51
|
Murphy KM, Le SM, Wilson AE, Warner DA. The Microbiome as a Maternal Effect: A Systematic Review on Vertical Transmission of Microbiota. Integr Comp Biol 2023; 63:597-609. [PMID: 37218690 DOI: 10.1093/icb/icad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
The microbiome is an interactive and fluctuating community of microbes that colonize and develop across surfaces, including those associated with organismal hosts. A growing number of studies exploring how microbiomes vary in ecologically relevant contexts have recognized the importance of microbiomes in affecting organismal evolution. Thus, identifying the source and mechanism for microbial colonization in a host will provide insight into adaptation and other evolutionary processes. Vertical transmission of microbiota is hypothesized to be a source of variation in offspring phenotypes with important ecological and evolutionary implications. However, the life-history traits that govern vertical transmission are largely unexplored in the ecological literature. To increase research attention to this knowledge gap, we conducted a systematic review to address the following questions: (1) How often is vertical transmission assessed as a contributor to offspring microbiome colonization and development? (2) Do studies have the capacity to address how maternal transmission of microbes affects the offspring phenotype? (3) How do studies vary based on taxonomy and life history of the study organism, as well as the experimental, molecular, and statistical methods employed? Extensive literature searches reveal that many studies examining vertical transmission of microbiomes fail to collect whole microbiome samples from both maternal and offspring sources, particularly for oviparous vertebrates. Additionally, studies should sample functional diversity of microbes to provide a better understanding of mechanisms that influence host phenotypes rather than solely taxonomic variation. An ideal microbiome study incorporates host factors, microbe-microbe interactions, and environmental factors. As evolutionary biologists continue to merge microbiome science and ecology, examining vertical transmission of microbes across taxa can provide inferences on causal links between microbiome variation and phenotypic evolution.
Collapse
Affiliation(s)
- Kaitlyn M Murphy
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Samantha M Le
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
52
|
Sireci M, Muñoz MA, Grilli J. Environmental fluctuations explain the universal decay of species-abundance correlations with phylogenetic distance. Proc Natl Acad Sci U S A 2023; 120:e2217144120. [PMID: 37669363 PMCID: PMC10500273 DOI: 10.1073/pnas.2217144120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/19/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple ecological forces act together to shape the composition of microbial communities. Phyloecology approaches-which combine phylogenetic relationships between species with community ecology-have the potential to disentangle such forces but are often hard to connect with quantitative predictions from theoretical models. On the other hand, macroecology, which focuses on statistical patterns of abundance and diversity, provides natural connections with theoretical models but often neglects interspecific correlations and interactions. Here, we propose a unified framework combining both such approaches to analyze microbial communities. In particular, by using both cross-sectional and longitudinal metagenomic data for species abundances, we reveal the existence of an empirical macroecological law establishing that correlations in species-abundance fluctuations across communities decay from positive to null values as a function of phylogenetic dissimilarity in a consistent manner across ecologically distinct microbiomes. We formulate three variants of a mechanistic model-each relying on alternative ecological forces-that lead to radically different predictions. From these analyses, we conclude that the empirically observed macroecological pattern can be quantitatively explained as a result of shared population-independent fluctuating resources, i.e., environmental filtering and not as a consequence of, e.g., species competition. Finally, we show that the macroecological law is also valid for temporal data of a single community and that the properties of delayed temporal correlations can be reproduced as well by the model with environmental filtering.
Collapse
Affiliation(s)
- Matteo Sireci
- Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, GranadaE-18071, Spain
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, GranadaE-18071, Spain
| | - Jacopo Grilli
- Quantitative Life Sciences section, The Abdus Salam International Centre for Theoretical Physics, Trieste34151, Italy
| |
Collapse
|
53
|
Luo S, Chen Z, Deng L, Chen Y, Zhou W, Canavese F, Li L. Causal Link between Gut Microbiota, Neurophysiological States, and Bone Diseases: A Comprehensive Mendelian Randomization Study. Nutrients 2023; 15:3934. [PMID: 37764718 PMCID: PMC10534888 DOI: 10.3390/nu15183934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Increasing evidence highlights a robust correlation between the gut microbiota and bone diseases; however, the existence of a causal relationship between them remains unclear. In this study, we thoroughly examined the correlation between gut microbiota and skeletal diseases using genome-wide association studies. Linkage disequilibrium score regression and Mendelian randomization were used to probe genetic causality. Furthermore, the potential mediating role of neuropsychological states (i.e., cognition, depression, and insomnia) between the gut microbiota and bone diseases was evaluated using mediation analysis, with genetic colocalization analysis revealing potential targets. These findings suggest a direct causal relationship between Ruminococcaceae and knee osteoarthritis (OA), which appears to be mediated by cognitive performance and insomnia. Similarly, a causal association was observed between Burkholderiales and lumbar pelvic fractures, mediated by cognitive performance. Colocalization analysis identified a shared causal variant (rs2352974) at the TRAF-interacting protein locus for cognitive ability and knee OA. This study provides compelling evidence that alterations in the gut microbiota can enhance cognitive ability, ameliorate insomnia, and potentially reduce the risk of site-specific fractures and OA. Therefore, strategies targeting gut microbiota optimization could serve as novel and effective preventive measures against fractures and OA.
Collapse
Affiliation(s)
- Shaoting Luo
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Zhiyang Chen
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Linfang Deng
- Department of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Federico Canavese
- Department of Pediatric Orthopedic Surgery, Lille University Centre, Jeanne de Flandre Hospital, 59000 Lille, France;
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| |
Collapse
|
54
|
He Z, Liu R, Wang M, Wang Q, Zheng J, Ding J, Wen J, Fahey AG, Zhao G. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens. MICROBIOME 2023; 11:198. [PMID: 37653442 PMCID: PMC10472625 DOI: 10.1186/s40168-023-01627-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Improving feed efficiency is the most important goal for modern animal production. The regulatory mechanisms of controlling feed efficiency traits are extremely complex and include the functions related to host genetics and gut microbiota. Short-chain fatty acids (SCFAs), as significant metabolites of microbiota, could be used to refine the combined effect of host genetics and gut microbiota. However, the association of SCFAs with the gut microbiota and host genetics for regulating feed efficiency is far from understood. RESULTS In this study, 464 broilers were housed for RFI measuring and examining the host genome sequence. And 300 broilers were examined for cecal microbial data and SCFA concentration. Genome-wide association studies (GWAS) showed that four out of seven SCFAs had significant associations with genome variants. One locus (chr4: 29414391-29417189), located near or inside the genes MAML3, SETD7, and MGST2, was significantly associated with propionate and had a modest effect on feed efficiency traits and the microbiota. The genetic effect of the top SNP explained 8.43% variance of propionate. Individuals with genotype AA had significantly different propionate concentrations (0.074 vs. 0.131 μg/mg), feed efficiency (FCR: 1.658 vs. 1.685), and relative abundance of 14 taxa compared to those with the GG genotype. Christensenellaceae and Christensenellaceae_R-7_group were associated with feed efficiency, propionate concentration, the top SNP genotypes, and lipid metabolism. Individuals with a higher cecal abundance of these taxa showed better feed efficiency and lower concentrations of caecal SCFAs. CONCLUSION Our study provides strong evidence of the pathway that host genome variants affect the cecal SCFA by influencing caecal microbiota and then regulating feed efficiency. The cecal taxa Christensenellaceae and Christensenellaceae_R-7_group were identified as representative taxa contributing to the combined effect of host genetics and SCFAs on chicken feed efficiency. These findings provided strong evidence of the combined effect of host genetics and gut microbial SCFAs in regulating feed efficiency traits. Video Abstract.
Collapse
Affiliation(s)
- Zhengxiao He
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengjie Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiao Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jumei Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiqiang Ding
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Alan G Fahey
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
55
|
Lea AJ, Clark AG, Dahl AW, Devinsky O, Garcia AR, Golden CD, Kamau J, Kraft TS, Lim YAL, Martins DJ, Mogoi D, Pajukanta P, Perry GH, Pontzer H, Trumble BC, Urlacher SS, Venkataraman VV, Wallace IJ, Gurven M, Lieberman DE, Ayroles JF. Applying an evolutionary mismatch framework to understand disease susceptibility. PLoS Biol 2023; 21:e3002311. [PMID: 37695771 PMCID: PMC10513379 DOI: 10.1371/journal.pbio.3002311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Indexed: 09/13/2023] Open
Abstract
Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
| | - Andrew W. Dahl
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Angela R. Garcia
- Department of Anthropology, Stanford University, Stanford, California, United States of America
| | - Christopher D. Golden
- Department of Nutrition, Harvard T H Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Joseph Kamau
- One Health Centre, Institute of Primate Research, Karen, Nairobi, Kenya
| | - Thomas S. Kraft
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, United States of America
| | - Donald Mogoi
- Department of Medical Services and Public Health, Ministry of Health Laikipia County, Nanyuki, Kenya
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - George H. Perry
- Departments of Anthropology and Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Benjamin C. Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Samuel S. Urlacher
- Department of Anthropology, Baylor University, Waco, Texas, United States of America
| | - Vivek V. Venkataraman
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ian J. Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Julien F. Ayroles
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
56
|
Wang W, Zhang Y, Zhang X, Li C, Yuan L, Zhang D, Zhao Y, Li X, Cheng J, Lin C, Zhao L, Wang J, Xu D, Yue X, Li W, Wen X, Jiang Z, Ding X, Salekdeh GH, Li F. Heritability and recursive influence of host genetics on the rumen microbiota drive body weight variance in male Hu sheep lambs. MICROBIOME 2023; 11:197. [PMID: 37644504 PMCID: PMC10463499 DOI: 10.1186/s40168-023-01642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Heritable rumen microbiota is an important modulator of ruminant growth performance. However, no information exists to date on host genetics-rumen microbiota interactions and their association with phenotype in sheep. To solve this, we curated and analyzed whole-genome resequencing genotypes, 16S rumen-microbiota data, and longitudinal body weight (BW) phenotypes from 1150 sheep. RESULTS A variance component model indicated significant heritability of rumen microbial community diversity. Genome-wide association studies (GWAS) using microbial features as traits identified 411 loci-taxon significant associations (P < 10-8). We found a heritability of 39% for 180-day-old BW, while also the rumen microbiota likely played a significant role, explaining that 20% of the phenotypic variation. Microbiota-wide association studies (MWAS) and GWAS identified four marker genera (Bonferroni corrected P < 0.05) and five novel genetic variants (P < 10-8) that were significantly associated with BW. Integrative analysis identified the mediating role of marker genera in genotype influencing phenotype and unravelled that the same genetic markers have direct and indirect effects on sheep weight. CONCLUSIONS This study reveals a reciprocal interplay among host genetic variations, the rumen microbiota and the body weight traits of sheep. The information obtained provide insights into the diverse microbiota characteristics of rumen and may help in designing precision microbiota management strategies for controlling and manipulating sheep rumen microbiota to increase productivity. Video Abstract.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiuxiu Wen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University (WSU), Pullman, WA, 99164, USA
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | | | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
57
|
Pathare NN, Fayet-Moore F, Fogarty JA, Jacka FN, Strandwitz P, Strangman GE, Donoviel DB. Nourishing the brain on deep space missions: nutritional psychiatry in promoting resilience. Front Neural Circuits 2023; 17:1170395. [PMID: 37663891 PMCID: PMC10469890 DOI: 10.3389/fncir.2023.1170395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The grueling psychological demands of a journey into deep space coupled with ever-increasing distances away from home pose a unique problem: how can we best take advantage of the benefits of fresh foods in a place that has none? Here, we consider the biggest challenges associated with our current spaceflight food system, highlight the importance of supporting optimal brain health on missions into deep space, and discuss evidence about food components that impact brain health. We propose a future food system that leverages the gut microbiota that can be individually tailored to best support the brain and mental health of crews on deep space long-duration missions. Working toward this goal, we will also be making investments in sustainable means to nourish the crew that remains here on spaceship Earth.
Collapse
Affiliation(s)
- Nihar N. Pathare
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Jennifer A. Fogarty
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
| | - Felice N. Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Gary E. Strangman
- Neural Systems Group, Division of Health Sciences and Technology, Massachusetts General Hospital, Harvard Medical School and Harvard-MIT, Charlestown, MA, United States
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Dorit B. Donoviel
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
58
|
Casto-Rebollo C, Argente MJ, García ML, Pena RN, Blasco A, Ibáñez-Escriche N. Selection for environmental variance shifted the gut microbiome composition driving animal resilience. MICROBIOME 2023; 11:147. [PMID: 37400907 DOI: 10.1186/s40168-023-01580-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Understanding how the host's microbiome shapes phenotypes and participates in the host response to selection is fundamental for evolutionists and animal and plant breeders. Currently, selection for resilience is considered a critical step in improving the sustainability of livestock systems. Environmental variance (V E), the within-individual variance of a trait, has been successfully used as a proxy for animal resilience. Selection for reduced V E could effectively shift gut microbiome composition; reshape the inflammatory response, triglyceride, and cholesterol levels; and drive animal resilience. This study aimed to determine the gut microbiome composition underlying the V E of litter size (LS), for which we performed a metagenomic analysis in two rabbit populations divergently selected for low (n = 36) and high (n = 34) V E of LS. Partial least square-discriminant analysis and alpha- and beta-diversity were computed to determine the differences in gut microbiome composition among the rabbit populations. RESULTS We identified 116 KEGG IDs, 164 COG IDs, and 32 species with differences in abundance between the two rabbit populations studied. These variables achieved a classification performance of the V E rabbit populations of over than 80%. Compared to the high V E population, the low V E (resilient) population was characterized by an underrepresentation of Megasphaera sp., Acetatifactor muris, Bacteroidetes rodentium, Ruminococcus bromii, Bacteroidetes togonis, and Eggerthella sp. and greater abundances of Alistipes shahii, Alistipes putredinis, Odoribacter splanchnicus, Limosilactobacillus fermentum, and Sutterella, among others. Differences in abundance were also found in pathways related to biofilm formation, quorum sensing, glutamate, and amino acid aromatic metabolism. All these results suggest differences in gut immunity modulation, closely related to resilience. CONCLUSIONS This is the first study to show that selection for V E of LS can shift the gut microbiome composition. The results revealed differences in microbiome composition related to gut immunity modulation, which could contribute to the differences in resilience among rabbit populations. The selection-driven shifts in gut microbiome composition should make a substantial contribution to the remarkable genetic response observed in the V E rabbit populations. Video Abstract.
Collapse
Affiliation(s)
- Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de València, València, Spain
| | - María José Argente
- Centro de Investigación e Innovación Agroalimentaria Y Agroambiental (CIAGRO_UMH), Miguel Hernández University, Orihuela, 03312, Spain
| | - María Luz García
- Centro de Investigación e Innovación Agroalimentaria Y Agroambiental (CIAGRO_UMH), Miguel Hernández University, Orihuela, 03312, Spain
| | - Ramona Natacha Pena
- Departament de Ciència Animal, Universitat de Lleida-AGROTECNIO Center, Lleida, Catalonia, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, València, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, València, Spain.
| |
Collapse
|
59
|
Henry LP, Bergelson J. Evolutionary implications of host genetic control for engineering beneficial microbiomes. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 34:None. [PMID: 37287906 PMCID: PMC10242548 DOI: 10.1016/j.coisb.2023.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering new functions in the microbiome requires understanding how host genetic control and microbe-microbe interactions shape the microbiome. One key genetic mechanism underlying host control is the immune system. The immune system can promote stability in the composition of the microbiome by reshaping the ecological dynamics of its members, but the degree of stability will depend on the interplay between ecological context, immune system development, and higher-order microbe-microbe interactions. The eco-evolutionary interplay affecting composition and stability should inform the strategies used to engineer new functions in the microbiome. We conclude with recent methodological developments that provide an important path forward for both engineering new functionality in the microbiome and broadly understanding how ecological interactions shape evolutionary processes in complex biological systems.
Collapse
|
60
|
Sanders JG, Sprockett DD, Li Y, Mjungu D, Lonsdorf EV, Ndjango JBN, Georgiev AV, Hart JA, Sanz CM, Morgan DB, Peeters M, Hahn BH, Moeller AH. Widespread extinctions of co-diversified primate gut bacterial symbionts from humans. Nat Microbiol 2023; 8:1039-1050. [PMID: 37169918 PMCID: PMC10860671 DOI: 10.1038/s41564-023-01388-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Humans and other primates harbour complex gut bacterial communities that influence health and disease, but the evolutionary histories of these symbioses remain unclear. This is partly due to limited information about the microbiota of ancestral primates. Here, using phylogenetic analyses of metagenome-assembled genomes (MAGs), we show that hundreds of gut bacterial clades diversified in parallel (that is, co-diversified) with primate species over millions of years, but that humans have experienced widespread losses of these ancestral symbionts. Analyses of 9,460 human and non-human primate MAGs, including newly generated MAGs from chimpanzees and bonobos, revealed significant co-diversification within ten gut bacterial phyla, including Firmicutes, Actinobacteriota and Bacteroidota. Strikingly, ~44% of the co-diversifying clades detected in African apes were absent from available metagenomic data from humans and ~54% were absent from industrialized human populations. In contrast, only ~3% of non-co-diversifying clades detected in African apes were absent from humans. Co-diversifying clades present in both humans and chimpanzees displayed consistent genomic signatures of natural selection between the two host species but differed in functional content from co-diversifying clades lost from humans, consistent with selection against certain functions. This study discovers host-species-specific bacterial symbionts that predate hominid diversification, many of which have undergone accelerated extinctions from human populations.
Collapse
Affiliation(s)
- Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Daniel D Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deus Mjungu
- Gombe Stream Research Center, Kigoma, Tanzania
| | - Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA, USA
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Alexander V Georgiev
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- School of Natural Sciences, Bangor University, Bangor, UK
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, Kinshasa, Democratic Republic of the Congo
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St Louis, Saint Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, Montpellier, France
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
61
|
Tkaczynski PJ, Mafessoni F, Girard-Buttoz C, Samuni L, Ackermann CY, Fedurek P, Gomes C, Hobaiter C, Löhrich T, Manin V, Preis A, Valé PD, Wessling EG, Wittiger L, Zommers Z, Zuberbuehler K, Vigilant L, Deschner T, Wittig RM, Crockford C. Shared community effects and the non-genetic maternal environment shape cortisol levels in wild chimpanzees. Commun Biol 2023; 6:565. [PMID: 37237178 DOI: 10.1038/s42003-023-04909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Mechanisms of inheritance remain poorly defined for many fitness-mediating traits, especially in long-lived animals with protracted development. Using 6,123 urinary samples from 170 wild chimpanzees, we examined the contributions of genetics, non-genetic maternal effects, and shared community effects on variation in cortisol levels, an established predictor of survival in long-lived primates. Despite evidence for consistent individual variation in cortisol levels across years, between-group effects were more influential and made an overwhelming contribution to variation in this trait. Focusing on within-group variation, non-genetic maternal effects accounted for 8% of the individual differences in average cortisol levels, significantly more than that attributable to genetic factors, which was indistinguishable from zero. These maternal effects are consistent with a primary role of a shared environment in shaping physiology. For chimpanzees, and perhaps other species with long life histories, community and maternal effects appear more relevant than genetic inheritance in shaping key physiological traits.
Collapse
Affiliation(s)
- Patrick J Tkaczynski
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire.
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Fabrizio Mafessoni
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Weizmann Institute of Science, Department of Plant and Environmental Sciences, Rehovot, Israel.
| | - Cédric Girard-Buttoz
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| | - Liran Samuni
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Centre for Social Learning & Cognitive Evolution, School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Corinne Y Ackermann
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
| | - Pawel Fedurek
- Division of Psychology, University of Stirling, Stirling, UK
| | - Cristina Gomes
- Tropical Conservation Institute, Institute of Environment, College of Arts, Science and Education, Florida International University, Miami, FL, USA
| | - Catherine Hobaiter
- Centre for Social Learning & Cognitive Evolution, School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Therese Löhrich
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, BP 1053, Bangui, Central African Republic
- Robert Koch Institute, Epidemiology of Highly Pathogenic Microorganisms, Berlin, Germany
| | - Virgile Manin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Anna Preis
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Prince D Valé
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Unité de Formation et de Recherche Agroferesterie, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Zinta Zommers
- Perry World House, University of Pennsylvania, Philadelphia, USA
| | - Klaus Zuberbuehler
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tobias Deschner
- Institute of Cognitive Science, Comparative BioCognition, University of Osnabrück, Osnabrück, Germany
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS UMR 5229, Lyon, France
| |
Collapse
|
62
|
Roche KE, Bjork JR, Dasari MR, Grieneisen L, Jansen D, Gould TJ, Gesquiere LR, Barreiro LB, Alberts SC, Blekhman R, Gilbert JA, Tung J, Mukherjee S, Archie EA. Universal gut microbial relationships in the gut microbiome of wild baboons. eLife 2023; 12:e83152. [PMID: 37158607 PMCID: PMC10292843 DOI: 10.7554/elife.83152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Ecological relationships between bacteria mediate the services that gut microbiomes provide to their hosts. Knowing the overall direction and strength of these relationships is essential to learn how ecology scales up to affect microbiome assembly, dynamics, and host health. However, whether bacterial relationships are generalizable across hosts or personalized to individual hosts is debated. Here, we apply a robust, multinomial logistic-normal modeling framework to extensive time series data (5534 samples from 56 baboon hosts over 13 years) to infer thousands of correlations in bacterial abundance in individual baboons and test the degree to which bacterial abundance correlations are 'universal'. We also compare these patterns to two human data sets. We find that, most bacterial correlations are weak, negative, and universal across hosts, such that shared correlation patterns dominate over host-specific correlations by almost twofold. Further, taxon pairs that had inconsistent correlation signs (either positive or negative) in different hosts always had weak correlations within hosts. From the host perspective, host pairs with the most similar bacterial correlation patterns also had similar microbiome taxonomic compositions and tended to be genetic relatives. Compared to humans, universality in baboons was similar to that in human infants, and stronger than one data set from human adults. Bacterial families that showed universal correlations in human infants were often universal in baboons. Together, our work contributes new tools for analyzing the universality of bacterial associations across hosts, with implications for microbiome personalization, community assembly, and stability, and for designing microbiome interventions to improve host health.
Collapse
Affiliation(s)
- Kimberly E Roche
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
| | - Johannes R Bjork
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and HepatologyGroningenNetherlands
- University of Groningen and University Medical Center Groningen, Department of GeneticsGroningenNetherlands
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Mauna R Dasari
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Laura Grieneisen
- Department of Biology, University of British Columbia-Okanagan CampusKelownaCanada
| | - David Jansen
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Trevor J Gould
- Department of Ecology, Evolution, and Behavior, University of MinnesotaMinneapolisUnited States
| | | | - Luis B Barreiro
- Committee on Genetics, Genomics, and Systems Biology, University of ChicagoChicagoUnited States
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
- Committee on Immunology, University of ChicagoChicagoUnited States
| | - Susan C Alberts
- Department of Biology, Duke UniversityDurhamUnited States
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San DiegoSan DiegoUnited States
| | - Jenny Tung
- Department of Biology, Duke UniversityDurhamUnited States
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke UniversityDurhamUnited States
- Center for Scalable Data Analytics and Artificial Intelligence, University of LeipzigLeipzigGermany
- Max Plank Institute for Mathematics in the Natural SciencesLeipzigGermany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| |
Collapse
|
63
|
Lan X, Peng X, Du T, Xia Z, Gao Q, Tang Q, Yi S, Yang G. Alterations of the Gut Microbiota and Metabolomics Associated with the Different Growth Performances of Macrobrachium rosenbergii Families. Animals (Basel) 2023; 13:ani13091539. [PMID: 37174576 PMCID: PMC10177557 DOI: 10.3390/ani13091539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate the key gut microbiota and metabolites associated with the growth performance of Macrobrachium rosenbergii families, 16S rRNA sequencing and LC-MS metabolomic methods were used. In this study, 90 M. rosenbergii families were bred to evaluate growth performance. After 92 days of culture, high (H), medium (M), and low (L) experimental groups representing three levels of growth performance, respectively, were collected according to the weight gain and specific growth rate of families. The composition of gut microbiota showed that the relative abundance of Firmicutes, Lachnospiraceae, Lactobacillus, and Blautia were much higher in Group H than those in M and L groups. Meanwhile, compared to the M and L groups, Group H had significantly higher levels of spermidine, adenosine, and creatinine, and lower levels of L-citrulline. Correlation analysis showed that the abundances of Lactobacillus and Blautia were positively correlated with the levels of alpha-ketoglutaric acid and L-arginine. The abundance of Blautia was also positively correlated with the levels of adenosine, taurine, and spermidine. Notably, lots of metabolites related to the metabolism and biosynthesis of arginine, taurine, hypotaurine, and fatty acid were upregulated in Group H. This study contributes to figuring out the landscape of the gut microbiota and metabolites associated with prawn growth performance and provides a basis for selective breeding.
Collapse
Affiliation(s)
- Xuan Lan
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xin Peng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Tingting Du
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zhenglong Xia
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Guoliang Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| |
Collapse
|
64
|
Bhattacharjee A, Sarma S, Sen T, Devi MV, Deka B, Singh AK. Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Arch Microbiol 2023; 205:127. [PMID: 36944761 DOI: 10.1007/s00203-023-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Actinobacteria are the largest bacteria group with 18 significant lineages, which are ubiquitously distributed in all the possible terrains. They are known to produce more than 10,000 medically relevant compounds. Despite their ability to make critical secondary metabolites and genome sequences' availability, these two have not been linked with certainty. With this intent, our study aims at understanding the biosynthetic capacity in terms of secondary metabolite production in 528 Actinobacteria species from five different habitats, viz., soil, water, plants, animals, and humans. In our analysis of 9,646 clusters of 59 different classes, we have documented 64,000 SMs, of which more than 74% were of unique type, while 19% were partially conserved and 7% were conserved compounds. In the case of conserved compounds, we found the highest distribution in soil, 79.12%. We found alternate sources of antibiotics, such as viomycin, vancomycin, teicoplanin, fosfomycin, ficellomycin and patulin, and antitumour compounds, such as doxorubicin and tacrolimus in the soil. Also our study reported alternate sources for the toxin cyanobactin in water and plant isolates. We further analysed the clusters to determine their regulatory pathways and reported the prominent presence of the two component system of TetR/AcrR family, as well as other partial domains like CitB superfamily and HTH superfamily, and discussed their role in secondary metabolite production. This information will be helpful in exploring Actinobacteria from other environments and in discovering new chemical moieties of clinical significance.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
- Department of Botany, Dibrugarh Hanumanbax Surajmall Kanoi College, Dibrugarh, 786001, Assam, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Moirangthem Veigyabati Devi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Banani Deka
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India.
| |
Collapse
|
65
|
Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience 2023; 518:141-161. [PMID: 36893982 DOI: 10.1016/j.neuroscience.2023.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. Among them, Alzheimeŕs disease (AD) is probably the one where its association with a state of dysbiosis of the gut microbiota has been most studied. In particular, intestinal microbial-derived metabolites have been associated with β-amyloid formation and brain amyloid deposition, tau phosphorylation, as well as neuroinflammation in AD patients. Moreover, it has been suggested that some oral bacteria increase the risk of developing AD. However, the causal connections among microbiome, amyloid-tau interaction, and neurodegeneration need to be addressed. This paper summarizes the emerging evidence in the literature regarding the link between the oral and gut microbiome and neurodegeneration with a focus on AD. Taxonomic features of bacteria as well as microbial functional alterations associated with AD biomarkers are the main points reviewed. Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
Collapse
Affiliation(s)
- Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain.
| |
Collapse
|
66
|
Quan Y, Zhang KX, Zhang HY. The gut microbiota links disease to human genome evolution. Trends Genet 2023; 39:451-461. [PMID: 36872184 DOI: 10.1016/j.tig.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
A large number of studies have established a causal relationship between the gut microbiota and human disease. In addition, the composition of the microbiota is substantially influenced by the human genome. Modern medical research has confirmed that the pathogenesis of various diseases is closely related to evolutionary events in the human genome. Specific regions of the human genome known as human accelerated regions (HARs) have evolved rapidly over several million years since humans diverged from a common ancestor with chimpanzees, and HARs have been found to be involved in some human-specific diseases. Furthermore, the HAR-regulated gut microbiota has undergone rapid changes during human evolution. We propose that the gut microbiota may serve as an important mediator linking diseases to human genome evolution.
Collapse
Affiliation(s)
- Yuan Quan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke-Xin Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong-Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
67
|
Abstract
A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.
Collapse
|
68
|
Flynn JK, Ortiz AM, Herbert R, Brenchley JM. Host Genetics and Environment Shape the Composition of the Gastrointestinal Microbiome in Nonhuman Primates. Microbiol Spectr 2023; 11:e0213922. [PMID: 36475838 PMCID: PMC9927375 DOI: 10.1128/spectrum.02139-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
The bacterial component of the gastrointestinal tract microbiome is comprised of hundreds of species, the majority of which live in symbiosis with the host. The bacterial microbiome is influenced by host diet and disease history, and host genetics may additionally play a role. To understand the degree to which host genetics shapes the gastrointestinal tract microbiome, we studied fecal microbiomes in 4 species of nonhuman primates (NHPs) held in separate facilities but fed the same base diet. These animals include Chlorocebus pygerythrus, Chlorocebus sabaeus, Macaca mulatta, and Macaca nemestrina. We also followed gastrointestinal tract microbiome composition in 20 Macaca mulatta (rhesus macaques [RMs]) as they transitioned from an outdoor to indoor environment and compared 6 Chlorocebus pygerythrus monkeys that made the outdoor to indoor transition to their 9 captive-born offspring. We found that genetics can influence microbiome composition, with animals of different genera (Chlorocebus versus Macaca) having significantly different gastrointestinal (GI) microbiomes despite controlled diets. Animals within the same genera have more similar microbiomes, although still significantly different, and animals within the same species have even more similar compositions that are not significantly different. Significant differences were also not observed between wild-born and captive-born Chlorocebus pygerythrus, while there were significant changes in RMs as they transitioned into captivity. Together, these results suggest that the effects of captivity have a larger impact on the microbiome than other factors we examined within a single NHP species, although host genetics does significantly influence microbiome composition between NHP genera and species. IMPORTANCE Our data point to the degree to which host genetics can influence GI microbiome composition and suggest, within primate species, that individual host genetics is unlikely to significantly alter the microbiome. These data are important for the development of therapeutics aimed at altering the microbiome within populations of genetically disparate members of primate species.
Collapse
Affiliation(s)
- Jacob K. Flynn
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Richard Herbert
- Comparative Medicine Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
69
|
Lea AJ, Clark AG, Dahl AW, Devinsky O, Garcia AR, Golden CD, Kamau J, Kraft TS, Lim YAL, Martins D, Mogoi D, Pajukanta P, Perry G, Pontzer H, Trumble BC, Urlacher SS, Venkataraman VV, Wallace IJ, Gurven M, Lieberman D, Ayroles JF. Evolutionary mismatch and the role of GxE interactions in human disease. ARXIV 2023:arXiv:2301.05255v2. [PMID: 36713247 PMCID: PMC9882586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of "lifestyle" diseases that were rare throughout human history but are now common. A key idea from anthropology and evolutionary biology-the evolutionary mismatch hypothesis-seeks to explain this phenomenon. It posits that humans evolved in environments that radically differ from the ones experienced by most people today, and thus traits that were advantageous in past environments may now be "mismatched" and disease-causing. This hypothesis is, at its core, a genetic one: it predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions and have differential health effects in ancestral versus modern environments. Here, we discuss how this concept could be leveraged to uncover the genetic architecture of NCDs in a principled way. Specifically, we advocate for partnering with small-scale, subsistence-level groups that are currently transitioning from environments that are arguably more "matched" with their recent evolutionary history to those that are more "mismatched". These populations provide diverse genetic backgrounds as well as the needed levels and types of environmental variation necessary for mapping GxE interactions in an explicit mismatch framework. Such work would make important contributions to our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and sociocultural contexts.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Andrew G. Clark
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Andrew W. Dahl
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Medical Center, New York, NY, USA
- Comprehensive Epilepsy Center, NYU Langone Medical Center, New York, NY, USA
| | - Angela R. Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, United States
| | | | - Joseph Kamau
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Thomas S. Kraft
- Department of Anthropology, University of Utah, Salt Lake City, USA
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Dino Martins
- Turkana Basin Research Institute, Turkana, Kenya
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
| | - Donald Mogoi
- Director at County Government of Laikipia, Nanyuki, Kenya
| | - Paivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Benjamin C. Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, US
- Center for Evolution and Medicine, Arizona State University, Tempe, United States
| | - Samuel S. Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | | | - Ian J. Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, USA
| | - Michael Gurven
- Department of Anthropology, University of California: Santa Barbara, Santa Barbara, CA, USA
| | - Daniel Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Julien F. Ayroles
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
70
|
Parida S, Siddharth S, Xia Y, Sharma D. Concomitant analyses of intratumoral microbiota and genomic features reveal distinct racial differences in breast cancer. NPJ Breast Cancer 2023; 9:4. [PMID: 36702853 PMCID: PMC9880005 DOI: 10.1038/s41523-023-00505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Racial disparities are most accentuated among Black women as their lifetime risk of breast cancer incidence is lower than white and Asian women but their breast cancer related mortality is the highest among all races. Black women are more likely to develop triple-negative breast cancer at a younger age and harbor more aggressive tumors. In addition to tumor-centric alterations, tumor growth is also influenced by multiple other tumor microenvironment-related features, including resident immune cells and microbiota. Hence, in this study, we conduct concurrent genomic and metagenomic analyses, and uncover distinctive intratumoral microbial community compositions and tumor immune microenvironment-related traits in breast tumors from Asian, Black and white women. Interestingly, unique racially associated genomic nodes are found in the breast tumors from Asian, Black and white women. Examination of the cellular heterogeneity show differential enrichment of 11 out of 64 immune and stroma cell types in the breast tumors from different racial groups. In terms of microbial diversity, significant differences are revealed in alpha and beta-diversity measures. Intriguingly, potential race-specific microbial biomarkers of breast cancer are identified which significantly correlate with genes involved with tumor aggressiveness, angiogenesis, tumor cell migration and metastasis as well as oncogenic pathways-GLI and Notch. Investigating the metabolic features of intratumoral microbes, we find a significant differential enrichment of environmental information processing pathways, oncogenic pathways, and lipid metabolism pathways. Concomitantly investigating tumor-centric, tumor immune microenvironment-related and microbial alterations, our study provides a comprehensive understanding of racial disparities in breast cancer and warrants further exploration.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sumit Siddharth
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Yuqing Xia
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| |
Collapse
|
71
|
Baldo L, Tavecchia G, Rotger A, Igual JM, Riera JL. Insular holobionts: persistence and seasonal plasticity of the Balearic wall lizard ( Podarcis lilfordi) gut microbiota. PeerJ 2023; 11:e14511. [PMID: 36620745 PMCID: PMC9817956 DOI: 10.7717/peerj.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
Background Integrative studies of animals and associated microbial assemblages (i.e., the holobiont) are rapidly changing our perspectives on organismal ecology and evolution. Insular vertebrates provide ideal natural systems to understand patterns of host-gut microbiota coevolution, the resilience and plasticity these microbial communities over temporal and spatial scales, and ultimately their role in the host ecological adaptation. Methods Here we used the endemic Balearic wall lizard Podarcis lilfordi to dissect the drivers of the microbial diversity within and across host allopatric populations/islets. By focusing on three extensively studied populations/islets of Mallorca (Spain) and fecal sampling from individually identified lizards along two years (both in spring and autumn), we sorted out the effect of islet, sex, life stage, year and season on the microbiota composition. We further related microbiota diversity to host genetics, trophic ecology and expected annual metabolic changes. Results All the three populations showed a remarkable conservation of the major microbial taxonomic profile, while carrying their unique microbial signature at finer level of taxonomic resolution (Amplicon Sequence Variants (ASVs)). Microbiota distances across populations were compatible with both host genetics (based on microsatellites) and trophic niche distances (based on stable isotopes and fecal content). Within populations, a large proportion of ASVs (30-50%) were recurrently found along the four sampling dates. The microbial diversity was strongly marked by seasonality, with no sex effect and a marginal life stage and annual effect. The microbiota showed seasonal fluctuations along the two sampled years, primarily due to changes in the relative abundances of fermentative bacteria (mostly families Lachnospiraceae and Ruminococcaceae), without any major compositional turnover. Conclusions These results support a large resilience of the major compositional aspects of the P. lilfordi gut microbiota over the short-term evolutionary divergence of their host allopatric populations (<10,000 years), but also indicate an undergoing process of parallel diversification of the both host and associated gut microbes. Predictable seasonal dynamics in microbiota diversity suggests a role of microbiota plasticity in the lizards' metabolic adaptation to their resource-constrained insular environments. Overall, our study supports the need for longitudinal and integrative studies of host and associated microbes in natural systems.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), Barcelona, Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Andreu Rotger
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - José Manuel Igual
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
72
|
Holmes IA, Grundler MC. Phylogenetically under-dispersed gut microbiomes are not correlated with host genomic heterozygosity in a genetically diverse reptile community. Mol Ecol 2023; 32:258-274. [PMID: 36221927 PMCID: PMC9797449 DOI: 10.1111/mec.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022]
Abstract
While key elements of fitness in vertebrate animals are impacted by their microbiomes, the host genetic characteristics that factor into microbiome composition are not fully understood. Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity across a community of reptiles in southwestern New Mexico to test hypotheses about the behaviour of host genes that drive microbiome assembly. We find that microbiome communities are phylogenetically under-dispersed relative to random expectations, and that host heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from functional genomic work that identify conserved host immune and nonimmune genes as key players in microbiome assembly, rather than gene families that rely on heterozygosity for their function.
Collapse
Affiliation(s)
- Iris A. Holmes
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Cornell Institute of Host Microbe Interactions and Disease and Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Michael C. Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
73
|
Grieneisen L, Blekhman R, Archie E. How longitudinal data can contribute to our understanding of host genetic effects on the gut microbiome. Gut Microbes 2023; 15:2178797. [PMID: 36794811 PMCID: PMC9980606 DOI: 10.1080/19490976.2023.2178797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
A key component of microbiome research is understanding the role of host genetic influence on gut microbial composition. However, it can be difficult to link host genetics with gut microbial composition because host genetic similarity and environmental similarity are often correlated. Longitudinal microbiome data can supplement our understanding of the relative role of genetic processes in the microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of controlling for environmental differences and in comparing how genetic effects differ by environment. Here, we explore four research areas where longitudinal data could lend new insights into host genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and host and microbiome population genetics. We conclude with a discussion of methodological considerations for future studies.
Collapse
Affiliation(s)
- Laura Grieneisen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Elizabeth Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
74
|
Zhang W, Xie J, Xia S, Fan X, Schmitz-Esser S, Zeng B, Zheng L, Huang H, Wang H, Zhong J, Zhang Z, Zhang L, Jiang M, Hou R. Evaluating a potential model to analyze the function of the gut microbiota of the giant panda. Front Microbiol 2022; 13:1086058. [PMID: 36605506 PMCID: PMC9808404 DOI: 10.3389/fmicb.2022.1086058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
To contribute to the conservation of endangered animals, the utilization of model systems is critical to analyze the function of their gut microbiota. In this study, the results of a fecal microbial transplantation (FMT) experiment with germ-free (GF) mice receiving giant panda or horse fecal microbiota showed a clear clustering by donor microbial communities in GF mice, which was consistent with the results of blood metabolites from these mice. At the genus level, FMT re-established approximately 9% of the giant panda donor microbiota in GF mice compared to about 32% for the horse donor microbiota. In line with this, the difference between the panda donor microbiota and panda-mice microbiota on whole-community level was significantly larger than that between the horse donor microbiota and the horse-mice microbiota. These results were consistent with source tracking analysis that found a significantly higher retention rate of the horse donor microbiota (30.9%) than the giant panda donor microbiota (4.0%) in GF mice where the microbiota remained stable after FMT. Further analyzes indicated that the possible reason for the low retention rate of the panda donor microbiota in GF mice was a low relative abundance of Clostridiaceae in the panda donor microbiota. Our results indicate that the donor microbiota has a large effect on GF mice microbiota after FMT.
Collapse
Affiliation(s)
- Wenping Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Junjin Xie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shan Xia
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| | - Xueyang Fan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | | | - Benhua Zeng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lijun Zheng
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - He Huang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Jincheng Zhong
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhihe Zhang
- Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Liang Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Mingfeng Jiang
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| |
Collapse
|
75
|
Zhou Q, Lan F, Gu S, Li G, Wu G, Yan Y, Li X, Jin J, Wen C, Sun C, Yang N. Genetic and microbiome analysis of feed efficiency in laying hens. Poult Sci 2022; 102:102393. [PMID: 36805401 PMCID: PMC9958098 DOI: 10.1016/j.psj.2022.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Shuang Gu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
76
|
Sheldon BC, Kruuk LEB, Alberts SC. The expanding value of long-term studies of individuals in the wild. Nat Ecol Evol 2022; 6:1799-1801. [DOI: 10.1038/s41559-022-01940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
77
|
Sheth VG, Sharma N, Kabeer SW, Tikoo K. Lactobacillus rhamnosus supplementation ameliorates high fat diet-induced epigenetic alterations and prevents its intergenerational inheritance. Life Sci 2022; 311:121151. [DOI: 10.1016/j.lfs.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
78
|
Zeng S, Wang S, Ross RP, Stanton C. The road not taken: host genetics in shaping intergenerational microbiomes. Trends Genet 2022; 38:1180-1192. [PMID: 35773025 DOI: 10.1016/j.tig.2022.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/09/2023]
Abstract
The early-life gut microbiome is linked to human phenotypes as an imbalanced microbiome of this period is implicated in diseases throughout life. Several determinants of early-life gut microbiome are explored, however, mechanisms of acquisition, colonization, and stability of early-life gut microbiome and their interindividual variability remain elusive. Host genetics play a vital role to shape the gut microbiome and interact with it to modulate individual phenotypes in human studies and animal models. Given the microbial linkage between host generations, we discuss the current state of roles of host genetics in forming intergenerational microbiomes associated with mothers, offspring, and those vertically transmitted, providing a basis for taking into account host genetics in future early-life microbiome research. We further expand our discussion to the bidirectional interactions between host gene expression and microbiome in human health.
Collapse
Affiliation(s)
- Shuqin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Shaopu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
79
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
80
|
Baniel A, Petrullo L, Mercer A, Reitsema L, Sams S, Beehner JC, Bergman TJ, Snyder-Mackler N, Lu A. Maternal effects on early-life gut microbiota maturation in a wild nonhuman primate. Curr Biol 2022; 32:4508-4520.e6. [PMID: 36099914 DOI: 10.1016/j.cub.2022.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Early-life microbial colonization is an important process shaping host physiology,1-3 immunity,4-6 and long-term health outcomes7-10 in humans. However, our understanding of this dynamic process remains poorly investigated in wild animals,11-13 where developmental mechanisms can be better understood within ecological and evolutionarily relevant contexts.11,12 Using one of the largest developmental datasets on a wild primate-the gelada (Theropithecus gelada)-we used 16S rRNA amplicon sequencing to characterize gut microbiota maturation during the first 3 years of life and assessed the role of maternal effects in shaping offspring microbiota assembly. In contrast to recent data on chimpanzees, postnatal microbial colonization in geladas was highly similar to humans:14 microbial alpha diversity increased rapidly following birth, followed by gradual changes in composition until weaning. Dietary changes associated with weaning (from milk- to plant-based diet) were the main drivers of shifts in taxonomic composition and microbial predicted functional pathways. Maternal effects were also an important factor influencing the offspring gut microbiota. During nursing (<12 months), offspring of experienced (multi-time) mothers exhibited faster functional microbial maturation, likely reflecting the general faster developmental pace of infants born to these mothers. Following weaning (>18 months), the composition of the juvenile microbiota tended to be more similar to the maternal microbiota than to the microbiota of other adult females, highlighting that maternal effects may persist even after nursing cessation.15,16 Together, our findings highlight the dynamic nature of early-life gut colonization and the role of maternal effects in shaping this trajectory in a wild primate.
Collapse
Affiliation(s)
- Alice Baniel
- Center for Evolution and Medicine, Arizona State University, E Tyler Mall, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, E Tyler Mall, Tempe, AZ 85287, USA.
| | - Lauren Petrullo
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA
| | - Laurie Reitsema
- Department of Anthropology, University of Georgia, Jackson St., Athens, GA 30602, USA
| | - Sierra Sams
- Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA; Department of Anthropology, University of Michigan, S University Ave., Ann Arbor, MI 48109, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, N University Ave., Ann Arbor, MI 48109, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, E Tyler Mall, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, E Tyler Mall, Tempe, AZ 85287, USA; Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA; School for Human Evolution and Social Change, Arizona State University, Cady Mall, Tempe, AZ 85287, USA.
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Circle Rd., Stony Brook, NY 11794, USA.
| |
Collapse
|
81
|
Genetic, maternal, and environmental influences on sociality in a pedigreed primate population. Heredity (Edinb) 2022; 129:203-214. [PMID: 36056208 PMCID: PMC9519975 DOI: 10.1038/s41437-022-00558-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Various aspects of sociality in mammals (e.g., dyadic connectedness) are linked with measures of biological fitness (e.g., longevity). How within- and between-individual variation in relevant social traits arises in uncontrolled wild populations is challenging to determine but is crucial for understanding constraints on the evolution of sociality. We use an advanced statistical method, known as the 'animal model', which incorporates pedigree information, to look at social, genetic, and environmental influences on sociality in a long-lived wild primate. We leverage a longitudinal database spanning 20 years of observation on individually recognized white-faced capuchin monkeys (Cebus capucinus imitator), with a multi-generational pedigree. We analyze two measures of spatial association, using repeat sampling of 376 individuals (mean: 53.5 months per subject, range: 6-185 months per subject). Conditioned on the effects of age, sex, group size, seasonality, and El Niño-Southern Oscillation phases, we show low to moderate long-term repeatability (across years) of the proportion of time spent social (posterior mode [95% Highest Posterior Density interval]: 0.207 [0.169, 0.265]) and of average number of partners (0.144 [0.113, 0.181]) (latent scale). Most of this long-term repeatability could be explained by modest heritability (h2social: 0.152 [0.094, 0.207]; h2partners: 0.113 [0.076, 0.149]) with small long-term maternal effects (m2social: 0.000 [0.000, 0.045]; m2partners: 0.000 [0.000, 0.041]). Our models capture the majority of variance in our behavioral traits, with much of the variance explained by temporally changing factors, such as group of residence, highlighting potential limits to the evolvability of our trait due to social and environmental constraints.
Collapse
|
82
|
Sood U, Dhingra GG, Anand S, Hira P, Kumar R, Kaur J, Verma M, Singhvi N, Lal S, Rawat CD, Singh VK, Kaur J, Verma H, Tripathi C, Singh P, Dua A, Saxena A, Phartyal R, Jayaraj P, Makhija S, Gupta R, Sahni S, Nayyar N, Abraham JS, Somasundaram S, Lata P, Solanki R, Mahato NK, Prakash O, Bala K, Kumari R, Toteja R, Kalia VC, Lal R. Microbial Journey: Mount Everest to Mars. Indian J Microbiol 2022; 62:323-337. [PMID: 35974919 PMCID: PMC9375815 DOI: 10.1007/s12088-022-01029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.
Collapse
Affiliation(s)
- Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | | | - Shailly Anand
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Princy Hira
- Maitreyi College, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar India
| | | | - Mansi Verma
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Sukanya Lal
- Ramjas College, University of Delhi, Delhi, India
| | | | | | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, India
| | | | | | - Priya Singh
- Maitreyi College, University of Delhi, New Delhi, India
| | - Ankita Dua
- Shivaji College, University of Delhi, New Delhi, India
| | - Anjali Saxena
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | | | - Perumal Jayaraj
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, India
| | - Sumit Sahni
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Namita Nayyar
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | | | - Pushp Lata
- Ramjas College, University of Delhi, Delhi, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand India
| | - Om Prakash
- National Centre for Cell Sciences, Pune, Maharashtra India
| | - Kiran Bala
- Deshbandhu College, University of Delhi, New Delhi, India
| | - Rashmi Kumari
- College of Commerce, Arts and Science, Patliputra University, Patna, Bihar India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | | | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
83
|
Risely A, Schmid DW, Müller-Klein N, Wilhelm K, Clutton-Brock TH, Manser MB, Sommer S. Gut microbiota individuality is contingent on temporal scale and age in wild meerkats. Proc Biol Sci 2022; 289:20220609. [PMID: 35975437 PMCID: PMC9382201 DOI: 10.1098/rspb.2022.0609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Inter-individual differences in gut microbiota composition are hypothesized to generate variation in host fitness-a premise for the evolution of host-gut microbe symbioses. However, recent evidence suggests that gut microbial communities are highly dynamic, challenging the notion that individuals harbour unique gut microbial phenotypes. Leveraging a long-term dataset of wild meerkats, we reconcile these concepts by demonstrating that the relative importance of identity for shaping gut microbiota phenotypes depends on the temporal scale. Across meerkat lifespan, year-to-year variation overshadowed the effects of identity and social group in predicting gut microbiota composition, with identity explaining on average less than 2% of variation. However, identity was the strongest predictor of microbial phenotypes over short sampling intervals (less than two months), predicting on average 20% of variation. The effect of identity was also dependent on meerkat age, with the gut microbiota becoming more individualized and stable as meerkats aged. Nevertheless, while the predictive power of identity was negligible after two months, gut microbiota composition remained weakly individualized compared to that of other meerkats for up to 1 year. These findings illuminate the degree to which individualized gut microbial signatures can be expected, with important implications for the time frames over which gut microbial phenotypes may mediate host physiology, behaviour and fitness in natural populations.
Collapse
Affiliation(s)
- Alice Risely
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Dominik W. Schmid
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Nadine Müller-Klein
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Kerstin Wilhelm
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Tim H. Clutton-Brock
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
| | - Marta B. Manser
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
84
|
Sang J, Zhuang D, Zhang T, Wu Q, Yu J, Zhang Z. Convergent and Divergent Age Patterning of Gut Microbiota Diversity in Humans and Nonhuman Primates. mSystems 2022; 7:e0151221. [PMID: 35758593 PMCID: PMC9426537 DOI: 10.1128/msystems.01512-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
The gut microbiome has significant effects on healthy aging and aging-related diseases, whether in humans or nonhuman primates. However, little is known about the divergence and convergence of gut microbial diversity between humans and nonhuman primates during aging, which limits their applicability for studying the gut microbiome's role in human health and aging. Here, we performed 16S rRNA gene sequencing analysis for captive rhesus macaques (Macaca mulatta) and compared this data set with other freely available gut microbial data sets containing four human populations (Chinese, Japanese, Italian, and British) and two nonhuman primates (wild lemurs [Lemur catta] and wild chimpanzees [Pan troglodytes]). Based on the consistent V4 region of the 16S rRNA gene, beta diversity analysis suggested significantly separated gut microbial communities associated with host backgrounds of seven host groups, but within each group, significant gut microbial divergences were observed, and indicator bacterial genera were identified as associated with aging. We further discovered six common anti-inflammatory gut bacteria (Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia) that had butyrate-producing potentials suggested by pangenomic analysis and that showed similar dynamic changes in at least two selected host groups during aging, independent of distinct host backgrounds. Finally, we found striking age-related changes in 66 plasma metabolites in macaques. Two highly changed metabolites, hydroxyproline and leucine, enriched in adult macaques were significantly and positively correlated with Prevotella and Prevotellamassilia. Furthermore, genus-level pangenome analysis suggested that those six common indicator bacteria can synthesize leucine and arginine as hydroxyproline and proline precursors in both humans and macaques. IMPORTANCE This study provides the first comprehensive investigation of age patterning of gut microbiota of four human populations and three nonhuman primates and found that Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia may be common antiaging microbial markers in both humans and nonhuman primates due to their potential metabolic capabilities for host health benefits. Our results also provide key support for using macaques as animal models in studies of the gut microbiome's role during human aging.
Collapse
Affiliation(s)
- Jianan Sang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Daohua Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiangkun Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
85
|
Schwensow NI, Heni AC, Schmid J, Montero BK, Brändel SD, Halczok TK, Mayer G, Fackelmann G, Wilhelm K, Schmid DW, Sommer S. Disentangling direct from indirect effects of habitat disturbance on multiple components of biodiversity. J Anim Ecol 2022; 91:2220-2234. [DOI: 10.1111/1365-2656.13802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Alexander Christoph Heni
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
- Smithsonian Tropical Research Institute Ancón Panama
| | - Julian Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
- Smithsonian Tropical Research Institute Ancón Panama
| | - B. Karina Montero
- Animal Ecology and Conservation Hamburg University Hamburg Germany
- Biodiversity Research Institute, Campus of Mieres, Universidad de Oviedo Mieres Spain
| | - Stefan Dominik Brändel
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
- Smithsonian Tropical Research Institute Ancón Panama
| | | | - Gerd Mayer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Gloria Fackelmann
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| |
Collapse
|
86
|
Lu X, Liu J, Zhou B, Wang S, Liu Z, Mei F, Luo J, Cui Y. Microbial metabolites and heart failure: Friends or enemies? Front Microbiol 2022; 13:956516. [PMID: 36046023 PMCID: PMC9420987 DOI: 10.3389/fmicb.2022.956516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF), a global health issue characterized by structural or functional cardiac dysfunction, which was found to be associated with the gut microbiome recently. Although multiple studies suggested that the gut microbiome may have an impact on the development of cardiovascular diseases, the underlying mechanism of the gut microbiome in HF remains unclear. The study of metabolites from gut microbiota influenced by dietary nutrition uptake suggested that gut microbiota may affect the process of HF. However, on the basis of the microbiota’s complicated roles and their interactions with metabolites, studies of microbial metabolites in HF had rarely been described so far. In this review, we focused on dietary nutrition-related factors that were involved in the development and progression of HF, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and bile acids (BAs), to summarize their advances and several potential targets in HF. From a therapeutic standpoint, we discussed microbial metabolites as a potential strategy and their applications in HF as well.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jingjing Liu
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Bengbu Medical College, Bengbu, China
| | - Bing Zhou
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shuwei Wang
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhifang Liu
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Fuyang Mei
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junxiang Luo
- Department of Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Junxiang Luom,
| | - Yong Cui
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yong Cui,
| |
Collapse
|
87
|
Hanhimäki E, Watts PC, Koskela E, Koteja P, Mappes T, Hämäläinen AM. Evolved high aerobic capacity has context-specific effects on gut microbiota. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.934164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota is expected to coevolve with the host's physiology and may play a role in adjusting the host's energy metabolism to suit the host's environment. To evaluate the effects of both evolved host metabolism and the environmental context in shaping the gut microbiota, we used a unique combination of (1) experimental evolution to create selection lines for a fast metabolism and (2) a laboratory-to-field translocation study. Mature bank voles Myodes glareolus from lines selected for high aerobic capacity (A lines) and from unselected control (C lines) were released into large (0.2 ha) outdoor enclosures for longitudinal monitoring. To examine whether the natural environment elicited a similar or more pronounced impact on the gut microbiota of the next generation, we also sampled the field-reared offspring. The gut microbiota were characterized using 16S rRNA amplicon sequencing of fecal samples. The artificial selection for fast metabolism had minimal impact on the gut microbiota in laboratory conditions but in field conditions, there were differences between the selection lines (A lines vs. C lines) in the diversity, community, and resilience of the gut microbiota. Notably, the selection lines differed in the less abundant bacteria throughout the experiment. The lab-to-field transition resulted in an increase in alpha diversity and an altered community composition in the gut microbiota, characterized by a significant increase in the relative abundance of Actinobacteria and a decrease of Patescibacteria. Also, the selection lines showed different temporal patterns in changes in microbiota composition, as the average gut microbiota alpha diversity of the C lines, but not A lines, was temporarily reduced during the initial transition to the field. In surviving young voles, the alpha diversity of gut microbiota was significantly higher in A-line than C-line voles. These results indicate that the association of host metabolism and gut microbiota is context-specific, likely mediated by behavioral or physiological modifications in response to the environment.
Collapse
|
88
|
Fitzpatrick CR, Toor I, Holmes MM. Colony but not social phenotype or status structures the gut bacteria of a eusocial mammal. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
89
|
Kim H, Jeon J, Lee KK, Lee YH. Longitudinal transmission of bacterial and fungal communities from seed to seed in rice. Commun Biol 2022; 5:772. [PMID: 35915150 PMCID: PMC9343636 DOI: 10.1038/s42003-022-03726-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vertical transmission of microbes is crucial for the persistence of host-associated microbial communities. Although vertical transmission of seed microbes has been reported from diverse plants, ecological mechanisms and dynamics of microbial communities from parent to progeny remain scarce. Here we reveal the veiled ecological mechanism governing transmission of bacterial and fungal communities in rice across two consecutive seasons. We identify 29 bacterial and 34 fungal members transmitted across generations. Abundance-based regression models allow to classify colonization types of the microbes. We find that they are late colonizers dominating each community at the ripening stage. Ecological models further show that the observed temporal colonization patterns are affected by niche change and neutrality. Source-sink modeling reveals that parental seeds and stem endosphere are major origins of progeny seed microbial communities. This study gives empirical evidence for ecological mechanism and dynamics of bacterial and fungal communities as an ecological continuum during seed-to-seed transmission.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea.,Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kiseok Kieth Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL, 60637, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Republic of Korea. .,Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
90
|
Chen L, Xu D, Sun M, Li Y, Wang S, Gao Y, Gao Z, Shi Y. The effect of environment on intestinal microbial diversity of Panthera animals may exceed genetic relationship. Front Microbiol 2022; 13:938900. [PMID: 35966667 PMCID: PMC9366613 DOI: 10.3389/fmicb.2022.938900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal microbes are important symbiotes in the gastrointestinal tract of mammals, which are affected by food, environment, climate, genetics, and other factors. The gut microbiota of felines has been partially studied, but a comprehensive comparison of the gut microbiota of Panthera species was less reported. In this study, we compared the gut microbial composition and diversity of five species of Panthera (Panthera tigris, Panthera leo, Panthera onca, Panthera pardus, and Panthera uncia) by 16S ribosomal RNA (rRNA) amplicon sequencing. The results showed that Firmicutes was the most abundant phylum among all the Panthera species, followed by Actinobacteria, Fusobacteria, Bacteroidetes, Proteobacteria, Acidobacteria, Verrucomicrobia, Gemmatimonadetes, and Euryarchaeota. There were significant differences in observed species of fecal microbiota among different Panthera animals (P < 0.05), indicating that there is species specificity among Panthera fecal microbiota. When the samples were further grouped according to sampling locations, the comparison of the alpha diversity index between groups and beta diversity analysis showed that there were significant differences in the fecal microflora of animals from different sampling locations. Cluster analysis showed that fecal microbes of animals from the same sampling location were clustered, while gut microbes of animals of the same species, but from different sampling locations, were separated. These results indicate that environment may have more influence on mammals’ fecal microbial diversity than genetic relationships.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, China
- *Correspondence: Lei Chen,
| | - Di Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Mengyao Sun
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Ying Li
- Jinan Wildlife Park, Jinan, China
| | - Shen Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Ying Gao
- Jinan Wildlife Park, Jinan, China
| | - Zenghao Gao
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yuying Shi
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
91
|
Ross EM, Hayes BJ. Metagenomic Predictions: A Review 10 years on. Front Genet 2022; 13:865765. [PMID: 35938022 PMCID: PMC9348756 DOI: 10.3389/fgene.2022.865765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Metagenomic predictions use variation in the metagenome (microbiome profile) to predict the unknown phenotype of the associated host. Metagenomic predictions were first developed 10 years ago, where they were used to predict which cattle would produce high or low levels of enteric methane. Since then, the approach has been applied to several traits and species including residual feed intake in cattle, and carcass traits, body mass index and disease state in pigs. Additionally, the method has been extended to include predictions based on other multi-dimensional data such as the metabolome, as well to combine genomic and metagenomic information. While there is still substantial optimisation required, the use of metagenomic predictions is expanding as DNA sequencing costs continue to fall and shows great promise particularly for traits heavily influenced by the microbiome such as feed efficiency and methane emissions.
Collapse
|
92
|
Doms S, Fokt H, Rühlemann MC, Chung CJ, Kuenstner A, Ibrahim SM, Franke A, Turner LM, Baines JF. Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice. eLife 2022; 11:75419. [PMID: 35866635 PMCID: PMC9307277 DOI: 10.7554/elife.75419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Determining the forces that shape diversity in host-associated bacterial communities is critical to understanding the evolution and maintenance of metaorganisms. To gain deeper understanding of the role of host genetics in shaping gut microbial traits, we employed a powerful genetic mapping approach using inbred lines derived from the hybrid zone of two incipient house mouse species. Furthermore, we uniquely performed our analysis on microbial traits measured at the gut mucosal interface, which is in more direct contact with host cells and the immune system. Several mucosa-associated bacterial taxa have high heritability estimates, and interestingly, 16S rRNA transcript-based heritability estimates are positively correlated with cospeciation rate estimates. Genome-wide association mapping identifies 428 loci influencing 120 taxa, with narrow genomic intervals pinpointing promising candidate genes and pathways. Importantly, we identified an enrichment of candidate genes associated with several human diseases, including inflammatory bowel disease, and functional categories including innate immunity and G-protein-coupled receptors. These results highlight key features of the genetic architecture of mammalian host-microbe interactions and how they diverge as new species form. The digestive system, particularly the large intestine, hosts many types of bacteria which together form the gut microbiome. The exact makeup of different bacterial species is specific to an individual, but microbiomes are often more similar between related individuals, and more generally, across related species. Whether this is because individuals share similar environments or similar genetic backgrounds remains unclear. These two factors can be disentangled by breeding different animal lineages – which have different genetic backgrounds while belonging to the same species – and then raising the progeny in the same environment. To investigate this question, Doms et al. studied the genes and microbiomes of mice resulting from breeding strains from multiple locations in a natural hybrid zone between different subspecies. The experiments showed that 428 genetic regions affected the makeup of the microbiome, many of which were known to be associated with human diseases. Further analysis revealed 79 genes that were particularly interesting, as they were involved in recognition and communication with bacteria. These results show how the influence of the host genome on microbiome composition becomes more specialized as animals evolve. Overall, the work by Doms et al. helps to pinpoint the genes that impact the microbiome; this knowledge could be helpful to examine how these interactions contribute to the emergence of conditions such as diabetes or inflammatory bowel disease, which are linked to perturbations in gut bacteria.
Collapse
Affiliation(s)
- Shauni Doms
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Hanna Fokt
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Malte Christoph Rühlemann
- Institute for Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany.,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Cecilia J Chung
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Axel Kuenstner
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
| | - Andre Franke
- Institute for Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
93
|
Colombo F, Illescas O, Noci S, Minnai F, Pintarelli G, Pettinicchio A, Vannelli A, Sorrentino L, Battaglia L, Cosimelli M, Dragani TA, Gariboldi M. Gut microbiota composition in colorectal cancer patients is genetically regulated. Sci Rep 2022; 12:11424. [PMID: 35794137 PMCID: PMC9259655 DOI: 10.1038/s41598-022-15230-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractThe risk of colorectal cancer (CRC) depends on environmental and genetic factors. Among environmental factors, an imbalance in the gut microbiota can increase CRC risk. Also, microbiota is influenced by host genetics. However, it is not known if germline variants influence CRC development by modulating microbiota composition. We investigated germline variants associated with the abundance of bacterial populations in the normal (non-involved) colorectal mucosa of 93 CRC patients and evaluated their possible role in disease. Using a multivariable linear regression, we assessed the association between germline variants identified by genome wide genotyping and bacteria abundances determined by 16S rRNA gene sequencing. We identified 37 germline variants associated with the abundance of the genera Bacteroides, Ruminococcus, Akkermansia, Faecalibacterium and Gemmiger and with alpha diversity. These variants are correlated with the expression of 58 genes involved in inflammatory responses, cell adhesion, apoptosis and barrier integrity. Genes and bacteria appear to be involved in the same processes. In fact, expression of the pro-inflammatory genes GAL, GSDMD and LY6H was correlated with the abundance of Bacteroides, which has pro-inflammatory properties; abundance of the anti-inflammatory genus Faecalibacterium correlated with expression of KAZN, with barrier-enhancing functions. Both the microbiota composition and local inflammation are regulated, at least partially, by the same germline variants. These variants may regulate the microenvironment in which bacteria grow and predispose to the development of cancer. Identification of these variants is the first step to identifying higher-risk individuals and proposing tailored preventive treatments that increase beneficial bacterial populations.
Collapse
|
94
|
Björk JR, Dasari MR, Roche K, Grieneisen L, Gould TJ, Grenier JC, Yotova V, Gottel N, Jansen D, Gesquiere LR, Gordon JB, Learn NH, Wango TL, Mututua RS, Kinyua Warutere J, Siodi L, Mukherjee S, Barreiro LB, Alberts SC, Gilbert JA, Tung J, Blekhman R, Archie EA. Synchrony and idiosyncrasy in the gut microbiome of wild baboons. Nat Ecol Evol 2022; 6:955-964. [PMID: 35654895 PMCID: PMC9271586 DOI: 10.1038/s41559-022-01773-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 01/04/2023]
Abstract
Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design universal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medications but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage extensive gut microbial time series from wild baboons-hosts who experience little interindividual dietary and environmental heterogeneity-to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living in the same social group, probably because group members range over the same habitat and simultaneously encounter the same sources of food and water. However, this synchrony was modest compared to each host's personalized dynamics. In support, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics, priority effects, horizontal gene transfer and functional redundancy.
Collapse
Affiliation(s)
- Johannes R Björk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mauna R Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Kim Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Laura Grieneisen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Trevor J Gould
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jean-Christophe Grenier
- Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec, Canada
- Research Center, Montreal Heart Institute, Montréal, Quebec, Canada
| | - Vania Yotova
- Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec, Canada
| | - Neil Gottel
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Niki H Learn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Tim L Wango
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
- The Department of Veterinary Anatomy and Animal Physiology, University of Nairobi, Nairobi, Kenya
| | - Raphael S Mututua
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
| | - J Kinyua Warutere
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
| | - Long'ida Siodi
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Luis B Barreiro
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
95
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
96
|
Guo K, Huang J, Zhou Z. Host gene effects on gut microbiota in type 1 diabetes. Biochem Soc Trans 2022; 50:1133-1142. [PMID: 35521897 PMCID: PMC9246325 DOI: 10.1042/bst20220004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by progressive pancreatic β-cell loss. Both a predisposing genetic background, that may encompass mutations in several genes, as well as exposure to environmental factors can affect the progression of autoimmune responses to multiple pancreatic islet autoantigens. Many genetic variants that increase the risk of T1D are found in immunity genes involved in sensing and responding to microorganisms. Although increasing evidence indicates that the gut microbiome composition may promote or prevent T1D development, little is known about the link between gut microbiota and T1D susceptibility genes in patients with T1D. Recent studies in the inbred non-obese diabetic (NOD) mouse, a widely used model of T1D, have suggested that many genetic loci can influence gut microbiome composition to modulate islet autoimmunity. This review summarizes evidence that examines the effect of host genes on gut microbiota diversity and function during T1D development. Knowledge of the host gene-gut microbiota interactions at play during T1D progression may help us identify new diagnostic and prognostic tools and help also design effective strategies for disease treatment.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, U.S.A
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
97
|
Sadoughi B, Schneider D, Daniel R, Schülke O, Ostner J. Aging gut microbiota of wild macaques are equally diverse, less stable, but progressively personalized. MICROBIOME 2022; 10:95. [PMID: 35718778 PMCID: PMC9206754 DOI: 10.1186/s40168-022-01283-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pronounced heterogeneity of age trajectories has been identified as a hallmark of the gut microbiota in humans and has been explained by marked changes in lifestyle and health condition. Comparatively, age-related personalization of microbiota is understudied in natural systems limiting our comprehension of patterns observed in humans from ecological and evolutionary perspectives. RESULTS Here, we tested age-related changes in the diversity, stability, and composition of the gut bacterial community using 16S rRNA gene sequencing with dense repeated sampling over three seasons in a cross-sectional age sample of adult female Assamese macaques (Macaca assamensis) living in their natural forest habitat. Gut bacterial composition exhibited a personal signature which became less stable as individuals aged. This lack of stability was not explained by differences in microbiota diversity but rather linked to an increase in the relative abundance of rare bacterial taxa. The lack of age-related changes in core taxa or convergence with age to a common state of the community hampered predicting gut bacterial composition of aged individuals. On the contrary, we found increasing personalization of the gut bacterial composition with age, indicating that composition in older individuals was increasingly divergent from the rest of the population. Reduced direct transmission of bacteria resulting from decreasing social activity may contribute to, but not be sufficient to explain, increasing personalization with age. CONCLUSIONS Together, our results challenge the assumption of a constant microbiota through adult life in a wild primate. Within the limits of this study, the fact that increasing personalization of the aging microbiota is not restricted to humans suggests the underlying process to be evolved instead of provoked only by modern lifestyle of and health care for the elderly. Video abstract.
Collapse
Affiliation(s)
- Baptiste Sadoughi
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany.
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Oliver Schülke
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Julia Ostner
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
98
|
Mason B, Petrzelkova KJ, Kreisinger J, Bohm T, Cervena B, Fairet E, Fuh T, Gomez A, Knauf S, Maloueki U, Modry D, Shirley MH, Tagg N, Wangue N, Pafco B. Gastrointestinal symbiont diversity in wild gorilla: a comparison of bacterial and strongylid communities across multiple localities. Mol Ecol 2022; 31:4127-4145. [PMID: 35661299 DOI: 10.1111/mec.16558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Western lowland gorillas (Gorilla gorilla gorilla) are Critically Endangered and show continued population decline. Consequently, pressure mounts to better understand their conservation threats and ecology. Gastrointestinal symbionts, such as bacterial and eukaryotic communities, are believed to play vital roles in the physiological landscape of the host. Gorillas host a broad spectrum of eucaryotes, so called parasites, with strongylid nematodes being particularly prevalent. While these communities are partially consistent, they are also shaped by various ecological factors, such as diet or habitat type. To investigate gastrointestinal symbionts of wild western lowland gorillas, we analysed 215 faecal samples from individuals in five distinct localities across the Congo Basin, using high-throughput sequencing techniques. We describe the gut bacterial microbiome and genetic diversity of strongylid communities, including strain-level identification of amplicon sequence variants (ASVs). We identified strongylid ASVs from eight genera and bacterial ASVs from twenty phyla. We compared these communities across localities, with reference to varying environmental factors among populations, finding differences in alpha diversity and community compositions of both gastrointestinal components. Moreover, we also investigated covariation between strongylid nematodes and the bacterial microbiome, finding correlations between strongylid taxa and Prevotellaceae and Rikenellaceae ASVs that were consistent across multiple localities. Our research highlights complexity of the bacterial microbiome and strongylid communities in several gorilla populations and emphasizes potential interactions between these two symbiont communities. This study provides a framework for ongoing research into strongylid nematode diversity, and their interactions with the bacterial microbiome, amongst great apes.
Collapse
Affiliation(s)
- Bethan Mason
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Czech Academy of Sciences.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences.,Liberec Zoo, Liberec, Czech Republic
| | | | - Torsten Bohm
- African Parks, Odzala-Kokoua National Park, Republic of, Congo
| | | | - Emilie Fairet
- SFM Safari Gabon, Loango National Park, Gabon.,Wildlife Conservation Society, New York, NY, USA
| | | | - Andres Gomez
- Department of Animal Science, University of Minnesota Twin Cities, St. Paul, Minnesota
| | - Sascha Knauf
- Institute of International Animal Health / One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Ulrich Maloueki
- African Parks, Odzala-Kokoua National Park, Republic of, Congo
| | - David Modry
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague
| | - Matthew H Shirley
- SFM Safari Gabon, Loango National Park, Gabon.,Institute of Environment, Florida International University, North Miami, FL, USA
| | - Nikki Tagg
- Project Grands Singes, , Centre for Research and Conservation, Royal Zoological Society of Antwerp
| | | | - Barbora Pafco
- Institute of Vertebrate Biology, Czech Academy of Sciences
| |
Collapse
|
99
|
Videvall E. Personalized microbiomes in social baboons. Nat Ecol Evol 2022; 6:849-850. [PMID: 35654894 DOI: 10.1038/s41559-022-01769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elin Videvall
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA. .,Institute at Brown for Environment and Society, Brown University, Providence, RI, USA. .,Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
100
|
Liu X, Tang Y, Wu J, Liu JX, Sun HZ. Feedomics provides bidirectional omics strategies between genetics and nutrition for improved production in cattle. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:314-319. [PMID: 35600547 PMCID: PMC9097626 DOI: 10.1016/j.aninu.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing the efficiency and sustainability of cattle production is an effective way to produce valuable animal proteins for a growing human population. Genetics and nutrition are the 2 major research topics in selecting cattle with beneficial phenotypes and developing genetic potentials for improved performance. There is an inextricable link between genetics and nutrition, which urgently requires researchers to uncover the underlying molecular mechanisms to optimize cattle production. Feedomics integrates a range of omic techniques to reveal the mechanisms at different molecular levels related to animal production and health, which can provide novel insights into the relationships of genes and nutrition/nutrients. In this review, we summarized the applications of feedomics techniques to reveal the effect of genetic elements on the response to nutrition and investigate how nutrients affect the functional genome of cattle from the perspective of both nutrigenetics and nutrigenomics. We highlighted the roles of rumen microbiome in the interactions between host genes and nutrition. Herein, we discuss the importance of feedomics in cattle nutrition research, with a view to ensure that cattle exhibit the best production traits for human consumption from both genetic and nutritional aspects.
Collapse
|