51
|
Bargas-Galarraga I, Vilà C, Gonzalez-Voyer A. High Investment in Reproduction Is Associated with Reduced Life Span in Dogs. Am Nat 2023; 201:163-174. [PMID: 36724469 DOI: 10.1086/722531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractProminent differences in aging among and within species present an evolutionary puzzle. The theories proposed to explain evolutionary differences in aging are based on the axiom that selection maximizes fitness, not necessarily life span. This implies trade-offs between investment in self-maintenance and investment in reproduction, where high investments in growth and current reproduction are associated with short life spans. Fast growth and large adult size are related to shorter life spans in the domestic dog, a bourgeoning model in aging research; however, whether reproduction influences life span in this system remains unknown. Here we test the relationship between reproduction and differences in life span among dog breeds, simultaneously controlling for shared ancestry and recent gene flow. We found that shared ancestry explains a higher proportion of the among-breed variation in life history traits, in comparison with recent gene flow. Our results also show that reproductive investment negatively impacts life span, and more strongly so in large breeds, an effect that is not merely a correlated response of adult size. These results suggest that basic life history trade-offs are apparent in a domestic animal whose diversity is the result of artificial selection and that among-breed differences in life span are due to a combination of size and reproduction.
Collapse
|
52
|
Flegontov P, Işıldak U, Maier R, Yüncü E, Changmai P, Reich D. Modeling of African population history using f -statistics can be highly biased and is not addressed by previously suggested SNP ascertainment schemes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525077. [PMID: 36711923 PMCID: PMC9882349 DOI: 10.1101/2023.01.22.525077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
f -statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. These statistics can provide strong evidence for either admixture or cladality, which can be robust to substantial rates of errors or missing data. f -statistics are guaranteed to be unbiased under "SNP ascertainment" (analyzing non-randomly chosen subsets of single nucleotide polymorphisms) only if it relies on a population that is an outgroup for all groups analyzed. However, ascertainment on a true outgroup that is not co-analyzed with other populations is often impractical and uncommon in the literature. In this study focused on practical rather than theoretical aspects of SNP ascertainment, we show that many non-outgroup ascertainment schemes lead to false rejection of true demographic histories, as well as to failure to reject incorrect models. But the bias introduced by common ascertainments such as the 1240K panel is mostly limited to situations when more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans) or non-human outgroups are co-modelled, for example, f 4 -statistics involving one non-African group, two African groups, and one archaic group. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, cannot fix all these problems since for some classes of f -statistics it is not a clean outgroup ascertainment, and in other cases it demonstrates relatively low power to reject incorrect demographic models since it provides a relatively small number of variants common in anatomically modern humans. And due to the paucity of high-coverage archaic genomes, archaic individuals used for ascertainment often act as sole representatives of the respective groups in an analysis, and we show that this approach is highly problematic. By carrying out large numbers of simulations of diverse demographic histories, we find that bias in inferences based on f -statistics introduced by non-outgroup ascertainment can be minimized if the derived allele frequency spectrum in the population used for ascertainment approaches the spectrum that existed at the root of all groups being co-analyzed. Ascertaining on sites with variants common in a diverse group of African individuals provides a good approximation to such a set of SNPs, addressing the great majority of biases and also retaining high statistical power for studying population history. Such a "pan-African" ascertainment, although not completely problem-free, allows unbiased exploration of demographic models for the widest set of archaic and modern human populations, as compared to the other ascertainment schemes we explored.
Collapse
Affiliation(s)
- Pavel Flegontov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Russia
| | - Ulaş Işıldak
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
53
|
Herwijnen IRV, van der Borg JAM, Kapteijn CM, Arndt SS, Vinke CM. Factors regarding the dog owner's household situation, antisocial behaviours, animal views and animal treatment in a population of dogs confiscated after biting humans and/ or other animals. PLoS One 2023; 18:e0282574. [PMID: 36947497 PMCID: PMC10032511 DOI: 10.1371/journal.pone.0282574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
To examine the dog ownership factors characteristic to a population of dogs confiscated after a human and/ or animal-directed biting incident, we compared bite risk assessment reports of 159 confiscated dogs in the time frame 2008, 2009, 2010 (tf1) and of 215 confiscated dogs in the time frame 2020, 2021, 2022 (until mid-May; tf2). The reports were compiled by the same institute in a standardized format. We studied frequencies and chi-square pairwise comparisons (P<0.05) for 30 identified ownership factors. Overall (tf1 and tf2), 1,308 ownership factors were mentioned in the reports and reports mentioning ≥5 factors were twice as frequent in tf2 (38%) than tf1 (16%). Our data suggest that nine factors may in particular serve as a warning signal for biting incidents, as these factors were most frequently (≥15%) prevalent in the total of reported cases: having a multiple dog household, a dog reportedly roaming a neighbourhood without an owner, a dog's care tasks being transferred, a short leash and muzzle obligation served to the owner for a dog, an isolated and/ or confined keeping of a dog, a dog owner's (suspected) substance abuse, a dog owner's (suspected) animal abuse, a dog owner aggressing at confiscation of the dog and a dog owner being reported on for antisocial behaviours such as intimidation. Particularly, a dog owner's aggressive or antisocial behaviours and previous obligations to muzzle and short leash a dog (in our dataset often inappropriately adhered to by owners), may indicate that a proportion of owners of confiscated dogs, may not always be willing and/ or capable to guarantee societal safety. The results show that identification of dog ownership factors, might be useful for establishing biting incident policies and further studies should be done on preventive measures and controls.
Collapse
Affiliation(s)
- Ineke R van Herwijnen
- Division of Animals in Science and Society, Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joanne A M van der Borg
- Division of Animals in Science and Society, Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Chantal M Kapteijn
- Division of Animals in Science and Society, Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Saskia S Arndt
- Division of Animals in Science and Society, Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Claudia M Vinke
- Division of Animals in Science and Society, Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
54
|
Brumm A, Germonpré M, Koungoulos L. The human-initiated model of wolf domestication - An expansion based on human-dingo relations in Aboriginal Australia. Front Psychol 2023; 14:1082338. [PMID: 37205085 PMCID: PMC10187142 DOI: 10.3389/fpsyg.2023.1082338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 05/21/2023] Open
Abstract
The historically known relationship of interspecies companionship between Aboriginal foraging communities in Australia and free-ranging dingoes provides a model for understanding the human-canid relations that gave rise to the first domesticated dogs. Here, we propose that a broadly similar relationship might have developed early in time between wild-living wolves and mobile groups of foragers in Late Pleistocene Eurasia, with hunter-gatherers routinely raiding wild wolf dens for pre-weaned pups, which were socialized to humans and kept in camp as tamed companions ("pets"). We outline a model in which captive wolf pups that reverted to the wild to breed when they were sexually mature established their territories in the vicinity of foraging communities - in a "liminal" ecological zone between humans and truly wild-living wolves. Many (or most) of the wolf pups humans took from the wilderness to rear in camp may have derived from these liminal dens where the breeding pairs had been under indirect human selection for tameness over many generations. This highlights the importance of the large seasonal hunting/aggregation camps associated with mammoth kill-sites in Gravettian/Epigravettian central Europe. Large numbers of foragers gathered regularly at these locations during the wild wolf birthing season. We infer that if a pattern of this kind occurred over long periods of time then there might have been a pronounced effect on genetic variation in free-ranging wolves that denned and whelped in the liminal zones in the vicinity of these human seasonal aggregation sites. The argument is not that wolves were domesticated in central Europe. Rather, it is this pattern of hunter-gatherers who caught and reared wild wolf pups gathering seasonally in large numbers that might have been the catalyst for the early changes leading to the first domesticated dogs - whether in western Eurasia or further afield.
Collapse
Affiliation(s)
- Adam Brumm
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
- *Correspondence: Adam Brumm,
| | | | - Loukas Koungoulos
- School of Humanities, The University of Sydney, Sydney, NSW, Australia
- College of Asia and the Pacific, The Australian National University, Canberra, NSW, Australia
| |
Collapse
|
55
|
Pigs as Pets: Early Human Relations with the Sulawesi Warty Pig ( Sus celebensis). Animals (Basel) 2022; 13:ani13010048. [PMID: 36611658 PMCID: PMC9817959 DOI: 10.3390/ani13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
The Sulawesi warty pig (S. celebensis) is a wild and still-extant suid that is endemic to the Indonesian island of Sulawesi. It has long been theorised that S. celebensis was domesticated and/or deliberately introduced to other islands in Indonesia prior to the advent of the Neolithic farming transition in the region. Thus far, however, there has been no empirical support for this idea, nor have scientists critiqued the argument that S. celebensis was a pre-Neolithic domesticate in detail. Here, it is proposed that early foragers could have formed a relationship with S. celebensis that was similar in essence to the close association between Late Pleistocene foragers in Eurasia and the wild wolf ancestors of domestic dogs. That is, a longstanding practice of hunter-gatherers intensively socialising wild-caught S. celebensis piglets for adoption into human society as companion animals ('pets') may have altered the predator-prey dynamic, brought aspects of wild pig behaviour and reproduction under indirect human selection and control, and caused changes that differentiated human-associated pigs from their solely wild-living counterparts.
Collapse
|
56
|
Seeing Things: A Community Science Investigation into Motion Illusion Susceptibility in Domestic Cats ( Felis silvestris catus) and Dogs ( Canis lupus familiaris). Animals (Basel) 2022; 12:ani12243562. [PMID: 36552482 PMCID: PMC9774501 DOI: 10.3390/ani12243562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Illusions-visual fields that distort perception-can inform the understanding of visual perception and its evolution. An example of one such illusion, the Rotating Snakes illusion, causes the perception of motion in a series of static concentric circles. The current study investigated pet dogs' and cats' perception of the Rotating Snakes illusion in a community science paradigm. The results reveal that neither species spent significantly more time at the illusion than at either of the controls, failing to indicate susceptibility to the illusion. Specific behavioral data at each stimulus reveal that the most common behaviors of both species were Inactive and Stationary, while Locomotion and Pawing were the least common, supporting the finding that susceptibility may not be present. This study is the first to examine susceptibility to the Rotating Snakes illusion in dogs, as well as to directly compare the phenomenon between dogs and cats. We suggest future studies might consider exploring alternative methods in testing susceptibility to motion illusions in non-human animals.
Collapse
|
57
|
Söylev A, Çokoglu SS, Koptekin D, Alkan C, Somel M. CONGA: Copy number variation genotyping in ancient genomes and low-coverage sequencing data. PLoS Comput Biol 2022; 18:e1010788. [PMID: 36516232 PMCID: PMC9873172 DOI: 10.1371/journal.pcbi.1010788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/24/2023] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection software to be effectively applied to ancient genomes. Here we present CONGA, tailored for genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage.
Collapse
Affiliation(s)
- Arda Söylev
- Department of Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- * E-mail: (AS); (MS)
| | | | - Dilek Koptekin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey
- * E-mail: (AS); (MS)
| |
Collapse
|
58
|
Balcarcel AM, Geiger M, Clauss M, Sánchez‐Villagra MR. The mammalian brain under domestication: Discovering patterns after a century of old and new analyses. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:460-483. [PMID: 34813150 PMCID: PMC9787656 DOI: 10.1002/jez.b.23105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/24/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Comparisons of wild and domestic populations have established brain reduction as one of the most consistent patterns correlated with domestication. Over a century of scholarly work has been devoted to this subject, and yet, new data continue to foster its debate. Current arguments, both for and against the validity of brain reduction occurring in domestic taxa, have repeatedly cited a small set of reviews on this subject. The original works, their sampling, methodological details, and nuances of results that would be key to establishing validity, particularly in light of new data, have not been investigated. To facilitate and encourage a more informed discussion, we present a comprehensive review of original brain reduction literature for four mammalian clades: Artiodactyla, Perissodactyla, Carnivora, and Glires. Among these are studies that generated the most cited brain reduction values in modern domestication literature. In doing so, we provide a fairer stage for the critique of traits associated with domestication. We conclude that while brain reduction magnitudes may contain error, empirical data collectively support the reduction in brain size and cranial capacity for domestic forms.
Collapse
Affiliation(s)
- A. M. Balcarcel
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - M. Geiger
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - M. Clauss
- Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and WildlifeUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
59
|
Costa S, Sousa L, Luz H, Padeiro M. Daily Mobility and Social Interactions Among Community-Dwelling Older Adults With Pet Dogs: A Scoping Review. J Appl Gerontol 2022; 41:2609-2623. [PMID: 36029015 PMCID: PMC9669735 DOI: 10.1177/07334648221116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Dogs are part of many people's lives and are involved in interventions to improve the well-being of older adults in institutional settings. However, the literature on the impact of pet dogs on community-dwelling older adults is still relatively limited. This study mapped the impact of having a companion dog on the daily mobility and social interactions of community-dwelling older adults using a scoping review. Electronic databases were searched, and studies written in English, Portuguese, and Spanish that were published in a peer-reviewed journal were identified. After a careful review, 26 eligible studies were identified, and relevant findings were extracted. The main findings indicated that having a dog may promote or hinder daily mobility and social interactions and that having a dog is about routines and sharing affection. More research is needed to clarify what makes having a companion dog key to promoting active and healthy aging.
Collapse
Affiliation(s)
| | - Liliana Sousa
- CINTESIS@RISE, Department of
Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - Helena Luz
- University of Coimbra, Centre of
Interdisciplinary Studies (CEIS20), Faculty of Psychology and Educational
Sciences, Portugal
| | - Miguel Padeiro
- Centre of Studies in Geography and
Spatial Planning (CEGOT), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
60
|
Nilson SM, Gandolfi B, Grahn RA, Kurushima JD, Lipinski MJ, Randi E, Waly NE, Driscoll C, Murua Escobar H, Schuster RK, Maruyama S, Labarthe N, Chomel BB, Ghosh SK, Ozpinar H, Rah HC, Millán J, Mendes-de-Almeida F, Levy JK, Heitz E, Scherk MA, Alves PC, Decker JE, Lyons LA. Genetics of randomly bred cats support the cradle of cat domestication being in the Near East. Heredity (Edinb) 2022; 129:346-355. [PMID: 36319737 PMCID: PMC9708682 DOI: 10.1038/s41437-022-00568-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
Cat domestication likely initiated as a symbiotic relationship between wildcats (Felis silvestris subspecies) and the peoples of developing agrarian societies in the Fertile Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans benefited from the cats' predation on these vermin. To refine the site(s) of cat domestication, over 1000 random-bred cats of primarily Eurasian descent were genotyped for single-nucleotide variants and short tandem repeats. The overall cat population structure suggested a single worldwide population with significant isolation by the distance of peripheral subpopulations. The cat population heterozygosity decreased as genetic distance from the proposed cat progenitor's (F.s. lybica) natural habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby islands, and southernly via the Levantine coast into the Nile Valley. Cat population diversity supports the migration patterns of humans and other symbiotic species.
Collapse
Affiliation(s)
- Sara M Nilson
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jennifer D Kurushima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Monika J Lipinski
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Øst, Denmark
| | - Nashwa E Waly
- Department of Animal Medicine, Faculty of Veterinary Medicine, Assuit University, 71526, Assiut, Egypt
| | | | - Hugo Murua Escobar
- Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock, 18055, Rostock, Germany
| | - Rolf K Schuster
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Norma Labarthe
- Programa de Bioética, Ética Aplicada e Saúde Coletiva, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Programa de Pós-Graduação em Medicina Veterinária - Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ, 24230-340, Brazil
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | - Haydar Ozpinar
- Graduate School of Health Sciences, Istanbul Gedik University, 34876, İstanbul, Turkey
| | - Hyung-Chul Rah
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Javier Millán
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Miguel Servet 177, 50013, Zaragoza, Spain
- Fundación ARAID, Avda. de Ranillas, 50018, Zaragoza, Spain
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Flavya Mendes-de-Almeida
- Programa de Pós-Graduação em Medicina Veterinária - Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ, 24230-340, Brazil
| | - Julie K Levy
- Maddie's Shelter Medicine Program, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | | | | | - Paulo C Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos/InBIO Associate Lab & Faculdade de Ciências, Universidade do Porto, Campus e Vairão, 4485-661, Vila do Conde, Portugal
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| | - Leslie A Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
61
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
62
|
Kosushkin SA, Ustyantsev IG, Borodulina OR, Vassetzky NS, Kramerov DA. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. BIOLOGY 2022; 11:biology11101403. [PMID: 36290307 PMCID: PMC9599045 DOI: 10.3390/biology11101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The genomes of higher organisms including humans are invaded by millions of repetitive elements (transposons), which can sometimes be deleterious or beneficial for hosts. Many aspects of the mechanisms underlying the expansion of transposons in the genomes remain unclear. Short retrotransposons (SINEs) are one of the most abundant classes of genomic repeats. Their amplification relies on two major processes: transcription and reverse transcription. Here, short retrotransposons of dogs and other canids called Can SINE were analyzed. Their amplification was extraordinarily active in the wolf and, particularly, dog breeds relative to other canids. We also studied a variation of their transcription mechanism involving the polyadenylation of transcripts. An analysis of specific signals involved in this process allowed us to conclude that Can SINEs could alternate amplification with and without polyadenylation in their evolution. Understanding the mechanisms of transposon replication can shed light on the mechanisms of genome function. Abstract SINEs, non-autonomous short retrotransposons, are widespread in mammalian genomes. Their transcripts are generated by RNA polymerase III (pol III). Transcripts of certain SINEs can be polyadenylated, which requires polyadenylation and pol III termination signals in their sequences. Our sequence analysis divided Can SINEs in canids into four subfamilies, older a1 and a2 and younger b1 and b2. Can_b2 and to a lesser extent Can_b1 remained retrotranspositionally active, while the amplification of Can_a1 and Can_a2 ceased long ago. An extraordinarily high Can amplification was revealed in different dog breeds. Functional polyadenylation signals were analyzed in Can subfamilies, particularly in fractions of recently amplified, i.e., active copies. The transcription of various Can constructs transfected into HeLa cells proposed AATAAA and (TC)n as functional polyadenylation signals. Our analysis indicates that older Can subfamilies (a1, a2, and b1) with an active transcription terminator were amplified by the T+ mechanism (with polyadenylation of pol III transcripts). In the currently active Can_b2 subfamily, the amplification mechanisms with (T+) and without the polyadenylation of pol III transcripts (T−) irregularly alternate. The active transcription terminator tends to shorten, which renders it nonfunctional and favors a switch to the T− retrotransposition. The activity of a truncated terminator is occasionally restored by its elongation, which rehabilitates the T+ retrotransposition for a particular SINE copy.
Collapse
|
63
|
Hansen Wheat C, Larsson L, Berner P, Temrin H. Human-directed attachment behavior in wolves suggests standing ancestral variation for human-dog attachment bonds. Ecol Evol 2022; 12:e9299. [PMID: 36188523 PMCID: PMC9487184 DOI: 10.1002/ece3.9299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022] Open
Abstract
Domesticated animals are generally assumed to display increased sociability toward humans compared to their wild ancestors. Dogs (Canis familiaris) have a remarkable ability to form social relationships with humans, including lasting attachment, a bond based on emotional dependency. Since it has been specifically suggested that the ability to form attachment with humans evolved post-domestication in dogs, attempts to quantify attachment behavior in wolves (Canis lupus) have subsequently been performed. However, while these rare wolf studies do highlight the potential for wolves to express human-directed attachment, the varied methods used and the contrasting results emphasize the need for further, standardized testing of wolves. Here, we used the standardized Strange Situation Test to investigate attachment behavior expressed in wolves and dogs hand-raised and socialized under standardized and identical conditions up until the age of testing. We found that 23-week-old wolves and dogs equally discriminated between a stranger and a familiar person, and expressed similar attachment behaviors toward a familiar person. Additionally, wolves, but not dogs, expressed significantly elevated stress-related behavior during the test, but this stress response was buffered by the presence of a familiar person. Together, our results suggest that wolves can show attachment behaviors toward humans comparable to those of dogs. Importantly, our findings demonstrate that the ability to form attachment with humans exists in relatives of the wild ancestor of dogs, thereby refuting claims that this phenotype evolved after dog domestication was initiated.
Collapse
Affiliation(s)
- Christina Hansen Wheat
- Department of ZoologyStockholm UniversityStockholmSweden
- Department of BiologyLund UniversityLundSweden
| | - Linn Larsson
- Department of ZoologyStockholm UniversityStockholmSweden
| | | | - Hans Temrin
- Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
64
|
Wang S, Kim M, Jiang X, Harmanci AO. Evaluation of vicinity-based hidden Markov models for genotype imputation. BMC Bioinformatics 2022; 23:356. [PMID: 36038834 PMCID: PMC9422108 DOI: 10.1186/s12859-022-04896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The decreasing cost of DNA sequencing has led to a great increase in our knowledge about genetic variation. While population-scale projects bring important insight into genotype-phenotype relationships, the cost of performing whole-genome sequencing on large samples is still prohibitive. In-silico genotype imputation coupled with genotyping-by-arrays is a cost-effective and accurate alternative for genotyping of common and uncommon variants. Imputation methods compare the genotypes of the typed variants with the large population-specific reference panels and estimate the genotypes of untyped variants by making use of the linkage disequilibrium patterns. Most accurate imputation methods are based on the Li-Stephens hidden Markov model, HMM, that treats the sequence of each chromosome as a mosaic of the haplotypes from the reference panel. RESULTS Here we assess the accuracy of vicinity-based HMMs, where each untyped variant is imputed using the typed variants in a small window around itself (as small as 1 centimorgan). Locality-based imputation is used recently by machine learning-based genotype imputation approaches. We assess how the parameters of the vicinity-based HMMs impact the imputation accuracy in a comprehensive set of benchmarks and show that vicinity-based HMMs can accurately impute common and uncommon variants. CONCLUSIONS Our results indicate that locality-based imputation models can be effectively used for genotype imputation. The parameter settings that we identified can be used in future methods and vicinity-based HMMs can be used for re-structuring and parallelizing new imputation methods. The source code for the vicinity-based HMM implementations is publicly available at https://github.com/harmancilab/LoHaMMer .
Collapse
Affiliation(s)
- Su Wang
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Miran Kim
- Department of Mathematics, Hanyang University, Seoul, 04763, Republic of Korea
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence For hEalthcare (SAFE), School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Arif Ozgun Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
65
|
Liu D, Peter BM, Schiefenhövel W, Kayser M, Stoneking M. Assessing human genome-wide variation in the Massim region of Papua New Guinea and implications for the Kula trading tradition. Mol Biol Evol 2022; 39:6653776. [PMID: 35920169 PMCID: PMC9372566 DOI: 10.1093/molbev/msac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Massim, a cultural region that includes the southeastern tip of mainland Papua New Guinea (PNG) and nearby PNG offshore islands, is renowned for a trading network called Kula, in which different valuable items circulate in different directions among some of the islands. Although the Massim has been a focus of anthropological investigation since the pioneering work of Malinowski in 1922, the genetic background of its inhabitants remains relatively unexplored. To characterize the Massim genomically, we generated genome-wide SNP data from 192 individuals from 15 groups spanning the entire region. Analyzing these together with comparative data, we found that all Massim individuals have variable Papuan-related (indigenous) and Austronesian-related (arriving ∼3,000 years ago) ancestries. Individuals from Rossel Island in southern Massim, speaking an isolate Papuan language, have the highest amount of a distinct Papuan ancestry. We also investigated the recent contact via sharing of identical by descent (IBD) genomic segments and found that Austronesian-related IBD tracts are widely distributed geographically, but Papuan-related tracts are shared exclusively between the PNG mainland and Massim, and between the Bismarck and Solomon Archipelagoes. Moreover, the Kula-practicing groups of the Massim show higher IBD sharing among themselves than do groups that do not participate in Kula. This higher sharing predates the formation of Kula, suggesting that extensive contact between these groups since the Austronesian settlement may have facilitated the formation of Kula. Our study provides the first comprehensive genome-wide assessment of Massim inhabitants and new insights into the fascinating Kula system.
Collapse
Affiliation(s)
- Dang Liu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wulf Schiefenhövel
- Human Ethology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| |
Collapse
|
66
|
Losey RJ, Nomokonova T, Guiry E, Fleming LS, Garvie-Lok SJ, Waters-Rist AL, Bieraugle M, Szpak P, Bachura OP, Bazaliiskii VI, Berdnikova NE, Diatchina NG, Frolov IV, Gorbunov VV, Goriunova OI, Grushin SP, Gusev AV, Iaroslavtseva LG, Ivanov GL, Kharinskii AV, Konstantinov MV, Kosintsev PA, Kovychev EV, Lazin B, Nikitin IG, Papin DV, Popov AN, Sablin MV, Savel'ev NA, Savinetsky AB, Tishkin AA. The evolution of dog diet and foraging: Insights from archaeological canids in Siberia. SCIENCE ADVANCES 2022; 8:eabo6493. [PMID: 35867782 DOI: 10.1126/sciadv.abo6493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Research on the evolution of dog foraging and diet has largely focused on scavenging during their initial domestication and genetic adaptations to starch-rich food environments following the advent of agriculture. The Siberian archaeological record evidences other critical shifts in dog foraging and diet that likely characterize Holocene dogs globally. By the Middle Holocene, body size reconstruction for Siberia dogs indicates that most were far smaller than Pleistocene wolves. This contributed to dogs' tendencies to scavenge, feed on small prey, and reduce social foraging. Stable carbon and nitrogen isotope analysis of Siberian dogs reveals that their diets were more diverse than those of Pleistocene wolves. This included habitual consumption of marine and freshwater foods by the Middle Holocene and reliance on C4 foods by the Late Holocene. Feeding on such foods and anthropogenic waste increased dogs' exposure to microbes, affected their gut microbiomes, and shaped long-term dog population history.
Collapse
Affiliation(s)
- Robert J Losey
- Department of Anthropology, University of Alberta, Tory Building 13-15 HM, Edmonton, AB T6G 2H4, Canada
- Department of Archaeology and Anthropology, University of Saskatchewan, 55 Campus Drive, Saskatoon, SK S7N 5B1, Canada
| | - Tatiana Nomokonova
- Department of Archaeology and Anthropology, University of Saskatchewan, 55 Campus Drive, Saskatoon, SK S7N 5B1, Canada
| | - Eric Guiry
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Lacey S Fleming
- Tennessee Division of Archaeology, 216 Foster Avenue, Cole Building 3, Nashville, TN 37243, USA
| | - Sandra J Garvie-Lok
- Department of Anthropology, University of Alberta, Tory Building 13-15 HM, Edmonton, AB T6G 2H4, Canada
| | - Andrea L Waters-Rist
- Department of Anthropology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5C2, Canada
| | - Megan Bieraugle
- Department of Anthropology, University of Alberta, Tory Building 13-15 HM, Edmonton, AB T6G 2H4, Canada
| | - Paul Szpak
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Olga P Bachura
- Palaeoecology Laboratory, Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Science, 8 Marta Street #202, Ekaterinburg 620144, Russian Federation
| | - Vladimir I Bazaliiskii
- Laboratory of Archaeology, Ethnology, Problems of Paleoecology and Human Evolution of the Faculty of History, Irkutsk State University, 5th Army Street 52, Irkutsk 664025, Russian Federation
| | - Natalia E Berdnikova
- Scientific Research Center "Baikal Region", Irkutsk State University, K. Marx St. 1, Irkutsk 664003, Russian Federation
| | - Natal'ia G Diatchina
- Trans-Baikal State University, Aleksandro-Zavodskaia St. 30, Chita 672039, Russian Federation
| | - Iaroslav V Frolov
- Museum of Archaeology and Ethnography of Altai, Altai State University, Dimitrova St. 66, Barnaul 656049, Russian Federation
| | - Vadim V Gorbunov
- Department of Archaeology, Ethnography and Museology, Altai State University, Lenin Prospekt St. 61, Barnaul 656049, Russian Federation
| | - Olga I Goriunova
- Scientific Research Center "Baikal Region", Irkutsk State University, K. Marx St. 1, Irkutsk 664003, Russian Federation
| | - Sergei P Grushin
- Department of Archaeology, Ethnography and Museology, Altai State University, Lenin Prospekt St. 61, Barnaul 656049, Russian Federation
| | - Andrei V Gusev
- Scientific Center of Arctic Studies, Respublika St. 20, Salekhard, Iamal-Nenets Autonomous District 629008, Russian Federation
| | - Larisa G Iaroslavtseva
- National Museum of the Republic of Buryatia, Kuibyshev St. 29, Ulan-Ude 670000, Russian Federation
| | - Grigorii L Ivanov
- Irkutsk Museum of Regional Studies, K. Marx St. 13, Irkutsk 664003, Russian Federation
| | - Artur V Kharinskii
- Laboratory of Archaeology, Paleoecology and the Subsistence Strategies of the Peoples of Northern Asia, Irkutsk National Research Technical University, Lermontov St. 83, Irkutsk 664074, Russian Federation
- Faculty of History, Irkutsk State University, K. Marx St. 1, Irkutsk 664003, Russian Federation
| | - Mikhail V Konstantinov
- Trans-Baikal State University, Aleksandro-Zavodskaia St. 30, Chita 672039, Russian Federation
| | - Pavel A Kosintsev
- Palaeoecology Laboratory, Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Science, 8 Marta Street #202, Ekaterinburg 620144, Russian Federation
| | - Evgenii V Kovychev
- Trans-Baikal State University, Aleksandro-Zavodskaia St. 30, Chita 672039, Russian Federation
- Institute of Mongolian, Buddhist, and Tibetan Studies, Siberian Branch, Russian Academy of Science, Sakhiyanovoi St. 6, Ulan-Ude 670047, Russian Federation
| | - Boris Lazin
- Science Museum, Far East Federal University, Okeanskii Prospect 37, Vladivostok 690091, Russian Federation
| | - Iurii G Nikitin
- Museum of Archaeology and Ethnographies, Institute of History, Archaeology and Ethnography of the Peoples of the Far East, Far Eastern Branch of the Russian Academy of Science, Pushkinskaia St. 89, Vladivostok 690091, Russian Federation
| | - Dmitri V Papin
- Barnaul Laboratory of Archaeology and Ethnography of South Siberia, Altai State University, Dmitrova St. 66, Barnaul 656049, Russian Federation
- Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, 17, Acad. Lavretiev Avenue, Novosibirsk 630090, Russian Federation
| | - Alexandr N Popov
- Science Museum, Far East Federal University, Okeanskii Prospect 37, Vladivostok 690091, Russian Federation
| | - Mikhail V Sablin
- Zoological Institute of the Russian Academy of Science, Universitetskaia nab. 1, Saint Petersburg 199034, Russian Federation
| | - Nikolai A Savel'ev
- Laboratory of Archaeology, Ethnology, Problems of Paleoecology and Human Evolution of the Faculty of History, Irkutsk State University, 5th Army Street 52, Irkutsk 664025, Russian Federation
| | - Arkady B Savinetsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Leninskii prospect 33, Moscow 119071, Russian Federation
| | - Alexey A Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Lenin Prospekt St. 61, Barnaul 656049, Russian Federation
| |
Collapse
|
67
|
Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MHS, Ersmark E, Pfrengle S, Cassatt-Johnstone M, Lebrasseur O, Girdland-Flink L, Fernandes DM, Ollivier M, Speidel L, Gopalakrishnan S, Westbury MV, Ramos-Madrigal J, Feuerborn TR, Reiter E, Gretzinger J, Münzel SC, Swali P, Conard NJ, Carøe C, Haile J, Linderholm A, Androsov S, Barnes I, Baumann C, Benecke N, Bocherens H, Brace S, Carden RF, Drucker DG, Fedorov S, Gasparik M, Germonpré M, Grigoriev S, Groves P, Hertwig ST, Ivanova VV, Janssens L, Jennings RP, Kasparov AK, Kirillova IV, Kurmaniyazov I, Kuzmin YV, Kosintsev PA, Lázničková-Galetová M, Leduc C, Nikolskiy P, Nussbaumer M, O'Drisceoil C, Orlando L, Outram A, Pavlova EY, Perri AR, Pilot M, Pitulko VV, Plotnikov VV, Protopopov AV, Rehazek A, Sablin M, Seguin-Orlando A, Storå J, Verjux C, Zaibert VF, Zazula G, Crombé P, Hansen AJ, Willerslev E, Leonard JA, Götherström A, Pinhasi R, Schuenemann VJ, Hofreiter M, Gilbert MTP, Shapiro B, Larson G, Krause J, Dalén L, Skoglund P. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 2022; 607:313-320. [PMID: 35768506 PMCID: PMC9279150 DOI: 10.1038/s41586-022-04824-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1–8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located. DNA from ancient wolves spanning 100,000 years sheds light on wolves’ evolutionary history and the genomic origin of dogs.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - David W G Stanton
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden.,School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Laurent Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ophélie Lebrasseur
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Morgane Ollivier
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)-UMR 6553, Rennes, France
| | - Leo Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.,Genetics Institute, University College London, London, UK
| | | | - Michael V Westbury
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Tatiana R Feuerborn
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Joscha Gretzinger
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Susanne C Münzel
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Pooja Swali
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas J Conard
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Christian Carøe
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - James Haile
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Anna Linderholm
- Centre for Palaeogenetics, Stockholm, Sweden.,The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,Texas A&M University, College Station, TX, USA.,Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Chris Baumann
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Ruth F Carden
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | | | | | | | - Pam Groves
- University of Alaska, Fairbanks, AK, USA
| | - Stefan T Hertwig
- Naturhistorisches Museum Bern, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | | | - Richard P Jennings
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Irina V Kirillova
- Ice Age Museum, Shidlovskiy National Alliance 'Ice Age', Moscow, Russian Federation
| | - Islam Kurmaniyazov
- Department of Archaeology, Ethnology and Museology, Al-Farabi Kazakh State University, Almaty, Kazakhstan
| | - Yaroslav V Kuzmin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | | | | | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Cóilín O'Drisceoil
- National Monuments Service, Department of Housing, Local Government and Heritage, Dublin, Ireland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Alan Outram
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Elena Y Pavlova
- Arctic & Antarctic Research Institute, St Petersburg, Russian Federation
| | - Angela R Perri
- PaleoWest, Henderson, NV, USA.,Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Małgorzata Pilot
- Museum & Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | | | | | | | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - Victor F Zaibert
- Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Grant Zazula
- Yukon Palaeontology Program, Whitehorse, Yukon Territories, Canada.,Collections and Research, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | | | - Anders J Hansen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden.,Stockholm University, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
68
|
Ice Age wolf genomes home in on dog origins. Nature 2022:10.1038/d41586-022-01551-z. [PMID: 35768604 DOI: 10.1038/d41586-022-01551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
69
|
Fregel R. The origin of the Carpathian Avar elites revealed. CELL GENOMICS 2022; 2:100143. [PMID: 36778139 PMCID: PMC9903741 DOI: 10.1016/j.xgen.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the sixth century, the Avar elites established themselves in the Carpathian Basin as evidenced today by the astounding archaeological sites with exquisite grave goods made of silver and gold. Recently reported in Cell, Gnecchi-Ruscone et al.1 obtained paleogenomic evidence from Avar sites in Hungary, placing the Avar elites' origin in Mongolia and confirming their own historical claims.
Collapse
Affiliation(s)
- Rosa Fregel
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain,Corresponding author
| |
Collapse
|
70
|
Alladio E, Poggiali B, Cosenza G, Pilli E. Multivariate statistical approach and machine learning for the evaluation of biogeographical ancestry inference in the forensic field. Sci Rep 2022; 12:8974. [PMID: 35643723 PMCID: PMC9148302 DOI: 10.1038/s41598-022-12903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
The biogeographical ancestry (BGA) of a trace or a person/skeleton refers to the component of ethnicity, constituted of biological and cultural elements, that is biologically determined. Nowadays, many individuals are interested in exploring their genealogy, and the capability to distinguish biogeographic information about population groups and subgroups via DNA analysis plays an essential role in several fields such as in forensics. In fact, for investigative and intelligence purposes, it is beneficial to inference the biogeographical origins of perpetrators of crimes or victims of unsolved cold cases when no reference profile from perpetrators or database hits for comparative purposes are available. Current approaches for biogeographical ancestry estimation using SNPs data are usually based on PCA and Structure software. The present study provides an alternative method that involves multivariate data analysis and machine learning strategies to evaluate BGA discriminating power of unknown samples using different commercial panels. Starting from 1000 Genomes project, Simons Genome Diversity Project and Human Genome Diversity Project datasets involving African, American, Asian, European and Oceania individuals, and moving towards further and more geographically restricted populations, powerful multivariate techniques such as Partial Least Squares-Discriminant Analysis (PLS-DA) and machine learning techniques such as XGBoost were employed, and their discriminating power was compared. PLS-DA method provided more robust classifications than XGBoost method, showing that the adopted approach might be an interesting tool for forensic experts to infer BGA information from the DNA profile of unknown individuals, but also highlighting that the commercial forensic panels could be inadequate to discriminate populations at intra-continental level.
Collapse
Affiliation(s)
- Eugenio Alladio
- Department of Chemistry, University of Turin, Turin, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Orbassano, Torino, Italy
| | - Brando Poggiali
- Department of Biology, Forensic Molecular Anthropology Laboratory, University of Florence, Florence, Italy
| | - Giulia Cosenza
- Department of Biology, Forensic Molecular Anthropology Laboratory, University of Florence, Florence, Italy
| | - Elena Pilli
- Department of Biology, Forensic Molecular Anthropology Laboratory, University of Florence, Florence, Italy.
| |
Collapse
|
71
|
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, Snyder-Mackler N, Alonso J, Noh HJ, Johnson J, Koltookian M, Lieu C, Megquier K, Swofford R, Turner-Maier J, White ME, Weng Z, Colubri A, Genereux DP, Lord KA, Karlsson EK. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022; 376:eabk0639. [PMID: 35482869 DOI: 10.1126/science.abk0639] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Hekman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse McClure
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Mingshi Gao
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yinan Dong
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marjie Alonso
- The International Association of Animal Behavior Consultants, Cranberry Township, PA 16066, USA.,IAABC Foundation, Cranberry Township, PA 16066, USA
| | - Elena Carmichael
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Rice University, Houston, TX 77005, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85251, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ 85251, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Jacob Alonso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Charlie Lieu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michelle E White
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Andrés Colubri
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
72
|
Barrios N, González-Lagos C, Dreger DL, Parker HG, Nourdin-Galindo G, Hogan AN, Gómez MA, Ostrander EA. Patagonian sheepdog: Genomic analyses trace the footprints of extinct UK herding dogs to South America. PLoS Genet 2022; 18:e1010160. [PMID: 35482674 PMCID: PMC9049511 DOI: 10.1371/journal.pgen.1010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Most modern dog breeds were developed within the last two hundred years, following strong and recent human selection based predominantly on aesthetics, with few modern breeds constructed solely to maximize their work potential. In many cases, these working breeds represent the last remnants of now lost populations. The Patagonian sheepdog (PGOD), a rare herding breed, is a remarkable example of such a population. Maintained as an isolated population for over 130 years, the PGOD offers a unique opportunity to understand the genetic relationship amongst modern herding breeds, determine key genomic structure of the founder PGOD populations, and investigate how canine genomic data can mirror human migration patterns. We thus analyzed the population structure of 159 PGOD, comparing them with 1514 dogs representing 175 established breeds. Using 150,069 SNPs from a high-density SNP genotyping array, we establish the genomic composition, ancestry, and genetic diversity of the population, complementing genomic data with the PGOD's migratory history to South America. Our phylogenetic analysis reveals that PGODs are most closely related to modern herding breeds hailing from the United Kingdom. Admixture models illustrate a greater degree of diversity and genetic heterogeneity within the very small PGOD population than in Western European herding breeds, suggesting the PGOD predates the 200-year-old construction of most pure breeds known today. We thus propose that PGODs originated from the foundational herding dogs of the UK, prior to the Victorian explosion of breeds, and that they are the closest link to a now-extinct population of herding dogs from which modern herding breeds descended.
Collapse
Grants
- Agencia Nacional de Investigación y Desarrollo, FONDECYT, Chile.
- Agencia Nacional de Investigación y Desarrollo, Beca Doctorado Nacional, 2018, Chile.
- Agencia Nacional de Investigación y Desarrollo, REDI, Chile.
- Agencia Nacional de Investigación y Desarrollo, PIA/BASAL, Chile.
- Intramural Program of the National Human Genome Research Institute of the National Institute of Health, Bethesda MD, USA.
Collapse
Affiliation(s)
- Natasha Barrios
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - César González-Lagos
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Dayna L. Dreger
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heidi G. Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Andrew N. Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo A. Gómez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
73
|
Scarsbrook L, Verry AJF, Walton K, Hitchmough RA, Rawlence NJ. Ancient mitochondrial genomes recovered from small vertebrate bones through minimally destructive DNA extraction: phylogeography of the New Zealand gecko genus
Hoplodactylus. Mol Ecol 2022; 32:2964-2984. [DOI: 10.1111/mec.16434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Lachie Scarsbrook
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | - Alexander J. F. Verry
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | - Kerry Walton
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | | | - Nicolas J. Rawlence
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| |
Collapse
|
74
|
Natural and human-driven selection of a single non-coding body size variant in ancient and modern canids. Curr Biol 2022; 32:889-897.e9. [PMID: 35090588 PMCID: PMC8891063 DOI: 10.1016/j.cub.2021.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2-4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFβ signaling, and skeletal formation.6-10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.
Collapse
|
75
|
Abstract
Joint phylogenetic analysis of ancient DNA (aDNA) with modern phylogenies is hampered by low sequence coverage and post-mortem deamination, often resulting in overconservative or incorrect assignment. We provide a new efficient likelihood-based workflow, pathPhynder, that takes advantage of all the polymorphic sites in the target sequence. This effectively evaluates the number of ancestral and derived alleles present on each branch and reports the most likely placement of an ancient sample in the phylogeny and a haplogroup assignment, together with alternatives and supporting evidence. To illustrate the application of pathPhynder, we show improved Y chromosome assignments for published aDNA sequences, using a newly compiled Y variation data set (120,908 markers from 2,014 samples) that significantly enhances Y haplogroup assignment for low coverage samples. We apply the method to all published male aDNA samples from Africa, giving new insights into ancient migrations and the relationships between ancient and modern populations. The same software can be used to place samples with large amounts of missing data into other large non-recombining phylogenies such as the mitochondrial tree.
Collapse
Affiliation(s)
- Rui Martiniano
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
76
|
Comparing wolves and dogs: current status and implications for human ‘self-domestication’. Trends Cogn Sci 2022; 26:337-349. [DOI: 10.1016/j.tics.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/02/2023]
|
77
|
Halo JV, Kidd JM. Canis familiaris (Great Dane domestic dog). Trends Genet 2022; 38:514-515. [PMID: 35232612 DOI: 10.1016/j.tig.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
78
|
Kang M, Ahn B, Youk S, Lee YM, Kim JJ, Ha JH, Park C. Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog. Genes (Basel) 2022; 13:genes13010102. [PMID: 35052442 PMCID: PMC8775186 DOI: 10.3390/genes13010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Genetic analysis of the hair-length of Sapsaree dogs, a Korean native dog breed, showed a dominant mode of inheritance for long hair. Genome-Wide Association Study (GWAS) analysis and subsequent Mendelian segregation analysis revealed an association between OXR1, RSPO2, and PKHD1L1 on chromosome 13 (CFA13). We identified the previously reported 167 bp insertion in RSPO2 3’ untranslated region as a causative mutation for hair length variations. The analysis of 118 dog breeds and wolves revealed the selection signature on CFA13 in long-haired breeds. Haplotype analysis showed the association of only a few specific haplotypes to the breeds carrying the 167 bp insertion. The genetic diversity in the neighboring region linked to the insertion was higher in Sapsarees than in other Asian and European dog breeds carrying the same variation, suggesting an older history of its insertion in the Sapsaree genome than in that of the other breeds analyzed in this study. Our results show that the RSPO2 3’ UTR insertion is responsible for not only the furnishing phenotype but also determining the hair length of the entire body depending on the genetic background, suggesting an epistatic interaction between FGF5 and RSPO2 influencing the hair-length phenotype in dogs.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
| | - Seungyeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan 36461, Korea; (Y.-M.L.); (J.-J.K.)
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 36461, Korea; (Y.-M.L.); (J.-J.K.)
| | - Ji-Hong Ha
- Korean Sapsaree Foundation, Gyeongsan 38412, Korea;
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
- Correspondence: ; Tel.: +82-10-8826-1363
| |
Collapse
|
79
|
Cairns KM, Crowther MS, Nesbitt B, Letnic M. The myth of wild dogs in Australia: are there any out there? AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am20055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hybridisation between wild and domestic canids is a global conservation and management issue. In Australia, dingoes are a distinct lineage of wild-living canid with a controversial domestication status. They are mainland Australia’s apex terrestrial predator. There is ongoing concern that the identity of dingoes has been threatened from breeding with domestic dogs, and that feral dogs have established populations in rural Australia. We collate the results of microsatellite DNA testing from 5039 wild canids to explore patterns of domestic dog ancestry in dingoes and observations of feral domestic dogs across the continent. Only 31 feral dogs were detected, challenging the perception that feral dogs are widespread in Australia. First generation dingo × dog hybrids were similarly rare, with only 27 individuals identified. Spatial patterns of genetic ancestry across Australia identified that dingo populations in northern, western and central Australia were largely free from domestic dog introgression. Our findings challenge the perception that dingoes are virtually extinct in the wild and that feral dogs are common. A shift in terminology from wild dog to dingo would better reflect the identity of these wild canids and allow more nuanced debate about the balance between conservation and management of dingoes in Australia.
Collapse
|
80
|
Zhao X, Fu X, Yin C, Lu F. Wheat speciation and adaptation: perspectives from reticulate evolution. ABIOTECH 2021; 2:386-402. [PMID: 36311810 PMCID: PMC9590565 DOI: 10.1007/s42994-021-00047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Reticulate evolution through the interchanging of genetic components across organisms can impact significantly on the fitness and adaptation of species. Bread wheat (Triticum aestivum subsp. aestivum) is one of the most important crops in the world. Allopolyploid speciation, frequent hybridization, extensive introgression, and occasional horizontal gene transfer (HGT) have been shaping a typical paradigm of reticulate evolution in bread wheat and its wild relatives, which is likely to have a substantial influence on phenotypic traits and environmental adaptability of bread wheat. In this review, we outlined the evolutionary history of bread wheat and its wild relatives with a highlight on the interspecific hybridization events, demonstrating the reticulate relationship between species/subspecies in the genera Triticum and Aegilops. Furthermore, we discussed the genetic mechanisms and evolutionary significance underlying the introgression of bread wheat and its wild relatives. An in-depth understanding of the evolutionary process of Triticum species should be beneficial to future genetic study and breeding of bread wheat.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
81
|
Abstract
Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.
Collapse
Affiliation(s)
- Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Craig Moritz
- Centre for Biodiversity Analysis and Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
82
|
Samant SS, Crandall PG, Jarma Arroyo SE, Seo HS. Dry Pet Food Flavor Enhancers and Their Impact on Palatability: A Review. Foods 2021; 10:foods10112599. [PMID: 34828880 PMCID: PMC8622411 DOI: 10.3390/foods10112599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Pet foods are a vital component of the global food industry. Pet food’s success depends on its acceptance by both consumers (the pets) and purchasers (the pet owners). Palatability tests using panels of both trained and untrained pets are often used to measure the preference and acceptability of pet foods. Human perception of pet foods is usually determined by descriptive sensory analysis. Since dry pet foods (also known as kibbles), while being the most popular, are the least palatable, palatants as a flavor enhancer are generally added to dry pet foods to increase their acceptability to pets. Pet foods can also be prepared to be more appealing to pet owners if the chosen aromas and flavors are commonly associated with human food. With increasing demand, developing flavor enhancers to meet the needs of both pets and owners is becoming increasingly important. This review summarized the current state of flavor enhancers used in the pet food industry and their influence on food palatability from both animal and human standpoints.
Collapse
|
83
|
Moshref M, Questa M, Lopez-Cervantes V, Sears TK, Greathouse RL, Crawford CK, Kol A. Panobinostat Effectively Increases Histone Acetylation and Alters Chromatin Accessibility Landscape in Canine Embryonic Fibroblasts but Does Not Enhance Cellular Reprogramming. Front Vet Sci 2021; 8:716570. [PMID: 34660761 PMCID: PMC8511502 DOI: 10.3389/fvets.2021.716570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
Robust and reproducible protocols to efficiently reprogram adult canine cells to induced pluripotent stem cells are still elusive. Somatic cell reprogramming requires global chromatin remodeling that is finely orchestrated spatially and temporally. Histone acetylation and deacetylation are key regulators of chromatin condensation, mediated by histone acetyltransferases and histone deacetylases (HDACs), respectively. HDAC inhibitors have been used to increase histone acetylation, chromatin accessibility, and somatic cell reprogramming in human and mice cells. We hypothesized that inhibition of HDACs in canine fibroblasts would increase their reprogramming efficiency by altering the epigenomic landscape and enabling greater chromatin accessibility. We report that a combined treatment of panobinostat (LBH589) and vitamin C effectively inhibits HDAC function and increases histone acetylation in canine embryonic fibroblasts in vitro, with no significant cytotoxic effects. We further determined the effect of this treatment on global chromatin accessibility via Assay for Transposase-Accessible Chromatin using sequencing. Finally, the treatment did not induce any significant increase in cellular reprogramming efficiency. Although our data demonstrate that the unique epigenetic landscape of canine cells does not make them amenable to cellular reprogramming through the proposed treatment, it provides a rationale for a targeted, canine-specific, reprogramming approach by enhancing the expression of transcription factors such as CEBP.
Collapse
Affiliation(s)
- Maryam Moshref
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maria Questa
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Veronica Lopez-Cervantes
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Thomas K Sears
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel L Greathouse
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Charles K Crawford
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
84
|
Mech LD, Janssens LAA. An assessment of current wolf
Canis lupus
domestication hypotheses based on wolf ecology and behaviour. Mamm Rev 2021. [DOI: 10.1111/mam.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- L. David Mech
- Northern Prairie Wildlife Research Center U. S. Geological Survey Jamestown North Dakota58401USA
| | - Luc A. A. Janssens
- Department of Archaeology Leiden University Einsteinweg 2 2333 CCLeidenThe Netherlands
- Department of Archaeology Ghent University Sint‐Pietersnieuwstraat 35 9000GhentBelgium
| |
Collapse
|
85
|
Pilot M, Moura AE, Okhlopkov IM, Mamaev NV, Manaseryan NH, Hayrapetyan V, Kopaliani N, Tsingarska E, Alagaili AN, Mohammed OB, Ostrander EA, Bogdanowicz W. Human-modified canids in human-modified landscapes: The evolutionary consequences of hybridization for grey wolves and free-ranging domestic dogs. Evol Appl 2021; 14:2433-2456. [PMID: 34745336 PMCID: PMC8549620 DOI: 10.1111/eva.13257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.
Collapse
Affiliation(s)
- Małgorzata Pilot
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Andre E. Moura
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Innokentiy M. Okhlopkov
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Nikolay V. Mamaev
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Ninna H. Manaseryan
- Scientific Center of Zoology and HydroecologyNational Academy of SciencesYerevanArmenia
| | | | | | | | - Abdulaziz N. Alagaili
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Osama B. Mohammed
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | | |
Collapse
|
86
|
Modern Siberian dog ancestry was shaped by several thousand years of Eurasian-wide trade and human dispersal. Proc Natl Acad Sci U S A 2021; 118:2100338118. [PMID: 34544854 PMCID: PMC8488619 DOI: 10.1073/pnas.2100338118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The Siberian Arctic has witnessed numerous societal changes since the first known appearance of dogs in the region ∼10,000 years ago. These changes include the introduction of ironworking ∼2,000 years ago and the emergence of reindeer pastoralism ∼800 years ago. The analysis of 49 ancient dog genomes reveals that the ancestry of Arctic Siberia dogs shifted over the last 2,000 years due to an influx of dogs from the Eurasian Steppe and Europe. Combined with genomic data from humans and archaeological evidence, our results suggest that though the ancestry of human populations in Arctic Siberia did not change over this period, people there participated in trade with distant communities that involved both dogs and material culture. Dogs have been essential to life in the Siberian Arctic for over 9,500 y, and this tight link between people and dogs continues in Siberian communities. Although Arctic Siberian groups such as the Nenets received limited gene flow from neighboring groups, archaeological evidence suggests that metallurgy and new subsistence strategies emerged in Northwest Siberia around 2,000 y ago. It is unclear if the Siberian Arctic dog population was as continuous as the people of the region or if instead admixture occurred, possibly in relation to the influx of material culture from other parts of Eurasia. To address this question, we sequenced and analyzed the genomes of 20 ancient and historical Siberian and Eurasian Steppe dogs. Our analyses indicate that while Siberian dogs were genetically homogenous between 9,500 to 7,000 y ago, later introduction of dogs from the Eurasian Steppe and Europe led to substantial admixture. This is clearly the case in the Iamal-Nenets region (Northwestern Siberia) where dogs from the Iron Age period (∼2,000 y ago) possess substantially less ancestry related to European and Steppe dogs than dogs from the medieval period (∼1,000 y ago). Combined with findings of nonlocal materials recovered from these archaeological sites, including glass beads and metal items, these results indicate that Northwest Siberian communities were connected to a larger trade network through which they acquired genetically distinctive dogs from other regions. These exchanges were part of a series of major societal changes, including the rise of large-scale reindeer pastoralism ∼800 y ago.
Collapse
|
87
|
Hunting dogs bark differently when they encounter different animal species. Sci Rep 2021; 11:17407. [PMID: 34556674 PMCID: PMC8460642 DOI: 10.1038/s41598-021-97002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2021] [Indexed: 12/01/2022] Open
Abstract
Previous studies have shown that vocalizations of dogs can provide information to human companions. While acoustic signals of dogs have been intensively studied during the last decade, barking during hunting activities remains unstudied. The experiences of hunters indicate that owners can recognize what animal species has been found based on the bark of their dog. Such a phenomenon has never been tested before. We tested such an ability by comparing barks that were produced when dogs encountered four different animal species: wild boar, red fox, rabbit and fowl. Classification results of a discrimination analysis showed, that based on barks of dachshunds and terriers, it is possible to categorize towards which animal species barks were produced. The most distinctive barks were produced during encounters with the most dangerous of these animals, the wild boar. On the contrary, barks evoked by red fox encounters were classified similarly as those towards other smaller and non-dangerous animals like rabbits and fowl. Although the red fox represents a potentially dangerous species, the barking provoked was not classified with a much higher result than barking at animals that pose no threat. This might indicate that the key parameter could be the body size of the animal the dog meets. We further tested whether the degree of threat from the species of animal the dog encounters is reflected in the structure of the acoustic parameters based on the valence-arousal model. We found that barks produced in contact with a wild boar showed significantly lower frequency parameters and longest duration compared to other barks. According to these results, it seems that the variability of barking depending on the species of animal a dog encounters is an expression of the dogʼs inner state rather than functionally reference information.
Collapse
|
88
|
Schünemann B, Keller J, Rakoczy H, Behne T, Bräuer J. Dogs distinguish human intentional and unintentional action. Sci Rep 2021; 11:14967. [PMID: 34471153 PMCID: PMC8410798 DOI: 10.1038/s41598-021-94374-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
When dogs interact with humans, they often show appropriate reactions to human intentional action. But it is unclear from these everyday observations whether the dogs simply respond to the action outcomes or whether they are able to discriminate between different categories of actions. Are dogs able to distinguish intentional human actions from unintentional ones, even when the action outcomes are the same? We tested dogs' ability to discriminate these action categories by adapting the so-called "Unwilling vs. Unable" paradigm. This paradigm compares subjects' reactions to intentional and unintentional human behaviour. All dogs received three conditions: In the unwilling-condition, an experimenter intentionally withheld a reward from them. In the two unable-conditions, she unintentionally withheld the reward, either because she was clumsy or because she was physically prevented from giving the reward to the dog. Dogs clearly distinguished in their spontaneous behaviour between unwilling- and unable-conditions. This indicates that dogs indeed distinguish intentional actions from unintentional behaviour. We critically discuss our findings with regard to dogs' understanding of human intentional action.
Collapse
Affiliation(s)
- Britta Schünemann
- Department of Developmental Psychology, University of Göttingen, Waldweg 26, 37073, Göttingen, Germany.
| | - Judith Keller
- Department of Developmental Psychology, University of Göttingen, Waldweg 26, 37073, Göttingen, Germany.,Department of Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Hannes Rakoczy
- Department of Developmental Psychology, University of Göttingen, Waldweg 26, 37073, Göttingen, Germany
| | - Tanya Behne
- Department of Developmental Psychology, University of Göttingen, Waldweg 26, 37073, Göttingen, Germany
| | - Juliane Bräuer
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany.,Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University of Jena, Am Steiger 3, 07743, Jena, Germany
| |
Collapse
|
89
|
Serrano JG, Ordóñez AC, Fregel R. Paleogenomics of the prehistory of Europe: human migrations, domestication and disease. Ann Hum Biol 2021; 48:179-190. [PMID: 34459342 DOI: 10.1080/03014460.2021.1942205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A substantial portion of ancient DNA research has been centred on understanding European populations' origin and evolution. A rchaeological evidence has already shown that the peopling of Europe involved an intricate pattern of demic and/or cultural diffusion since the Upper Palaeolithic, which became more evident during the Neolithic and Bronze Age periods. However, ancient DNA data has been crucial in determining if cultural changes occurred due to the movement of ideas or people. With the advent of next-generation sequencing and population-based paleogenomic research, ancient DNA studies have been directed not only at the study of continental human migrations, but also to the detailed analysis of particular archaeological sites, the processes of domestication, or the spread of disease during prehistoric times. With this vast paleogenomic effort added to a proper archaeological contextualisation of results, a deeper understanding of Europe's peopling is starting to emanate.
Collapse
Affiliation(s)
- Javier G Serrano
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Faculta de Ciencias, Universidad de La Laguna, La Laguna, Spain
| | - Alejandra C Ordóñez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Faculta de Ciencias, Universidad de La Laguna, La Laguna, Spain.,Departamento Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, La Laguna, Spain
| | - Rosa Fregel
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Faculta de Ciencias, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
90
|
Dussex N, Bergfeldt N, de Anca Prado V, Dehasque M, Díez-Del-Molino D, Ersmark E, Kanellidou F, Larsson P, Lemež Š, Lord E, Mármol-Sánchez E, Meleg IN, Måsviken J, Naidoo T, Studerus J, Vicente M, von Seth J, Götherström A, Dalén L, Heintzman PD. Integrating multi-taxon palaeogenomes and sedimentary ancient DNA to study past ecosystem dynamics. Proc Biol Sci 2021; 288:20211252. [PMID: 34428961 PMCID: PMC8385357 DOI: 10.1098/rspb.2021.1252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ancient DNA (aDNA) has played a major role in our understanding of the past. Important advances in the sequencing and analysis of aDNA from a range of organisms have enabled a detailed understanding of processes such as past demography, introgression, domestication, adaptation and speciation. However, to date and with the notable exception of microbiomes and sediments, most aDNA studies have focused on single taxa or taxonomic groups, making the study of changes at the community level challenging. This is rather surprising because current sequencing and analytical approaches allow us to obtain and analyse aDNA from multiple source materials. When combined, these data can enable the simultaneous study of multiple taxa through space and time, and could thus provide a more comprehensive understanding of ecosystem-wide changes. It is therefore timely to develop an integrative approach to aDNA studies by combining data from multiple taxa and substrates. In this review, we discuss the various applications, associated challenges and future prospects of such an approach.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Nora Bergfeldt
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Petter Larsson
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Špela Lemež
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Emilio Mármol-Sánchez
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ioana N Meleg
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,'Emil Racoviță' Institute of Speleology of the Romanian Academy, Calea 13 Septembrie, nr. 13, 050711, Sector 5, Bucharest, Romania.,Emil. G. Racoviță Institute, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Johannes Måsviken
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Ancient DNA Unit, SciLifeLab, Stockholm and Uppsala, Sweden
| | - Jovanka Studerus
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Mário Vicente
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Peter D Heintzman
- The Arctic University Museum of Norway, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
91
|
Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches. DIVERSITY 2021. [DOI: 10.3390/d13080370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Starting four decades ago, studies have examined the ecology and evolutionary dynamics of populations and species using short mitochondrial DNA fragments and stable isotopes. Through technological and analytical advances, the methods and biomolecules at our disposal have increased significantly to now include lipids, whole genomes, proteomes, and even epigenomes. At an unprecedented resolution, the study of ancient biomolecules has made it possible for us to disentangle the complex processes that shaped the ancient faunal diversity across millennia, with the potential to aid in implicating probable causes of species extinction and how humans impacted the genetics and ecology of wild and domestic species. However, even now, few studies explore interdisciplinary biomolecular approaches to reveal ancient faunal diversity dynamics in relation to environmental and anthropogenic impact. This review will approach how biomolecules have been implemented in a broad variety of topics and species, from the extinct Pleistocene megafauna to ancient wild and domestic stocks, as well as how their future use has the potential to offer an enhanced understanding of drivers of past faunal diversity on Earth.
Collapse
|
92
|
Lombard M, Shea JJ. Did Pleistocene Africans use the spearthrower-and-dart? Evol Anthropol 2021; 30:307-315. [PMID: 34343369 DOI: 10.1002/evan.21912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 06/04/2021] [Indexed: 11/11/2022]
Abstract
Archeologists commonly suppose that among complex projectile weapons humans use as subsistence aids, the spearthrower-and-dart preceded bow-and-arrow use. And yet, neither ethnographic nor archeological records furnish any robust evidence for spearthrower-and-dart use in Africa. Instead, evidence grows apace for ever-more ancient bow-and-arrow use. Here we explore these findings and their implications for models of early Homo sapiens behavior.
Collapse
Affiliation(s)
- Marlize Lombard
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - John J Shea
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
93
|
Abstract
Domestic dogs show socio-cognitive abilities that are not found in other species, including dogs' closest living relative, the wolf. From early on dogs are good at reading human gestures and pay attention to humans' eyes and voice. Two new studies suggest that a heritable component to dogs' social cognitive skills exists and that selection during domestication must have played a role in enhancing dogs' social cognitive skills.
Collapse
|
94
|
Shan S, Xu F, Brenig B. Genome-Wide Association Studies Reveal Neurological Genes for Dog Herding, Predation, Temperament, and Trainability Traits. Front Vet Sci 2021; 8:693290. [PMID: 34368281 PMCID: PMC8335642 DOI: 10.3389/fvets.2021.693290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association study (GWAS) using dog breed standard values as phenotypic measurements is an efficient way to identify genes associated with morphological and behavioral traits. As a result of strong human purposeful selections, several specialized behavioral traits such as herding and hunting have been formed in different modern dog breeds. However, genetic analyses on this topic are rather limited due to the accurate phenotyping difficulty for these complex behavioral traits. Here, 268 dog whole-genome sequences from 130 modern breeds were used to investigate candidate genes underlying dog herding, predation, temperament, and trainability by GWAS. Behavioral phenotypes were obtained from the American Kennel Club based on dog breed standard descriptions or groups (conventional categorization of dog historical roles). The GWAS results of herding behavior (without body size as a covariate) revealed 44 significantly associated sites within five chromosomes. Significantly associated sites on CFA7, 9, 10, and 20 were located either in or near neuropathological or neuronal genes including THOC1, ASIC2, MSRB3, LLPH, RFX8, and CHL1. MSRB3 and CHL1 genes were reported to be associated with dog fear. Since herding is a restricted hunting behavior by removing killing instinct, 36 hounds and 55 herding dogs were used to analyze predation behavior. Three neuronal-related genes (JAK2, MEIS1, and LRRTM4) were revealed as candidates for predation behavior. The significantly associated variant of temperament GWAS was located within ACSS3 gene. The highest associated variant in trainability GWAS is located on CFA22, with no variants detected above the Bonferroni threshold. Since dog behaviors are correlated with body size, we next incorporate body mass as covariates into GWAS; and significant signals around THOC1, MSRB3, LLPH, RFX8, CHL1, LRRTM4, and ACSS3 genes were still detected for dog herding, predation, and temperament behaviors. In humans, these candidate genes are either involved in nervous system development or associated with mental disorders. In conclusion, our results imply that these neuronal or psychiatric genes might be involved in biological processes underlying dog herding, predation, and temperament behavioral traits.
Collapse
Affiliation(s)
- Shuwen Shan
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Fangzheng Xu
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| |
Collapse
|
95
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
96
|
Salomons H, Smith KCM, Callahan-Beckel M, Callahan M, Levy K, Kennedy BS, Bray EE, Gnanadesikan GE, Horschler DJ, Gruen M, Tan J, White P, vonHoldt BM, MacLean EL, Hare B. Cooperative Communication with Humans Evolved to Emerge Early in Domestic Dogs. Curr Biol 2021; 31:3137-3144.e11. [PMID: 34256018 PMCID: PMC8610089 DOI: 10.1016/j.cub.2021.06.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Although we know that dogs evolved from wolves, it remains unclear how domestication affected dog cognition. One hypothesis suggests dog domestication altered social maturation by a process of selecting for an attraction to humans.1-3 Under this account, dogs became more flexible in using inherited skills to cooperatively communicate with a new social partner that was previously feared and expressed these unusual social skills early in development.4-6 Here, we comparedog (n = 44) and wolf (n = 37) puppies, 5-18 weeks old, on a battery of temperament and cognition tasks. We find that dog puppies are more attracted to humans, read human gestures more skillfully, and make more eye contact with humans than wolf puppies. The two species are similarly attracted to familiar objects and perform similarly on non-social measures of memory and inhibitory control. These results are consistent with the idea that domestication enhanced the cooperative-communicative abilities of dogs as selection for attraction to humans altered social maturation.
Collapse
Affiliation(s)
- Hannah Salomons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
| | - Kyle C M Smith
- Department of Anthropology, Pennsylvania State University, State College, PA 16801, USA
| | | | | | - Kerinne Levy
- Canine Companions for Independence, Santa Rosa, CA 95407, USA
| | | | - Emily E Bray
- Canine Companions for Independence, Santa Rosa, CA 95407, USA; School of Anthropology, University of Arizona, Tucson, AZ 85721, USA
| | - Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel J Horschler
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA
| | - Margaret Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Jingzhi Tan
- Department of Psychology, Leiden University, 2311 EZ Leiden, the Netherlands
| | - Philip White
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Brian Hare
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA; Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
97
|
Rampelli S, Turroni S, Debandi F, Alberdi A, Schnorr SL, Hofman CA, Taddia A, Helg R, Biagi E, Brigidi P, D'Amico F, Cattani M, Candela M. The gut microbiome buffers dietary adaptation in Bronze Age domesticated dogs. iScience 2021; 24:102816. [PMID: 34377966 PMCID: PMC8327155 DOI: 10.1016/j.isci.2021.102816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
In an attempt to explore the role of the gut microbiome during recent canine evolutionary history, we sequenced the metagenome of 13 canine coprolites dated ca. 3,600–3,450 years ago from the Bronze Age archaeological site of Solarolo (Italy), which housed a complex farming community. The microbiome structure of Solarolo dogs revealed continuity with that of modern dogs, but it also shared some features with the wild wolf microbiome, as a kind of transitional state between them. The dietary niche, as also inferred from the microbiome composition, was omnivorous, with evidence of consumption of starchy agricultural foods. Of interest, the Solarolo dog microbiome was particularly enriched in sequences encoding alpha-amylases and complemented a low copy number of the host amylase gene. These findings suggest that Neolithic dogs could have responded to the transition to a starch-rich diet by expanding microbial functionalities devoted to starch catabolism, thus compensating for delayed host response. Ancient DNA of Bronze Age canine coprolites from Solarolo was sequenced Solarolo dogs share gut microbiome features with modern wolves and dogs The gut microbiome of Solarolo dogs shows high number of reads for alpha-amylase Neolithic canine gut microbiome complemented delay in host genome adaptation
Collapse
Affiliation(s)
- Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Florencia Debandi
- Department of History and Cultures, University of Bologna, Bologna, Italy
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie L Schnorr
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.,Department of Anthropology, University of Nevada, Las Vegas, NV, USA
| | - Courtney A Hofman
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA.,Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Alberto Taddia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Helg
- Department of History and Cultures, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maurizio Cattani
- Department of History and Cultures, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
98
|
Trut LN, Kharlamova AV, Pilipenko AS, Herbeck YE. The Fox Domestication Experiment and Dog Evolution: A View Based on Modern Molecular, Genetic, and Archaeological Data. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
99
|
Dog domestication and the dual dispersal of people and dogs into the Americas. Proc Natl Acad Sci U S A 2021; 118:2010083118. [PMID: 33495362 DOI: 10.1073/pnas.2010083118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in the isolation and sequencing of ancient DNA have begun to reveal the population histories of both people and dogs. Over the last 10,000 y, the genetic signatures of ancient dog remains have been linked with known human dispersals in regions such as the Arctic and the remote Pacific. It is suspected, however, that this relationship has a much deeper antiquity, and that the tandem movement of people and dogs may have begun soon after the domestication of the dog from a gray wolf ancestor in the late Pleistocene. Here, by comparing population genetic results of humans and dogs from Siberia, Beringia, and North America, we show that there is a close correlation in the movement and divergences of their respective lineages. This evidence places constraints on when and where dog domestication took place. Most significantly, it suggests that dogs were domesticated in Siberia by ∼23,000 y ago, possibly while both people and wolves were isolated during the harsh climate of the Last Glacial Maximum. Dogs then accompanied the first people into the Americas and traveled with them as humans rapidly dispersed into the continent beginning ∼15,000 y ago.
Collapse
|
100
|
Berger C, Heinrich J, Berger B, Hecht W, Parson W. Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs. Genes (Basel) 2021; 12:genes12060908. [PMID: 34208207 PMCID: PMC8230911 DOI: 10.3390/genes12060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The popularity of dogs as human companions explains why these pets regularly come into focus in forensic cases such as bite attacks or accidents. Canine evidence, e.g., dog hairs, can also act as a link between the victim and suspect in a crime case due to the close contact between dogs and their owners. In line with human DNA identification, dog individualization from crime scene evidence is mainly based on the analysis of short tandem repeat (STR) markers. However, when the DNA profile does not match a reference, additional information regarding the appearance of the dog may provide substantial intelligence value. Key features of the dog's appearance, such as the body size and coat colour are well-recognizable and easy to describe even to non-dog experts, including most investigating officers and eyewitnesses. Therefore, it is reasonable to complement eyewitnesses' testimonies with externally visible traits predicted from associated canine DNA samples. Here, the feasibility and suitability of canine DNA phenotyping is explored from scratch in the form of a proof of concept study. To predict the overall appearance of an unknown dog from its DNA as accurately as possible, the following six traits were chosen: (1) coat colour, (2) coat pattern, (3) coat structure, (4) body size, (5) ear shape, and (6) tail length. A total of 21 genetic markers known for high predicting values for these traits were selected from previously published datasets, comprising 15 SNPs and six INDELS. Three of them belonged to SINE insertions. The experiments were designed in three phases. In the first two stages, the performance of the markers was tested on DNA samples from dogs with well-documented physical characteristics from different breeds. The final blind test, including dogs with initially withheld appearance information, showed that the majority of the selected markers allowed to develop composite sketches, providing a realistic impression of the tested dogs. We regard this study as the first attempt to evaluate the possibilities and limitations of forensic canine DNA phenotyping.
Collapse
Affiliation(s)
- Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Correspondence: ; Tel.: +43-512-9003-70640
| | - Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35390 Giessen, Germany;
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| | | |
Collapse
|