51
|
Bigeard G, Cresti A. Magic-angle twisted bilayer graphene under orthogonal and in-plane magnetic fields. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325502. [PMID: 38670079 DOI: 10.1088/1361-648x/ad4431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
We investigate the effect of a magnetic field on the band structure of bilayer graphene with a magic twist angle of 1.08∘. The coupling of a tight-binding model and the Peierls phase allows the calculation of the energy bands of periodic two-dimensional systems. For an orthogonal magnetic field, the Landau levels are dispersive, particularly for magnetic lengths comparable to or larger than the twisted bilayer cell size. A high in-plane magnetic field modifies the low-energy bands and gap, which we demonstrate to be a direct consequence of the minimal coupling.
Collapse
Affiliation(s)
- Gaëlle Bigeard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, CROMA, 38000 Grenoble, France
| | - Alessandro Cresti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, CROMA, 38000 Grenoble, France
| |
Collapse
|
52
|
Zhu X, Sun J, Feng S, Guo H. Moiré band renormalization due to lattice mismatch in bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:315502. [PMID: 38663420 DOI: 10.1088/1361-648x/ad43a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
We investigated the band renormalization caused by the compressive-strain-induced lattice mismatch in parallel AA stacked bilayer graphene using two complementary methods: the tight-binding approach and the low-energy continuum theory. While a large mismatch does not alter the low-energy bands, a small one reduces the bandwidth of the low-energy bands along with a decrease in the Fermi velocity. In the tiny-mismatch regime, the low-energy continuum theory reveals that the long-period moiré pattern extensively renormalizes the low-energy bands, resulting in a significant reduction of bandwidth. Meanwhile, the Fermi velocity exhibits an oscillatory behavior and approaches zero at specific mismatches. However, the resulting low-energy bands are not perfectly isolated flat, as seen in twisted bilayer graphene at magic angles. These findings provide a deeper understanding of moiré physics and offer valuable guidance for related experimental studies in creating moiré superlattices using two-dimensional van der Waals heterostructures.
Collapse
Affiliation(s)
- Xingchuan Zhu
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu 214443, People's Republic of China
| | - Junsong Sun
- School of Physics, Beihang University, Beijing 100191, People's Republic of China
| | - Shiping Feng
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Huaiming Guo
- School of Physics, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
53
|
Zhang H, Li Q, Park Y, Jia Y, Chen W, Li J, Liu Q, Bao C, Leconte N, Zhou S, Wang Y, Watanabe K, Taniguchi T, Avila J, Dudin P, Yu P, Weng H, Duan W, Wu Q, Jung J, Zhou S. Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene. Nat Commun 2024; 15:3737. [PMID: 38702313 PMCID: PMC11068895 DOI: 10.1038/s41467-024-48166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Twisted bilayer graphene (tBLG) provides a fascinating platform for engineering flat bands and inducing correlated phenomena. By designing the stacking architecture of graphene layers, twisted multilayer graphene can exhibit different symmetries with rich tunability. For example, in twisted monolayer-bilayer graphene (tMBG) which breaks the C2z symmetry, transport measurements reveal an asymmetric phase diagram under an out-of-plane electric field, exhibiting correlated insulating state and ferromagnetic state respectively when reversing the field direction. Revealing how the electronic structure evolves with electric field is critical for providing a better understanding of such asymmetric field-tunable properties. Here we report the experimental observation of field-tunable dichotomic electronic structure of tMBG by nanospot angle-resolved photoemission spectroscopy (NanoARPES) with operando gating. Interestingly, selective enhancement of the relative spectral weight contributions from monolayer and bilayer graphene is observed when switching the polarity of the bias voltage. Combining experimental results with theoretical calculations, the origin of such field-tunable electronic structure, resembling either tBLG or twisted double-bilayer graphene (tDBG), is attributed to the selectively enhanced contribution from different stacking graphene layers with a strong electron-hole asymmetry. Our work provides electronic structure insights for understanding the rich field-tunable physics of tMBG.
Collapse
Affiliation(s)
- Hongyun Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
| | - Qian Li
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
| | - Youngju Park
- Department of Physics, University of Seoul, Seoul, 02504, Korea
| | - Yujin Jia
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wanying Chen
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
| | - Jiaheng Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qinxin Liu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
| | - Changhua Bao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
| | - Nicolas Leconte
- Department of Physics, University of Seoul, Seoul, 02504, Korea
| | - Shaohua Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
| | - Yuan Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jose Avila
- Synchrotron SOLEIL, L'Orme des Merisiers, Departamentale 128, 91190, Saint-Aubin, France
| | - Pavel Dudin
- Synchrotron SOLEIL, L'Orme des Merisiers, Departamentale 128, 91190, Saint-Aubin, France
| | - Pu Yu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
- Frontier Science Center for Quantum Information, Beijing, 100084, PR China
| | - Hongming Weng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, PR China
| | - Wenhui Duan
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China
- Frontier Science Center for Quantum Information, Beijing, 100084, PR China
- Institute for Advanced Study, Tsinghua University, Beijing, 100084, PR China
| | - Quansheng Wu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jeil Jung
- Department of Physics, University of Seoul, Seoul, 02504, Korea
- Department of Smart Cities, University of Seoul, Seoul, 02504, Korea
| | - Shuyun Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, PR China.
- Frontier Science Center for Quantum Information, Beijing, 100084, PR China.
| |
Collapse
|
54
|
Hou Y, Zhou J, Xue M, Yu M, Han Y, Zhang Z, Lu Y. Strain Engineering of Twisted Bilayer Graphene: The Rise of Strain-Twistronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311185. [PMID: 38616775 DOI: 10.1002/smll.202311185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The layer-by-layer stacked van der Waals structures (termed vdW hetero/homostructures) offer a new paradigm for materials design-their physical properties can be tuned by the vertical stacking sequence as well as by adding a mechanical twist, stretch, and hydrostatic pressure to the atomic structure. In particular, simple twisting and stacking of two layers of graphene can form a uniform and ordered Moiré superlattice, which can effectively modulate the electrons of graphene layers and lead to the discovery of unconventional superconductivity and strong correlations. However, the twist angle of twisted bilayer graphene (tBLG) is almost unchangeable once the interlayer stacking is determined, while applying mechanical elastic strain provides an alternative way to deeply regulate the electronic structure by controlling the lattice spacing and symmetry. In this review, diverse experimental advances are introduced in straining tBLG by in-plane and out-of-plane modes, followed by the characterizations and calculations toward quantitatively tuning the strain-engineered electronic structures. It is further discussed that the structural relaxation in strained Moiré superlattice and its influence on electronic structures. Finally, the conclusion entails prospects for opportunities of strained twisted 2D materials, discussions on existing challenges, and an outlook on the intriguing emerging field, namely "strain-twistronics".
Collapse
Affiliation(s)
- Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Maolin Yu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
55
|
Chen Z, Li R, Bai Y, Mao N, Zeer M, Go D, Dai Y, Huang B, Mokrousov Y, Niu C. Topology-Engineered Orbital Hall Effect in Two-Dimensional Ferromagnets. NANO LETTERS 2024. [PMID: 38619844 DOI: 10.1021/acs.nanolett.3c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Recent advances in the manipulation of the orbital angular momentum (OAM) within the paradigm of orbitronics presents a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrate that topological phase transitions present an efficient and straightforward way to engineer the OHE, where the OAM distribution can be controlled by the nature of the band inversion. Using first-principles calculations, we identify Janus RuBrCl and three septuple layers of MnBi2Te4 as experimentally feasible examples of the proposed mechanism of OHE engineering by topology. With our work, we open up new possibilities for innovative applications in topological spintronics and orbitronics.
Collapse
Affiliation(s)
- Zhiqi Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Runhan Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yingxi Bai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ning Mao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mahmoud Zeer
- Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Dongwook Go
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuriy Mokrousov
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Chengwang Niu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
56
|
Matsuoka H, Kajihara S, Nomoto T, Wang Y, Hirayama M, Arita R, Iwasa Y, Nakano M. Band-driven switching of magnetism in a van der Waals magnetic semimetal. SCIENCE ADVANCES 2024; 10:eadk1415. [PMID: 38608018 PMCID: PMC11014443 DOI: 10.1126/sciadv.adk1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Magnetic semimetals form an attractive class of materials because of the nontrivial contributions of itinerant electrons to magnetism. Because of their relatively low-carrier-density nature, a doping level of those materials could be largely tuned by a gating technique. Here, we demonstrate gate-tunable ferromagnetism in an emergent van der Waals magnetic semimetal Cr3Te4 based on an ion-gating technique. Upon doping electrons into the system, the Curie temperature (TC) sharply increases, approaching near to room temperature, and then decreases to some extent. This non-monotonous variation of TC accompanies the switching of the magnetic anisotropy, synchronously followed by the sign changes of the ordinary and anomalous Hall effects. Those results clearly elucidate that the magnetism in Cr3Te4 should be governed by its semimetallic band nature.
Collapse
Affiliation(s)
- Hideki Matsuoka
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Shun Kajihara
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takuya Nomoto
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yue Wang
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Motoaki Hirayama
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masaki Nakano
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
57
|
Yang K, Xu Z, Feng Y, Schindler F, Xu Y, Bi Z, Bernevig BA, Tang P, Liu CX. Topological minibands and interaction driven quantum anomalous Hall state in topological insulator based moiré heterostructures. Nat Commun 2024; 15:2670. [PMID: 38531879 PMCID: PMC11258263 DOI: 10.1038/s41467-024-46717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers' pair of minibands can beZ 2 non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers' minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2 on top of Sb2Te3 films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.
Collapse
Affiliation(s)
- Kaijie Yang
- Department of Physics, the Pennsylvania State University, University Park, PA, 16802, USA
| | - Zian Xu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yanjie Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Frank Schindler
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yuanfeng Xu
- Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou, 310058, China
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Zhen Bi
- Department of Physics, the Pennsylvania State University, University Park, PA, 16802, USA
| | - B Andrei Bernevig
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, 22761, Germany
| | - Chao-Xing Liu
- Department of Physics, the Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
58
|
Al Ezzi MM, Hu J, Ariando A, Guinea F, Adam S. Topological Flat Bands in Graphene Super-Moiré Lattices. PHYSICAL REVIEW LETTERS 2024; 132:126401. [PMID: 38579227 DOI: 10.1103/physrevlett.132.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 02/13/2024] [Indexed: 04/07/2024]
Abstract
Moiré-pattern-based potential engineering has become an important way to explore exotic physics in a variety of two-dimensional condensed matter systems. While these potentials have induced correlated phenomena in almost all commonly studied 2D materials, monolayer graphene has remained an exception. We demonstrate theoretically that a single layer of graphene, when placed between two bulk boron nitride crystal substrates with the appropriate twist angles, can support a robust topological ultraflat band emerging as the second hole band. This is one of the simplest platforms to design and exploit topological flat bands.
Collapse
Affiliation(s)
- Mohammed M Al Ezzi
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
- Department of Physics, Faculty of Science, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | - Junxiong Hu
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
- Department of Physics, Faculty of Science, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | - Ariando Ariando
- Department of Physics, Faculty of Science, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | | | - Shaffique Adam
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
- Department of Physics, Faculty of Science, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
- Yale-NUS College, 16 College Avenue West, Singapore 138527
| |
Collapse
|
59
|
Zhou W, Ding J, Hua J, Zhang L, Watanabe K, Taniguchi T, Zhu W, Xu S. Layer-polarized ferromagnetism in rhombohedral multilayer graphene. Nat Commun 2024; 15:2597. [PMID: 38519502 PMCID: PMC10960043 DOI: 10.1038/s41467-024-46913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Flat-band systems with strongly correlated electrons can exhibit a variety of phenomena, such as correlated insulating and topological states, unconventional superconductivity, and ferromagnetism. Rhombohedral multilayer graphene has recently emerged as a promising platform for investigating exotic quantum states due to its hosting of topologically protected surface flat bands at low energy, which have a layer-dependent energy dispersion. However, the complex relationship between the surface flat bands and the highly dispersive high-energy bands makes it difficult to study correlated surface states. In this study, we introduce moiré superlattices as a method to isolate the surface flat bands of rhombohedral multilayer graphene. The observed pronounced screening effects in the moiré potential-modulated rhombohedral multilayer graphene indicate that the two surface states are electronically decoupled. The flat bands that are isolated promote correlated surface states in areas that are distant from the charge neutrality points. Notably, we observe tunable layer-polarized ferromagnetism, which is evidenced by a hysteretic anomalous Hall effect. This is achieved by polarizing the surface states with finite displacement fields.
Collapse
Affiliation(s)
- Wenqiang Zhou
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jing Ding
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiannan Hua
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Le Zhang
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Wei Zhu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| | - Shuigang Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
60
|
Fan G, Wu Y, Tong J, Deng L, Yin X, Tian F, Zhang X. Influence of electronic correlation on the valley and topological properties of VSiGeP 4 monolayer. Phys Chem Chem Phys 2024; 26:9628-9635. [PMID: 38466239 DOI: 10.1039/d3cp04739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Valley is used as a new degree of freedom for information encoding and storage. In this work, the valley and topological properties of the VSiGeP4 monolayer were studied by adjusting the U value based on first-principles calculations. The VSiGeP4 monolayer remains in a ferromagnetic ground state regardless of the change in the U value. The magnetic anisotropy of the VSiGeP4 monolayer is initially in-plane, and then turns out-of-plane with the increase in the U value. Moreover, a topological phase transition is observed in the present VSiGeP4 monolayer with the increase in U value from 0 to 3 eV, i.e., the VSiGeP4 monolayer behaves as a bipolar magnetic semiconductor, a ferrovalley semiconductor, a half-valley metal characteristic, and a quantum anomalous Hall state. The mechanism of the topological phase transition behavior of the VSiGeP4 monolayer was analyzed. It was found that the variation in U values would change the strength of the electronic correlation effect, resulting in the valley and topological properties. In addition, carrier doping was studied to design a valleytronic device using this VSiGeP4 monolayer. By doping 0.05 electrons per f.u., the VSiGeP4 monolayer with a U value of 3 eV exhibits 100% spin polarization. This study indicates that the VSiGeP4 monolayer has potential applications in spintronic, valleytronic, and topological electronic nanodevices.
Collapse
Affiliation(s)
- Guangxin Fan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Yanzhao Wu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Junwei Tong
- Department of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Li Deng
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiang Yin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xianmin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
61
|
Li K, Yin LJ, Che C, Zhang S, Liu X, Xiao Y, Liu S, Tong Q, Li SY, Pan A. Correlation-Induced Symmetry-Broken States in Large-Angle Twisted Bilayer Graphene on MoS 2. ACS NANO 2024; 18:7937-7944. [PMID: 38441035 DOI: 10.1021/acsnano.3c09993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Strongly correlated states commonly emerge in twisted bilayer graphene (TBG) with "magic-angle" (1.1°), where the electron-electron (e-e) interaction U becomes prominent relative to the small bandwidth W of the nearly flat band. However, the stringent requirement of this magic angle makes the sample preparation and the further application facing great challenges. Here, using scanning tunneling microscopy (STM) and spectroscopy (STS), we demonstrate that the correlation-induced symmetry-broken states can also be achieved in a 3.45° TBG, via engineering this nonmagic-angle TBG into regimes of U/W > 1. We enhance the e-e interaction through controlling the microscopic dielectric environment by using a MoS2 substrate. Simultaneously, the width of the low-energy van Hove singularity (VHS) peak is reduced by enhancing the interlayer coupling via STM tip modulation. When partially filled, the VHS peak exhibits a giant splitting into two states flanked by the Fermi level and shows a symmetry-broken LDOS distribution with a stripy charge order, which confirms the existence of strong correlation effect in our 3.45° TBG. Our result demonstrates the feasibility of the study and application of the correlation physics in TBGs with a wider range of twist angle.
Collapse
Affiliation(s)
- Kaihui Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Long-Jing Yin
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Chenglong Che
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Shihao Zhang
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Xueying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Songlong Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Qingjun Tong
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Si-Yu Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, People's Republic of China
| |
Collapse
|
62
|
Mattiat H, Schneider L, Reiser P, Poggio M, Sahafi P, Jordan A, Budakian R, Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Kondratev OA, Tokmachev AM, Storchak VG. Mapping the phase-separated state in a 2D magnet. NANOSCALE 2024; 16:5302-5312. [PMID: 38372414 DOI: 10.1039/d3nr06550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intrinsic 2D magnets have recently been established as a playground for studies on fundamentals of magnetism, quantum phases, and spintronic applications. The inherent instability at low dimensionality often results in coexistence and/or competition of different magnetic orders. Such instability of magnetic ordering may manifest itself as phase-separated states. In 4f 2D materials, magnetic phase separation is expressed in various experiments; however, the experimental evidence is circumstantial. Here, we employ a high-sensitivity MFM technique to probe the spatial distribution of magnetic states in the paradigmatic 4f 2D ferromagnet EuGe2. Below the ferromagnetic transition temperature, we discover the phase-separated state and follow its evolution with temperature and magnetic field. The characteristic length-scale of magnetic domains amounts to hundreds of nanometers. These observations strongly shape our understanding of the magnetic states in 2D materials at the monolayer limit and contribute to engineering of ultra-compact spintronics.
Collapse
Affiliation(s)
- Hinrich Mattiat
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Lukas Schneider
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Patrick Reiser
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Martino Poggio
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Pardis Sahafi
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Andrew Jordan
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Raffi Budakian
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| |
Collapse
|
63
|
Wang J, Cheng F, Sun Y, Xu H, Cao L. Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures. Phys Chem Chem Phys 2024; 26:7988-8012. [PMID: 38380525 DOI: 10.1039/d3cp04656g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Artificial materials, characterized by their distinctive properties and customized functionalities, occupy a central role in a wide range of applications including electronics, spintronics, optoelectronics, catalysis, and energy storage. The emergence of atomically thin two-dimensional (2D) materials has driven the creation of artificial heterostructures, harnessing the potential of combining various 2D building blocks with complementary properties through the art of stacking engineering. The promising outcomes achieved for heterostructures have spurred an inquisitive exploration of homostructures, where identical 2D layers are precisely stacked. This perspective primarily focuses on the field of stacking engineering within layered homostructures, where precise control over translational or rotational degrees of freedom between vertically stacked planes or layers is paramount. In particular, we provide an overview of recent advancements in the stacking engineering applied to 2D homostructures. Additionally, we will shed light on research endeavors venturing into three-dimensional (3D) structures, which allow us to proactively address the limitations associated with artificial 2D homostructures. We anticipate that the breakthroughs in stacking engineering in 3D materials will provide valuable insights into the mechanisms governing stacking effects. Such advancements have the potential to unlock the full capability of artificial layered homostructures, propelling the future development of materials, physics, and device applications.
Collapse
Affiliation(s)
- Jiamin Wang
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, P. R. China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Yan Sun
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Hai Xu
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, P. R. China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Cao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
64
|
Pendharkar M, Tran SJ, Zaborski G, Finney J, Sharpe AL, Kamat RV, Kalantre SS, Hocking M, Bittner NJ, Watanabe K, Taniguchi T, Pittenger B, Newcomb CJ, Kastner MA, Mannix AJ, Goldhaber-Gordon D. Torsional force microscopy of van der Waals moirés and atomic lattices. Proc Natl Acad Sci U S A 2024; 121:e2314083121. [PMID: 38427599 DOI: 10.1073/pnas.2314083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moiré, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that torsional force microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of van der Waals stacks on multiple length scales: the moirés formed between bi-layers of graphene and between graphene and hexagonal boron nitride (hBN) and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an Atomic Force Microscope (AFM) cantilever is monitored as it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the sample surface. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moiré superlattices and crystallographic orientation of van der Waals flakes to support predictable moiré heterostructure fabrication.
Collapse
Affiliation(s)
- Mihir Pendharkar
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Steven J Tran
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Gregory Zaborski
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Joe Finney
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Aaron L Sharpe
- Materials Physics Department, Sandia National Laboratories, Livermore, CA 94550
| | - Rupini V Kamat
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Sandesh S Kalantre
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Marisa Hocking
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | | | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | | | | | - Marc A Kastner
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Physics, Stanford University, Stanford, CA 94305
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andrew J Mannix
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - David Goldhaber-Gordon
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Physics, Stanford University, Stanford, CA 94305
| |
Collapse
|
65
|
Fortin-Deschênes M, Watanabe K, Taniguchi T, Xia F. Van der Waals epitaxy of tunable moirés enabled by alloying. NATURE MATERIALS 2024; 23:339-346. [PMID: 37580367 DOI: 10.1038/s41563-023-01596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/31/2023] [Indexed: 08/16/2023]
Abstract
The unique physics in moiré superlattices of twisted or lattice-mismatched atomic layers holds great promise for future quantum technologies. However, twisted configurations are thermodynamically unfavourable, making accurate twist angle control during growth implausible. While rotationally aligned, lattice-mismatched moirés such as WSe2/WS2 can be synthesized, they lack the critical moiré period tunability, and their formation mechanisms are not well understood. Here, we report the thermodynamically driven van der Waals epitaxy of moirés with a tunable period from 10 to 45 nanometres, using lattice mismatch engineering in two WSSe layers with adjustable chalcogen ratios. Contrary to conventional epitaxy, where lattice-mismatch-induced stress hinders high-quality growth, we reveal the key role of bulk stress in moiré formation and its unique interplay with edge stress in shaping the moiré growth modes. Moreover, the superlattices display tunable interlayer excitons and moiré intralayer excitons. Our studies unveil the epitaxial science of moiré synthesis and lay the foundations for moiré-based technologies.
Collapse
Affiliation(s)
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
66
|
Zhang NJ, Lin JX, Chichinadze DV, Wang Y, Watanabe K, Taniguchi T, Fu L, Li JIA. Angle-resolved transport non-reciprocity and spontaneous symmetry breaking in twisted trilayer graphene. NATURE MATERIALS 2024; 23:356-362. [PMID: 38388731 DOI: 10.1038/s41563-024-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The identification and characterization of spontaneous symmetry breaking is central to our understanding of strongly correlated two-dimensional materials. In this work, we utilize the angle-resolved measurements of transport non-reciprocity to investigate spontaneous symmetry breaking in twisted trilayer graphene. By analysing the angular dependence of non-reciprocity in both longitudinal and transverse channels, we are able to identify the symmetry axis associated with the underlying electronic order. We report that a hysteretic rotation in the mirror axis can be induced by thermal cycles and a large current bias, supporting the spontaneous breaking of rotational symmetry. Moreover, the onset of non-reciprocity with decreasing temperature coincides with the emergence of orbital ferromagnetism. Combined with the angular dependence of the superconducting diode effect, our findings uncover a direct link between rotational and time-reversal symmetry breaking. These symmetry requirements point towards exchange-driven instabilities in momentum space as a possible origin for transport non-reciprocity in twisted trilayer graphene.
Collapse
Affiliation(s)
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, RI, USA
| | | | - Yibang Wang
- Department of Physics, Brown University, Providence, RI, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J I A Li
- Department of Physics, Brown University, Providence, RI, USA.
| |
Collapse
|
67
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
68
|
Fox C, Mao Y, Zhang X, Wang Y, Xiao J. Stacking Order Engineering of Two-Dimensional Materials and Device Applications. Chem Rev 2024; 124:1862-1898. [PMID: 38150266 DOI: 10.1021/acs.chemrev.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Stacking orders in 2D van der Waals (vdW) materials dictate the relative sliding (lateral displacement) and twisting (rotation) between atomically thin layers. By altering the stacking order, many new ferroic, strongly correlated and topological orderings emerge with exotic electrical, optical and magnetic properties. Thanks to the weak vdW interlayer bonding, such highly flexible and energy-efficient stacking order engineering has transformed the design of quantum properties in 2D vdW materials, unleashing the potential for miniaturized high-performance device applications in electronics, spintronics, photonics, and surface chemistry. This Review provides a comprehensive overview of stacking order engineering in 2D vdW materials and their device applications, ranging from the typical fabrication and characterization methods to the novel physical properties and the emergent slidetronics and twistronics device prototyping. The main emphasis is on the critical role of stacking orders affecting the interlayer charge transfer, orbital coupling and flat band formation for the design of innovative materials with on-demand quantum properties and surface potentials. By demonstrating a correlation between the stacking configurations and device functionality, we highlight their implications for next-generation electronic, photonic and chemical energy conversion devices. We conclude with our perspective of this exciting field including challenges and opportunities for future stacking order engineering research.
Collapse
Affiliation(s)
- Carter Fox
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Yulu Mao
- Department of Electrical and Computer Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Xiang Zhang
- Faculty of Science, University of Hong Kong, Hong Kong, China
- Faculty of Engineering, University of Hong Kong, Hong Kong, China
| | - Ying Wang
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Electrical and Computer Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jun Xiao
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
69
|
Wang X, Jiang J, Chen J, Asilehan Z, Tang W, Peng C, Zhang R. Moiré effect enables versatile design of topological defects in nematic liquid crystals. Nat Commun 2024; 15:1655. [PMID: 38409234 PMCID: PMC10897219 DOI: 10.1038/s41467-024-45529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recent advances in surface-patterning techniques of liquid crystals have enabled the precise creation of topological defects, which promise a variety of emergent applications. However, the manipulation and application of these defects remain limited. Here, we harness the moiré effect to engineer topological defects in patterned nematic liquid crystal cells. Specifically, we combine simulation and experiment to examine a nematic cell confined between two substrates of periodic surface anchoring patterns; by rotating one surface against the other, we observe a rich variety of highly tunable, novel topological defects. These defects are shown to guide the three-dimensional self-assembly of colloids, which can conversely impact defects by preventing the self-annihilation of loop-defects through jamming. Finally, we demonstrate that certain nematic moiré cells can engender arbitrary shapes represented by defect regions. As such, the proposed simple twist method enables the design and tuning of mesoscopic structures in liquid crystals, facilitating applications including defect-directed self-assembly, material transport, micro-reactors, photonic devices, and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Juan Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN, 38152, USA
| | - Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
70
|
Poduval PP, Scheurer MS. Vestigial singlet pairing in a fluctuating magnetic triplet superconductor and its implications for graphene superlattices. Nat Commun 2024; 15:1713. [PMID: 38402211 PMCID: PMC10894192 DOI: 10.1038/s41467-024-45950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024] Open
Abstract
Stacking and twisting graphene layers allows to create and control a two-dimensional electron liquid with strong correlations. Experiments indicate that these systems exhibit strong tendencies towards both magnetism and triplet superconductivity. Motivated by this phenomenology, we study a 2D model of fluctuating triplet pairing and spin magnetism. Individually, their respective order parameters, d and N, cannot order at finite temperature. Nonetheless, the model exhibits a variety of vestigial phases, including charge-4e superconductivity and broken time-reversal symmetry. Our main focus is on a phase characterized by finite d ⋅ N, which has the same symmetries as the BCS state, a Meissner effect, and metastable supercurrents, yet rather different spectral properties: most notably, the suppression of the electronic density of states at the Fermi level can resemble that of either a fully gapped or nodal superconductor, depending on parameters. This provides a possible explanation for recent tunneling experiments in the superconducting phase of graphene moiré systems.
Collapse
Affiliation(s)
- Prathyush P Poduval
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA.
- Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| | - Mathias S Scheurer
- Institute for Theoretical Physics III, University of Stuttgart, 70550, Stuttgart, Germany.
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, A-6020, Austria.
| |
Collapse
|
71
|
Tanwar K, Wu X, Tan X, Smith SC, Li J, Chen YI. High density electron doping in boron-doped twisted bilayer graphene: a ladder to extended flat-band. MATERIALS HORIZONS 2024; 11:1046-1053. [PMID: 38078357 DOI: 10.1039/d3mh01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Realizing Von Hove singularity (VHS) and extended flat bands of graphene near the Fermi level (EF) is of great significance to explore many-body interactions, with a high tendency towards superconductivity. In this study, we report that the VHS of π* bands near EF can be realized by high-density lithium intercalation in p-type doped twisted bilayer graphene (tBLG). First, a method to predict the highest lithium intercalation in tBLG systems with arbitrary twist angle was established which proves that the interlayer twisting leads to the clustering of lithium ions in the AA-region but reduces the overall concentration. Second, we show that the p-type doping (1.35% boron) in tBLGs enhances their electron acceptance capability by increasing lithium intercalation up to 47%. In this situation, the electron doping by lithium intercalation is sufficient to shift EF near the VHS which offers a strategic path to realize extended flat bands, and to investigate the strong correlations in the tBLG systems.
Collapse
Affiliation(s)
- Khagesh Tanwar
- Institute for Frontier Materials, Deakin University, Waurn Ponds, 3216, Victoria, Australia.
- Instituto de Ciencia Molecular, Universitat de València, Calle Catedrático José Beltrán Martínez 2, 46980, Paterna, Spain
| | - Xi Wu
- Shenzhen Geim Graphene Center and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
| | - Xin Tan
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China.
| | - Ying Ian Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, 3216, Victoria, Australia.
| |
Collapse
|
72
|
Mehew JD, Merino RL, Ishizuka H, Block A, Mérida JD, Carlón AD, Watanabe K, Taniguchi T, Levitov LS, Efetov DK, Tielrooij KJ. Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene. SCIENCE ADVANCES 2024; 10:eadj1361. [PMID: 38335282 PMCID: PMC10857426 DOI: 10.1126/sciadv.adj1361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Understanding electron-phonon interactions is fundamentally important and has crucial implications for device applications. However, in twisted bilayer graphene near the magic angle, this understanding is currently lacking. Here, we study electron-phonon coupling using time- and frequency-resolved photovoltage measurements as direct and complementary probes of phonon-mediated hot-electron cooling. We find a remarkable speedup in cooling of twisted bilayer graphene near the magic angle: The cooling time is a few picoseconds from room temperature down to 5 kelvin, whereas in pristine bilayer graphene, cooling to phonons becomes much slower for lower temperatures. Our experimental and theoretical analysis indicates that this ultrafast cooling is a combined effect of superlattice formation with low-energy moiré phonons, spatially compressed electronic Wannier orbitals, and a reduced superlattice Brillouin zone. This enables efficient electron-phonon Umklapp scattering that overcomes electron-phonon momentum mismatch. These results establish twist angle as an effective way to control energy relaxation and electronic heat flow.
Collapse
Affiliation(s)
- Jake Dudley Mehew
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain
| | - Rafael Luque Merino
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology (BIST), Castelldefels 08860, Spain
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | - Hiroaki Ishizuka
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - Alexander Block
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain
| | - Jaime Díez Mérida
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology (BIST), Castelldefels 08860, Spain
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | - Andrés Díez Carlón
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology (BIST), Castelldefels 08860, Spain
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Material Sciences, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Material Sciences, Tsukuba, Japan
| | - Leonid S. Levitov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA
| | - Dmitri K. Efetov
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| | - Klaas-Jan Tielrooij
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain
- Department of Applied Physics, TU Eindhoven, Den Dolech 2, Eindhoven 5612 AZ, Netherlands
| |
Collapse
|
73
|
Mei R, Zhao YF, Wang C, Ren Y, Xiao D, Chang CZ, Liu CX. Electrically Controlled Anomalous Hall Effect and Orbital Magnetization in Topological Magnet MnBi_{2}Te_{4}. PHYSICAL REVIEW LETTERS 2024; 132:066604. [PMID: 38394580 DOI: 10.1103/physrevlett.132.066604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024]
Abstract
We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi_{2}Te_{4} thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi_{2}Te_{4} films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state. Our model also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi_{2}Te_{4} films.
Collapse
Affiliation(s)
- Ruobing Mei
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yi-Fan Zhao
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chong Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yafei Ren
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Di Xiao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Cui-Zu Chang
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chao-Xing Liu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
74
|
Lu X, Xie B, Yang Y, Zhang Y, Kong X, Li J, Ding F, Wang ZJ, Liu J. Magic Momenta and Three-Dimensional Landau Levels from a Three-Dimensional Graphite Moiré Superlattice. PHYSICAL REVIEW LETTERS 2024; 132:056601. [PMID: 38364175 DOI: 10.1103/physrevlett.132.056601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
In this Letter, we theoretically explore the physical properties of a new type of three-dimensional graphite moiré superlattice, the bulk alternating twisted graphite (ATG) system with homogeneous twist angle, which is grown by in situ chemical vapor decomposition method. Compared to twisted bilayer graphene (TBG), the bulk ATG system is bestowed with an additional wave vector degree of freedom due to the extra dimensionality. As a result, when the twist angle of bulk ATG is smaller than twice of the magic angle of TBG, there always exist "magic momenta" which host topological flat bands with vanishing in-plane Fermi velocities. Most saliently, when the twist angle is relatively large, a dispersionless three-dimensional zeroth Landau level would emerge in the bulk ATG, which may give rise to robust three-dimensional quantum Hall effects and unusual quantum-Hall physics over a large range of twist angles.
Collapse
Affiliation(s)
- Xin Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Bo Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Yue Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Kong
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Zhu-Jun Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianpeng Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
- Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
75
|
Li T, Chen H, Wang K, Hao Y, Zhang L, Watanabe K, Taniguchi T, Hong X. Transport Anisotropy in One-Dimensional Graphene Superlattice in the High Kronig-Penney Potential Limit. PHYSICAL REVIEW LETTERS 2024; 132:056204. [PMID: 38364165 DOI: 10.1103/physrevlett.132.056204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
One-dimensional graphene superlattice subjected to strong Kronig-Penney (KP) potential is promising for achieving the electron-lensing effect, while previous studies utilizing the modulated dielectric gates can only yield a moderate, spatially dispersed potential profile. Here, we realize high KP potential modulation of graphene via nanoscale ferroelectric domain gating. Graphene transistors are fabricated on PbZr_{0.2}Ti_{0.8}O_{3} back gates patterned with periodic, 100-200 nm wide stripe domains. Because of band reconstruction, the h-BN top gating induces satellite Dirac points in samples with current along the superlattice vector s[over ^], a feature absent in samples with current perpendicular to s[over ^]. The satellite Dirac point position scales with the superlattice period (L) as ∝L^{β}, with β=-1.18±0.06. These results can be well explained by the high KP potential scenario, with the Fermi velocity perpendicular to s[over ^] quenched to about 1% of that for pristine graphene. Our study presents a promising material platform for realizing electron supercollimation and investigating flat band phenomena.
Collapse
Affiliation(s)
- Tianlin Li
- Department of Physics and Astronomy and Nebraska Center of Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Hanying Chen
- Department of Physics and Astronomy and Nebraska Center of Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Kun Wang
- Department of Physics and Astronomy and Nebraska Center of Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Yifei Hao
- Department of Physics and Astronomy and Nebraska Center of Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Le Zhang
- Department of Physics and Astronomy and Nebraska Center of Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Xia Hong
- Department of Physics and Astronomy and Nebraska Center of Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
76
|
He M, Cai J, Zheng H, Seewald E, Taniguchi T, Watanabe K, Yan J, Yankowitz M, Pasupathy A, Yao W, Xu X. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. NATURE MATERIALS 2024; 23:224-229. [PMID: 38177379 DOI: 10.1038/s41563-023-01713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
Moiré excitons are emergent optical excitations in two-dimensional semiconductors with moiré superlattice potentials. Although these excitations have been observed on several platforms, a system with dynamically tunable moiré potential to tailor their properties is yet to be realized. Here we present a continuously tunable moiré potential in monolayer WSe2, enabled by its proximity to twisted bilayer graphene (TBG) near the magic angle. By tuning local charge density via gating, TBG provides a spatially varying and dynamically tunable dielectric superlattice for modulation of monolayer WSe2 exciton wave functions. We observed emergent moiré exciton Rydberg branches with increased energy splitting following doping of TBG due to exciton wave function hybridization between bright and dark Rydberg states. In addition, emergent Rydberg states can probe strongly correlated states in TBG at the magic angle. Our study provides a new platform for engineering moiré excitons and optical accessibility to electronic states with small correlation gaps in TBG.
Collapse
Affiliation(s)
- Minhao He
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Jiaqi Cai
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Huiyuan Zheng
- Department of Physics, University of Hong Kong, Hong Kong, China
| | - Eric Seewald
- Department of Physics, Columbia University, New York, NY, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA
| | - Matthew Yankowitz
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Abhay Pasupathy
- Department of Physics, Columbia University, New York, NY, USA
| | - Wang Yao
- Department of Physics, University of Hong Kong, Hong Kong, China.
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China.
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
77
|
Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Park H, Ju L. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. NATURE NANOTECHNOLOGY 2024; 19:181-187. [PMID: 37798567 DOI: 10.1038/s41565-023-01520-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
Rhombohedral-stacked multilayer graphene hosts a pair of flat bands touching at zero energy, which should give rise to correlated electron phenomena that can be tuned further by an electric field. Moreover, when electron correlation breaks the isospin symmetry, the valley-dependent Berry phase at zero energy may give rise to topologically non-trivial states. Here we measure electron transport through hexagonal boron nitride-encapsulated pentalayer graphene down to 100 mK. We observed a correlated insulating state with resistance at the megaohm level or greater at charge density n = 0 and displacement field D = 0. Tight-binding calculations predict a metallic ground state under these conditions. By increasing D, we observed a Chern insulator state with C = -5 and two other states with C = -3 at a magnetic field of around 1 T. At high D and n, we observed isospin-polarized quarter- and half-metals. Hence, rhombohedral pentalayer graphene exhibits two different types of Fermi-surface instability, one driven by a pair of flat bands touching at zero energy, and one induced by the Stoner mechanism in a single flat band. Our results establish rhombohedral multilayer graphene as a suitable system for exploring intertwined electron correlation and topology phenomena in natural graphitic materials without the need for moiré superlattice engineering.
Collapse
Affiliation(s)
- Tonghang Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengguang Lu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Scuri
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jiho Sung
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jue Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Tianyi Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Long Ju
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
78
|
Pandey V, Mishra S, Maity N, Paul S, B AM, Roy AK, Glavin NR, Watanabe K, Taniguchi T, Singh AK, Kochat V. Probing Interlayer Interactions and Commensurate-Incommensurate Transition in Twisted Bilayer Graphene through Raman Spectroscopy. ACS NANO 2024. [PMID: 38295130 DOI: 10.1021/acsnano.3c08344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Twisted 2D layered materials have garnered much attention recently as a class of 2D materials whose interlayer interactions and electronic properties are dictated by the relative rotation/twist angle between the adjacent layers. In this work, we explore a prototype of such a twisted 2D system, artificially stacked twisted bilayer graphene (TBLG), where we probe, using Raman spectroscopy, the changes in the interlayer interactions and electron-phonon scattering pathways as the twist angle is varied from 0° to 30°. The long-range Moiré potential of the superlattice gives rise to additional intravalley and intervalley scattering of the electrons in TBLG, which has been investigated through their Raman signatures. Density functional theory (DFT) calculations of the electronic band structure of the TBLG superlattices were found to be in agreement with the resonant Raman excitations across the van Hove singularities in the valence and conduction bands predicted for TBLG due to hybridization of bands from the two layers. We also observe that the relative rotation between the graphene layers has a marked influence on the second order overtone and combination Raman modes signaling a commensurate-incommensurate transition in TBLG as the twist angle increases. This serves as a convenient and rapid characterization tool to determine the degree of commensurability in TBLG systems.
Collapse
Affiliation(s)
- Vineet Pandey
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Subhendu Mishra
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Nikhilesh Maity
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Sourav Paul
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Abhijith M B
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Ajit K Roy
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nicholas R Glavin
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Abhishek K Singh
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Vidya Kochat
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
79
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
80
|
Banerjee S, Scheurer MS. Enhanced Superconducting Diode Effect due to Coexisting Phases. PHYSICAL REVIEW LETTERS 2024; 132:046003. [PMID: 38335356 DOI: 10.1103/physrevlett.132.046003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/14/2023] [Indexed: 02/12/2024]
Abstract
The superconducting diode effect refers to an asymmetry in the critical supercurrent J_{c}(n[over ^]) along opposite directions, J_{c}(n[over ^])≠J_{c}(-n[over ^]). While the basic symmetry requirements for this effect are known, it is, for junction-free systems, difficult to capture within current theoretical models the large current asymmetries J_{c}(n[over ^])/J_{c}(-n[over ^]) recently observed in experiment. We here propose and develop a theory for an enhancement mechanism of the diode effect arising from spontaneous symmetry breaking. We show-both within a phenomenological and a microscopic theory-that there is a coupling of the supercurrent and the underlying symmetry-breaking order parameter. This coupling can enhance the current asymmetry significantly. Our work might not only provide a possible explanation for recent experiments on trilayer graphene but also pave the way for future realizations of the superconducting diode effect with large current asymmetries.
Collapse
Affiliation(s)
- Sayan Banerjee
- Institute for Theoretical Physics III, University of Stuttgart, 70550 Stuttgart, Germany and Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Mathias S Scheurer
- Institute for Theoretical Physics III, University of Stuttgart, 70550 Stuttgart, Germany and Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
81
|
Shayeganfar F, Ramazani A, Habibiyan H, Rafiee Diznab M. Terahertz linear/non-linear anomalous Hall conductivity of moiré TMD hetero-nanoribbons as topological valleytronics materials. Sci Rep 2024; 14:1581. [PMID: 38238394 PMCID: PMC10796390 DOI: 10.1038/s41598-024-51721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Twisted moiré van der Waals heterostructures hold promise to provide a robust quantum simulation platform for strongly correlated materials and realize elusive states of matter such as topological states in the laboratory. We demonstrated that the moiré bands of twisted transition metal dichalcogenide (TMD) hetero-nanoribbons exhibit non-trivial topological order due to the tendency of valence and conduction band states in K valleys to form giant band gaps when spin-orbit coupling (SOC) is taken into account. Among the features of twisted WS[Formula: see text]/MoS[Formula: see text] and WSe[Formula: see text]/MoSe[Formula: see text], we found that the heavy fermions associated with the topological flat bands and the presence of strongly correlated states, enhance anomalous Hall conductivity (AHC) away from the magic angle. By band analysis, we showed that the topmost conduction bands from the ± K-valleys are perfectly flat and carry a spin/valley Chern number. Moreover, we showed that the non-linear anomalous Hall effect in moiré TMD hetero-nanoribbons can be used to manipulate terahertz (THz) radiation. Our findings establish twisted heterostructures of group-VI TMD nanoribbons as a tunable platform for engineering topological valley quantum phases and THz non-linear Hall conductivity.
Collapse
Affiliation(s)
- Farzaneh Shayeganfar
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Ali Ramazani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hamidreza Habibiyan
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rafiee Diznab
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
82
|
Dettmann D, Sheverdyaeva PM, Hamzehpoor E, Franchi S, Galeotti G, Moras P, Ceccarelli C, Perepichka DF, Rosei F, Contini G. Electronic Band Engineering of Two-Dimensional Kagomé Polymers. ACS NANO 2024; 18:849-857. [PMID: 38147033 DOI: 10.1021/acsnano.3c09476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states. However, measuring these properties experimentally is challenging and requires long-range-ordered polymers, preferably with an epitaxial relationship with the substrate. Here, we investigate the electronic properties of a mesoscale-ordered carbonyl-bridged triphenylamine 2DCP (P2TANGO) and demonstrate the presence of a Dirac cone by combining angle-resolved photoemission spectroscopy (ARPES) with density functional theory (DFT) calculations. Moreover, we measure the absolute energy position of the Dirac cone with respect to the vacuum level. We show that the bridging functionality of the triangulene (ether vs carbonyl) does not significantly perturb the band structure but strongly affects the positioning of the bands with respect to the Au(111) states and allows control of the ionization energy of the polymer. Our results provide proof of the controllable electronic properties of 2DCPs and bring us closer to their use in practical applications.
Collapse
Affiliation(s)
- Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, J3X 1P7, Varennes, Québec, Canada
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 0B8, Montreal, Quebec, Canada
| | - Stefano Franchi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Gianluca Galeotti
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, J3X 1P7, Varennes, Québec, Canada
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Chiara Ceccarelli
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 0B8, Montreal, Quebec, Canada
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, J3X 1P7, Varennes, Québec, Canada
| | - Giorgio Contini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Department of Physics, University Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
83
|
Li Y, Zhang F, Ha VA, Lin YC, Dong C, Gao Q, Liu Z, Liu X, Ryu SH, Kim H, Jozwiak C, Bostwick A, Watanabe K, Taniguchi T, Kousa B, Li X, Rotenberg E, Khalaf E, Robinson JA, Giustino F, Shih CK. Tuning commensurability in twisted van der Waals bilayers. Nature 2024; 625:494-499. [PMID: 38233619 DOI: 10.1038/s41586-023-06904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.
Collapse
Affiliation(s)
- Yanxing Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Fan Zhang
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Viet-Anh Ha
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Chuan Lin
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chengye Dong
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Qiang Gao
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Zhida Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaohui Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Sae Hee Ryu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsue Kim
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenji Watanabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Bishoy Kousa
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaoqin Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eslam Khalaf
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Joshua A Robinson
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Feliciano Giustino
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
84
|
Scheer MG, Lian B. Twistronics of Kekulé Graphene: Honeycomb and Kagome Flat Bands. PHYSICAL REVIEW LETTERS 2023; 131:266501. [PMID: 38215385 DOI: 10.1103/physrevlett.131.266501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/10/2023] [Indexed: 01/14/2024]
Abstract
Kekulé-O order in graphene, which has recently been realized experimentally, induces Dirac electron masses on the order of m∼100 meV. We show that twisted bilayer graphene in which one or both layers have Kekulé-O order exhibits nontrivial flat electronic bands on honeycomb and kagome lattices. When only one layer has Kekulé-O order, there is a parameter regime for which the lowest four bands at charge neutrality form an isolated two-orbital honeycomb lattice model with two flat bands. The bandwidths are minimal at a magic twist angle θ≈0.7° and Dirac mass m≈100 meV. When both layers have Kekulé-O order, there is a large parameter regime around θ≈1° and m≳100 meV in which the lowest three valence and conduction bands at charge neutrality each realize isolated kagome lattice models with one flat band, while the next three valence and conduction bands are flat bands on triangular lattices. These flat band systems may provide a new platform for strongly correlated phases of matter.
Collapse
Affiliation(s)
- Michael G Scheer
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Biao Lian
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
85
|
Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G. Giant Correlated Gap and Possible Room-Temperature Correlated States in Twisted Bilayer MoS_{2}. PHYSICAL REVIEW LETTERS 2023; 131:256201. [PMID: 38181343 DOI: 10.1103/physrevlett.131.256201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Moiré superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic correlations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report evidence of possible room-temperature correlated electronic states and layer-hybridized SU(4) model simulator in AB-stacked MoS_{2} homobilayer moiré superlattices. Correlated insulating states at moiré band filling factors v=1, 2, 3 are unambiguously established in twisted bilayer MoS_{2}. Remarkably, the correlated electronic state at v=1 shows a giant correlated gap of ∼126 meV and may persist up to a record-high critical temperature over 285 K. The realization of a possible room-temperature correlated state with a large correlated gap in twisted bilayer MoS_{2} can be understood as the cooperation effects of the stacking-specific atomic reconstruction and the resonantly enhanced interlayer hybridization, which largely amplify the moiré superlattice effects on electronic correlations. Furthermore, extreme large nonlinear Hall responses up to room temperature are uncovered near correlated electronic states, demonstrating the quantum geometry of moiré flat conduction band.
Collapse
Affiliation(s)
- Fanfan Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Qinqin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbang Chu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiru Ji
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalong Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhou Zan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Gangxu Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
86
|
Zhou H, Auerbach N, Uzan M, Zhou Y, Banu N, Zhi W, Huber ME, Watanabe K, Taniguchi T, Myasoedov Y, Yan B, Zeldov E. Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene. Nature 2023; 624:275-281. [PMID: 37993718 PMCID: PMC10719110 DOI: 10.1038/s41586-023-06763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena1. However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas-van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands2-4. By resolving thermodynamic quantum oscillations spanning more than 100 Landau levels in low magnetic fields, we reconstruct the band structure and its evolution with the displacement field with excellent precision and nanoscale spatial resolution. Moreover, by developing Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields and map their spatial dependence. In contrast to artificially induced large strain, which leads to pseudomagnetic fields of hundreds of tesla5-7, we detect naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree, two orders of magnitude lower than the typical angle disorder in twisted bilayer graphene8-11. This ability to resolve the local band structure and strain at the nanoscale level enables the characterization and use of tunable band engineering in practical van der Waals devices.
Collapse
Affiliation(s)
- Haibiao Zhou
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Auerbach
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Matan Uzan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yaozhang Zhou
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Nasrin Banu
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Weifeng Zhi
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Martin E Huber
- Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, CO, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Yuri Myasoedov
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Zeldov
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
87
|
Saruta Y, Sugawara K, Oka H, Kawakami T, Kato T, Nakayama K, Souma S, Takahashi T, Fukumura T, Sato T. Moiré-Assisted Realization of Octahedral MoTe 2 Monolayer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304461. [PMID: 37867224 DOI: 10.1002/advs.202304461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
A current key challenge in 2D materials is the realization of emergent quantum phenomena in hetero structures via controlling the moiré potential created by the periodicity mismatch between adjacent layers, as highlighted by the discovery of superconductivity in twisted bilayer graphene. Generally, the lattice structure of the original host material remains unchanged even after the moiré superlattice is formed. However, much less attention is paid for the possibility that the moiré potential can also modify the original crystal structure itself. Here, it is demonstrated that octahedral MoTe2 which is unstable in bulk is stabilized in a commensurate MoTe2 /graphene hetero-bilayer due to the moiré potential created between the two layers. It is found that the reconstruction of electronic states via the moiré potential is responsible for this stabilization, as evidenced by the energy-gap opening at the Fermi level observed by angle-resolved photoemission and scanning tunneling spectroscopies. The present results provide a fresh approach to realize novel 2D quantum phases by utilizing the moiré potential.
Collapse
Affiliation(s)
- Yasuaki Saruta
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Katsuaki Sugawara
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo, 102-0076, Japan
| | - Hirofumi Oka
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Tappei Kawakami
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Takemi Kato
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Kosuke Nakayama
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo, 102-0076, Japan
| | - Seigo Souma
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
- Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, 980-8577, Japan
| | - Takashi Takahashi
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Tomoteru Fukumura
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Takafumi Sato
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
- Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, 980-8577, Japan
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Sendai, 980-8577, Japan
- Mathematical Science Center for Co-creative Society (MathCCS), Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
88
|
Liu YB, Zhou J, Wu C, Yang F. Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers. Nat Commun 2023; 14:7926. [PMID: 38040764 PMCID: PMC10692084 DOI: 10.1038/s41467-023-43782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
The material realization of charge-4e/6e superconductivity (SC) is a big challenge. Here, we propose to realize charge-4e SC in maximally-twisted homobilayers, such as 45∘-twisted bilayer cuprates and 30∘-twisted bilayer graphene, referred to as twist-bilayer quasicrystals (TB-QC). When each monolayer hosts a pairing state with the largest pairing angular momentum, previous studies have found that the second-order interlayer Josephson coupling would drive chiral topological SC (TSC) in the TB-QC. Here we propose that, above the Tc of the chiral TSC, either charge-4e SC or chiral metal can arise as vestigial phases, depending on the ordering of the total- and relative-pairing-phase fields of the two layers. Based on a thorough symmetry analysis to get the low-energy effective Hamiltonian, we conduct a combined renormalization-group and Monte-Carlo study and obtain the phase diagram, which includes the charge-4e SC and chiral metal phases.
Collapse
Affiliation(s)
- Yu-Bo Liu
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jing Zhou
- Department of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Congjun Wu
- Institute for Theoretical Sciences, WestLake University, 310024, Hangzhou, China
- New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, 310024, Hangzhou, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou, 310030, P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, P. R. China
| | - Fan Yang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
89
|
Chen H, Arora A, Song JCW, Loh KP. Gate-tunable anomalous Hall effect in Bernal tetralayer graphene. Nat Commun 2023; 14:7925. [PMID: 38040749 PMCID: PMC10692167 DOI: 10.1038/s41467-023-43796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Large spin-orbit coupling is often thought to be critical in realizing magnetic order-locked charge transport such as the anomalous Hall effect (AHE). Recently, artificial stacks of two-dimensional materials, e.g., magic-angle twisted bilayer graphene on hexagonal boron-nitride heterostructures and dual-gated rhombohedral trilayer graphene, have become platforms for realizing AHE without spin-orbit coupling. However, these stacking arrangements are not energetically favorable, impeding experiments and further device engineering. Here we report an anomalous Hall effect in Bernal-stacked tetralayer graphene devices (BTG), the most stable configuration of four-layer graphene. BTG AHE is switched on by a displacement field and is most pronounced at low carrier densities. The onset of AHE occurs in tandem with a full metal to a broken isospin transition indicating an orbital origin of the itinerant ferromagnetism. At lowest densities, BTG exhibits an unconventional hysteresis with step-like anomalous Hall plateaus. Persisting to several tens of kelvin, AHE in BTG demonstrates the ubiquity and robustness of magnetic order in readily available and stable multilayer Bernal graphene stacks-a new venue for intrinsic non-reciprocal responses.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Arpit Arora
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Justin C W Song
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
90
|
Yan X, Zheng Z, Sangwan VK, Qian JH, Wang X, Liu SE, Watanabe K, Taniguchi T, Xu SY, Jarillo-Herrero P, Ma Q, Hersam MC. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 2023; 624:551-556. [PMID: 38123805 DOI: 10.1038/s41586-023-06791-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures1-4. When combined with the exceptionally high electrostatic control in atomically thin materials5-8, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures9-14, thus precluding real-world applications of moiré quantum materials. Here we report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure. The asymmetric moiré potential gives rise to robust electronic ratchet states, which enable hysteretic, non-volatile injection of charge carriers that control the conductance of the device. The asymmetric gating in dual-gated moiré heterostructures realizes diverse biorealistic neuromorphic functionalities, such as reconfigurable synaptic responses, spatiotemporal-based tempotrons and Bienenstock-Cooper-Munro input-specific adaptation. In this manner, the moiré synaptic transistor enables efficient compute-in-memory designs and edge hardware accelerators for artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Zhiren Zheng
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Justin H Qian
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Xueqiao Wang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephanie E Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Su-Yang Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill, MA, USA.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
91
|
Parappurath A, Ghawri B, Bhowmik S, Singha A, Watanabe K, Taniguchi T, Ghosh A. Band structure sensitive photoresponse in twisted bilayer graphene proximitized with WSe 2. NANOSCALE 2023; 15:18818-18824. [PMID: 37962416 DOI: 10.1039/d3nr04864k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The ability to tune the twist angle between different layers of two-dimensional (2D) materials has enabled the creation of electronic flat bands artificially, leading to exotic quantum phases. When a twisted blilayer of graphene (tBLG) is placed at the van der Waals proximity to a semiconducting layer of transition metal dichalcogenide (TMDC), such as WSe2, the emergent phases in the tBLG can fundamentally modify the functionality of such heterostructures. Here we have performed photoresponse measurements in few-layer-WSe2/tBLG heterostructure, where the mis-orientation angle of the tBLG layer was chosen to lie close to the magic angle of 1.1°. Our experiments show that the photoresponse is extremely sensitive to the band structure of tBLG and gets strongly suppressed when the Fermi energy was placed within the low-energy moiré bands. Photoresponse could however be recovered when Fermi energy exceeded the moiré band edge where it was dominated by the photogating effect due to transfer of charge between the tBLG and the WSe2 layers. Our observations suggest the possibility of the screening effects from moiré flat bands that strongly affect the charge transfer process at the WSe2/tBLG interface, which is further supported by time-resolved photo-resistance measurements.
Collapse
Affiliation(s)
- Aparna Parappurath
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Bhaskar Ghawri
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Saisab Bhowmik
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Arup Singha
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
92
|
Ollier A, Kisiel M, Lu X, Gysin U, Poggio M, Efetov DK, Meyer E. Energy dissipation on magic angle twisted bilayer graphene. COMMUNICATIONS PHYSICS 2023; 6:344. [PMID: 38665414 PMCID: PMC11041686 DOI: 10.1038/s42005-023-01441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/26/2023] [Indexed: 04/28/2024]
Abstract
Traditional Joule dissipation omnipresent in today's electronic devices is well understood while the energy loss of the strongly interacting electron systems remains largely unexplored. Twisted bilayer graphene (tBLG) is a host to interaction-driven correlated insulating phases, when the relative rotation is close to the magic angle (1.08∘). We report on low-temperature (5K) nanomechanical energy dissipation of tBLG measured by pendulum atomic force microscopy (p-AFM). The ultrasensitive cantilever tip acting as an oscillating gate over the quantum device shows dissipation peaks attributed to different fractional fillings of the flat energy bands. Local detection allows to determine the twist angle and spatially resolved dissipation images showed the existence of hundred-nanometer domains of different doping. Application of magnetic fields provoked strong oscillations of the dissipation signal at 3/4 band filling, identified in analogy to Aharonov-Bohm oscillations, a wavefunction interference present between domains of different doping and a signature of orbital ferromagnetism.
Collapse
Affiliation(s)
- Alexina Ollier
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Marcin Kisiel
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Xiaobo Lu
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871 China
| | - Urs Gysin
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Martino Poggio
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Dmitri K. Efetov
- Department of Physics, Ludwig-Maximilians-University München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
93
|
Chen B, Xue L, Han Y, Yang Z, Zhang YJ. Magnetic semiconducting borophenes and their derivatives. Phys Chem Chem Phys 2023; 25:30897-30902. [PMID: 37955266 DOI: 10.1039/d3cp04069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Two semiconducting borophenes with layer-dependent magnetism are predicted based on spin-polarized density functional theory. Both monolayer borophenes are ferromagnetic. One is composed of B3 and B15 triangular motifs, exhibiting bipolar spin polarization and a magnetic moment of 1.00 μB per primitive cell. The other consists of B15 triangular motifs, possessing a Curie temperature of about 437 K and a magnetic moment of 3.00 μB per primitive cell. B atoms located between the triangular motifs are essential for inducing ferromagnetism in monolayer borophenes. However, bilayer borophenes with high-symmetry stacking orders are nonmagnetic. Furthermore, magnetic boron nanotubes and fullerenes could be made of monolayer borophenes. Finally, we propose to fabricate these magnetic semiconducting borophenes from the buckled triangular structure of borophenes via selective electron beam ionization of B atoms by scanning transmission electron microscopy.
Collapse
Affiliation(s)
- Bo Chen
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Lin Xue
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Yan Han
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Zhi Yang
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Yong-Jia Zhang
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| |
Collapse
|
94
|
Sidiropoulos TPH, Di Palo N, Rivas DE, Summers A, Severino S, Reduzzi M, Biegert J. Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite. Nat Commun 2023; 14:7407. [PMID: 37973799 PMCID: PMC10654445 DOI: 10.1038/s41467-023-43191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The excitation of quasi-particles near the extrema of the electronic band structure is a gateway to electronic phase transitions in condensed matter. In a many-body system, quasi-particle dynamics are strongly influenced by the electronic single-particle structure and have been extensively studied in the weak optical excitation regime. Yet, under strong optical excitation, where light fields coherently drive carriers, the dynamics of many-body interactions that can lead to new quantum phases remain largely unresolved. Here, we induce such a highly non-equilibrium many-body state through strong optical excitation of charge carriers near the van Hove singularity in graphite. We investigate the system's evolution into a strongly-driven photo-excited state with attosecond soft X-ray core-level spectroscopy. We find an enhancement of the optical conductivity of nearly ten times the quantum conductivity and pinpoint it to carrier excitations in flat bands. This interaction regime is robust against carrier-carrier interaction with coherent optical phonons acting as an attractive force reminiscent of superconductivity. The strongly-driven non-equilibrium state is markedly different from the single-particle structure and macroscopic conductivity and is a consequence of the non-adiabatic many-body state.
Collapse
Affiliation(s)
- T P H Sidiropoulos
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489, Berlin, Germany.
| | - N Di Palo
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
| | - D E Rivas
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
| | - A Summers
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
| | - S Severino
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
| | - M Reduzzi
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
| | - J Biegert
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
95
|
Christos M, Sachdev S, Scheurer MS. Nodal band-off-diagonal superconductivity in twisted graphene superlattices. Nat Commun 2023; 14:7134. [PMID: 37932262 PMCID: PMC10628137 DOI: 10.1038/s41467-023-42471-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
The superconducting state and mechanism are among the least understood phenomena in twisted graphene systems. Recent tunneling experiments indicate a transition between nodal and gapped pairing with electron filling, which is not naturally understood within current theory. We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of consequences: most notably, the pairing invariant under all symmetries can have Bogoliubov Fermi surfaces in the superconducting state with protected nodal lines, or may be fully gapped, depending on parameters, and the band-off-diagonal chiral p-wave state exhibits transitions between gapped and nodal regions upon varying the doping. We demonstrate that band-off-diagonal pairing can be the leading state when only phonons are considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity allows for the reconciliation of several key experimental observations in graphene moiré systems.
Collapse
Affiliation(s)
- Maine Christos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, A-6020, Austria.
- Institute for Theoretical Physics III, University of Stuttgart, 70550, Stuttgart, Germany.
| |
Collapse
|
96
|
Su R, Kuiri M, Watanabe K, Taniguchi T, Folk J. Superconductivity in twisted double bilayer graphene stabilized by WSe 2. NATURE MATERIALS 2023; 22:1332-1337. [PMID: 37640863 DOI: 10.1038/s41563-023-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Identifying the essential components of superconductivity in graphene-based systems remains a critical problem in two-dimensional materials research. This field is connected to the mysteries that underpin investigations of unconventional superconductivity in condensed-matter physics. Superconductivity has been observed in magic-angle twisted stacks of monolayer graphene but conspicuously not in twisted stacks of bilayer graphene, although both systems host topological flat bands and symmetry-broken states. Here we report the discovery of superconductivity in twisted double bilayer graphene (TDBG) in proximity to WSe2. Samples with twist angles 1.24° and 1.37° superconduct in small pockets of the gate-tuned phase diagram within the valence and conduction band, respectively. Superconductivity emerges from unpolarized phases near van Hove singularities and next to regions with broken isospin symmetry. Our results show the correlation between a high density of states and the emergence of superconductivity in TDBG while revealing a possible role for isospin fluctuations in the pairing.
Collapse
Affiliation(s)
- Ruiheng Su
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manabendra Kuiri
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Joshua Folk
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
97
|
Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Fu L, Park H, Ju L. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 2023; 623:41-47. [PMID: 37853117 DOI: 10.1038/s41586-023-06572-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023]
Abstract
Ferroic orders describe spontaneous polarization of spin, charge and lattice degrees of freedom in materials. Materials exhibiting multiple ferroic orders, known as multiferroics, have important parts in multifunctional electrical and magnetic device applications1-4. Two-dimensional materials with honeycomb lattices offer opportunities to engineer unconventional multiferroicity, in which the ferroic orders are driven purely by the orbital degrees of freedom and not by electron spin. These include ferro-valleytricity corresponding to the electron valley5 and ferro-orbital-magnetism6 supported by quantum geometric effects. These orbital multiferroics could offer strong valley-magnetic couplings and large responses to external fields-enabling device applications such as multiple-state memory elements and electric control of the valley and magnetic states. Here we report orbital multiferroicity in pentalayer rhombohedral graphene using low-temperature magneto-transport measurements. We observed anomalous Hall signals Rxy with an exceptionally large Hall angle (tanΘH > 0.6) and orbital magnetic hysteresis at hole doping. There are four such states with different valley polarizations and orbital magnetizations, forming a valley-magnetic quartet. By sweeping the gate electric field E, we observed a butterfly-shaped hysteresis of Rxy connecting the quartet. This hysteresis indicates a ferro-valleytronic order that couples to the composite field E · B (where B is the magnetic field), but not to the individual fields. Tuning E would switch each ferroic order independently and achieve non-volatile switching of them together. Our observations demonstrate a previously unknown type of multiferroics and point to electrically tunable ultralow-power valleytronic and magnetic devices.
Collapse
Affiliation(s)
- Tonghang Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengguang Lu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Scuri
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jiho Sung
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jue Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Tianyi Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Long Ju
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
98
|
Zhang C, Sun J, Shen Y, Zhang C, Wang Q, Yoshikawa A, Kawazoe Y, Jena P. Extremely Large Response of Phonon Coherence in Twisted Penta-NiN 2 Bilayer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303295. [PMID: 37525337 DOI: 10.1002/smll.202303295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Twisting has recently been demonstrated as an effective strategy for tuning the interactions between particles or quasi-particles in layered materials. Motivated by the recent experimental synthesis of pentagonal NiN2 sheet [ACS Nano 2021, 15, 13539], for the first time, the response of phonon coherence to twisting in bilayer penta-NiN2 , going beyond the particle-like phonon transport is studied. By using the unified theory of phonon transport and high order lattice anharmonicity, together with the self-consistent phonon theory, it is found that the lattice thermal conductivity is reduced by 80.6% from 33.35 to 6.47 W m-1 K-1 at 300 K when the layers are twisted. In particular, the contribution of phonon coherence is increased sharply by an order of magnitude, from 0.21 to 2.40 W m-1 K-1 , due to the reduced differences between the phonon frequencies and enhanced anharmonicity after the introduction of twist. The work provides a fundamental understanding of the phonon interaction in twisted pentagonal sheets.
Collapse
Affiliation(s)
- Chenxin Zhang
- School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871, China
| | - Jie Sun
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yiheng Shen
- School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871, China
| | - Cunzhi Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60 637, USA
| | - Qian Wang
- School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871, China
| | - Akira Yoshikawa
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8577, Japan
- Department of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
99
|
Ciorciaro L, Smoleński T, Morera I, Kiper N, Hiestand S, Kroner M, Zhang Y, Watanabe K, Taniguchi T, Demler E, İmamoğlu A. Kinetic magnetism in triangular moiré materials. Nature 2023; 623:509-513. [PMID: 37968525 PMCID: PMC10651480 DOI: 10.1038/s41586-023-06633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 11/17/2023]
Abstract
Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically1-7, but an experimental demonstration8 in an extended system has been missing. Here we investigate MoSe2/WS2 van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance9,10, we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.
Collapse
Affiliation(s)
- L Ciorciaro
- Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - T Smoleński
- Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - I Morera
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain
| | - N Kiper
- Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - S Hiestand
- Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - M Kroner
- Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - Y Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - K Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - T Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - E Demler
- Institute for Theoretical Physics, ETH Zürich, Zürich, Switzerland
| | - A İmamoğlu
- Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
100
|
Wang S, Song J, Sun M, Cao S. Emerging Characteristics and Properties of Moiré Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2881. [PMID: 37947726 PMCID: PMC10649551 DOI: 10.3390/nano13212881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
In recent years, scientists have conducted extensive research on Moiré materials and have discovered some compelling properties. The Moiré superlattice allows superconductivity through flat-band and strong correlation effects. The presence of flat bands causes the Moiré material to exhibit topological properties as well. Modulating electronic interactions with magnetic fields in Moiré materials enables the fractional quantum Hall effect. In addition, Moiré materials have ferromagnetic and antiferromagnetic properties. By tuning the interlayer coupling and spin interactions of the Moiré superlattice, different magnetic properties can be achieved. Finally, this review also discusses the applications of Moiré materials in the fields of photocurrent, superconductivity, and thermoelectricity. Overall, Moiré superlattices provide a new dimension in the development of two-dimensional materials.
Collapse
Affiliation(s)
- Shaofeng Wang
- School of Physics, Liaoning University, Shenyang 110036, China
| | - Jizhe Song
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| | - Shuo Cao
- School of Physics, Liaoning University, Shenyang 110036, China
| |
Collapse
|