51
|
Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904. [PMID: 35302693 PMCID: PMC9482668 DOI: 10.1111/jeu.12904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. A key to understanding and treating the disease lies with determining how the parasite can survive and replicate within cells of its host. Proteins released from specialized secretory vesicles, named the dense granules (DGs), have diverse functions that are critical for adapting the intracellular environment, and are thus key to survival and pathogenicity. In this review, we describe the current understanding and outstanding questions regarding dense granule biogenesis, trafficking, and regulation of secretion. In addition, we provide an overview of dense granule protein ("GRA") function upon secretion, with a focus on proteins that have recently been identified.
Collapse
Affiliation(s)
- Michael B Griffith
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Camille S Pearce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
52
|
Rappe A, McWilliams TG. Mitophagy in the aging nervous system. Front Cell Dev Biol 2022; 10:978142. [PMID: 36303604 PMCID: PMC9593040 DOI: 10.3389/fcell.2022.978142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2024] Open
Abstract
Aging is characterised by the progressive accumulation of cellular dysfunction, stress, and inflammation. A large body of evidence implicates mitochondrial dysfunction as a cause or consequence of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Because neurons have high metabolic demands and cannot divide, they are especially vulnerable to mitochondrial dysfunction which promotes cell dysfunction and cytotoxicity. Mitophagy neutralises mitochondrial dysfunction, providing an adaptive quality control strategy that sustains metabolic homeostasis. Mitophagy has been extensively studied as an inducible stress response in cultured cells and short-lived model organisms. In contrast, our understanding of physiological mitophagy in mammalian aging remains extremely limited, particularly in the nervous system. The recent profiling of mitophagy reporter mice has revealed variegated vistas of steady-state mitochondrial destruction across different tissues. The discovery of patients with congenital autophagy deficiency provokes further intrigue into the mechanisms that underpin neural integrity. These dimensions have considerable implications for targeting mitophagy and other degradative pathways in age-related neurological disease.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
53
|
Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy. Nat Commun 2022; 13:5164. [PMID: 36056001 PMCID: PMC9440083 DOI: 10.1038/s41467-022-32564-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Mitophagy is essential to maintain mitochondrial function and prevent diseases. It activates upon mitochondria depolarization, which causes PINK1 stabilization on the mitochondrial outer membrane. Strikingly, a number of conditions, including mitochondrial protein misfolding, can induce mitophagy without a loss in membrane potential. The underlying molecular details remain unclear. Here, we report that a loss of mitochondrial protein import, mediated by the pre-sequence translocase-associated motor complex PAM, is sufficient to induce mitophagy in polarized mitochondria. A genome-wide CRISPR/Cas9 screen for mitophagy inducers identifies components of the PAM complex. Protein import defects are able to induce mitophagy without a need for depolarization. Upon mitochondrial protein misfolding, PAM dissociates from the import machinery resulting in decreased protein import and mitophagy induction. Our findings extend the current mitophagy model to explain mitophagy induction upon conditions that do not affect membrane polarization, such as mitochondrial protein misfolding. Mitophagy activation is mediated by mitochondrial depolarization. Here, the authors show that mitochondrial protein misfolding can activate mitophagy in a depolarization-independent manner mediated by a protein import reduction.
Collapse
|
54
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
55
|
Purohit G, Viana MP, Khalimonchuk O. Protocol for engineering and validating a synthetic mitochondrial intermembrane bridge in mammalian cells. STAR Protoc 2022; 3:101454. [PMID: 35719722 PMCID: PMC9204730 DOI: 10.1016/j.xpro.2022.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membrane contact sites are recognized as critical means of intercompartmental communication. Here, we describe a protocol for engineering and validating a synthetic bridge between the inner and outer mitochondrial membranes to support functioning of the endogenous mitochondrial contact site and cristae organizing system (MICOS). A chimeric protein, MitoT, is stably expressed in cultured mammalian cells to bridge the mitochondrial membranes. This approach can be a valuable tool to study the function of the MICOS complex and associated proteins. For complete details on the use and execution of this protocol, please refer to Viana et al. (2021).
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA,Corresponding author
| | | | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA,Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68503, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA,Corresponding author
| |
Collapse
|
56
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
57
|
Zhang R, Chen J, Wang D, Fu ZQ. Hijacking of host mitochondria by Toxoplasma gondii and SARS-CoV-2. Trends Parasitol 2022; 38:269-271. [PMID: 35165074 PMCID: PMC8823957 DOI: 10.1016/j.pt.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
Abstract
Mitochondria regulate energy production, cell cycle, and immune signaling. Li et al. recently reported that Toxoplasma gondii induces the shedding of mitochondrial outer membrane to promote its growth. Intriguingly, the hijacking of host mitochondria has been shown to play an essential role in the pathogenesis of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Ruize Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
58
|
Abstract
Li et al. (2022) discover that Toxoplasma infection triggers remodeling of the mitochondrial outer membrane through generation of a mitochondrial subdomain termed "structure positive for outer mitochondrial membrane" (SPOT).
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
59
|
Hakimi MA. Hunger games in the host cell: Toxoplasma traps and skins host mitochondria. Cell Host Microbe 2022; 30:274-276. [PMID: 35271796 DOI: 10.1016/j.chom.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii actively tethers host mitochondria to its vacuole, altering their function. In a recent issue of Science, Li et al. demonstrate that Toxoplasma disarms host metabolic defenses by inducing the organelle to shed atypical large structures from its outer membrane to trap mitochondrial proteins that restrict parasite growth.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, 38700 Grenoble, France.
| |
Collapse
|
60
|
Zhao S, Heng N, Wang H, Wang H, Zhang H, Gong J, Hu Z, Zhu H. Mitofusins: from mitochondria to fertility. Cell Mol Life Sci 2022; 79:370. [PMID: 35725948 PMCID: PMC9209398 DOI: 10.1007/s00018-022-04386-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023]
Abstract
Germ cell formation and embryonic development require ATP synthesized by mitochondria. The dynamic system of the mitochondria, and in particular, the fusion of mitochondria, are essential for the generation of energy. Mitofusin1 and mitofusin2, the homologues of Fuzzy onions in yeast and Drosophila, are critical regulators of mitochondrial fusion in mammalian cells. Since their discovery mitofusins (Mfns) have been the source of significant interest as key influencers of mitochondrial dynamics, including membrane fusion, mitochondrial distribution, and the interaction with other organelles. Emerging evidence has revealed significant insight into the role of Mfns in germ cell formation and embryonic development, as well as the high incidence of reproductive diseases such as asthenospermia, polycystic ovary syndrome, and gestational diabetes mellitus. Here, we describe the key mechanisms of Mfns in mitochondrial dynamics, focusing particularly on the role of Mfns in the regulation of mammalian fertility, including spermatogenesis, oocyte maturation, and embryonic development. We also highlight the role of Mfns in certain diseases associated with the reproductive system and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Nuo Heng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haoyu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haobo Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jianfei Gong
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zhihui Hu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|