411857 DOI: 10.1007/s00784-015-1607-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate in long-term periods the destruction of periodontal tissues and bacterial colonization induced by oral gavage with periodontopathogens or ligature experimental periodontal disease models. MATERIAL AND METHODS Forty-eight C57BL/6 J mice were divided into four groups: group C: negative control; group L: ligature; group G-Pg: oral gavage with Porphyromonas gingivalis; and group G-PgFn: oral gavage with Porphyromonas gingivalis associated with Fusobacterium nucleatum. Mice were infected by oral gavage five times in 2-day intervals. After 45 and 60 days, animals were sacrificed and the immune-inflammatory response in the periodontal tissue was assessed by stereometric analysis. The alveolar bone loss was evaluated by live microcomputed tomography and histometric analysis. qPCR was used to confirm the bacterial colonization in all the groups. Data were analyzed using the Kruskal-Wallis, Wilcoxon, and ANOVA tests, at 5 % of significance level. RESULTS Ligature model induced inflammation and bone resorption characterized by increased number of inflammatory cells and decreased number of fibroblasts, followed by advanced alveolar bone loss at 45 and 60 days (p < 0.05). Bacterial colonization in groups G-Pg and G-PgFn was confirmed by qPCR but inflammation and bone resorption were not observed (p < 0.05). CONCLUSIONS The ligature model but not the oral gavage models were effective to induce inflammation and bone loss in long-term periods. Pg colonization was observed in all models of experimental periodontal disease induction, independent of tissue alterations. These mice models of periodontitis validates, compliments, and enhances published PD models that utilize ligature or oral gavage and supports the importance of a successful colonization of a susceptible host, a bacterial invasion into vulnerable tissue, and host-bacterial interactions that lead to tissue destruction. CLINICAL RELEVANCE The ligature model was an effective approach to induce inflammation and bone loss similar to human periodontitis, but the oral gavage models were not efficient in inducing periodontal inflammation and tissue destruction in the conditions studied. Ligature models can provide a basis for future interventional studies that contribute to the understanding of the disease pathogenesis and the complex host response to microbial challenge.
Collapse
|
75
|
A natural therapeutic approach for the treatment of periodontitis by MK615. Med Hypotheses 2015; 85:618-21. [PMID: 26305447 DOI: 10.1016/j.mehy.2015.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease that affects the tooth-supporting tissues. Gingival fibroblasts are the most abundant cells in periodontal tissues and they participate actively in the host inflammatory response to periodontal pathogens that is known to mediate local tissue destruction in periodontitis. The Japanese apricot, known as Ume in Japanese, has been a traditional Japanese medicine for centuries and is a familiar and commonly consumed food. The health benefits of Ume are widely recognized and have been confirmed in recent studies showing that MK615, an extract of compounds from Ume, has strong anticancer and anti-inflammatory effects. However, the potential role of MK615 in oral health is unknown. We hypothesized that the anti-inflammatory activities of MK615 could be exploited to inhibit the effects of lipopolysaccharide (LPS) produced by periodontal bacterial pathogens, such as Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Here, we show that LPS-induced interleukin (IL)-6 and IL-8 production by gingival fibroblasts was dose-dependently inhibited by MK615. As a potent inhibitor of the inflammatory responses induced by periodontal pathogens, MK615 merits further testing as a therapeutic agent in inflammatory diseases such as periodontitis.
Collapse
|
76
|
Sellers RM, Payne JB, Yu F, LeVan TD, Walker C, Mikuls TR. TLR4
Asp299Gly polymorphism may be protective against chronic periodontitis. J Periodontal Res 2015; 51:203-11. [DOI: 10.1111/jre.12299] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- R. M. Sellers
- University of Nebraska Medical Center College of Dentistry; Lincoln NE USA
| | - J. B. Payne
- Department of Surgical Specialties; University of Nebraska Medical Center College of Dentistry; Lincoln NE USA
- Department of Internal Medicine; College of Medicine; University of Nebraska Medical Center; Omaha NE USA
| | - F. Yu
- Department of Biostatistics; University of Nebraska Medical Center College of Public Health; Omaha NE USA
| | - T. D. LeVan
- Omaha Veterans Affairs Medical Center and Department of Internal Medicine; University of Nebraska Medical Center College of Medicine; Omaha NE USA
- Department of Epidemiology; University of Nebraska Medical Center College of Public Health; Omaha NE USA
| | - C. Walker
- Department of Oral Biology; University of Florida College of Dentistry; Gainesville FL USA
| | - T. R. Mikuls
- Omaha Veterans Affairs Medical Center and Department of Internal Medicine; University of Nebraska Medical Center College of Medicine; Omaha NE USA
| |
Collapse
|
77
|
Sakamoto Y, Suzuki Y, Iizuka I, Tateoka C, Roppongi S, Fujimoto M, Inaka K, Tanaka H, Yamada M, Ohta K, Gouda H, Nonaka T, Ogasawara W, Tanaka N. Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity. Sci Rep 2015; 5:11151. [PMID: 26057589 PMCID: PMC4460893 DOI: 10.1038/srep11151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2015] [Accepted: 05/15/2015] [Indexed: 11/25/2022] Open
Abstract
The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms.
Collapse
Affiliation(s)
- Yasumitsu Sakamoto
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Yoshiyuki Suzuki
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ippei Iizuka
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Chika Tateoka
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Saori Roppongi
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Mayu Fujimoto
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Koji Inaka
- Maruwa Foods and Biosciences Inc., 170-1 Tsutsui-cho, Yamatokoriyama, Nara 639-1123, Japan
| | - Hiroaki Tanaka
- Confocal Science Inc., 2-12-2 Iwamoto-cho, Chiyoda-ku, Tokyo 101-0032, Japan
| | - Mitsugu Yamada
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Kazunori Ohta
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takamasa Nonaka
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Nobutada Tanaka
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
78
|
Taniguchi M, Ochiai A, Takahashi K, Nakamichi SI, Nomoto T, Saitoh E, Kato T, Tanaka T. Antimicrobial activity and mechanism of action of a novel cationic α-helical octadecapeptide derived from α-amylase of rice. Biopolymers 2015; 104:73-83. [DOI: 10.1002/bip.22605] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2014] [Revised: 12/04/2014] [Accepted: 12/20/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
- Center for Transdisciplinary Research; Niigata University; Niigata 950-2181 Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Kiyoshi Takahashi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Shun-ichi Nakamichi
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Takafumi Nomoto
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology; Niigata 945-1195 Japan
| | - Tetsuo Kato
- Department of Chemistry; Tokyo Dental College; Tokyo 101-0062 Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology; Graduate School of Science and Technology, Niigata University; Niigata 950-2181 Japan
| |
Collapse
|
79
|
Abstract
Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities that can mediate inflammatory pathology at local as well as distant sites. This Review discusses the mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extra-oral sites.
Collapse
|
80
|
Klein BA, Duncan MJ, Hu LT. Defining essential genes and identifying virulence factors of Porphyromonas gingivalis by massively parallel sequencing of transposon libraries (Tn-seq). Methods Mol Biol 2015; 1279:25-43. [PMID: 25636611 PMCID: PMC4824196 DOI: 10.1007/978-1-4939-2398-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen in the development and progression of periodontal disease. Obstacles to the development of saturated transposon libraries have previously limited transposon mutant-based screens as well as essential gene studies. We have developed a system for efficient transposon mutagenesis of P. gingivalis using a modified mariner transposon. Tn-seq is a technique that allows for quantitative assessment of individual mutants within a transposon mutant library by sequencing the transposon-genome junctions and then compiling mutant presence by mapping to a base genome. Using Tn-seq, it is possible to quickly define all the insertional mutants in a library and thus identify nonessential genes under the conditions in which the library was produced. Identification of fitness of individual mutants under specific conditions can be performed by exposing the library to selective pressures.
Collapse
Affiliation(s)
- Brian A Klein
- Graduate Program of Molecular Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
81
|
Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:57-74. [PMID: 26306443 DOI: 10.1007/978-3-319-18603-0_4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.
Collapse
|
82
|
Kim J, Kim S, Lim W, Choi H, Kim O. Effects of the antimicrobial peptide cathelicidin (LL-37) on immortalized gingival fibroblasts infected with Porphyromonas gingivalis and irradiated with 625-nm LED light. Lasers Med Sci 2014; 30:2049-57. [DOI: 10.1007/s10103-014-1698-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
|
83
|
Das B, Dobrowolski C, Shahir AM, Feng Z, Yu X, Sha J, Bissada NF, Weinberg A, Karn J, Ye F. Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications. Virology 2014; 474:65-81. [PMID: 25463605 DOI: 10.1016/j.virol.2014.10.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2014] [Revised: 10/25/2014] [Accepted: 10/27/2014] [Indexed: 12/14/2022]
Abstract
HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3-9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Abdel-Malek Shahir
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, United States
| | - Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Xiaolan Yu
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Jinfeng Sha
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Nabil F Bissada
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, United States
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| | - Fengchun Ye
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| |
Collapse
|
84
|
Maeda K, Nagata H, Ojima M, Amano A. Proteomic and Transcriptional Analysis of Interaction between Oral Microbiota Porphyromonas gingivalis and Streptococcus oralis. J Proteome Res 2014; 14:82-94. [DOI: 10.1021/pr500848e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuhiko Maeda
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hideki Nagata
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Miki Ojima
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
85
|
Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol 2014; 29:248-57. [PMID: 24976068 DOI: 10.1111/omi.12065] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/20/2014] [Indexed: 01/05/2023]
Abstract
In periodontitis, dysbiotic microbial communities exhibit synergistic interactions for enhanced protection from host defenses, nutrient acquisition, and persistence in an inflammatory environment. This review discusses evidence that periodontitis-associated communities are 'inflammo-philic' (=loving or attracted to inflammation) in that they have evolved to not only endure inflammation but also to take advantage of it. In this regard, inflammation can drive the selection and enrichment of these pathogenic communities by providing a source of nutrients in the form of tissue breakdown products (e.g. degraded collagen peptides and heme-containing compounds). In contrast, those species that cannot benefit from the altered ecological conditions of the inflammatory environment, or for which host inflammation is detrimental, are likely to be outcompeted. Consistent with the concept that inflammation fosters the growth of dysbiotic microbial communities, the bacterial biomass of human periodontitis-associated biofilms was shown to increase with increasing periodontal inflammation. Conversely, anti-inflammatory treatments in animal models of periodontitis were shown to diminish the periodontal bacterial load, in addition to protecting from bone loss. The selective flourishing of inflammophilic bacteria can perpetuate inflammatory tissue destruction by setting off a 'vicious cycle' for disease progression, in which dysbiosis and inflammation reinforce each other. Therefore, the control of inflammation appears to be central to the treatment of periodontitis, as it is likely to control both dysbiosis and disease progression.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
86
|
Li N, Collyer CA. Gingipains from Porphyromonas gingivalis - Complex domain structures confer diverse functions. Eur J Microbiol Immunol (Bp) 2014; 1:41-58. [PMID: 24466435 DOI: 10.1556/eujmi.1.2011.1.7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
Gingipains, a group of arginine or lysine specific cysteine proteinases (also known as RgpA, RgpB and Kgp), have been recognized as major virulence factors in Porphyromonas gingivalis. This bacterium is one of a handful of pathogens that cause chronic periodontitis. Gingipains are involved in adherence to and colonization of epithelial cells, haemagglutination and haemolysis of erythrocytes, disruption and manipulation of the inflammatory response, and the degradation of host proteins and tissues. RgpA and Kgp are multi-domain proteins composed of catalytic domains and haemagglutinin/adhesin (HA) regions. The structure of the HA regions have previously been defined by a gingipain domain structure hypothesis which is a set of putative domain boundaries derived from the sequences of fragments of these proteins extracted from the cell surface. However, multiple sequence alignments and hidden Markov models predict an alternative domain architecture for the HA regions of gingipains. In this alternate model, two or three repeats of the so-called "cleaved adhesin" domains (and one other undefined domain in some strains) are the modules which constitute the substructure of the HA regions. Recombinant forms of these putative cleaved adhesin domains are indeed stable folded protein modules and recently determined crystal structures support the hypothesis of a modular organisation of the HA region. Based on the observed K2 and K3 structures as well as multiple sequence alignments, it is proposed that all the cleaved adhesin domains in gingipains will share the same β-sandwich jelly roll fold. The new domain model of the structure for gingipains and the haemagglutinin (HagA) proteins of P. gingivalis will guide future functional studies of these virulence factors.
Collapse
Affiliation(s)
- N Li
- School of Molecular Bioscience, University of Sydney NSW Australia
| | - C A Collyer
- School of Molecular Bioscience, University of Sydney NSW Australia
| |
Collapse
|
87
|
Potential Value of a Rice Protein Extract, Containing Proteinaceous Inhibitors against Cysteine Proteinases fromPorphyromonas gingivalis, for Managing Periodontal Diseases. Biosci Biotechnol Biochem 2014; 77:80-6. [DOI: 10.1271/bbb.120585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
|
88
|
Abstract
Periodontal disease (PD) is a highly complex disease involving many factors; however, two principal facets central to initiation and progression of the majority of PD are the composition of the microbes in the sub-gingival plaque, and the host immune response to these organisms. Numerous studies point to the complexity of PD, and to the fact that despite innate and adaptive immune activation, and resultant inflammation, our immune response fails to cure disease. Stunning new findings have begun to clarify several complexities of the host-pathogen interaction of PD pointing to key roles for microbial dysboisis and immune imbalance in the pathogenesis of disease. Furthermore, these investigations have identified novel translational opportunities to intercede in PD treatment. In this review we will highlight a select few recent findings in innate and adaptive immunity, and host pathogen interactions of PD at a micro-environmental level that may have profound impact on PD progression.
Collapse
Affiliation(s)
- Nasi Huang
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118
| | - Frank C Gibson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118
| |
Collapse
|
89
|
de Molon RS, de Avila ED, Boas Nogueira AV, Chaves de Souza JA, Avila-Campos MJ, de Andrade CR, Cirelli JA. Evaluation of the Host Response in Various Models of Induced Periodontal Disease in Mice. J Periodontol 2014; 85:465-77. [DOI: 10.1902/jop.2013.130225] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
|
90
|
Gonzalez OA, Novak MJ, Kirakodu S, Orraca L, Chen KC, Stromberg A, Gonzalez-Martinez J, Ebersole JL. Comparative analysis of gingival tissue antigen presentation pathways in ageing and periodontitis. J Clin Periodontol 2014; 41:327-39. [PMID: 24304139 DOI: 10.1111/jcpe.12212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/28/2013] [Indexed: 01/10/2023]
Abstract
AIM Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in ageing gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. MATERIALS AND METHODS Rhesus monkeys (n = 34) from 3 to 23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites was obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. RESULTS The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with ageing in healthy gingival tissues. In contrast, both adult and ageing periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. CONCLUSION These transcriptional changes suggest a response of healthy ageing tissues through the class II pathway (i.e. endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intracellular microbial pathogens.
Collapse
Affiliation(s)
- Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Tangade PS, Shah AF, Ravishankar TL, Tirth A, Pal S. Is plaque removal efficacy of toothbrush related to bristle flaring? A 3-month prospective parallel experimental study. Ethiop J Health Sci 2013; 23:255-64. [PMID: 24307825 PMCID: PMC3847535 DOI: 10.4314/ejhs.v23i3.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Toothbrushes are over-the-counter products; therefore, no special instruction is given to users when they purchase. There are scarce published studies that have investigated about how often toothbrushes should be replaced. Thus, this study aimed to verify the impact of the Progressive Toothbrush Bristle Flaring on plaque control efficacy of toothbrush. MATERIALS AND METHODS Thirty six subjects were randomly selected and underwent complete oral prophylaxis 10 days prior to the Baseline plaque recording. All subjects were provided with new similar toothbrushes and were divided into two groups. New Brush Group changed toothbrush every month and Old month Group used single toothbrush for the whole period of the study. Both groups were assessed for plaque accumulation every month using Turesky et al, (1970) modification of the Quigley and Hein (1962) plaque index. Toothbrush head was photographed and assessed by measuring the brushing surface area on standardized photographs using National Institutes of Health Image Analysis Program (USA). RESULTS Both groups showed similar plaque scores at the 40(th) day; progressive increase in the plaque scores in group without changing the toothbrush were recorded at the 70(th) and 100(th) days. As toothbrush flaring increased, the plaque scores also increased in the Old Brush Group. Highest plaque accumulation was recorded in Mandibular Lingual aspects in Old Brush Group. CONCLUSION Progressive increase was seen in the plaque scores with increase in toothbrush bristle flaring.
Collapse
Affiliation(s)
- Pradeep S Tangade
- Department of Public Health Dentistry Kothiwal Dental College and Research Center, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
92
|
Zhu C, Yang J, Sun J, Shi J, Gou J, Li A. Induction of immune response and prevention of alveolar bone loss with recombinant Porphyromonas gingivalis peptidylarginine deiminase. Arch Oral Biol 2013; 58:1777-83. [PMID: 24200304 DOI: 10.1016/j.archoralbio.2013.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2013] [Revised: 09/10/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Treatments for periodontitis are not absolutely perfect, and a vaccine against Porphyromonas gingivalis (P. gingivalis) could become a valuable adjunct therapy for periodontitis. DESIGN In this study, a vaccine of peptidylarginine deiminase (PAD) from P. gingivalis was evaluated in P. gingivalis-induced murine lesion and periodontitis models. The prevention of alveolar bone loss analysis determined by micro-computed X-ray tomography (micro-CT), and histological assays. Furthermore, the induction of immune response of mouse anti-PAD done with ELISA and Western Blot analysis. RESULTS Compared with animal immunization with incomplete Freund's adjuvant (IFA) alone, PAD group significantly inhibited (P<0.05) bone resorption. ELISA and Western Blot showed that PAD induced response involving immunoglobulin G1 (Ig G1) predominantly. CONCLUSIONS These results suggest that PAD could be a candidate antigen for a vaccine against P. gingivalis infection.
Collapse
Affiliation(s)
- Chunhui Zhu
- Department of Periodontology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi 710004, China
| | | | | | | | | | | |
Collapse
|
93
|
Taniguchi M, Ikeda A, Nakamichi SI, Ishiyama Y, Saitoh E, Kato T, Ochiai A, Tanaka T. Antimicrobial activity and mechanism of action of a novel cationic α-helical octadecapeptide derived from heat shock protein 70 of rice. Peptides 2013; 48:147-55. [PMID: 23973864 DOI: 10.1016/j.peptides.2013.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/09/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Hsp70(241-258), an octadecapeptide derived from the heat shock protein 70 (Hsp70) of rice (Oryza sativa L. japonica), is a novel cationic α-helical antimicrobial peptide (AMP) that contains four lysine, two arginine, and two histidine residues. The antimicrobial activity of Hsp70(241-258) against Porphyromonas gingivalis, a periodontal pathogen, and Candida albicans, an opportunistic fungal pathogen, was quantitatively evaluated using a chemiluminescence method that measures ATP derived from viable cells. The 50% growth-inhibitory concentrations of Hsp70(241-258) against P. gingivalis and C. albicans cells were 63 μM and 70 μM, respectively. Hsp70(241-258) had little or no hemolytic activity even at 1mM, and showed negligible cytotoxicity up to 300 μM. The degrees of calcein leakage from large unilamellar vesicles, which mimic the membranes of Gram-negative bacteria, and 3,3'-dipropylthiadicarbocyanine iodide release from P. gingivalis cells induced by the addition of Hsp70(241-258) increased in a concentration-dependent manner. When Hsp70(241-258) was added to calcein-acetoxymethyl ester-loaded C. albicans cells, calcein release from the cells increased in a concentration-dependent manner. Flow cytometric analysis also showed that the percentages of C. albicans cells stained with propidium iodide, a DNA-intercalating dye, increased as the concentration of Hsp70(241-258) added was increased. Therefore, Hsp70(241-258) appears to exhibit antimicrobial activity against P. gingivalis and C. albicans through membrane disruption. These results suggest that Hsp70(241-258) could be useful as a safe and potent AMP against P. gingivalis and C. albicans in many fields of health care, especially in the control of oral infections.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; Center for Transdisciplinary Research, Niigata University, Niigata 950-2181, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Dashper SG, O'Brien-Simpson NM, Bhogal PS, Franzmann AD, Reynolds EC. Purification and characterization of a putative fimbrial protein/receptor ofPorphyromonas gingivalis. Aust Dent J 2013. [DOI: 10.1111/j.1834-7819.1998.tb06097.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
95
|
Ebersole JL, Dawson DR, Morford LA, Peyyala R, Miller CS, Gonzaléz OA. Periodontal disease immunology: 'double indemnity' in protecting the host. Periodontol 2000 2013; 62:163-202. [PMID: 23574466 PMCID: PMC4131201 DOI: 10.1111/prd.12005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
During the last two to three decades our understanding of the immunobiology of periodontal disease has increased exponentially, both with respect to the microbial agents triggering the disease process and the molecular mechanisms of the host engagement maintaining homeostasis or leading to collateral tissue damage. These foundational scientific findings have laid the groundwork for translating cell phenotype, receptor engagement, intracellular signaling pathways and effector functions into a 'picture' of the periodontium as the host responds to the 'danger signals' of the microbial ecology to maintain homeostasis or succumb to a disease process. These findings implicate the chronicity of the local response in attempting to manage the microbial challenge, creating a 'Double Indemnity' in some patients that does not 'insure' health for the periodontium. As importantly, in reflecting the title of this volume of Periodontology 2000, this review attempts to inform the community of how the science of periodontal immunology gestated, how continual probing of the biology of the disease has led to an evolution in our knowledge base and how more recent studies in the postgenomic era are revolutionizing our understanding of disease initiation, progression and resolution. Thus, there has been substantial progress in our understanding of the molecular mechanisms of host-bacteria interactions that result in the clinical presentation and outcomes of destructive periodontitis. The science has embarked from observations of variations in responses related to disease expression with a focus for utilization of the responses in diagnosis and therapeutic outcomes, to current investigations using cutting-edge fundamental biological processes to attempt to model the initiation and progression of soft- and hard-tissue destruction of the periodontium. As importantly, the next era in the immunobiology of periodontal disease will need to engage more sophisticated experimental designs for clinical studies to enable robust translation of basic biologic processes that are in action early in the transition from health to disease, those which stimulate microenvironmental changes that select for a more pathogenic microbial ecology and those that represent a rebalancing of the complex host responses and a resolution of inflammatory tissue destruction.
Collapse
|
96
|
Ebersole JL, Holt SC, Cappelli D. Periodontitis in pregnant baboons: systemic inflammation and adaptive immune responses and pregnancy outcomes in a baboon model. J Periodontal Res 2013; 49:226-36. [PMID: 23710643 DOI: 10.1111/jre.12099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/07/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND/OBJECTIVES Chronic periodontal infections have been suggested to contribute to the risk of adverse pregnancy outcomes. MATERIAL AND METHODS This study describes the relationship of patterns of systemic inflammatory mediators and IgG antibody to 20 oral bacteria in pregnant female baboons (Papio anubis) coupled with clinical features of ligature-induced periodontitis, as risk indicators for adverse pregnancy outcomes. Animals showing a preterm delivery and/or low birth weight newborns, as well as those pregnancies resulting in spontaneous abortion, stillbirth, or fetal demise were tabulated as adverse pregnancy outcomes. RESULTS A significantly greater frequency of the periodontitis group neonates had a low birth weight (18.1%; p = 0.008) and decreased gestational age (9.8%). Spontaneous abortion/stillbirth/fetal demise were increased in the periodontitis (8.7%) versus the control group (3.8%) (p = 0.054). The baseline oral clinical presentation of the experimental animals did not relate to the adverse pregnancy outcomes. Animals with the greatest extent/severity of periodontitis progression during the initial ½ of gestation (ie. to mid-pregnancy) had the greatest risk for adverse pregnancy outcomes. Baseline biological parameters indicating historical responses of the animals to periodontal challenge demonstrated individual variation in selected mediators, some of which became more differential during ligature-induced periodontitis. The relationship of clinical parameters to systemic inflammatory responses was consistent with a temporal contribution to adverse pregnancy outcomes in a subset of the animals. CONCLUSIONS These results support a link between periodontitis and adverse pregnancy outcomes in the baboons and provide a prospective experimental model for delineating the biologic parameters that contribute to a causal relationship between chronic oral infections and birth events.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
97
|
Xie YF, Shu R, Jiang SY, Liu DL, Ni J, Zhang XL. MicroRNA-146 inhibits pro-inflammatory cytokine secretion through IL-1 receptor-associated kinase 1 in human gingival fibroblasts. JOURNAL OF INFLAMMATION-LONDON 2013; 10:20. [PMID: 23680172 PMCID: PMC3660163 DOI: 10.1186/1476-9255-10-20] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/06/2012] [Accepted: 05/13/2013] [Indexed: 12/17/2022]
Abstract
Background Although various microRNAs (miRNAs) regulate immune and inflammatory responses, the function of miRNAs in periodontitis has not been clearly illuminated. In this study, we measured miRNA-146 (miRNA-146a and miRNA-146b-5p) expression and explored its regulatory function in the inflammatory response in human gingival fibroblasts (HGFs). Methods miRNA-146a and miRNA-146b-5p expression was measured by performing real-time polymerase chain reaction in HGFs after Porphyromonas gingivalis (p.g) lipopolysaccharide (LPS) stimulation. After the HGFs were transfected with miRNA-146a and miRNA-146b-5p inhibitor, the expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, IL-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) were detected by western blot and quantitative PCR. A luciferase assay was used to detect whether miRNA-146 could directly bind to the 3’-UTR of IRAK1. Results The expression levels of miRNA-146a and miRNA-146b-5p significantly increased in the P.g LPS-stimulated HGFs compared to the non-stimulated HGFs. The inhibition of miRNA-146a and miRNA-146b-5p resulted in increased IL-1β, IL-6 and TNF-α secretion. The mRNA and protein levels of IRAK1, but not TRAF6, also increased. We further found that miRNA-146a and miRNA-146b-5p directly bound to the IRAK1 3’-UTR. Conclusion Our data suggest that miRNA-146 inhibits pro-inflammatory cytokine secretion through IRAK1 in HGFs, which indicates that miRNA-146 functions as a negative regulator of periodontal inflammation.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Department of Periodontology, Ninth People's Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai 200011, China.
| | | | | | | | | | | |
Collapse
|
98
|
Level of serum antibody against a periodontal pathogen is associated with atherosclerosis and hypertension. Hypertens Res 2013; 36:829-33. [PMID: 23676848 DOI: 10.1038/hr.2013.46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2012] [Revised: 01/11/2013] [Accepted: 02/18/2013] [Indexed: 11/08/2022]
Abstract
Inflammation has a role in the pathogenesis of atherosclerosis, which causes hypertension. Results from some studies have suggested links between periodontal disease and atherosclerosis, but links between periodontal disease and hypertension have been seldom studied. We investigated whether periodontal disease and serum antibody level were associated with hypertension. We studied 127 patients (93 men and 34 women, mean age 68±9 years) who were admitted with ischemic heart disease to our institution. A composite periodontal risk score was calculated from five periodontal vector scores. The levels of serum antibody against Porphyromonas gingivalis (Pg) were measured. Pulse pressure, mean blood pressure (BP) and pulse wave velocity were used as indices of atherosclerosis. We divided patients into two groups according to the levels of serum antibody against Pg: higher or equal to the median (high Pg antibody group) and lower than the median (low Pg antibody group).There was no difference in the use of antihypertensive agents between the two groups. The composite periodontal risk score (P=0.0003), systolic BP (P=0.030), diastolic BP (P=0.038), pulse pressure (P=0.050) and mean BP (P=0.055) were higher in the high Pg antibody group than in the low Pg antibody group. The composite periodontal risk score (r=0.320, P=0.0003), systolic BP (r=0.212, P=0.017), diastolic BP (r=0.188, P=0.035) and mean BP (r=0.225, P=0.011) correlated with the level of serum antibody against Pg, even after adjustment for age. An elevated antibody level against Pg indicates advanced periodontal disease and suggests advancement of atherosclerosis and hypertension.
Collapse
|
99
|
Takei N, Takahashi N, Takayanagi T, Ikeda A, Hashimoto K, Takagi M, Hamada T, Saitoh E, Ochiai A, Tanaka T, Taniguchi M. Antimicrobial activity and mechanism of action of a novel cationic α-helical dodecapeptide, a partial sequence of cyanate lyase from rice. Peptides 2013; 42:55-62. [PMID: 23270672 DOI: 10.1016/j.peptides.2012.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/01/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 12/26/2022]
Abstract
CL(14-25), a dodecapeptide, that is a partial region near N-terminus of cyanate lyase (CL, EC 4.3.99.1) from rice (Oryza sativa L. japonica), contains three arginine and two lysine residues. It was a novel cationic α-helical antimicrobial peptide. The antimicrobial activity of CL(14-25) against Porphyromonas gingivalis, a periodontal pathogen, was quantitatively evaluated by a chemiluminescence method that measures ATP derived from viable cells. The 50% growth-inhibitory concentration of CL(14-25) against P. gingivalis cells was 145 μM. CL(14-25), even at a concentration of 800 μM, had no hemolytic activity. When giant unilamellar vesicles (GUVs) that mimic the membrane composition of Gram-negative bacteria were used, microscopy image analysis suggested that CL(14-25) disrupted GUVs in a detergent-like manner. Therefore, CL(14-25) appears to exhibit antimicrobial activity through membrane disruption. To investigate the contribution of cationic amino acid residues in CL(14-25) to its antimicrobial activity, we synthesized four truncated CL analogs, in which one or two cationic amino acid residues were deleted from the N- and C- termini of CL(14-25). The degrees of calcein leakage from large unilamellar vesicles (LUVs) and 3,3'-dipropylthiadicarbocyanine iodide (diSC3-5) release from P. gingivalis cells induced by truncated CL analogs were closely related to their antimicrobial activities. CL analogs, which were truncated by removing an arginine residue from the N-terminus and a lysine residue from the C-terminus maintained their antimicrobial activity. However, CL analogs, which were further truncated by removing two arginine residues from the N-terminus, and an arginine and a lysine residue from the C-terminus, rarely exhibited antimicrobial activity.
Collapse
Affiliation(s)
- Norihiro Takei
- Center for Fostering Innovative Leadership, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Rouf SMA, Ohara-Nemoto Y, Ono T, Shimoyama Y, Kimura S, Nemoto TK. Phenylalanine 664 of dipeptidyl peptidase (DPP) 7 and Phenylalanine 671 of DPP11 mediate preference for P2-position hydrophobic residues of a substrate. FEBS Open Bio 2013; 3:177-83. [PMID: 23772391 PMCID: PMC3668534 DOI: 10.1016/j.fob.2013.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 11/25/2022] Open
Abstract
Dipeptidyl peptidases (DPPs) are crucial for the energy metabolism in Porphyromonas gingivalis, a Gram-negative proteolytic and asaccharolytic anaerobic rod causing chronic periodontitis. Three DPPs, DPPIV specific for Pro, DPP7 for hydrophobic residues and DPP11 for Asp/Glu at the P1 position, are expressed in the bacterium. Like DPP7, DPP11 belongs to the S46 protease family, and they share 38.7% sequence identity. Although DPP11 is preferential for hydrophobic residues at the P2 position, it has been reported that DPP7 has no preference at the P2 position. In the present study, we defined the detailed P2 substrate preference of DPP7 and the amino acid residue responsible for the specificity. DPP7 most efficiently hydrolyzed Met-Leu-dipeptidyl-4-methylcoumaryl-7-amide (MCA) carrying hydrophobic residues at the P1 position with k cat/Km of 10.62 ± 2.51 μM(-1) s(-1), while it unexpectedly cleaved substrates with hydrophilic (Gln, Asn) or charged (Asp, Arg) residues. Examination with 21 dipeptidyl MCA demonstrated that DPP7-peptidase activity was dependent on hydrophobicity of the P2- as well as P1-position residue, thus it correlated best with the sum of the hydrophobicity index of P1- and P2-amino acid residues. Hydrophobicity of the P1 and P2 positions ensured efficient enzyme catalysis by increasing k cat and lowering Km values, respectively. Substitution of hydrophobic residues conserved in the S46 DPP7/DPP11 family to Ala revealed that Phe664 of DPP7 and Phe671 of DPP11 primarily afforded hydrophobic P2 preference. A modeling study suggested that Phe664 and Gly666 of DPP7 and Phe671 and Arg673 of DPP11 being associated with the P2- and P1-position residues, respectively, are located adjacent to the catalytic Ser648/Ser655. The present results expand the substrate repertoire of DPP7, which ensures efficient degradation of oligopeptides in asaccharolytic bacteria.
Collapse
Affiliation(s)
- Shakh M A Rouf
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | |
Collapse
|