51
|
Allen ER, Krumm SA, Raghwani J, Halldorsson S, Elliott A, Graham VA, Koudriakova E, Harlos K, Wright D, Warimwe GM, Brennan B, Huiskonen JT, Dowall SD, Elliott RM, Pybus OG, Burton DR, Hewson R, Doores KJ, Bowden TA. A Protective Monoclonal Antibody Targets a Site of Vulnerability on the Surface of Rift Valley Fever Virus. Cell Rep 2019; 25:3750-3758.e4. [PMID: 30590046 PMCID: PMC6315105 DOI: 10.1016/j.celrep.2018.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
The Gn subcomponent of the Gn-Gc assembly that envelopes the human and animal pathogen, Rift Valley fever virus (RVFV), is a primary target of the neutralizing antibody response. To better understand the molecular basis for immune recognition, we raised a class of neutralizing monoclonal antibodies (nAbs) against RVFV Gn, which exhibited protective efficacy in a mouse infection model. Structural characterization revealed that these nAbs were directed to the membrane-distal domain of RVFV Gn and likely prevented virus entry into a host cell by blocking fusogenic rearrangements of the Gn-Gc lattice. Genome sequence analysis confirmed that this region of the RVFV Gn-Gc assembly was under selective pressure and constituted a site of vulnerability on the virion surface. These data provide a blueprint for the rational design of immunotherapeutics and vaccines capable of preventing RVFV infection and a model for understanding Ab-mediated neutralization of bunyaviruses more generally.
Collapse
Affiliation(s)
- Elizabeth R Allen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stefanie A Krumm
- Kings College London, Department of Infectious Diseases, 2nd Floor, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Jayna Raghwani
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road, Oxford OX3 7LF, UK
| | - Steinar Halldorsson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Angela Elliott
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Victoria A Graham
- National Infection Service, Virology & Pathogenesis, Public Health England, Porton Down, Salisbury, SP4 0JG Wiltshire, UK
| | - Elina Koudriakova
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - George M Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7FZ, UK; Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stuart D Dowall
- National Infection Service, Virology & Pathogenesis, Public Health England, Porton Down, Salisbury, SP4 0JG Wiltshire, UK
| | - Richard M Elliott
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Roger Hewson
- National Infection Service, Virology & Pathogenesis, Public Health England, Porton Down, Salisbury, SP4 0JG Wiltshire, UK
| | - Katie J Doores
- Kings College London, Department of Infectious Diseases, 2nd Floor, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
52
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
53
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
54
|
Rey FA, Lok SM. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Cell 2019. [PMID: 29522750 PMCID: PMC7112304 DOI: 10.1016/j.cell.2018.02.054] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enveloped viruses enter cells by inducing fusion of viral and cellular membranes, a process catalyzed by a specialized membrane-fusion protein expressed on their surface. This review focuses on recent structural studies of viral fusion proteins with an emphasis on their metastable prefusion form and on interactions with neutralizing antibodies. The fusion glycoproteins have been difficult to study because they are present in a labile, metastable form at the surface of infectious virions. Such metastability is a functional requirement, allowing these proteins to refold into a lower energy conformation while transferring the difference in energy to catalyze the membrane fusion reaction. Structural studies have shown that stable immunogens presenting the same antigenic sites as the labile wild-type proteins efficiently elicit potently neutralizing antibodies, providing a framework with which to engineer the antigens for stability, as well as identifying key vulnerability sites that can be used in next-generation subunit vaccine design.
Collapse
Affiliation(s)
- Felix A Rey
- Institut Pasteur, Structural Virology Unit, CNRS UMR3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore AND Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
55
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
56
|
Terasaki K, Juelich TL, Smith JK, Kalveram B, Perez DD, Freiberg AN, Makino S. A single-cycle replicable Rift Valley fever phlebovirus vaccine carrying a mutated NSs confers full protection from lethal challenge in mice. Sci Rep 2018; 8:17097. [PMID: 30459418 PMCID: PMC6244155 DOI: 10.1038/s41598-018-35472-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a pathogen of Rift Valley fever, which is a mosquito-borne zoonotic disease for domestic livestock and humans in African countries. Currently, no approved vaccine is available for use in non-endemic areas. The MP-12 strain is so far the best live attenuated RVFV vaccine candidate because of its good protective efficacy in animal models. However, there are safety concerns for use of MP-12 in humans. We previously developed a single-cycle replicable MP-12 (scMP-12) which lacks NSs gene and undergoes only a single round of viral replication because of its impaired ability to induce membrane-membrane fusion. In the present study, we generated an scMP-12 mutant (scMP-12-mutNSs) carrying a mutant NSs, which degrades double-stranded RNA-dependent protein kinase R but does not inhibit host transcription. Immunization of mice with a single dose (105 PFU) of scMP-12-mutNSs elicited RVFV neutralizing antibodies and high titers of anti-N IgG production and fully protected the mice from lethal wild-type RVFV challenge. Immunogenicity and protective efficacy of scMP-12-mutNSs were better than scMP-12, demonstrating that scMP-12-mutNSs is a more efficacious vaccine candidate than scMP-12. Furthermore, our data suggested that RVFV vaccine efficacy can be improved by using this specific NSs mutant.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Terry L Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Jennifer K Smith
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - David D Perez
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.
| |
Collapse
|
57
|
Baquero E, Fedry J, Legrand P, Krey T, Rey FA. Species-Specific Functional Regions of the Green Alga Gamete Fusion Protein HAP2 Revealed by Structural Studies. Structure 2018; 27:113-124.e4. [PMID: 30416037 PMCID: PMC6327110 DOI: 10.1016/j.str.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
The cellular fusion protein HAP2, which is structurally homologous to viral class II fusion proteins, drives gamete fusion across several eukaryotic kingdoms. Gamete fusion is a highly controlled process in eukaryotes, and is allowed only between same species gametes. In spite of a conserved architecture, HAP2 displays several species-specific functional regions that were not resolved in the available X-ray structure of the green alga Chlamydomonas reinhardtii HAP2 ectodomain. Here we present an X-ray structure resolving these regions, showing a target membrane interaction surface made by three amphipathic helices in a horseshoe-shaped arrangement. HAP2 from green algae also features additional species-specific motifs inserted in regions that in viral class II proteins are critical for the fusogenic conformational change. Such insertions include a cystine ladder-like module evocative of EGF-like motifs responsible for extracellular protein-protein interactions in animals, and a mucin-like region. These features suggest potential HAP2 interaction sites involved in gamete fusion control. Unprecedented organization of amphipathic α helices in the algal HAP2 fusion loops An inserted EGF-like motif suggests a potential algal-specific fusion control site An adjacent mucin-like region potentially modulates algal-specific interactions Inter-chain stem/domain II interactions stabilize the post-fusion hairpin conformation
Collapse
Affiliation(s)
- Eduard Baquero
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Juliette Fedry
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Thomas Krey
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
58
|
Sharma KK, Marzinek JK, Tantirimudalige SN, Bond PJ, Wohland T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:38-51. [PMID: 30223001 DOI: 10.1016/j.pbiomolbio.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Flaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
Collapse
Affiliation(s)
- Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| |
Collapse
|
59
|
Fedry J, Forcina J, Legrand P, Péhau-Arnaudet G, Haouz A, Johnson M, Rey FA, Krey T. Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. PLoS Biol 2018; 16:e2006357. [PMID: 30102690 PMCID: PMC6089408 DOI: 10.1371/journal.pbio.2006357] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
HAPLESS2 (HAP2) is a broadly conserved, gamete-expressed transmembrane protein that was shown recently to be structurally homologous to viral class II fusion proteins, which initiate fusion with host cells via insertion of fusion loops into the host membrane. However, the functional conformation of the HAP2 fusion loops has remained unknown, as the reported X-ray structure of Chlamydomonas reinhardtii HAP2 lacked this critical region. Here, we report a structure-guided alignment that reveals diversification of the proposed HAP2 fusion loops. Representative crystal structures show that in flowering plants, HAP2 has a single prominent fusion loop projecting an amphipathic helix at its apex, while in trypanosomes, three small nonpolar loops of HAP2 are poised to interact with the target membrane. A detailed structure-function analysis of the Arabidopsis HAP2 amphipathic fusion helix defines key residues that are essential for membrane insertion and for gamete fusion. Our study suggests that HAP2 may have evolved multiple modes of membrane insertion to accommodate the diversity of membrane environments it has encountered during eukaryotic evolution. The fusion of gamete plasma membranes is the fundamental cellular event that brings two parental cells together to form a new individual, yet we know surprisingly little about this process at the molecular level. HAPLESS 2 (HAP2) is a conserved sperm plasma membrane protein that is essential for gamete fusion in a diverse array of eukaryotes. It was recently shown to share a common ancestor with viral proteins that drive fusion of the viral envelope with host membranes, but its mechanism of action remained elusive, since the reported structure did not resolve the proposed membrane interaction surface. Here, we report two new HAP2 structures revealing that HAP2 has evolved diverse membrane interaction surfaces. In the flowering plants, HAP2 uses an amphipathic helix that presents nonpolar residues to the target membrane; in trypanosomes, the membrane interaction surface comprises three shallow nonpolar loops.
Collapse
Affiliation(s)
- Juliette Fedry
- Unité de Virologie Structurale, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
- Universite Paris Descartes Sorbonne Paris Cité, Institut Pasteur, Paris, France
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jennifer Forcina
- Brown University, Department of Molecular Biology, Cell Biology, and Biochemistry, Providence, Rhode Island, United States of America
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | | | - Ahmed Haouz
- Protéopôle, CNRS UMR 3528, Institut Pasteur, Paris, France
| | - Mark Johnson
- Brown University, Department of Molecular Biology, Cell Biology, and Biochemistry, Providence, Rhode Island, United States of America
- * E-mail: (MJ); (FAR); (TK)
| | - Felix A. Rey
- Unité de Virologie Structurale, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
- * E-mail: (MJ); (FAR); (TK)
| | - Thomas Krey
- Unité de Virologie Structurale, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
- * E-mail: (MJ); (FAR); (TK)
| |
Collapse
|
60
|
Reece LM, Beasley DW, Milligan GN, Sarathy VV, Barrett AD. Current status of Severe Fever with Thrombocytopenia Syndrome vaccine development. Curr Opin Virol 2018; 29:72-78. [PMID: 29642053 DOI: 10.1016/j.coviro.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS) is a new emerging tick-borne disease caused by the phlebovirus, SFTS virus (SFTSV). The virus was discovered in central China in 2009 and has since been identified in both Japan and South Korea. Significant progress has been made on the molecular biology of the virus, and this has been used to develop diagnostic assays and reagents. Less progress has been made on the epidemiology, maintenance and transmission, clinical manifestations, immunological responses, and treatment regimens. A number of animal models have been investigated but, to date, none recapitulate all the clinical manifestations seen in humans. Vaccine development is at an early discovery phase.
Collapse
Affiliation(s)
- Lisa M Reece
- World Health Organization Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - David Wc Beasley
- World Health Organization Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Gregg N Milligan
- World Health Organization Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Vanessa V Sarathy
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan Dt Barrett
- World Health Organization Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|