51
|
Vardanyan VH, Wang Q, Kolomeisky AB. Dynamics of Single-Base Editing: Theoretical Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539865. [PMID: 37215008 PMCID: PMC10197563 DOI: 10.1101/2023.05.08.539865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent experimental advances led to the development of DNA base editors (BEs) with a single-nucleotide precision that is critical for future progress in various scientific and technological fields. The molecular mechanisms of single-base discrimination, however, remain not well understood. Using a recently developed stochastic approach, we theoretically investigated the dynamics of single-base editing. More specifically, transient and mean times to edit "TC" motifs by cytosine BEs are explicitly evaluated for correct (target) and incorrect (bystander) locations on DNA. In addition, the effect of mutations on the dynamics of the single-base edition is also analyzed. It is found that for most ranges of parameters, it is possible to temporarily separate target and bystander products of base editing, supporting the idea of dynamic selectivity as a method of improving the precision of single-base editing. We conclude that to improve the efficiency of single-base editing, selecting the probability or selecting the time requires different strategies. Physical-chemical arguments to explain the observed dynamic properties are presented. The theoretical analysis clarifies some important aspects of molecular mechanisms of selective base editing.
Collapse
|
52
|
Neugebauer ME, Hsu A, Arbab M, Krasnow NA, McElroy AN, Pandey S, Doman JL, Huang TP, Raguram A, Banskota S, Newby GA, Tolar J, Osborn MJ, Liu DR. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol 2023; 41:673-685. [PMID: 36357719 PMCID: PMC10188366 DOI: 10.1038/s41587-022-01533-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Cytosine base editors (CBEs) are larger and can suffer from higher off-target activity or lower on-target editing efficiency than current adenine base editors (ABEs). To develop a CBE that retains the small size, low off-target activity and high on-target activity of current ABEs, we evolved the highly active deoxyadenosine deaminase TadA-8e to perform cytidine deamination using phage-assisted continuous evolution. Evolved TadA cytidine deaminases contain mutations at DNA-binding residues that alter enzyme selectivity to strongly favor deoxycytidine over deoxyadenosine deamination. Compared to commonly used CBEs, TadA-derived cytosine base editors (TadCBEs) offer similar or higher on-target activity, smaller size and substantially lower Cas-independent DNA and RNA off-target editing activity. We also identified a TadA dual base editor (TadDE) that performs equally efficient cytosine and adenine base editing. TadCBEs support single or multiplexed base editing at therapeutically relevant genomic loci in primary human T cells and primary human hematopoietic stem and progenitor cells. TadCBEs expand the utility of CBEs for precision gene editing.
Collapse
Affiliation(s)
- Monica E Neugebauer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Mandana Arbab
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Nicholas A Krasnow
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Amber N McElroy
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Smriti Pandey
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jordan L Doman
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark J Osborn
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
53
|
Lam DK, Feliciano PR, Arif A, Bohnuud T, Fernandez TP, Gehrke JM, Grayson P, Lee KD, Ortega MA, Sawyer C, Schwaegerle ND, Peraro L, Young L, Lee SJ, Ciaramella G, Gaudelli NM. Improved cytosine base editors generated from TadA variants. Nat Biotechnol 2023; 41:686-697. [PMID: 36624149 PMCID: PMC10188367 DOI: 10.1038/s41587-022-01611-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
Cytosine base editors (CBEs) enable programmable genomic C·G-to-T·A transition mutations and typically comprise a modified CRISPR-Cas enzyme, a naturally occurring cytidine deaminase, and an inhibitor of uracil repair. Previous studies have shown that CBEs utilizing naturally occurring cytidine deaminases may cause unguided, genome-wide cytosine deamination. While improved CBEs that decrease stochastic genome-wide off-targets have subsequently been reported, these editors can suffer from suboptimal on-target performance. Here, we report the generation and characterization of CBEs that use engineered variants of TadA (CBE-T) that enable high on-target C·G to T·A across a sequence-diverse set of genomic loci, demonstrate robust activity in primary cells and cause no detectable elevation in genome-wide mutation. Additionally, we report cytosine and adenine base editors (CABEs) catalyzing both A-to-I and C-to-U editing (CABE-Ts). Together with ABEs, CBE-Ts and CABE-Ts enable the programmable installation of all transition mutations using laboratory-evolved TadA variants with improved properties relative to previously reported CBEs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kin D Lee
- Beam Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Chen L, Zhu B, Ru G, Meng H, Yan Y, Hong M, Zhang D, Luan C, Zhang S, Wu H, Gao H, Bai S, Li C, Ding R, Xue N, Lei Z, Chen Y, Guan Y, Siwko S, Cheng Y, Song G, Wang L, Yi C, Liu M, Li D. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat Biotechnol 2023; 41:663-672. [PMID: 36357717 DOI: 10.1038/s41587-022-01532-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Biyun Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haowei Meng
- School of Life Sciences, Peking University, Beijing, China
| | - Yongchang Yan
- School of Life Sciences, Peking University, Beijing, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Wu
- School of Life Sciences, Peking University, Beijing, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Sijia Bai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changqing Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruoyi Ding
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhixin Lei
- School of Life Sciences, Peking University, Beijing, China
| | - Yuting Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Genome Engineering and Therapy, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- School of Life Sciences, Peking University, Beijing, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- BRL Medicine, Inc., Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
55
|
Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, Raguram A, Richter MF, Zhao KT, Levy JM, Shen MW, Arnold WD, Wang D, Xie J, Gao G, Burghes AHM, Liu DR. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023; 380:eadg6518. [PMID: 36996170 PMCID: PMC10270003 DOI: 10.1126/science.adg6518] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from survival motor neuron (SMN) protein insufficiency resulting from SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild type. Adeno-associated virus serotype 9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average life span, which was enhanced by one-time base editor and nusinersen coadministration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.
Collapse
Affiliation(s)
- Mandana Arbab
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kaitlyn M. Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anton J. Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michelle F. Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin T. Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan M. Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Max W. Shen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65212, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center and RNA Therapeutics Institute, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Arthur H. M. Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
56
|
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. PLANTA 2023; 257:78. [PMID: 36913066 DOI: 10.1007/s00425-023-04110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of CRISPR-Cas gene editing with robust nuclease activity promotes genetic modification of desirable agronomic traits, such as resistance to pathogens, drought tolerance, nutritional value, and yield-related traits in crops. The genetic diversity of food crops has reduced tremendously over the past twelve millennia due to plant domestication. This reduction presents significant challenges for the future especially considering the risks posed by global climate change to food production. While crops with improved phenotypes have been generated through crossbreeding, mutation breeding, and transgenic breeding over the years, improving phenotypic traits through precise genetic diversification has been challenging. The challenges are broadly associated with the randomness of genetic recombination and conventional mutagenesis. This review highlights how emerging gene-editing technologies reduce the burden and time necessary for developing desired traits in plants. Our focus is to provide readers with an overview of the advances in CRISPR-Cas-based genome editing for crop improvement. The use of CRISPR-Cas systems in generating genetic diversity to enhance the quality and nutritional value of staple food crops is discussed. We also outlined recent applications of CRISPR-Cas in developing pest-resistant crops and removing unwanted traits, such as allergenicity from crops. Genome editing tools continue to evolve and present unprecedented opportunities to enhance crop germplasm via precise mutations at the desired loci of the plant genome.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA.
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
57
|
Kim YH, Kim N, Okafor I, Choi S, Min S, Lee J, Bae SM, Choi K, Choi J, Harihar V, Kim Y, Kim JS, Kleinstiver BP, Lee JK, Ha T, Kim HH. Sniper2L is a high-fidelity Cas9 variant with high activity. Nat Chem Biol 2023:10.1038/s41589-023-01279-5. [PMID: 36894722 PMCID: PMC10374439 DOI: 10.1038/s41589-023-01279-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023]
Abstract
Although several high-fidelity SpCas9 variants have been reported, it has been observed that this increased specificity is associated with reduced on-target activity, limiting the applications of the high-fidelity variants when efficient genome editing is required. Here, we developed an improved version of Sniper-Cas9, Sniper2L, which represents an exception to this trade-off trend as it showed higher specificity with retained high activity. We evaluated Sniper2L activities at a large number of target sequences and developed DeepSniper, a deep learning model that can predict the activity of Sniper2L. We also confirmed that Sniper2L can induce highly efficient and specific editing at a large number of target sequences when it is delivered as a ribonucleoprotein complex. Mechanically, the high specificity of Sniper2L originates from its superior ability to avoid unwinding a target DNA containing even a single mismatch. We envision that Sniper2L will be useful when efficient and specific genome editing is required.
Collapse
Affiliation(s)
- Young-Hoon Kim
- Toolgen, Seoul, Republic of Korea.,Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, Republic of Korea
| | - Nahye Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ikenna Okafor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sungchul Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | - Janice Choi
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Vinayak Harihar
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jin-Soo Kim
- Department of Biochemistry and NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, Republic of Korea. .,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Center for Nanomedicine, Institute for Basic Science, Seoul, Republic of Korea. .,Yonsei-Institute for Basic Science Institute, Yonsei University, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
58
|
Gotovtsev P. Microbial Cells as a Microrobots: From Drug Delivery to Advanced Biosensors. Biomimetics (Basel) 2023; 8:biomimetics8010109. [PMID: 36975339 PMCID: PMC10046805 DOI: 10.3390/biomimetics8010109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The presented review focused on the microbial cell based system. This approach is based on the application of microorganisms as the main part of a robot that is responsible for the motility, cargo shipping, and in some cases, the production of useful chemicals. Living cells in such microrobots have both advantages and disadvantages. Regarding the advantages, it is necessary to mention the motility of cells, which can be natural chemotaxis or phototaxis, depending on the organism. There are approaches to make cells magnetotactic by adding nanoparticles to their surface. Today, the results of the development of such microrobots have been widely discussed. It has been shown that there is a possibility of combining different types of taxis to enhance the control level of the microrobots based on the microorganisms' cells and the efficiency of the solving task. Another advantage is the possibility of applying the whole potential of synthetic biology to make the behavior of the cells more controllable and complex. Biosynthesis of the cargo, advanced sensing, on/off switches, and other promising approaches are discussed within the context of the application for the microrobots. Thus, a synthetic biology application offers significant perspectives on microbial cell based microrobot development. Disadvantages that follow from the nature of microbial cells such as the number of external factors influence the cells, potential immune reaction, etc. They provide several limitations in the application, but do not decrease the bright perspectives of microrobots based on the cells of the microorganisms.
Collapse
Affiliation(s)
- Pavel Gotovtsev
- National Research Center "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy per., 141701 Moscow, Russia
| |
Collapse
|
59
|
Koseki S, Hong L, Yudistyra V, Stan T, Tysinger E, Silverstein R, Kramme C, Amrani N, Savic N, Pacesa M, Rodriguez T, Ponnapati M, Jacobson J, Church G, Truant R, Jinek M, Kleinstiver B, Sontheimer E, Chatterjee P. PAM-Flexible Genome Editing with an Engineered Chimeric Cas9. RESEARCH SQUARE 2023:rs.3.rs-2625838. [PMID: 36945419 PMCID: PMC10029082 DOI: 10.21203/rs.3.rs-2625838/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN PAM preference, with the N-terminus of Sc++, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse NNN PAMs and disease-related loci for potential therapeutic applications. In total, the unique approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Medical Schoo
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Clustered regularly interspaced short palindromic repeats tools for plant metabolic engineering: achievements and perspectives. Curr Opin Biotechnol 2023; 79:102856. [PMID: 36473330 DOI: 10.1016/j.copbio.2022.102856] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
The plant kingdom represents the biggest source of feedstock, food, and added-value compounds. Engineering plant metabolic pathways to increase the phytochemical production or improve the nutraceutical value of crops is challenging because of the intricate interaction networks that link multiple genes, enzymatic steps, and metabolites, even when pathways are fully elucidated. The development of clustered regularly interspaced short palindromic repeats - CRISPR-associated (CRISPR-Cas) technologies has helped to overcome limitations in metabolic engineering, providing efficient and versatile tools for multigene editing. CRISPR approaches in plants were shown to have a remarkable efficiency in genome editing of different species to improve agronomic and metabolic traits. Here, we give an overview of the different achievements and perspectives of CRISPR technology in plant metabolic engineering.
Collapse
|
61
|
Zhang S, Song L, Yuan B, Zhang C, Cao J, Chen J, Qiu J, Tai Y, Chen J, Qiu Z, Zhao XM, Cheng TL. TadA reprogramming to generate potent miniature base editors with high precision. Nat Commun 2023; 14:413. [PMID: 36702845 PMCID: PMC9879996 DOI: 10.1038/s41467-023-36004-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Although miniature CRISPR-Cas12f systems were recently developed, the editing efficacy and targeting range of derived miniature cytosine and adenine base editors (miniCBEs and miniABEs) have not been comprehensively addressed. Moreover, functional miniCBEs have not yet be established. Here we generate various Cas12f-derived miniCBEs and miniABEs with improved editing activities and diversified targeting scopes. We reveal that miniCBEs generated with traditional cytidine deaminases exhibit wide editing windows and high off-targeting effects. To improve the editing signatures of classical CBEs and derived miniCBEs, we engineer TadA deaminase with mutagenesis screening to generate potent miniCBEs with high precision and minimized off-target effects. We show that newly designed miniCBEs and miniABEs are able to correct pathogenic mutations in cell lines and introduce genetic mutations efficiently via adeno-associated virus delivery in the brain in vivo. Together, this study provides alternative strategies for CBE development, expands the toolkits of miniCBEs and miniABEs and offers promising therapeutic tools for clinical applications.
Collapse
Affiliation(s)
- Shuqian Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jinlong Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jiayi Qiu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hopsital, Fudan University, Shanghai, 200032, China.
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
62
|
Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature 2023; 613:588-594. [PMID: 36599979 PMCID: PMC9811890 DOI: 10.1038/s41586-022-05559-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 01/05/2023]
Abstract
Bacterial abortive-infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate1,2. Several RNA-targeting CRISPR-Cas systems (that is, types III and VI) cause abortive-infection phenotypes by activating indiscriminate nucleases3-5. However, a CRISPR-mediated abortive mechanism that leverages indiscriminate DNase activity of an RNA-guided single-effector nuclease has yet to be observed. Here we report that RNA targeting by the type V single-effector nuclease Cas12a2 drives abortive infection through non-specific cleavage of double-stranded DNA (dsDNA). After recognizing an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single-stranded RNA (ssRNA), single-stranded DNA (ssDNA) and dsDNA. Within cells, the activation of Cas12a2 induces an SOS DNA-damage response and impairs growth, preventing the dissemination of the invader. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided RNA-targeting tool. These findings expand the known defensive abilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.
Collapse
|
63
|
Chen L, Zhang S, Xue N, Hong M, Zhang X, Zhang D, Yang J, Bai S, Huang Y, Meng H, Wu H, Luan C, Zhu B, Ru G, Gao H, Zhong L, Liu M, Liu M, Cheng Y, Yi C, Wang L, Zhao Y, Song G, Li D. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol 2023; 19:101-110. [PMID: 36229683 DOI: 10.1038/s41589-022-01163-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
Adenine base editors (ABEs) catalyze A-to-G transitions showing broad applications, but their bystander mutations and off-target editing effects raise safety concerns. Through structure-guided engineering, we found ABE8e with an N108Q mutation reduced both adenine and cytosine bystander editing, and introduction of an additional L145T mutation (ABE9), further refined the editing window to 1-2 nucleotides with eliminated cytosine editing. Importantly, ABE9 induced very minimal RNA and undetectable Cas9-independent DNA off-target effects, which mainly installed desired single A-to-G conversion in mouse and rat embryos to efficiently generate disease models. Moreover, ABE9 accurately edited the A5 position of the protospacer sequence in pathogenic homopolymeric adenosine sites (up to 342.5-fold precision over ABE8e) and was further confirmed through a library of guide RNA-target sequence pairs. Owing to the minimized editing window, ABE9 could further broaden the targeting scope for precise correction of pathogenic single-nucleotide variants when fused to Cas9 variants with expanded protospacer adjacent motif compatibility. bpNLS, bipartite nuclear localization signals.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaohui Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Sijia Bai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yifan Huang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haowei Meng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hao Wu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Biyun Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, China.
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
64
|
One Health: Animal Models of Heritable Human Bleeding Diseases. Animals (Basel) 2022; 13:ani13010087. [PMID: 36611696 PMCID: PMC9818017 DOI: 10.3390/ani13010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
Animal models of human and animal diseases have long been used as the lynchpin of experimental and clinical research. With the discovery and implementation of novel molecular and nano-technologies, cellular research now has advanced to assessing signal transduction pathways, gene editing, and gene therapies. The contribution of heritable animal models to human and animal health as related to hemostasis is reviewed and updated with the advent of gene editing, recombinant and gene therapies.
Collapse
|
65
|
Qiu HY, Ji RJ, Zhang Y. Current advances of CRISPR-Cas technology in cell therapy. CELL INSIGHT 2022; 1:100067. [PMID: 37193354 PMCID: PMC10120314 DOI: 10.1016/j.cellin.2022.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.
Collapse
Affiliation(s)
- Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
66
|
Butt H, Ramirez JLM, Mahfouz M. Synthetic evolution of herbicide resistance using a T7 RNAP-based random DNA base editor. Life Sci Alliance 2022; 5:5/12/e202201538. [PMID: 36171140 PMCID: PMC9526444 DOI: 10.26508/lsa.202201538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
A chimeric fusion of T7 RNAP and deaminase edits the DNA under the T7 promoter in plant cells. It directs the continuous synthetic evolution of OsALS to produce variants with herbicide resistance. Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Here, we designed, built, and tested a chimeric fusion of T7 RNA Polymerase (RNAP) and deaminase to enable the localized sequence diversification of a target sequence of interest. We tested our T7 RNAP–DNA base editor in Nicotiana benthamiana transient assays to target a transgene expressing GFP under the control of the T7 promoter and observed C-to-T conversions. We then targeted the T7 promoter-driven acetolactate synthase sequence that had been stably integrated in the rice genome and generated C-to-T and G-to-A transitions. We used herbicide treatment as selection pressure for the evolution of the acetolactate synthase sequence, resulting in the enrichment of herbicide-responsive residues. We then validated these herbicide-responsive regions in the transgenic rice plants. Thus, our system could be used for the continuous synthetic evolution of gene functions to produce variants with improved herbicide resistance.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jose Luis Moreno Ramirez
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
67
|
Nishiyama T, Zhang Y, Cui M, Li H, Sanchez-Ortiz E, McAnally JR, Tan W, Kim J, Chen K, Xu L, Bassel-Duby R, Olson EN. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci Transl Med 2022; 14:eade1633. [PMID: 36417486 PMCID: PMC10088465 DOI: 10.1126/scitranslmed.ade1633] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RNA binding motif protein 20 (RBM20) are a common cause of familial dilated cardiomyopathy (DCM). Many RBM20 mutations cluster within an arginine/serine-rich (RS-rich) domain, which mediates nuclear localization. These mutations induce RBM20 mis-localization to form aberrant ribonucleoprotein (RNP) granules in the cytoplasm of cardiomyocytes and abnormal alternative splicing of cardiac genes, contributing to DCM. We used adenine base editing (ABE) and prime editing (PE) to correct pathogenic p.R634Q and p.R636S mutations in the RS-rich domain in human isogenic induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Using ABE to correct RBM20R634Q human iPSCs, we achieved 92% efficiency of A-to-G editing, which normalized alternative splicing of cardiac genes, restored nuclear localization of RBM20, and eliminated RNP granule formation. In addition, we developed a PE strategy to correct the RBM20R636S mutation in iPSCs and observed A-to-C editing at 40% efficiency. To evaluate the potential of ABE for DCM treatment, we also created Rbm20R636Q mutant mice. Homozygous (R636Q/R636Q) mice developed severe cardiac dysfunction, heart failure, and premature death. Systemic delivery of ABE components containing ABEmax-VRQR-SpCas9 and single-guide RNA by adeno-associated virus serotype 9 in these mice restored cardiac function as assessed by echocardiography and extended life span. As seen by RNA sequencing analysis, ABE correction rescued the cardiac transcriptional profile of treated R636Q/R636Q mice, compared to the abnormal gene expression seen in untreated mice. These findings demonstrate the potential of precise correction of genetic mutations as a promising therapeutic approach for DCM.
Collapse
Affiliation(s)
- Takahiko Nishiyama
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miao Cui
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
68
|
SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e. Nat Commun 2022; 13:6858. [PMID: 36369279 PMCID: PMC9652449 DOI: 10.1038/s41467-022-34527-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Several advancements have been made to SpCas9, the most widely used CRISPR/Cas genome editing tool, to reduce its unwanted off-target effects. The most promising approach is the development of increased-fidelity nuclease (IFN) variants of SpCas9, however, their fidelity has increased at the cost of reduced activity. SuperFi-Cas9 has been developed recently, and it has been described as a next-generation high-fidelity SpCas9 variant, free from the drawbacks of first-generation IFNs. In this study, we characterize the on-target activity and the off-target propensity of SuperFi-Cas9 in mammalian cells, comparing it to first-generation IFNs. SuperFi-Cas9 demonstrates strongly reduced activity but high fidelity features that are in many aspects similar to those of some first-generation variants, such as evo- and HeFSpCas9. SuperFi-cytosine (CBE3) and -adenine (ABE7.10) base editors, as well as SuperFi-prime editor show no meaningful activity. When combined with ABE8e, SuperFi-Cas9, similarly to HeFSpCas9, executes DNA editing with high activity as well as high specificity reducing both bystander and SpCas9-dependent off-target base editing.
Collapse
|
69
|
Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Microbiol 2022; 20:641-656. [PMID: 35562427 DOI: 10.1038/s41579-022-00739-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas systems provide resistance against foreign mobile genetic elements and have a wide range of genome editing and biotechnological applications. In this Review, we examine recent advances in understanding the molecular structures and mechanisms of enzymes comprising bacterial RNA-guided CRISPR-Cas immune systems and deployed for wide-ranging genome editing applications. We explore the adaptive and interference aspects of CRISPR-Cas function as well as open questions about the molecular mechanisms responsible for genome targeting. These structural insights reflect close evolutionary links between CRISPR-Cas systems and mobile genetic elements, including the origins and evolution of CRISPR-Cas systems from DNA transposons, retrotransposons and toxin-antitoxin modules. We discuss how the evolution and structural diversity of CRISPR-Cas systems explain their functional complexity and utility as genome editing tools.
Collapse
Affiliation(s)
- Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Patrick Pausch
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
70
|
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38:1147-1169. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
71
|
Tu T, Song Z, Liu X, Wang S, He X, Xi H, Wang J, Yan T, Chen H, Zhang Z, Lv X, Lv J, Huang XF, Zhao J, Lin CP, Gao C, Zhang J, Gu F. A precise and efficient adenine base editor. Mol Ther 2022; 30:2933-2941. [PMID: 35821638 PMCID: PMC9481987 DOI: 10.1016/j.ymthe.2022.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Adenine base editors (ABEs) are novel genome-editing tools, and their activity has been greatly enhanced by eight additional mutations, thus named ABE8e. However, elevated catalytic activity was concomitant with frequent generation of bystander mutations. This bystander effect precludes its safe applications required in human gene therapy. To develop next-generation ABEs that are both catalytically efficient and positionally precise, we performed combinatorial engineering of NG-ABE8e. We identify a novel variant (NG-ABE9e), which harbors nine mutations. NG-ABE9e exhibits robust and precise base-editing activity in human cells, with more than 7-fold bystander editing reduction at some sites, compared with NG-ABE8e. To demonstrate its practical utility, we used NG-ABE9e to correct the frequent T17M mutation in Rhodopsin for autosomal dominant retinitis pigmentosa. It reduces bystander editing by ∼4-fold while maintaining comparable efficiency. NG-ABE9e possesses substantially higher activity than NG-ABEmax and significantly lower bystander editing than NG-ABE8e in rice. Therefore, this study provides a versatile and improved adenine base editor for genome editing.
Collapse
Affiliation(s)
- Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Xiaoyu Liu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue He
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haitao Xi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahua Wang
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tong Yan
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Chen
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Feng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
72
|
Wu Y, Ren Q, Zhong Z, Liu G, Han Y, Bao Y, Liu L, Xiang S, Liu S, Tang X, Zhou J, Zheng X, Sretenovic S, Zhang T, Qi Y, Zhang Y. Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1670-1682. [PMID: 35524459 PMCID: PMC9398351 DOI: 10.1111/pbi.13838] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/28/2022] [Indexed: 05/04/2023]
Abstract
PAM-relaxed Cas9 nucleases, cytosine base editors and adenine base editors are promising tools for precise genome editing in plants. However, their genome-wide off-target effects are largely unexplored. Here, we conduct whole-genome sequencing (WGS) analyses of transgenic plants edited by xCas9, Cas9-NGv1, Cas9-NG, SpRY, nCas9-NG-PmCDA1, nSpRY-PmCDA1 and nSpRY-ABE8e in rice. Our results reveal that Cas9 nuclease and base editors, when coupled with the same guide RNA (gRNA), prefer distinct gRNA-dependent off-target sites. De novo generated gRNAs by SpRY editors lead to additional, but insubstantial, off-target mutations. Strikingly, ABE8e results in ~500 genome-wide A-to-G off-target mutations at TA motif sites per transgenic plant. ABE8e's preference for the TA motif is also observed at the target sites. Finally, we investigate the timeline and mechanism of somaclonal variation due to tissue culture, which chiefly contributes to the background mutations. This study provides a comprehensive understanding on the scale and mechanisms of off-target and background mutations occurring during PAM-relaxed genome editing in plants.
Collapse
Affiliation(s)
- Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Qiurong Ren
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhaohui Zhong
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Li Liu
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shuyue Xiang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianping Zhou
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuelian Zheng
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Yong Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
73
|
Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System. Appl Environ Microbiol 2022; 88:e0099622. [PMID: 36000854 PMCID: PMC9469718 DOI: 10.1128/aem.00996-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasmas are minimal bacteria that infect humans, wildlife, and most economically relevant livestock species. Mycoplasma infections cause a large range of chronic inflammatory diseases, eventually leading to death in some animals. Due to the lack of efficient recombination and genome engineering tools for most species, the production of mutant strains for the identification of virulence factors and the development of improved vaccine strains is limited. Here, we demonstrate the adaptation of an efficient Cas9-Base Editor system to introduce targeted mutations into three major pathogenic species that span the phylogenetic diversity of these bacteria: the avian pathogen Mycoplasma gallisepticum and the two most important bovine mycoplasmas, Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides. As a proof of concept, we successfully used an inducible SpdCas9-pmcDA1 cytosine deaminase system to disrupt several major virulence factors in these pathogens. Various induction times and inducer concentrations were evaluated to optimize editing efficiency. The optimized system was powerful enough to disrupt 54 of 55 insertion sequence transposases in a single experiment. Whole-genome sequencing of the edited strains showed that off-target mutations were limited, suggesting that most variations detected in the edited genomes are Cas9-independent. This effective, rapid, and easy-to-use genetic tool opens a new avenue for the study of these important animal pathogens and likely the entire class Mollicutes. IMPORTANCE Mycoplasmas are minimal pathogenic bacteria that infect a wide range of hosts, including humans, livestock, and wild animals. Major pathogenic species cause acute to chronic infections involving still poorly characterized virulence factors. The lack of precise genome editing tools has hampered functional studies of many species, leaving multiple questions about the molecular basis of their pathogenicity unanswered. Here, we demonstrate the adaptation of a CRISPR-derived base editor for three major pathogenic species: Mycoplasma gallisepticum, Mycoplasma bovis, and Mycoplasma mycoides subsp. mycoides. Several virulence factors were successfully targeted, and we were able to edit up to 54 target sites in a single step. The availability of this efficient and easy-to-use genetic tool will greatly facilitate functional studies of these economically important bacteria.
Collapse
|
74
|
Panda G, Ray A. Decrypting the mechanistic basis of CRISPR/Cas9 protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:60-76. [PMID: 35577099 DOI: 10.1016/j.pbiomolbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Abstract
CRISPR/Cas system, a newly but extensively investigated genome-editing method, harbors practical solutions for various genetic problems. It relies on short guide RNAs (gRNAs) to recruit the Cas9 protein, a DNA cleaving enzyme, to its genomic target DNAs. The Cas9 enzyme exhibits some unique properties, like the ability to differentiate self vs. non-self - DNA strands using the base-pairing potential of crRNA, i.e., only CRISPR DNA is entirely complementary to the CRISPR repeat sequences at the crRNA whereas the presence of mismatches in the upstream region of the spacer permit CRISPR interference which is inhibited in case of CRISPR-DNA, allosteric regulation in its domains, and domain reorientation on sgRNA binding. Several groups have contributed their efforts in understanding the functioning of the CRISPR/Cas system, but even then, there is a lot more to explore in this area. The structural and sequence-based understanding of the whole CRISPR-associated bacterial ortholog family landscape is still ambiguous. A better understanding of the underlying energetics of the CRISPR/Cas9 system should reveal critical parameters to design better CRISPR/Cas9s.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
75
|
Hryc CF, Baker ML. AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps. iScience 2022; 25:104496. [PMID: 35733789 PMCID: PMC9207676 DOI: 10.1016/j.isci.2022.104496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
With the advent of new artificial intelligence and machine learning algorithms, predictive modeling can, in some cases, produce structures on par with experimental methods. The combination of predictive modeling and experimental structure determination by electron cryomicroscopy (cryoEM) offers a tantalizing approach for producing robust atomic models of macromolecular assemblies. Here, we apply AlphaFold2 to a set of community standard data sets and compare the results with the corresponding reference maps and models. Moreover, we present three unique case studies from previously determined cryoEM density maps of viruses. Our results show that AlphaFold2 can not only produce reasonably accurate models for analysis and additional hypotheses testing, but can also potentially yield incorrect structures if not properly validated with experimental data. Whereas we outline numerous shortcomings and potential pitfalls of predictive modeling, the obvious synergy between predictive modeling and cryoEM will undoubtedly result in new computational modeling tools.
Collapse
Affiliation(s)
- Corey F. Hryc
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Matthew L. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
76
|
Hryc CF, Baker ML. Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps. Biomolecules 2022; 12:773. [PMID: 35740898 PMCID: PMC9220806 DOI: 10.3390/biom12060773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Single-particle electron cryomicroscopy (cryoEM) has become an indispensable tool for studying structure and function in macromolecular assemblies. As an integral part of the cryoEM structure determination process, computational tools have been developed to build atomic models directly from a density map without structural templates. Nearly a decade ago, we created Pathwalking, a tool for de novo modeling of protein structure in near-atomic resolution cryoEM density maps. Here, we present the latest developments in Pathwalking, including the addition of probabilistic models, as well as a companion tool for modeling waters and ligands. This software was evaluated on the 2021 CryoEM Ligand Challenge density maps, in addition to identifying ligands in three IP3R1 density maps at ~3 Å to 4.1 Å resolution. The results clearly demonstrate that the Pathwalking de novo modeling pipeline can construct accurate protein structures and reliably localize and identify ligand density directly from a near-atomic resolution map.
Collapse
Affiliation(s)
| | - Matthew L. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA;
| |
Collapse
|
77
|
Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 2022; 185:1764-1776.e12. [PMID: 35472302 DOI: 10.1016/j.cell.2022.03.039] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) editing paves the way for disease modeling of mitochondrial genetic disorders in cell lines and animals and also for the treatment of these diseases in the future. Bacterial cytidine deaminase DddA-derived cytosine base editors (DdCBEs) enabling mtDNA editing, however, are largely limited to C-to-T conversions in the 5'-TC context (e.g., TC-to-TT conversions), suitable for generating merely 1/8 of all possible transition (purine-to-purine and pyrimidine-to-pyrimidine) mutations. Here, we present transcription-activator-like effector (TALE)-linked deaminases (TALEDs), composed of custom-designed TALE DNA-binding arrays, a catalytically impaired, full-length DddA variant or split DddA originated from Burkholderia cenocepacia, and an engineered deoxyadenosine deaminase derived from the E. coli TadA protein, which induce targeted A-to-G editing in human mitochondria. Custom-designed TALEDs were highly efficient in human cells, catalyzing A-to-G conversions at a total of 17 target sites in various mitochondrial genes with editing frequencies of up to 49%.
Collapse
|
78
|
Liang Y, Xie J, Zhang Q, Wang X, Gou S, Lin L, Chen T, Ge W, Zhuang Z, Lian M, Chen F, Li N, Ouyang Z, Lai C, Liu X, Li L, Ye Y, Wu H, Wang K, Lai L. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res 2022; 50:5384-5399. [PMID: 35544322 PMCID: PMC9122597 DOI: 10.1093/nar/gkac353] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022] Open
Abstract
Establishing saturated mutagenesis in a specific gene through gene editing is an efficient approach for identifying the relationships between mutations and the corresponding phenotypes. CRISPR/Cas9-based sgRNA library screening often creates indel mutations with multiple nucleotides. Single base editors and dual deaminase-mediated base editors can achieve only one and two types of base substitutions, respectively. A new glycosylase base editor (CGBE) system, in which the uracil glycosylase inhibitor (UGI) is replaced with uracil-DNA glycosylase (UNG), was recently reported to efficiently induce multiple base conversions, including C-to-G, C-to-T and C-to-A. In this study, we fused a CGBE with ABE to develop a new type of dual deaminase-mediated base editing system, the AGBE system, that can simultaneously introduce 4 types of base conversions (C-to-G, C-to-T, C-to-A and A-to-G) as well as indels with a single sgRNA in mammalian cells. AGBEs can be used to establish saturated mutant populations for verification of the functions and consequences of multiple gene mutation patterns, including single-nucleotide variants (SNVs) and indels, through high-throughput screening.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingke Xie
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Quanjun Zhang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Xiaomin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Lihui Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Weikai Ge
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Zhenpeng Zhuang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Lian
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Nan Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Zhen Ouyang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Chengdan Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Xiaoyi Liu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinghua Ye
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China.,Sanya institute of Swine resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.,Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
79
|
Tan J, Zeng D, Zhao Y, Wang Y, Liu T, Li S, Xue Y, Luo Y, Xie X, Chen L, Liu Y, Zhu Q. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:934-943. [PMID: 34984801 PMCID: PMC9055815 DOI: 10.1111/pbi.13774] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Adenine base editors (ABEs), which are generally engineered adenosine deaminases and Cas variants, introduce site-specific A-to-G mutations for agronomic trait improvement. However, notably varying editing efficiencies, restrictive requirements for protospacer-adjacent motifs (PAMs) and a narrow editing window greatly limit their application. Here, we developed a robust high-efficiency ABE (PhieABE) toolbox for plants by fusing an evolved, highly active form of the adenosine deaminase TadA8e and a single-stranded DNA-binding domain (DBD), based on PAM-less/free Streptococcus pyogenes Cas9 (SpCas9) nickase variants that recognize the PAM NGN (for SpCas9n-NG and SpGn) or NNN (for SpRYn). By targeting 29 representative targets in rice and assessing the results, we demonstrate that PhieABEs have significantly improved base-editing activity, expanded target range and broader editing windows compared to the ABE7.10 and general ABE8e systems. Among these PhieABEs, hyper ABE8e-DBD-SpRYn (hyABE8e-SpRY) showed nearly 100% editing efficiency at some tested sites, with a high proportion of homozygous base substitutions in the editing windows and no single guide RNA (sgRNA)-dependent off-target changes. The original sgRNA was more compatible with PhieABEs than the evolved sgRNA. In conclusion, the DBD fusion effectively promotes base-editing efficiency, and this novel PhieABE toolbox should have wide applications in plant functional genomics and crop improvement.
Collapse
Affiliation(s)
- Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yaxi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shuangchun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yuyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
80
|
Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, Sretenovic S, Gurel F, Coleman GD, Qi Y. Boosting plant genome editing with a versatile CRISPR-Combo system. NATURE PLANTS 2022; 8:513-525. [PMID: 35596077 DOI: 10.1038/s41477-022-01151-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/11/2022] [Indexed: 05/06/2023]
Abstract
CRISPR-Cas9, its derived base editors and CRISPR activation systems have greatly aided genome engineering in plants. However, these systems are mostly used separately, leaving their combinational potential largely untapped. Here we develop a versatile CRISPR-Combo platform, based on a single Cas9 protein, for simultaneous genome editing (targeted mutagenesis or base editing) and gene activation in plants. We showcase the powerful applications of CRISPR-Combo for boosting plant genome editing. First, CRISPR-Combo is used to shorten the plant life cycle and reduce the efforts in screening transgene-free genome-edited plants by activation of a florigen gene in Arabidopsis. Next, we demonstrate accelerated regeneration and propagation of genome-edited plants by activation of morphogenic genes in poplar. Furthermore, we apply CRISPR-Combo to achieve rice regeneration without exogenous plant hormones, which is established as a new method to predominately enrich heritable targeted mutations. In conclusion, CRISPR-Combo is a versatile genome engineering tool with promising applications in crop breeding.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Aimee A Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Benjamin Leyson
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Filiz Gurel
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
81
|
Zhao D, Jiang G, Li J, Chen X, Li S, Wang J, Zhou Z, Pu S, Dai Z, Ma Y, Bi C, Zhang X. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Res 2022; 50:4161-4170. [PMID: 35349689 PMCID: PMC9023296 DOI: 10.1093/nar/gkac201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
CRISPR base editing techniques tend to edit multiple bases in the targeted region, which is a limitation for precisely reverting disease-associated single-nucleotide polymorphisms (SNPs). We designed an imperfect gRNA (igRNA) editing methodology, which utilized a gRNA with one or more bases that were not complementary to the target locus to direct base editing toward the generation of a single-base edited product. Base editing experiments illustrated that igRNA editing with CBEs greatly increased the single-base editing fraction relative to normal gRNA editing with increased editing efficiencies. Similar results were obtained with an adenine base editor (ABE). At loci such as DNMT3B, NSD1, PSMB2, VIATA hs267 and ANO5, near-perfect single-base editing was achieved. Normally an igRNA with good single-base editing efficiency could be selected from a set of a few igRNAs, with a simple protocol. As a proof-of-concept, igRNAs were used in the research to construct cell lines of disease-associated SNP causing primary hyperoxaluria construction research. This work provides a simple strategy to achieve single-base base editing with both ABEs and CBEs and overcomes a key obstacle that limits the use of base editors in treating SNP-associated diseases or creating disease-associated SNP-harboring cell lines and animal models.
Collapse
Affiliation(s)
- Dongdong Zhao
- College of Life Science, Tianjin Normal University, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Guo Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Xuxu Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jie Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Zhubo Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
82
|
Cofsky JC, Knott GJ, Gee CL, Doudna JA. Crystal structure of an RNA/DNA strand exchange junction. PLoS One 2022; 17:e0263547. [PMID: 35436289 PMCID: PMC9015157 DOI: 10.1371/journal.pone.0263547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
Short segments of RNA displace one strand of a DNA duplex during diverse processes including transcription and CRISPR-mediated immunity and genome editing. These strand exchange events involve the intersection of two geometrically distinct helix types-an RNA:DNA hybrid (A-form) and a DNA:DNA homoduplex (B-form). Although previous evidence suggests that these two helices can stack on each other, it is unknown what local geometric adjustments could enable A-on-B stacking. Here we report the X-ray crystal structure of an RNA-5'/DNA-3' strand exchange junction at an anisotropic resolution of 1.6 to 2.2 Å. The structure reveals that the A-to-B helical transition involves a combination of helical axis misalignment, helical axis tilting and compression of the DNA strand within the RNA:DNA helix, where nucleotides exhibit a mixture of A- and B-form geometry. These structural principles explain previous observations of conformational stability in RNA/DNA exchange junctions, enabling a nucleic acid architecture that is repeatedly populated during biological strand exchange events.
Collapse
Affiliation(s)
- Joshua C. Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Gavin J. Knott
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christine L. Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, United States of America
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
83
|
Xiong X, Li Z, Liang J, Liu K, Li C, Li JF. A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res 2022; 50:3565-3580. [PMID: 35286371 PMCID: PMC8989527 DOI: 10.1093/nar/gkac166] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas-derived base editing tools empower efficient alteration of genomic cytosines or adenines associated with essential genetic traits in plants and animals. Diversified target sequences and customized editing products call for base editors with distinct features regarding the editing window and target scope. Here we developed a toolkit of plant base editors containing AID10, an engineered human AID cytosine deaminase. When fused to the N-terminus or C-terminus of the conventional Cas9 nickase (nSpCas9), AID10 exhibited a broad or narrow activity window at the protospacer adjacent motif (PAM)-distal and -proximal protospacer, respectively, while AID10 fused to both termini conferred an additive activity window. We further replaced nSpCas9 with orthogonal or PAM-relaxed Cas9 variants to widen target scopes. Moreover, we devised dual base editors with AID10 located adjacently or distally to the adenine deaminase ABE8e, leading to juxtaposed or spaced cytosine and adenine co-editing at the same target sequence in plant cells. Furthermore, we expanded the application of this toolkit in plants for tunable knockdown of protein-coding genes via creating upstream open reading frame and for loss-of-function analysis of non-coding genes, such as microRNA sponges. Collectively, this toolkit increases the functional diversity and versatility of base editors in basic and applied plant research.
Collapse
Affiliation(s)
- Xiangyu Xiong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenxiang Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jieping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kehui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenlong Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
84
|
Hua K, Han P, Zhu JK. Improvement of base editors and prime editors advances precision genome engineering in plants. PLANT PHYSIOLOGY 2022; 188:1795-1810. [PMID: 34962995 PMCID: PMC8968349 DOI: 10.1093/plphys/kiab591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/11/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-mediated gene disruption has revolutionized biomedical research as well as plant and animal breeding. However, most disease-causing mutations and agronomically important genetic variations are single base polymorphisms (single-nucleotide polymorphisms) that require precision genome editing tools for correction of the sequences. Although homology-directed repair of double-stranded breaks (DSBs) can introduce precise changes, such repairs are inefficient in differentiated animal and plant cells. Base editing and prime editing are two recently developed genome engineering approaches that can efficiently introduce precise edits into target sites without requirement of DSB formation or donor DNA templates. They have been applied in several plant species with promising results. Here, we review the extensive literature on improving the efficiency, target scope, and specificity of base editors and prime editors in plants. We also highlight recent progress on base editing in plant organellar genomes and discuss how these precision genome editing tools are advancing basic plant research and crop breeding.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Peijin Han
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
85
|
Rallapalli KL, Ranzau BL, Ganapathy KR, Paesani F, Komor AC. Combined Theoretical, Bioinformatic, and Biochemical Analyses of RNA Editing by Adenine Base Editors. CRISPR J 2022; 5:294-310. [PMID: 35353638 DOI: 10.1089/crispr.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenine base editors (ABEs) have been subjected to multiple rounds of mutagenesis with the goal of optimizing their function as efficient and precise genome editing agents. Despite an ever-expanding data set of ABE mutants and their corresponding DNA or RNA-editing activity, the molecular mechanisms defining these changes remain to be elucidated. In this study, we provide a systematic interpretation of the nature of these mutations using an entropy-based classification model that relies on evolutionary data from extant protein sequences. Using this model in conjunction with experimental analyses, we identify two previously reported mutations that form an epistatic pair in the RNA-editing functional landscape of ABEs. Molecular dynamics simulations reveal the atomistic details of how these two mutations affect substrate-binding and catalytic activity, via both individual and cooperative effects, hence providing insights into the mechanisms through which these two mutations are epistatically coupled.
Collapse
Affiliation(s)
- Kartik L Rallapalli
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| | - Brodie L Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| | - Kaushik R Ganapathy
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA.,Materials Science and Engineering, University of California San Diego, La Jolla, California, USA; and University of California San Diego, La Jolla, California, USA.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| |
Collapse
|
86
|
Xu R, Qin R, Xie H, Li J, Liu X, Zhu M, Sun Y, Yu Y, Lu P, Wei P. Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:350-359. [PMID: 34582079 PMCID: PMC8753361 DOI: 10.1111/pbi.13716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 05/05/2023]
Abstract
Two type II-C Cas9 orthologs (Nm1Cas9 and Nm2Cas9) were recently identified from Neisseria meningitidis and have been extensively used in mammalian cells, but whether these NmCas9 orthologs or other type II-C Cas9 proteins can mediate genome editing in plants remains unclear. In this study, we developed and optimized targeted mutagenesis systems from NmCas9s for plants. Efficient genome editing at the target with N4 GATT and N4 CC protospacer adjacent motifs (PAMs) was achieved with Nm1Cas9 and Nm2Cas9 respectively. These results indicated that a highly active editing system could be developed from type II-C Cas9s with distinct PAM preferences, thus providing a reliable strategy to extend the scope of genome editing in plants. Base editors (BEs) were further developed from the NmCas9s. The editing efficiency of adenine BEs (ABEs) of TadA*-7.10 and cytosine BEs (CBEs) of rat APOBEC1 (rAPO1) or human APOBEC3a (hA3A) were extremely limited, whereas ABEs of TadA-8e and CBEs of Petromyzon marinus cytidine deaminase 1 (PmCDA1) exhibited markedly improved performance on the same targets. In addition, we found that fusion of a single-stranded DNA-binding domain from the human Rad51 protein enhanced the base editing capability of rAPO1-CBEs of NmCas9s. Together, our results suggest that the engineering of NmCas9s or other type II-C Cas9s can provide useful alternatives for crop genome editing.
Collapse
Affiliation(s)
- Rongfang Xu
- College of AgronomyAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Ruiying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Hongjun Xie
- Key Laboratory of Indica Rice Genetics and Breeding in the middle and Lower Reaches of Yangtze River ValleyMinistry of AgricultureHunan Rice Research InstituteChangshaChina
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Xiaoshuang Liu
- College of AgronomyAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Mingdong Zhu
- Key Laboratory of Indica Rice Genetics and Breeding in the middle and Lower Reaches of Yangtze River ValleyMinistry of AgricultureHunan Rice Research InstituteChangshaChina
| | - Yang Sun
- State Key Laboratory of Crop Stress Adaptation and ImprovementKey Laboratory of Plant Stress BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Yinghong Yu
- Key Laboratory of Indica Rice Genetics and Breeding in the middle and Lower Reaches of Yangtze River ValleyMinistry of AgricultureHunan Rice Research InstituteChangshaChina
| | - Pingli Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major DiseasesCollege of Life SciencesAnhui Normal UniversityWuhuChina
| | - Pengcheng Wei
- College of AgronomyAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| |
Collapse
|
87
|
Shelake RM, Pramanik D, Kim JY. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components. Int J Mol Sci 2022; 23:ijms23031145. [PMID: 35163069 PMCID: PMC8834901 DOI: 10.3390/ijms23031145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death due to the lack of an efficient nonhomologous end-joining pathway and restricts its use. CRISPR-based DSB-free base editors (BEs) have been applied for precise nucleotide (nt) editing in bacteria, which does not need to make DSBs. However, optimization of newer BE tools in bacteria is challenging owing to the toxic effects of BE reagents expressed using strong promoters. Improved variants of two main BEs, cytidine base editor (CBE) and adenine base editor (ABE), capable of converting C to T and A to G, respectively, have been recently developed but yet to be tested for editing characteristics in bacteria. Here, we report a platform for in vivo rapid investigation of CRISPR-BE components in Escherichia coli (IRI-CCE) comprising a combination of promoters and terminators enabling the expression of nCas9-based BE and sgRNA to nontoxic levels, eventually leading to successful base editing. We demonstrate the use of IRI-CCE to characterize different variants of CBEs (PmCDA1, evoCDA1, APOBEC3A) and ABEs (ABE8e, ABE9e) for bacteria, exhibiting that each independent BE has its specific editing pattern for a given target site depending on protospacer length. In summary, CRISPR-BE components expressed without lethal effects on cell survival in the IRI-CCE allow an analysis of various BE tools, including cloned biopart modules and sgRNAs.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (R.M.S.); (J.-Y.K.)
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (R.M.S.); (J.-Y.K.)
| |
Collapse
|
88
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
89
|
Sultan Q, Ashraf S, Munir A, Khan SH, Munawar N, Abd-Elsalam KA, Ahmad A. Beyond Genome Editing: CRISPR Approaches. THE CRISPR/CAS TOOL KIT FOR GENOME EDITING 2022:187-218. [DOI: 10.1007/978-981-16-6305-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
90
|
Wigge C, Stefanovic A, Radjainia M. The rapidly evolving role of cryo-EM in drug design. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:91-102. [PMID: 34895645 DOI: 10.1016/j.ddtec.2020.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
Since the early 2010s, cryo-electron microscopy (cryo-EM) has evolved to a mainstream structural biology method in what has been dubbed the "resolution revolution". Pharma companies also began to use cryo-EM in drug discovery, evidenced by a growing number of industry publications. Hitherto limited in resolution, throughput and attainable molecular weight, cryo-EM is rapidly overcoming its main limitations for more widespread use through a new wave of technological advances. This review discusses how cryo-EM has already impacted drug discovery, and how the state-of-the-art is poised to further revolutionize its application to previously intractable proteins as well as new use cases.
Collapse
Affiliation(s)
- Christoph Wigge
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands
| | | | - Mazdak Radjainia
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands.
| |
Collapse
|
91
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
92
|
Villiger L, Schmidheini L, Mathis N, Rothgangl T, Marquart K, Schwank G. Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:502-510. [PMID: 34631280 PMCID: PMC8479293 DOI: 10.1016/j.omtn.2021.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/19/2021] [Indexed: 12/04/2022]
Abstract
Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the target locus and is limited to a window within the CRISPR-Cas R-loop, where single-stranded DNA (ssDNA) is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with a monomeric or heterodimeric adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABEs) with PAM-proximally shifted editing windows. This work expands the targeting scope of base editors and provides base editor variants that are substantially smaller. It moreover informs of potential future directions in Cas9 protein engineering, where the HNH domain could be replaced by other enzymes that act on ssDNA.
Collapse
|
93
|
BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. Nat Commun 2021; 12:6353. [PMID: 34732717 PMCID: PMC8566456 DOI: 10.1038/s41467-021-26461-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Adenine and cytosine base editors (ABE, CBE) allow for precision genome engineering. Here, Base Editor Activity Reporter (BEAR), a plasmid-based fluorescent tool is introduced, which can be applied to report on ABE and CBE editing in a virtually unrestricted sequence context or to label base edited cells for enrichment. Using BEAR-enrichment, we increase the yield of base editing performed by nuclease inactive base editors to the level of the nickase versions while maintaining significantly lower indel background. Furthermore, by exploiting the semi-high-throughput potential of BEAR, we examine whether increased fidelity SpCas9 variants can be used to decrease SpCas9-dependent off-target effects of ABE and CBE. Comparing them on the same target sets reveals that CBE remains active on sequences, where increased fidelity mutations and/or mismatches decrease the activity of ABE. Our results suggest that the deaminase domain of ABE is less effective to act on rather transiently separated target DNA strands, than that of CBE explaining its lower mismatch tolerance.
Collapse
|
94
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021; 22:11753. [PMID: 34769204 PMCID: PMC8583973 DOI: 10.3390/ijms222111753] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan 60000, Pakistan;
| | - Alaa T. Qusmani
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia;
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Muhammad Zubair Ghouri
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sabin Aslam
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Muhammad Salman Mubarik
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Ahmad Munir
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Qaiser Sultan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Sameer H. Qari
- Molecular Biology Central Laboratory (GMCL), Department of Biology/Genetics, Aljumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia
| |
Collapse
|
95
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms222111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits—without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
96
|
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
97
|
Fu J, Li Q, Liu X, Tu T, Lv X, Yin X, Lv J, Song Z, Qu J, Zhang J, Li J, Gu F. Human cell based directed evolution of adenine base editors with improved efficiency. Nat Commun 2021; 12:5897. [PMID: 34625552 PMCID: PMC8501064 DOI: 10.1038/s41467-021-26211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.
Collapse
Affiliation(s)
- Junhao Fu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| |
Collapse
|
98
|
NBS1 I171V variant underlies individual differences in chromosomal radiosensitivity within human populations. Sci Rep 2021; 11:19661. [PMID: 34608183 PMCID: PMC8490386 DOI: 10.1038/s41598-021-98673-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetic information is protected against a variety of genotoxins including ionizing radiation (IR) through the DNA double-strand break (DSB) repair machinery. Genome-wide association studies and clinical sequencing of cancer patients have suggested that a number of variants in the DNA DSB repair genes might underlie individual differences in chromosomal radiosensitivity within human populations. However, the number of established variants that directly affect radiosensitivity is still limited. In this study, we performed whole-exome sequencing of 29 Japanese ovarian cancer patients and detected the NBS1 I171V variant, which is estimated to exist at a rate of approximately 0.15% in healthy human populations, in one patient. To clarify whether this variant indeed contributes to chromosomal radiosensitivity, we generated NBS1 I171V variant homozygous knock-in HCT116 cells and mice using the CRISPR/Cas9 system. Radiation-induced micronucleus formation and chromosomal aberration frequency were significantly increased in both HCT116 cells and mouse embryonic fibroblasts (MEFs) with knock-in of the NBS1 I171V variant compared with the levels in wild-type cells. These results suggested that the NBS1 I171V variant might be a genetic factor underlying individual differences in chromosomal radiosensitivity.
Collapse
|
99
|
Song M, Lim JM, Min S, Oh JS, Kim DY, Woo JS, Nishimasu H, Cho SR, Yoon S, Kim HH. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat Commun 2021; 12:5617. [PMID: 34556671 PMCID: PMC8460726 DOI: 10.1038/s41467-021-25928-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
Although prime editing is a promising genome editing method, the efficiency of prime editor 2 (PE2) is often insufficient. Here we generate a more efficient variant of PE2, named hyPE2, by adding the Rad51 DNA-binding domain. When tested at endogenous sites, hyPE2 shows a median of 1.5- or 1.4- fold (range, 0.99- to 2.6-fold) higher efficiencies than PE2; furthermore, at sites where PE2-induced prime editing is very inefficient (efficiency < 1%), hyPE2 enables prime editing with efficiencies ranging from 1.1% to 2.9% at up to 34% of target sequences, potentially facilitating prime editing applications. While prime editing is a promising technology, PE2 systems often have low efficiency. Here the authors fuse a Rad51 DNA-binding domain to create hyPE2 with improved editing efficiency.
Collapse
Affiliation(s)
- Myungjae Song
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Lim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seonwoo Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Seok Oh
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Dong Young Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sung-Rae Cho
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate Program of Nano Science and Technology, Yonsei University, Seoul, Republic of Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Graduate Program of Nano Science and Technology, Yonsei University, Seoul, Republic of Korea. .,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea. .,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
100
|
Chuang CK, Lin WM. Points of View on the Tools for Genome/Gene Editing. Int J Mol Sci 2021; 22:9872. [PMID: 34576035 PMCID: PMC8470269 DOI: 10.3390/ijms22189872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Theoretically, a DNA sequence-specific recognition protein that can distinguish a DNA sequence equal to or more than 16 bp could be unique to mammalian genomes. Long-sequence-specific nucleases, such as naturally occurring Homing Endonucleases and artificially engineered ZFN, TALEN, and Cas9-sgRNA, have been developed and widely applied in genome editing. In contrast to other counterparts, which recognize DNA target sites by the protein moieties themselves, Cas9 uses a single-guide RNA (sgRNA) as a template for DNA target recognition. Due to the simplicity in designing and synthesizing a sgRNA for a target site, Cas9-sgRNA has become the most current tool for genome editing. Moreover, the RNA-guided DNA recognition activity of Cas9-sgRNA is independent of both of the nuclease activities of it on the complementary strand by the HNH domain and the non-complementary strand by the RuvC domain, and HNH nuclease activity null mutant (H840A) and RuvC nuclease activity null mutant (D10A) were identified. In accompaniment with the sgRNA, Cas9, Cas9(D10A), Cas9(H840A), and Cas9(D10A, H840A) can be used to achieve double strand breakage, complementary strand breakage, non-complementary strand breakage, and no breakage on-target site, respectively. Based on such unique characteristics, many engineered enzyme activities, such as DNA methylation, histone methylation, histone acetylation, cytidine deamination, adenine deamination, and primer-directed mutation, could be introduced within or around the target site. In order to prevent off-targeting by the lasting expression of Cas9 derivatives, a lot of transient expression methods, including the direct delivery of Cas9-sgRNA riboprotein, were developed. The issue of biosafety is indispensable in in vivo applications; Cas9-sgRNA packaged into virus-like particles or extracellular vesicles have been designed and some in vivo therapeutic trials have been reported.
Collapse
Affiliation(s)
- Chin-Kai Chuang
- Animal Technology Research Center, Division of Animal Technology, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 35053, Taiwan;
| | | |
Collapse
|