51
|
Emad A, Sinha S. Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study. NPJ Syst Biol Appl 2021; 7:9. [PMID: 33558504 PMCID: PMC7870953 DOI: 10.1038/s41540-021-00169-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Reconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic (or clinical) properties of the samples. Therefore, they may confound regulatory mechanisms that are specifically related to a phenotypic property with more general mechanisms underlying the full complement of the analyzed samples. In this study, we develop a method called InPheRNo to identify "phenotype-relevant" TRNs. This method is based on a probabilistic graphical model that models the simultaneous effects of multiple transcription factors (TFs) on their target genes and the statistical relationship between the target genes' expression and the phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas reveals that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis reveals that the activity level of TFs with many target genes could distinguish patients with poor prognosis from those with better prognosis.
Collapse
Affiliation(s)
- Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada.
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
52
|
Tiny miRNAs Play a Big Role in the Treatment of Breast Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13020337. [PMID: 33477629 PMCID: PMC7831489 DOI: 10.3390/cancers13020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in breast cancer. Through a review of multiple studies, this paper has identified the key regulatory roles of oncogenic miRNAs in breast cancer metastasis including the potentiation of angiogenesis, epithelial-mesenchymal transition, the Warburg effect, and the tumour microenvironment. Several approaches have been studied for selective targeting of breast tumours by miRNAs, ranging from delivery systems such as extracellular vesicles and liposomes to the use of prodrugs and functionally modified vehicle-free miRNAs. While promising, these miRNA-based therapies face challenges including toxicity and immunogenicity, and greater research on their safety profiles must be performed before progressing to clinical trials. Abstract Distant organ metastases accounts for the majority of breast cancer deaths. Given the prevalence of breast cancer in women, it is imperative to understand the underlying mechanisms of its metastatic progression and identify potential targets for therapy. Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in various cancers, playing either oncogenic or tumour suppressor roles. In the following review, we discuss the roles of miRNAs that potentiate four key areas of breast cancer metastasis—angiogenesis, epithelial-mesenchymal transition, the Warburg effect and the tumour microenvironment. We then evaluate the recent developments in miRNA-based therapies in breast cancer, which have shown substantial promise in controlling tumour progression and metastasis. Yet, certain challenges must be overcome before these strategies can be implemented in clinical trials.
Collapse
|
53
|
Prediction of novel miRNA biomarker candidates for diagnostic and prognostic analysis of STAD and LIHC: An integrated in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
54
|
Dang TT, McIntosh AT, Morales JC, Pearson GW. miR614 Expression Enhances Breast Cancer Cell Motility. Int J Mol Sci 2020; 22:ijms22010112. [PMID: 33374314 PMCID: PMC7801944 DOI: 10.3390/ijms22010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023] Open
Abstract
Using a data driven analysis of a high-content screen, we have uncovered new regulators of epithelial-to-mesenchymal transition (EMT) induced cell migration. Our results suggest that increased expression of miR614 can alter cell intrinsic gene expression to enhance single cell and collective migration in multiple contexts. Interestingly, miR614 specifically increased the expression of the EMT transcription factor Slug while not altering existing epithelial character or inducing other canonical EMT regulatory factors. Analysis of two different cell lines identified a set of genes whose expression is altered by the miR614 through direct and indirect mechanisms. Prioritization driven by functional testing of 25 of the miR614 suppressed genes uncovered the mitochondrial small GTPase Miro1 and the transmembrane protein TAPT1 as miR614 suppressed genes that inhibit migration. Notably, the suppression of either Miro1 or TAPT1 was sufficient to increase Slug expression and the rate of cell migration. Importantly, reduced TAPT1 expression correlated with an increased risk of relapse in breast cancer patients. Together, our results reveal how increased miR614 expression and the suppression of TAPT1 and Miro1 modulate the EMT state and migratory properties of breast cancer cells.
Collapse
Affiliation(s)
- Tuyen T. Dang
- Department of Neurosurgery and Stephenson Cancer Center, University of Oklahoma Health Science Center, 1122 NE 13th St., Oklahoma City, OK 73117, USA; (T.T.D.); (J.C.M.)
- Simmons Comprehensive Cancer, University of Texas, Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| | - Alec T. McIntosh
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Rd. NW, Washington, DC 20057, USA;
| | - Julio C. Morales
- Department of Neurosurgery and Stephenson Cancer Center, University of Oklahoma Health Science Center, 1122 NE 13th St., Oklahoma City, OK 73117, USA; (T.T.D.); (J.C.M.)
| | - Gray W. Pearson
- Simmons Comprehensive Cancer, University of Texas, Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Rd. NW, Washington, DC 20057, USA;
- Correspondence:
| |
Collapse
|
55
|
Anastasov N, Hirmer E, Klenner M, Ott J, Falkenberg N, Bao X, Mutschelknaus L, Moertl S, Combs S, Atkinson MJ, Schmid T. MEK1 Inhibitor Combined with Irradiation Reduces Migration of Breast Cancer Cells Including miR-221 and ZEB1 EMT Marker Expression. Cancers (Basel) 2020; 12:cancers12123760. [PMID: 33327491 PMCID: PMC7764972 DOI: 10.3390/cancers12123760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Combined chemotherapy and radiotherapy are an effective treatment for invasive breast cancer. However, some studies suggest that such interventions may increase the risk of metastasis. Cell metastatic behavior is highly dependent on RAS-RAF-MEK pathway and its downstream target activation, including miR-221 overexpression and epithelial-to-mesenchymal transition (EMT). By using MEK1 inhibitor (TAK-733) in combination with radiation therapy for breast cancer cells, significant decrease in migration capacity, including reduction of miR-221 and EMT (ZEB1) marker expression was observed. miR-221 holds great potential as therapeutic biomarker and target for new drug developments, however more insight into efficiency of miR-221 inhibition needs to be followed in the future. Abstract The miR-221 expression is dependent on the oncogenic RAS-RAF-MEK pathway activation and influences epithelial-to-mesenchymal transition (EMT). The Cancer Genome Atlas (TCGA) database analysis showed high gene significance for ZEB1 with EMT module analysis and miR-221 overexpression within the triple-negative breast cancer (TNBC) and HER2+ subgroups when compared to luminal A/B subgroups. EMT marker expression analysis after MEK1 (TAK-733) inhibitor treatment and irradiation was combined with miR-221 and ZEB1 expression analysis. The interaction of miR-221 overexpression with irradiation and its influence on migration, proliferation, colony formation and subsequent EMT target activation were investigated. The results revealed that MEK1 inhibitor treatment combined with irradiation could decrease the migratory potential of breast cancer cells including reduction of miR-221 and corresponding downstream ZEB1 (EMT) marker expression. The clonogenic survival assays revealed that miR-221 overexpressing SKBR3 cells were more radioresistant when compared to the control. Remarkably, the effect of miR-221 overexpression on migration in highly proliferative and highly HER2-positive SKBR3 cells remained constant even upon 8 Gy irradiation. Further, in naturally miR-221-overexpressing MDA-MB-231 cells, the proliferation and migration significantly decrease after miR-221 knockdown. This leads to the assumption that radiation alone is not reducing migration capacity of miR-221-overexpressing cells and that additional factors play an important role in this context. The miR-221/ZEB1 activity is efficiently targeted upon MEK1 inhibitor (TAK-733) treatment and when combined with irradiation treatment, significant reduction in migration of breast cancer cells was shown.
Collapse
Affiliation(s)
- Nataša Anastasov
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Correspondence: ; Tel.: +49-893-187-3798; Fax: +49-893-187-3017
| | - Elisabeth Hirmer
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (S.C.); (T.S.)
| | - Marbod Klenner
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
| | - Jessica Ott
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (S.C.); (T.S.)
| | - Natalie Falkenberg
- Institute of Pathology, Technical University of Munich (TUM), 81675 Munich, Germany;
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Xuanwen Bao
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
| | - Lisa Mutschelknaus
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
| | - Simone Moertl
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
- Federal Office of Radiation Protection, 85764 Oberschleissheim, Germany
| | - Stephanie Combs
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (S.C.); (T.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (E.H.); (M.K.); (J.O.); (X.B.); (L.M.); (S.M.); (M.J.A.)
- Radiation Biology, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Schmid
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; (S.C.); (T.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
56
|
Angius A, Cossu-Rocca P, Arru C, Muroni MR, Rallo V, Carru C, Uva P, Pira G, Orrù S, De Miglio MR. Modulatory Role of microRNAs in Triple Negative Breast Cancer with Basal-Like Phenotype. Cancers (Basel) 2020; 12:E3298. [PMID: 33171872 PMCID: PMC7695196 DOI: 10.3390/cancers12113298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Development of new research, classification, and therapeutic options are urgently required due to the fact that TNBC is a heterogeneous malignancy. The expression of high molecular weight cytokeratins identifies a biologically and clinically distinct subgroup of TNBCs with a basal-like phenotype, representing about 75% of TNBCs, while the remaining 25% includes all other intrinsic subtypes. The triple negative phenotype in basal-like breast cancer (BLBC) makes it unresponsive to endocrine therapy, i.e., tamoxifen, aromatase inhibitors, and/or anti-HER2-targeted therapies; for this reason, only chemotherapy can be considered an approach available for systemic treatment even if it shows poor prognosis. Therefore, treatment for these subgroups of patients is a strong challenge for oncologists due to disease heterogeneity and the absence of unambiguous molecular targets. Dysregulation of the cellular miRNAome has been related to huge cellular process deregulations underlying human malignancy. Consequently, epigenetics is a field of great promise in cancer research. Increasing evidence suggests that specific miRNA clusters/signatures might be of clinical utility in TNBCs with basal-like phenotype. The epigenetic mechanisms behind tumorigenesis enable progress in the treatment, diagnosis, and prevention of cancer. This review intends to summarize the epigenetic findings related to miRNAome in TNBCs with basal-like phenotype.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (P.C.-R.); (M.R.M.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (P.C.-R.); (M.R.M.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010 Pula, CA, Italy;
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Sandra Orrù
- Department of Pathology, “A. Businco” Oncologic Hospital, ASL Cagliari, 09121 Cagliari, Italy;
| | - Maria Rosaria De Miglio
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
57
|
Wang H, Huang Y, Yang Y. LncRNA PVT1 Regulates TRPS1 Expression in Breast Cancer by Sponging miR-543. Cancer Manag Res 2020; 12:7993-8004. [PMID: 32982402 PMCID: PMC7493016 DOI: 10.2147/cmar.s263383] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breast cancer is the most common female malignancy with high invasion and metastasis abilities. Studies have shown that long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 gene (PVT1) is an oncogene and is positively correlated with progression and metastasis of breast tumors. However, the detailed mechanism of PVT1 in breast cancer tumorigenesis is not fully understood. METHODS Real-time polymerase quantitative chain reaction (RT-qPCR) was performed to identify the expression levels of PVT1, miR-543 and trichorhinophalangeal syndrome-1 gene (TRPS1) in breast cancer tissues and cells. Cell proliferation was measured by plate clone formation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay. Apoptosis and motility of MCF-7 and MDA-MB-436 cells were assessed with flow cytometry assay and transwell migration and invasion analyses, respectively. In addition, a model was established to probe the function of PVT1 silencing in vivo. The target relationship among PVT1, miR-543 or TRPS1 was confirmed by dual-luciferase reporter analysis, RNA immunoprecipitation (RIP) and RNA pull down assays. The protein expression level of TRPS1 was evaluated with Western blot assay. RESULTS PVT1 expression was upregulated in breast cancer tissues and cell lines. In addition, PVT1 silencing inhibited breast cancer cell growth and motility, while increased apoptosis. Meanwhile, the effects of PVT1 or miR-543 could be reversed by introducing overexpressed plasmid of miR-543 or TRPS1 in breast cancer cell lines, respectively. CONCLUSION Knockdown of PVT1 repressed breast cancer cell growth and motility, and induced apoptosis in vitro and reduced tumor volume and weight in vivo. Mechanically, the overexpression of PVT1 enhanced TRPS1 level by negatively targeted miR-543 in breast cancer.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Pharmacy, The Second Clinical Medical College, Yangtze University, Jingzhou434020, People’s Republic of China
| | - Yuanli Huang
- Department of Galactophore, The Second Clinical Medical College, Yangtze University, Jingzhou434020, People’s Republic of China
| | - Yuanrong Yang
- Department of Pharmacy, The Second Clinical Medical College, Yangtze University, Jingzhou434020, People’s Republic of China
| |
Collapse
|
58
|
Liu R, Zhang S, Zheng TT, Chen YR, Wu JT, Wu ZS. Intracellular Nonenzymatic In Situ Growth of Three-Dimensional DNA Nanostructures for Imaging Specific Biomolecules in Living Cells. ACS NANO 2020; 14:9572-9584. [PMID: 32806042 DOI: 10.1021/acsnano.9b09995] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Real-time in situ monitoring of low-abundance cancer biomarkers (e.g., miRNAs and proteins) in living cells by nonenzymatic assembly entirely from original DNA probes remains unexplored due to an extremely complex intracellular environment. Herein, a nonenzymatic palindrome-catalyzed DNA assembly (NEPA) technique is developed to execute the in situ imaging of intracellular miRNAs by assembling a three-dimensional nanoscale DNA spherical structure (NS) with low mobility from three free hairpin-type DNAs rather than from DNA intermediates based on the interaction of designed terminal palindromes. Target miRNA was detected down to 1.4 pM, and its family members were distinguished with almost 100% accuracy. The subcellular localization of NS products can be visualized in real time. The NEPA-based sensing strategy is also suitable for the intracellular in situ fluorescence imaging of cancer-related protein receptors, offering valuable insight into developing sensing protocols for understanding the biological function of vital biomolecules in disease pathogenesis and future therapeutic applications.
Collapse
Affiliation(s)
- Ran Liu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Ting-Ting Zheng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jing-Ting Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
59
|
Di Paolo V, Colletti M, Ferruzzi V, Russo I, Galardi A, Alessi I, Milano GM, Di Giannatale A. Circulating Biomarkers for Tumor Angiogenesis: Where Are We? Curr Med Chem 2020; 27:2361-2380. [PMID: 30129403 DOI: 10.2174/0929867325666180821151409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND In recent years, several anti-angiogenic drugs have been developed and their addition to standard treatment has been associated with clinical benefits. However, the response to anti-angiogenic therapy is characterized by considerable variability. In this context, the development of dynamic non-invasive biomarkers would be helpful to elucidate the emergence of anti-angiogenic resistance as well as to correctly address the treatment. OBJECTIVES The purpose of this review is to describe current reports on circulating diagnostic and prognostic biomarkers related to angiogenesis. We further discuss how this non-invasive strategy could improve the monitoring of tumor treatment and help clinical strategy. RESULTS We discuss the latest evidence in the literature regarding circulating anti-angiogenic markers. Besides growth factor proteins, different circulating miRNAs could exert a pro- or anti-angiogenic activity so as to represent suitable candidates for a non-invasive strategy. Recent reports indicate that tumor-derived exosomes, which are small membrane vesicles abundant in biological fluids, also have an impact on vascular remodeling. CONCLUSION Numerous circulating biomarkers related to angiogenesis have been recently identified. Their use will allow identifying patients who are more likely to benefit from a specific anti-angiogenic treatment, as well as detecting those who will develop resistance and/or adverse effects. Nonetheless, further studies are required to elucidate the role of these biomarkers in clinical settings.
Collapse
Affiliation(s)
- Virginia Di Paolo
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Marta Colletti
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Valentina Ferruzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Ida Russo
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Angela Galardi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Iside Alessi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| |
Collapse
|
60
|
Ali Ahmed E, A. Abd El-bast S, A. Mohamed M, Swellam M. Clinical Impact of Oncomirs 221 and 222 on Breast Cancer Diagnosis. ASIA-PACIFIC JOURNAL OF ONCOLOGY 2020:1-9. [DOI: 10.32948/ajo.2020.07.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 09/02/2023]
Abstract
Background Dysregulation of miRNAs, non-coding RNAs of 18-25 ( ̴ 22nt), is a hallmark of malignancies among them is breast cancer. The present study aimed to investigate the expression levels of circulating oncomiRNAs (miRNA-221and miRNA-222) as a minimally non-invasive method for early detection of breast cancer as compared to tumor markers (CEA, CA15.3).
Materials and methods MiRNA-221 and miRNA-222 expression levels were determined using quantitative real-time polymerase chain reaction (qPCR) in serum samples from three groups: primary breast cancer patients (n = 44), benign breast lesion patients (n = 25), and healthy individuals as control group (n = 19). Their diagnostic efficacy and relation with clinicopathological data were analyzed.
Results MiRNA-221 and miRNA-222 expression and tumor markers reported significant increase in their mean levels in breast cancer group as compared to the benign breast lesions or control individuals. Among clinicopathological factors, miRs reported significant relation with pathological types, clinical staging, histological grading and hormonal status, while CEA and CA15.3 did not revealed significance with these factors. The diagnostic efficacy for investigated miRNAs was superior to tumor markers especially for detection of early stages and low grade tumors.
Conclusion MiRNA-221 and miRNA-222 were superior over tumor markers for early detection of breast cancer especially those at high risk as primarybreast cancer patients with early stage or low grade tumors.
Collapse
Affiliation(s)
- Elham Ali Ahmed
- Zoology Department, Faculty of Science (Girls), Al-Azhar University
| | - Sohair A. Abd El-bast
- Biochemistry Division, Chemistry Department, Faculty of Science (Girls), Al-Azhar University
| | | | | |
Collapse
|
61
|
Lopez-Rincon A, Mendoza-Maldonado L, Martinez-Archundia M, Schönhuth A, Kraneveld AD, Garssen J, Tonda A. Machine Learning-Based Ensemble Recursive Feature Selection of Circulating miRNAs for Cancer Tumor Classification. Cancers (Basel) 2020; 12:cancers12071785. [PMID: 32635415 PMCID: PMC7407482 DOI: 10.3390/cancers12071785] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating microRNAs (miRNA) are small noncoding RNA molecules that can be detected in bodily fluids without the need for major invasive procedures on patients. miRNAs have shown great promise as biomarkers for tumors to both assess their presence and to predict their type and subtype. Recently, thanks to the availability of miRNAs datasets, machine learning techniques have been successfully applied to tumor classification. The results, however, are difficult to assess and interpret by medical experts because the algorithms exploit information from thousands of miRNAs. In this work, we propose a novel technique that aims at reducing the necessary information to the smallest possible set of circulating miRNAs. The dimensionality reduction achieved reflects a very important first step in a potential, clinically actionable, circulating miRNA-based precision medicine pipeline. While it is currently under discussion whether this first step can be taken, we demonstrate here that it is possible to perform classification tasks by exploiting a recursive feature elimination procedure that integrates a heterogeneous ensemble of high-quality, state-of-the-art classifiers on circulating miRNAs. Heterogeneous ensembles can compensate inherent biases of classifiers by using different classification algorithms. Selecting features then further eliminates biases emerging from using data from different studies or batches, yielding more robust and reliable outcomes. The proposed approach is first tested on a tumor classification problem in order to separate 10 different types of cancer, with samples collected over 10 different clinical trials, and later is assessed on a cancer subtype classification task, with the aim to distinguish triple negative breast cancer from other subtypes of breast cancer. Overall, the presented methodology proves to be effective and compares favorably to other state-of-the-art feature selection methods.
Collapse
Affiliation(s)
- Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
- Correspondence:
| | - Lucero Mendoza-Maldonado
- Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Salvador Quevedo y Zubieta 750, Independencia Oriente, Guadalajara C.P. 44340, Jalisco, Mexico;
| | - Marlet Martinez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y Diseno de farmacos, Seccion de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Alexander Schönhuth
- Life Sciences and Health, Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands;
- Genome Data Science, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
- Global Centre of Excellence Immunology Danone Nutricia Research, Uppsalaan 12, 3584 CT Utrecht, The Netherlands
| | - Alberto Tonda
- UMR 518 MIA-Paris, INRAE, Université Paris-Saclay, 75013 Paris, France;
| |
Collapse
|
62
|
Zhang S, Wang Y, Wang Y, Peng J, Yuan C, Zhou L, Xu S, Lin Y, Du Y, Yang F, Zhang J, Dai H, Yin W, Lu J. Serum miR-222-3p as a Double-Edged Sword in Predicting Efficacy and Trastuzumab-Induced Cardiotoxicity for HER2-Positive Breast Cancer Patients Receiving Neoadjuvant Target Therapy. Front Oncol 2020; 10:631. [PMID: 32426280 PMCID: PMC7212359 DOI: 10.3389/fonc.2020.00631] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background: We aimed to explore whether the expression of serum miR-222-3p might contribute to early prediction of therapeutic response, clinical outcomes, and adverse events for HER2-positive breast cancer patients receiving neoadjuvant therapy (NAT). Methods: A total of 65 HER2-positive breast cancer patients receiving NAT were analyzed. The concentration of serum miR-222-3p was detected by quantitative real-time PCR. Logistic regression analysis was used to identify the association of serum miR-222-3p with pathological complete response (pCR). The relationship of serum miR-222-3p with disease-free survival (DFS) and overall survival (OS) was examined via log-rank test and Cox proportional hazards analysis. The ordered logistic regression was applied to evaluate the association between serum miR-222-3p and adverse events. Results: The miR-222-3p low group was more likely to achieve pCR [odds ratio (OR) = 0.258, P = 0.043]. The interaction between miR-222-3p and presenting Ki67 level was also detected for pCR (OR = 49.230, Pinteraction = 0.025). The miR-222-3p low group was correlated with superior DFS (P = 0.029) and OS (P = 0.0037). The expression of serum miR-222-3p was the independent protective factor for trastuzumab-induced cardiotoxicity (P < 0.05) and anemia (P = 0.013). Conclusions: Serum miR-222-3p is the potential factor to predict pCR, survival benefit and trastuzumab-induced cardiotoxicity for HER2-positive breast cancer patients receiving NAT.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Yang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
63
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|
64
|
Bui NHB, Napoli M, Davis AJ, Abbas HA, Rajapakshe K, Coarfa C, Flores ER. Spatiotemporal Regulation of ΔNp63 by TGFβ-Regulated miRNAs Is Essential for Cancer Metastasis. Cancer Res 2020; 80:2833-2847. [PMID: 32312834 DOI: 10.1158/0008-5472.can-19-2733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/18/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
ΔNp63 is a transcription factor of the p53 family and has crucial functions in normal development and disease. The expression pattern of ΔNp63 in human cancer suggests dynamic regulation of this isoform during cancer progression and metastasis. Many primary and metastatic tumors express high levels of ΔNp63, while ΔNp63 loss is crucial for tumor dissemination, indicating an oscillatory expression of ΔNp63 during cancer progression. Here, we use genetically engineered orthotopic mouse models of breast cancer to show that while depletion of ΔNp63 inhibits primary mammary adenocarcinoma development, oscillatory expression of ΔNp63 in established tumors is crucial for metastatic dissemination in breast cancer. A TGFβ-regulated miRNA network acted as upstream regulators of this oscillatory expression of ΔNp63 during cancer progression. This work sheds light on the pleiotropic roles of ΔNp63 in cancer and unveils critical functions of TGFβ in the metastatic process. SIGNIFICANCE: This study unveils TGFβ signaling and a network of four miRNAs as upstream regulators of ΔNp63, providing key information for the development of therapeutic strategies to treat cancers that commonly overexpress ΔNp63.
Collapse
Affiliation(s)
- Ngoc H B Bui
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Andrew John Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Hussein A Abbas
- Hematology/Oncology Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida. .,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
65
|
Ang L, Guo L, Wang J, Huang J, Lou X, Zhao M. Oncolytic virotherapy armed with an engineered interfering lncRNA exhibits antitumor activity by blocking the epithelial mesenchymal transition in triple-negative breast cancer. Cancer Lett 2020; 479:42-53. [PMID: 32200038 DOI: 10.1016/j.canlet.2020.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) has special characteristics of significant aggressiveness, and strong potential for metastasis and recurrence; currently there are no targeted drugs for TNBC. Abnormal activation of epithelial-mesenchymal transition (EMT) plays an important role in these malignant behaviors of TNBC. In the crosstalk among the multiple EMT-associated signaling pathways, many miRNAs participate in regulating pathway activity, where they act as "traffic lights" at the intersection of these pathways. In this study, we used miRNA microarray technology to detect differentially expressed miRNAs related to EMT in TNBC, and we identified and verified 9 highly expressed oncogenic miRNAs (OncomiRs). High expression of these OncomiRs in clinical breast cancer tissues affected the prognosis of patients, and inhibition of their expression blocked EMT in TNBC cell lines and suppressed cancer cell proliferation and migration. We constructed an oncolytic adenovirus (AdSVP-lncRNAi9) armed with an artificially-designed interfering lncRNA (lncRNAi9), which exhibited an activity to block EMT in TNBC cells by disrupting the functions of multiple OncomiRs; the efficacy of such a treatment for TNBC was demonstrated in cytology and animal experiments. This research provides a new candidate oncolytic virotherapy for treating highly malignant refractory TNBC.
Collapse
Affiliation(s)
- Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China
| | - Lingli Guo
- Department of Reconstructive Surgery, PLA General Hospital, Beijing, 100853, China
| | - Jin Wang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China
| | - Xiaoli Lou
- Department of Reconstructive Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China.
| | - Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China.
| |
Collapse
|
66
|
Amini S, Abak A, Sakhinia E, Abhari A. MicroRNA-221 and MicroRNA-222 in Common Human Cancers: Expression, Function, and Triggering of Tumor Progression as a Key Modulator. Lab Med 2020; 50:333-347. [PMID: 31049571 DOI: 10.1093/labmed/lmz002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 01/19/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short (~22 nucleotides [nt]), single-stranded RNA oligonucleotides that are regulatory in nature and are often dysregulated in various diseases, including cancer. miRNAs can act as oncomiRs (miRNAs associated with cancer) or tumor suppressor miRNAs and have the potential to be a diagnostic, prognostic, noninvasive biomarker for these diseases. MicroRNA-221 (miR-221) and microRNA-222 (miR-222) are homologous miRNAs, located on the human chromosome Xp11.3, which factored significantly in impairment in the regulation of a wide range of cancers. In this review, we have highlighted the most consistently reported dysregulated miRNAs that trigger human tissues to express cancerous features and surveyed the role of those miRNAs in metastasis, apoptosis, angiogenesis, and tumor prognosis. Also, we applied the causes of drug resistance and the role of coordinated actions of these miRNAs to epigenetic changes and selected miRNAs as a potential type of cancer treatment.
Collapse
Affiliation(s)
- Sima Amini
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Center (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratory, Division of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
67
|
Quero L, Tiaden AN, Hanser E, Roux J, Laski A, Hall J, Kyburz D. miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Front Immunol 2020; 10:3087. [PMID: 32047494 PMCID: PMC6996464 DOI: 10.3389/fimmu.2019.03087] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Macrophages are conventionally classified as pro-inflammatory (M1) and anti-inflammatory (M2) functional types. There is evidence for a predominance of macrophages with an inflammatory phenotype (M1) in the rheumatoid arthritis (RA) synovium. MicroRNAs (miRs) play a pivotal role in regulating the inflammatory response in innate immune cells and are found at dysregulated levels in RA patients. Here we explored miRs that tune the inflammatory function of M2-macrophages. Methods: Expression profiles of miR-221-3p and miR-155-5p were analyzed in clinical samples from RA, other inflammatory arthritis (OIA), osteoarthritis (OA), and healthy donors (HD) by qPCR. In vitro generated macrophages were transfected with miR-mimics and inhibitors. Transcriptome profiling through RNA-sequencing was performed on M2-macrophages overexpressing miR-221-3p mimic with or without LPS treatment. Secretion of IL-6, IL-10, IL-12, IL-8, and CXCL13 was measured in M1- and M2-macrophages upon TLR2/TLR3/TLR4-stimulation using ELISA. Inflammatory pathways including NF-κB, IRF3, MAPKs, and JAK3/STAT3 were evaluated by immunoblotting. Direct target interaction of miR-221-3p and predicted target sites in 3'UTR of JAK3 were examined by luciferase reporter gene assay. Results: miR-221-3p in synovial tissue and fluid was increased in RA vs. OA or OIA. Endogenous expression levels of miR-221-3p and miR-155-5p were higher in M1- than M2-macrophages derived from RA patients or HD. TLR4-stimulation of M1- and M2-macrophages resulted in downregulation of miR-221-3p, but upregulation of miR-155-5p. M2-macrophages transfected with miR-221-3p mimics secreted less IL-10 and CXCL13 but more IL-6 and IL-8, exhibited downregulation of JAK3 protein and decreased pSTAT3 activation. JAK3 was identified as new direct target of miR-221-3p in macrophages. Co-transfection of miR-221-3p/miR-155-5p mimics in M2-macrophages increased M1-specific IL-12 secretion. Conclusions: miR-221-3p acts as a regulator of TLR4-induced inflammatory M2-macrophage function by directly targeting JAK3. Dysregulated miR-221-3p expression, as seen in synovium of RA patients, leads to a diminished anti-inflammatory response and drives M2-macrophages to exhibit a M1-cytokine profile.
Collapse
Affiliation(s)
- Lilian Quero
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - André N Tiaden
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Edveena Hanser
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland.,Bioinformatic Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Diego Kyburz
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
68
|
Zheng Q, Gao J, Yin P, Wang W, Wang B, Li Y, Zhao C. CD155 contributes to the mesenchymal phenotype of triple-negative breast cancer. Cancer Sci 2020; 111:383-394. [PMID: 31830330 PMCID: PMC7004517 DOI: 10.1111/cas.14276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) lack molecular targets and have an unfavorable outcome. CD155 is overexpressed in human cancers, but whether it plays a role in TNBC is unexplored. Here we found that CD155 was enriched in both TNBC cell lines and tumor tissues. High CD155 expression was related to poor prognosis of breast cancer patients. CD155 was associated with a mesenchymal phenotype. CD155 knockdown induced a mesenchymal-epithelial transition in TNBC cells, and suppressed TNBC cell migration, invasion and metastasis in vitro and in vivo. Mechanistically, CD155 cross-talked with oncogenic IL-6/Stat3 and TGF-β/Smad3 pathways. Moreover, CD155 knockdown inhibited TNBC cell growth and survival. Taken together, these data indicate that CD155 contributes to the aggressive behavior of TNBC; targeting CD155 may be beneficial to these patients.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jian Gao
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Ping Yin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
69
|
Yi Y, Zhou Y, Chu X, Zheng X, Fei D, Lei J, Qi H, Dai Y. Blockade of Adenosine A2b Receptor Reduces Tumor Growth and Migration in Renal Cell Carcinoma. J Cancer 2020; 11:421-431. [PMID: 31897237 PMCID: PMC6930437 DOI: 10.7150/jca.31245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine A2b receptor (A2bR) is a member of the G protein-coupled receptor superfamily members, which has been considered involved in the pathogenesis of various cancers. However, little is known about the role of A2bR renal cell carcinoma (RCC). The A2bR expression levels in RCC 769-P and Caki-1 cell lines compared with HK-2 were analyzed by qRT-PCR. 769-P and Caki-1 cells were transfected with shRNA-A2bR to knock down the expression of A2bR. Cell proliferation was detected by MTT assays and colony formation assays. Wounding healing assays and transwell assays were used to evaluate the effects of A2bR on cell capacity of invasion and migration. Finally, potential mechanisms involved in A2bR blockade's effects on altered tumor behaviors were evaluated by western blotting. We showed that A2bR were significantly up-regulated in RCC cells compared to HK-2 cell. Functionally, MRS1754, a selective A2bR antagonist, and knocking-down the expression of A2bR by shRNA reduced proliferation and migration in vitro and tumor growth in vivo. Furthermore, we demonstrated that A2bR blockade inhibited tumor progression in part via the MAPK/JNK pathway. Conclusion: Our findings suggest the A2bR potentially plays an important role in RCC progression and A2bR blockade may be a promising candidate for therapeutic intervention for renal cell carcinoma.
Collapse
Affiliation(s)
- Ye Yi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yihong Zhou
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xi Chu
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xiaoping Zheng
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Deng Fei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Jun Lei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Huiyue Qi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yingbo Dai
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| |
Collapse
|
70
|
Cornelissen LM, Drenth AP, van der Burg E, de Bruijn R, Pritchard CEJ, Huijbers IJ, Zwart W, Jonkers J. TRPS1 acts as a context-dependent regulator of mammary epithelial cell growth/differentiation and breast cancer development. Genes Dev 2019; 34:179-193. [PMID: 31879358 PMCID: PMC7000918 DOI: 10.1101/gad.331371.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
In this study, Cornelissen et al. set out to elucidate the role of the GATA-type zinc finger transcription factor TRPS1 in breast cancer. Using in vitro and in vivo loss-of-function approaches, the authors demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells. The GATA-type zinc finger transcription factor TRPS1 has been implicated in breast cancer. However, its precise role remains unclear, as both amplifications and inactivating mutations in TRPS1 have been reported. Here, we used in vitro and in vivo loss-of-function approaches to dissect the role of TRPS1 in mammary gland development and invasive lobular breast carcinoma, which is hallmarked by functional loss of E-cadherin. We show that TRPS1 is essential in mammary epithelial cells, since TRPS1-mediated suppression of interferon signaling promotes in vitro proliferation and lactogenic differentiation. Similarly, TRPS1 expression is indispensable for proliferation of mammary organoids and in vivo survival of luminal epithelial cells during mammary gland development. However, the consequences of TRPS1 loss are dependent on E-cadherin status, as combined inactivation of E-cadherin and TRPS1 causes persistent proliferation of mammary organoids and accelerated mammary tumor formation in mice. Together, our results demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells.
Collapse
Affiliation(s)
- Lisette M Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Colin E J Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Laboratory of Chemical Biology, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
71
|
MicroRNAs Contribute to Breast Cancer Invasiveness. Cells 2019; 8:cells8111361. [PMID: 31683635 PMCID: PMC6912645 DOI: 10.3390/cells8111361] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful therapy, and identification of new molecular markers for the diagnosis and prognostic prediction of metastatic disease and development of innovative therapeutic molecules are therefore urgently required. Differentially expressed microRNAs (miRNAs) in cancers cause multiple changes in the expression of the tumorigenesis-promoting genes which have mostly been investigated in breast cancers. Herein, we summarize recent data on breast cancer-specific miRNA expression profiles and their participation in regulating invasive processes, in association with changes in cytoskeletal structure, cell-cell adhesion junctions, cancer cell-extracellular matrix interactions, tumor microenvironments, epithelial-to-mesenchymal transitions and cancer cell stem abilities. We then focused on the epigenetic regulation of individual miRNAs and their modified interactions with other regulatory genes, and reviewed the function of miRNA isoforms and exosome-mediated miRNA transfer in cancer invasiveness. Although research into miRNA’s function in cancer is still ongoing, results herein contribute to improved metastatic cancer management.
Collapse
|
72
|
Penolazzi L, Lambertini E, Scussel Bergamin L, Gandini C, Musio A, De Bonis P, Cavallo M, Piva R. Reciprocal Regulation of TRPS1 and miR-221 in Intervertebral Disc Cells. Cells 2019; 8:cells8101170. [PMID: 31569377 PMCID: PMC6829335 DOI: 10.3390/cells8101170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD), a moderately moving joint located between the vertebrae, has a limited capacity for self-repair, and treating injured intervertebral discs remains a major challenge. The development of innovative therapies to reverse IVD degeneration relies primarily on the discovery of key molecules that, occupying critical points of regulatory mechanisms, can be proposed as potential intradiscal injectable biological agents. This study aimed to elucidate the underlying mechanism of the reciprocal regulation of two genes differently involved in IVD homeostasis, the miR-221 microRNA and the TRPS1 transcription factor. Human lumbar IVD tissue samples and IVD primary cells were used to specifically evaluate gene expression and perform functional analysis including the luciferase gene reporter assay, chromatin immunoprecipitation, cell transfection with hTRPS1 overexpression vector and antagomiR-221. A high-level expression of TRPS1 was significantly associated with a lower pathological stage, and TRPS1 overexpression strongly decreased miR-221 expression, while increasing the chondrogenic phenotype and markers of antioxidant defense and stemness. Additionally, TRPS1 was able to repress miR-221 expression by associating with its promoter and miR-221 negatively control TRPS1 expression by targeting the TRPS1-3'UTR gene. As a whole, these results suggest that, in IVD cells, a double-negative feedback loop between a potent chondrogenic differentiation suppressor (miR-221) and a regulator of axial skeleton development (TRPS1) exists. Our hypothesis is that the hostile degenerated IVD microenvironment may be counteracted by regenerative/reparative strategies aimed at maintaining or stimulating high levels of TRPS1 expression through inhibition of one of its negative regulators such as miR-221.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Leticia Scussel Bergamin
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Carlotta Gandini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Antonio Musio
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
- Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
73
|
Liu S, Wang Z, Liu Z, Shi S, Zhang Z, Zhang J, Lin H. miR-221/222 activate the Wnt/β-catenin signaling to promote triple-negative breast cancer. J Mol Cell Biol 2019; 10:302-315. [PMID: 30053090 DOI: 10.1093/jmcb/mjy041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by the lack of expression of the estrogen receptor, the progesterone receptor, and the human epidermal growth factor receptor 2, is an aggressive form of cancer that conveys unpredictable and poor prognosis due to limited treatment options and lack of effective targeted therapies. Wnt/β-catenin signaling is hyperactivated in TNBC, which promotes the progression of TNBC. However, the molecular mechanism of Wnt/β-catenin activation in TNBC remains unknown. Here, we report the drastic overexpression of miR-221/222 in all of four TNBC cell lines and TNBC primary tumor samples from patients. Furthermore, we demonstrate by both ex vivo and xenograft experiments that inhibiting miR-221/222 expression in a TNBC cell line (MDA-MB-231) suppresses its proliferation, viability, epithelial-to-mesenchymal transition, and migration; whereas expressing miR-221/222 in a non-TNBC line (MCF7) promotes all of the above cancer properties. miR-221/222 achieve so by directly repressing multiple negative regulators of the Wnt/β-catenin signaling pathway, including WIF1, SFRP2, DKK2, and AXIN2, to activate the pathway. Notably, the level of miR-221/222 expression is inversely correlated whereas that of WIF1, DKK2, SFRP2, and AXIN2 expression is positively correlated with the patient survival. Last, we show that anti-miR-221/222 significantly increases apoptotic cells with tamoxifen/Wnt3a treatment but not with cyclophosphamide/Wnt3a treatment. These results demonstrate that miR-221/222 activate the Wnt/β-catenin signaling to promote the aggressiveness and TNBC properties of breast cancers, and thus reveal a new prospect for TNBC treatment.
Collapse
Affiliation(s)
- Sanhong Liu
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zifeng Wang
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zukai Liu
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Shi
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhaoran Zhang
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jiawei Zhang
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Haifan Lin
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,The Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
74
|
Tu Z, Schmöllerl J, Cuiffo BG, Karnoub AE. Microenvironmental Regulation of Long Noncoding RNA LINC01133 Promotes Cancer Stem Cell-Like Phenotypic Traits in Triple-Negative Breast Cancers. Stem Cells 2019; 37:1281-1292. [PMID: 31283068 DOI: 10.1002/stem.3055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023]
Abstract
The fibrotic tumor microenvironment is a critical player in the pathogenesis of triple-negative breast cancers (TNBCs), with the presence of fibroblastic infiltrates particularly correlating with tumors that are clinically advanced. On this front, we previously demonstrated that TNBCs are highly enriched in fibroblastic stromal progenitor cells called mesenchymal stem/stromal cells (MSCs) and that such cells play critical roles in promoting TNBC initiation and progression. How TNBC cells respond to MSC stimulation, however, is not fully understood, and stands to reveal contextual signals used by TNBC cells during tumor development and provide biomarkers and therapeutic targets of pertinence to TNBC management. Here, we report that MSCs strongly induced the long noncoding RNA (lncRNA) LINC01133 in neighboring TNBC cells. Indeed, although lncRNAs have been tightly associated with cancer development, their contributions to breast cancer in general, and to TNBC pathogenesis in particular, have not been fully elucidated, and we set out to determine if LINC01133 regulated malignant traits in TNBC cells. We establish that LINC01133 is sufficient, on its own, in promoting phenotypic and growth characteristics of cancer stem cell-like cells, and that it is a direct mediator of the MSC-triggered miR-199a-FOXP2 pathway in TNBC models. Furthermore, we show that LINC01133 is a critical regulator of the pluripotency-determining gene Kruppel-Like Factor 4 (KLF4), and that it represents a biomarker and prognosticator of disease outcome in the clinic. Collectively, our findings introduce LINC01133 as a novel functional driver of malignancy and a potential theranostic in TNBC. Stem Cells 2019;37:1281-1292.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Johannes Schmöllerl
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin G Cuiffo
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
75
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
76
|
Wang N, Lu Y, Chen Z, Fan R. Multiplexed PCR-Free Detection of MicroRNAs in Single Cancer Cells Using a DNA-Barcoded Microtrough Array Chip. MICROMACHINES 2019; 10:mi10040215. [PMID: 30934734 PMCID: PMC6523668 DOI: 10.3390/mi10040215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023]
Abstract
MicroRNAs are a class of small RNA molecules that regulate the expression of mRNAs in a wide range of biological processes and are implicated in human health and disease such as cancers. How to measure microRNA profiles in single cells with high throughput is essential to the development of cell-based assays for interrogating microRNA-mediated intratumor heterogeneity and the design of new lab tests for diagnosis and monitoring of cancers. Here, we report on an in situ hybridization barcoding workflow implemented in a sub-nanoliter microtrough array chip for high-throughput and multiplexed microRNA detection at the single cell level. The microtroughs are used to encapsulate single cells that are fixed, permeabilized, and pre-incubated with microRNA detection probes, each of which consists of a capture strand complementary to specific microRNA and a unique reporter strand that can be photocleaved in the microtroughs and subsequently detected by an array of DNA barcodes patterned on the bottom of the microtroughs. In this way, the measurement of reporter strands released from single cells is a surrogate for detecting single-cell microRNA profiles. This approach permits direct measurement of microRNAs without PCR amplification owing to the small volume (<1 nL) of microtroughs. It offers high throughput and high multiplexing capability for evaluating microRNA heterogeneity in single cells, representing a new approach toward microRNA-based diagnosis and monitoring of complex human diseases.
Collapse
Affiliation(s)
- Nayi Wang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Yao Lu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
- Human and Translational Immunology Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
77
|
Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. Funct Integr Genomics 2019; 19:645-658. [PMID: 30859354 DOI: 10.1007/s10142-019-00670-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 12/29/2022]
Abstract
Although many of the genetic loci associated with breast cancer risk have been reported, there is a lack of systematic analysis of regulatory networks composed of different miRNAs and mRNAs on survival analysis in breast cancer. To reconstruct the microRNAs-genes regulatory network in breast cancer, we employed the expression data from The Cancer Genome Atlas (TCGA) related to five essential miRNAs including miR-21, miR-22, miR-210, miR-221, and miR-222, and their associated functional genomics data from the GEO database. Then, we performed an integration analysis to identify the essential target factors and interactions for the next survival analysis in breast cancer. Based on the results of our integrated analysis, we have identified significant common regulatory signatures including differentially expressed genes, enriched pathways, and transcriptional regulation such as interferon regulatory factors (IRFs) and signal transducer and activator of transcription 1 (STAT1). Finally, a reconstructed regulatory network of five miRNAs and 34 target factors was established and then applied to survival analysis in breast cancer. When we used expression data for individual miRNAs, only miR-21 and miR-22 were significantly associated with a survival change. However, we identified 45 significant miRNA-gene pairs that predict overall survival in breast cancer out of 170 one-on-one interactions in our reconstructed network covering all of five miRNAs, and several essential factors such as PSMB9, HLA-C, RARRES3, UBE2L6, and NMI. In our study, we reconstructed regulatory network of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. These results may provide new insights into regulatory network-based precision medicine for breast cancer.
Collapse
|
78
|
The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. Int J Biol Macromol 2019; 125:544-556. [DOI: 10.1016/j.ijbiomac.2018.12.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023]
|
79
|
miR-221/222 promote tumor growth and suppress apoptosis by targeting lncRNA GAS5 in breast cancer. Biosci Rep 2019; 39:BSR20181859. [PMID: 30538172 PMCID: PMC6331665 DOI: 10.1042/bsr20181859] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are 21-23-nucleotide, short, non-coding RNAs that play important roles in virtually all biological pathways in mammals and other multicellular organisms. The association of miR-221 and miR-222 (miR-221/222) for breast cancer is critical, but their detailed roles in its development and progression remain unclear. In the present study, we found that miR-221/222 were consistently up-regulated in breast cancer tissues. We then investigated the molecular mechanisms by which miR-221/222 contributed to breast cancer and identified growth arrest-specific transcript 5 (GAS5) as a direct target gene of miR-221/222. In contrast with the up-regulated expression levels of miR-221/222, GAS5 levels were significantly down-regulated and negatively correlated with miR-221/222 in breast cancer tissues. In addition, we showed that miR-221/222 inhibitors increased cellular apoptosis, miR-221/222 mimics decreased the cell apoptosis in breast cancer cells, and restoration of GAS5 expression attenuated the anti-apoptotic effects of miR-221/222 in breast cancer cells, indicating that GAS5 was a direct mediator of miR-221/222 function. Finally, we showed that miR-221/222 suppressed GAS5 expression significantly and enhanced tumor growth in a mouse model of breast cancer xenografts. The present study highlighted the important role of miR-221/222 as oncomiRs in breast cancer, which inhibited GAS5 translation. These findings may provide a new perspective for the molecular mechanism of breast carcinogenesis and provide a novel approach to the treatment of breast cancer.
Collapse
|
80
|
Wilk G, Braun R. regQTLs: Single nucleotide polymorphisms that modulate microRNA regulation of gene expression in tumors. PLoS Genet 2018; 14:e1007837. [PMID: 30557297 PMCID: PMC6343932 DOI: 10.1371/journal.pgen.1007837] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/23/2019] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with trait diversity and disease susceptibility, yet their functional properties often remain unclear. It has been hypothesized that SNPs in microRNA binding sites may disrupt gene regulation by microRNAs (miRNAs), short non-coding RNAs that bind to mRNA and downregulate the target gene. While several studies have predicted the location of SNPs in miRNA binding sites, to date there has been no comprehensive analysis of their impact on miRNA regulation. Here we investigate the functional properties of genetic variants and their effects on miRNA regulation of gene expression in cancer. Our analysis is motivated by the hypothesis that distinct alleles may cause differential binding (from miRNAs to mRNAs or from transcription factors to DNA) and change the expression of genes. We previously identified pathways—systems of genes conferring specific cell functions—that are dysregulated by miRNAs in cancer, by comparing miRNA–pathway associations between healthy and tumor tissue. We draw on these results as a starting point to assess whether SNPs on dysregulated pathways are responsible for miRNA dysregulation of individual genes in tumors. Using an integrative regression analysis that incorporates miRNA expression, mRNA expression, and SNP genotype data, we identify functional SNPs that we term “regulatory QTLs (regQTLs)”: loci whose alleles impact the regulation of genes by miRNAs. We apply the method to breast, liver, lung, and prostate cancer data from The Cancer Genome Atlas, and provide a tool to explore the findings. Genomics studies have identified single nucleotide polymorphisms (SNPs) associated with trait diversity and disease susceptibility, yet the mechanism of action of many genetic variants remains unclear. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that base-pair coding mRNAs to regulate gene transcription. We hypothesize that SNP variants may affect the ability of miRNAs to bind their target genes, thus influencing gene regulation. To identify these “regulatory QTLs” (regQTLs), we integrate miRNA expression, mRNA expression, and SNP data to identify miRNAs that are associated with pathway dysregulation in tumors, and assess whether SNPs on these pathways are responsible for disrupted miRNA-gene regulation. This data-driven approach enables the discovery of SNPs whose alleles impact gene regulation by miRNAs, with functional consequences for tumor biology. We detail the method, apply it to data from The Cancer Genome Atlas, and provide a tool to explore the findings.
Collapse
Affiliation(s)
- Gary Wilk
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosemary Braun
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
81
|
Walker SJ, Selfors LM, Margolis BL, Brugge JS. CRB3 and the FERM protein EPB41L4B regulate proliferation of mammary epithelial cells through the release of amphiregulin. PLoS One 2018; 13:e0207470. [PMID: 30440051 PMCID: PMC6237394 DOI: 10.1371/journal.pone.0207470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
Numerous observations have suggested a connection between the maintenance of cell polarity and control of cell proliferation; however, the mechanisms underlying these connections remain poorly understood. Here we found that ectopic expression of CRB3, which was previously shown to restore tight junctions and membrane polarity in MCF-10A cells, induced a hyperproliferative phenotype, with significantly enlarged acini in basement membrane culture, similar to structures induced by expression of proliferative oncogenes such as cyclinD1. We found that CRB3-induced proliferation is epidermal growth factor (EGF)-independent and occurs through a mechanism that involves secretion of the EGF-family ligand, amphiregulin (AREG). The increase in AREG secretion is associated with an increase in the number and size of both early and late endosomes. Both the proliferative and endocytic phenotypes associated with CRB3 expression require the FERM-binding domain (FBD) but not the PDZ-binding domain of CRB3, arguing that this proliferative phenotype is independent of the PDZ-dependent polarity signaling by CRB3. We identified the FBD-containing protein, EPB41L4B, as an essential mediator of CRB3-driven proliferation and observed that the CRB3-dependent changes in endocytic trafficking were also dependent on EPB41L4B. Taken together, these data reveal a previously uncharacterized role for CRB3 in regulating proliferation in mammalian cells that is associated with changes in the endocytic trafficking machinery.
Collapse
Affiliation(s)
- Stephanie J. Walker
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura M. Selfors
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ben L. Margolis
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
82
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
83
|
Vahidian F, Mohammadi H, Ali-Hasanzadeh M, Derakhshani A, Mostaan M, Hemmatzadeh M, Baradaran B. MicroRNAs and breast cancer stem cells: Potential role in breast cancer therapy. J Cell Physiol 2018; 234:3294-3306. [PMID: 30362508 DOI: 10.1002/jcp.27246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.
Collapse
Affiliation(s)
- Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali-Hasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Afshin Derakhshani
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran.,Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Mostaan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad university, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
84
|
Ji J, Chen H, Liu XP, Wang YH, Luo CL, Zhang WW, Xie W, Wang FB. A miRNA Combination as Promising Biomarker for Hepatocellular Carcinoma Diagnosis: A Study Based on Bioinformatics Analysis. J Cancer 2018; 9:3435-3446. [PMID: 30310500 PMCID: PMC6171011 DOI: 10.7150/jca.26101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background: miRNAs dysregulate in hepatocellular carcinoma (HCC), showing promise for diagnostic biomarkers which may be found through exploration of differentially expressed miRNAs when comparing HCC and normal liver tissues. Materials and Methods: In the present research, candidate miRNAs were selected and verified using screening dataset GSE12717 and training dataset GSE10694, respectively. A miRNA combination was constructed using stepwise logistic regression analysis and validated using two datasets GSE74618 and TCGA. Target genes of miRNAs in the combination were obtained using a miRNA target gene prediction database. Functional analysis was conducted using an online tool DAVID. We also analyzed the mRNA-Seq data of project LIHC from TCGA to identify the hub target genes of the miRNAs. Results: A miRNA combination, which is composed of hsa-miR-221 and hsa-miR-29c was defined in this study. The miRNA combination is more effective in discriminating HCC patients from normal individuals than individual miRNAs. Additionally, the combined miRNAs showed a lower misdiagnosis rate than AFP in HCC diagnosis. In terms of the functional analysis, a total of 27 target genes of hsa-miR-221 and 96 target genes of hsa-miR-29c were obtained. Among which, INSIG1 was the common target of the two miRNAs. It was also found that both previously mentioned miRNAs played important roles in the regulation of transcription, cell proliferation, and involvement in cancer-related pathways. Lastly, 2 hub target genes of hsa-miR-221 and 16 hub target genes of hsa-miR-29c were obtained. Conclusion: We established a miRNA combination as a promising tool for HCC diagnosis, and the target genes we predicted provide possible points of penetration for researching these two miRNAs in HCC.
Collapse
Affiliation(s)
- Jia Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Xiao-Ping Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Yu-Hui Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Chang-Liang Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Wu-Wen Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Wen Xie
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
85
|
Zhu W, Liu M, Fan Y, Ma F, Xu N, Xu B. Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med 2018; 7:4420-4433. [PMID: 30099860 PMCID: PMC6144164 DOI: 10.1002/cam4.1723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 12/20/2022] Open
Abstract
Background Circulating microRNAs (miRNAs) have been indicated as predictive biomarkers in breast cancer. We aimed to explore the association of plasma miRNA dynamics with response to neoadjuvant chemotherapy (NCT) and disclose early markers for predicting sensitivity. Methods One hundred and nine patients with operable or locally advanced breast cancer, who participated in a prospective clinical trial and received NCT, were analyzed. Blood samples were collected before random assignment, after two cycles of chemotherapy (C2) and before surgery. Based on their clinical response, the patients were defined as chemo‐sensitive or insensitive. First, baseline and preoperative samples of selected cases from both groups were screened via TaqMan miRNA array for candidate miRNAs. Afterward all the biospecimens were tested for the candidate miRNAs (miR‐222, miR‐20a, miR‐451, miR‐9, miR‐34a, miR‐155, and miR‐145) by quantitative real‐time PCR. Finally, logistic regression model was utilized to determine the predictive value of baseline/C2 expression of these miRNAs. Results Based on the results of microRNA profiling, seven miRNAs were selected for further validation. In the HR+/HER2‐ cohort (n = 51) dynamics of three miRNAs, including miR‐222, miR‐20a, and miR‐451, were associated with chemo‐sensitivity. Importantly, across all the three subtypes we consistently identified chemo‐induced decrease in plasma miR‐34a in the insensitive patients. Finally, baseline miR‐222 overexpression (OR = 6.422, P = 0.049), C2 miR‐20a up‐regulation (OR = 0.144, P = 0.021) and C2 miR‐451 down‐regulation (OR = 8.213, P = 0.012) were predictive markers of response to NCT in HR+/HER2‐ breast cancer. Conclusions We described that dynamics of circulating miRNAs might help predict clinical response to NCT in breast cancer.
Collapse
Affiliation(s)
- Wenjie Zhu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Fan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
86
|
Wang Y, Zhang J, Wu L, Liu W, Wei G, Gong X, Liu Y, Ma Z, Ma F, Thiery JP, Chen L. Tricho-rhino-phalangeal syndrome 1 protein functions as a scaffold required for ubiquitin-specific protease 4-directed histone deacetylase 2 de-ubiquitination and tumor growth. Breast Cancer Res 2018; 20:83. [PMID: 30071870 PMCID: PMC6090974 DOI: 10.1186/s13058-018-1018-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background Although numerous studies have reported that tricho-rhino-phalangeal syndrome type I (TRPS1) protein, the only reported atypical GATA transcription factor, is overexpressed in various carcinomas, the underlying mechanism(s) by which it contributes to cancer remain unknown. Methods Both overexpression and knockdown of TRPS1 assays were performed to examine the effect of TRPS1 on histone deacetylase 2 (HDAC2) protein level and luminal breast cancer cell proliferation. Also, RT-qRCR, luciferase reporter assay and RNA-sequencing were used for transcription detection. Chromatin immunoprecipitation (ChIP) using H4K16ac antibody in conjunction with qPCR was used for determining H4K16ac levels in targeted genes. Furthermore, in vitro cell proliferation assay and in vivo tumor xenografts were used to detect the effect of TRPS1 on tumor growth. Results We found that TRPS1 scaffolding recruits and enhances interaction between USP4 and HDAC2 leading to HDAC2 de-ubiquitination and H4K16 deacetylation. We detected repression of a set of cellular growth-related genes by the TRPS1-USP4-HDAC2 axis indicating it is essential in tumor growth. In vitro and in vivo experiments confirmed that silencing TRPS1 reduced tumor growth, whereas overexpression of HDAC2 restored tumor growth. Conclusion Our study deciphered the TRPS1-USP4-HDAC2 axis as a novel mechanism that contributes to tumor growth. Significantly, our results revealed the scaffolding function of TPRS1 in USP4-directed HDAC2 de-ubiquitination and provided new mechanistic insights into the crosstalk between TRPS1, ubiquitin, and histone modification systems leading to tumor growth. Electronic supplementary material The online version of this article (10.1186/s13058-018-1018-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuzhi Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Jun Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Lele Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Weiguang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Guanyun Wei
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xue Gong
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yan Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhifang Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Fei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Jean Paul Thiery
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, Singapore
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China. .,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
87
|
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, involved in the silencing of messenger RNA (mRNA) translation. The importance of miRNA signatures in disease screening, prognosis, and progression of different tumor types and subtypes is increasing. miRNA expression levels change depending on numerous factors. In this review, we are describing the circumstances under which miRNA levels can change, these are named 'levels' of heterogeneity of miRNAs. miRNAs can have oncogenic, tumor suppressive, or both roles depending on tumor type and target mRNA whose translation they silence. The expression levels of a single miRNA may vary across different cancer types and subtypes, indicating that a miRNA signature may be tissue specific. miRNA levels of expression also vary during disease formation and propagation, indicating the presence of a time profile for their expression. The complexity of the miRNA-mRNA interference network mirrors different genetic and epigenetic changes that influence miRNA and mRNA availability to each other, and hence, their binding ability. The potential role of miRNAs as biomarkers is two-fold; first, for monitoring of the phases of cancer pathogenesis, and second, to characterize the particular type/subtype of cancer. It is important that a particular miRNA should be characterized by examining as many types and subtypes of cancers as are available, as well as being extracted from different types of samples, in order to obtain a complete picture of its behavior and importance in the disease pathology.
Collapse
Affiliation(s)
- Nina Petrovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia. .,Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia.
| | - Sercan Ergün
- Ulubey Vocational Higher School, Ordu University, 52850, Ordu, Turkey
| | - Esma R Isenovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia.,Faculty of Stomatology, Pancevo, University Business Academy, Novi Sad, Serbia
| |
Collapse
|
88
|
Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 19:ijms19072011. [PMID: 29996493 PMCID: PMC6073901 DOI: 10.3390/ijms19072011] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility. As it concerns cancer epithelial cells, EMT may be consequent to the evolution of genetic/epigenetic instability, or triggered by factors that can act within the tumor microenvironment. Following a description of the Notch signaling pathway and its major regulatory nodes, we focus on studies that have given insights into the functional interaction between Notch signaling and either hypoxia or estrogen in breast cancer cells, with a particular focus on EMT. Furthermore, we describe the role of hypoxia signaling in breast cancer cells and discuss recent evidence regarding a functional interaction between HIF-1α and GPER in both breast cancer cells and cancer-associated fibroblasts (CAFs). On the basis of these studies, we propose that a functional network between HIF-1α, GPER and Notch may integrate tumor microenvironmental cues to induce robust EMT in cancer cells. Further investigations are required in order to better understand how hypoxia and estrogen signaling may converge on Notch-mediated EMT within the context of the stroma and tumor cells interaction. However, the data discussed here may anticipate the potential benefits of further pharmacological strategies targeting breast cancer progression.
Collapse
|
89
|
Mandujano-Tinoco EA, García-Venzor A, Melendez-Zajgla J, Maldonado V. New emerging roles of microRNAs in breast cancer. Breast Cancer Res Treat 2018; 171:247-259. [PMID: 29948402 DOI: 10.1007/s10549-018-4850-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/03/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND MicroRNAs constitute a large family of non-coding RNAs, which actively participate in tumorigenesis by regulating a set of mRNAs of distinct signaling pathways. An altered expression of these molecules has been found in different tumorigenic processes of breast cancer, the most common type of cancer in the female population worldwide. PURPOSE The objective of this review is to discuss how miRNAs become master regulators in breast tumorigenesis. METHODS An integrative review of miRNAs and breast cancer literature from the last 5 years was done on PubMed. We summarize recent works showing that the defects on the biogenesis of miRNAs are associated with different breast cancer characteristics. Then, we show several examples that demonstrate the link between cellular processes regulated by miRNAs and the hallmarks of breast cancer. Finally, we examine the complexity in the regulation of these molecules as they are modulated by other non-coding RNAs and the clinical applications of miRNAs as they could serve as good diagnostic and classification tools. CONCLUSION The information presented in this review is important to encourage new directed studies that consider microRNAs as a good tool to improve the diagnostic and treatment alternatives in breast cancer.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.,Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra". Calz., México-Xochimilco 289, Arenal de Guadalupe, 14389, Mexico, CDMX, Mexico
| | - Alfredo García-Venzor
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.
| |
Collapse
|
90
|
Zaleski M, Kobilay M, Schroeder L, Debald M, Semaan A, Hettwer K, Uhlig S, Kuhn W, Hartmann G, Holdenrieder S. Improved sensitivity for detection of breast cancer by combination of miR-34a and tumor markers CA 15-3 or CEA. Oncotarget 2018; 9:22523-22536. [PMID: 29854296 PMCID: PMC5976482 DOI: 10.18632/oncotarget.25077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs biomarkers have shown value for diagnosis and prognosis of various cancers. Combination with established tumor markers has rarely been done. Results Breast cancer patients had significantly higher serum RNA loads (AUC 0.665), lower miR-34a (AUC 0.772), higher CEA and CA 15-3 levels (AUCs 0.717 and 0.721) than healthy controls. miR-34a correlated with tumor stage and hormone receptor status. There was no significant difference between groups for all other miRNAs. Combination of miR-34a with CEA or CA 15-3 led to improved AUCs of 0.844 and 0.800, respectively. Sensitivity of miR-34a and CA 15-3 reached 56.1% at 95% specificity. When compared with benign breast diseases, combination of miR-34a (AUC 0.719) and CEA (0.623) or CA 15-3 (0.619) resulted in improved performances (0.794 and 0.741). Sensitivity of miR-34a and CA 15-3 reached 53.7% at 95% specificity. Conclusion While miR-34a provides valuable information for diagnosis and staging, combination with tumor markers CA15-3 or CEA improves the sensitivity for breast cancer detection. Patients and Methods The diagnostic relevance of the miR-21, miR-34a, miR-92a, miR-155, miR-222 and miR-let-7c was tested in sera of 103 individuals (55 breast cancer, 20 benign breast diseases, 28 healthy controls). MiRNAs were detected by quantitative rt-PCR after extraction and reverse transcription. Cel-miR-39 and miR-16 were used for normalization. Established tumor markers CEA, CA 15-3, CA 19-9 and CA 125 were measured by automatized immunoassays. Diagnostic performance was tested by areas under the curve (AUC) of receiver operating characteristic (ROC) curves and sensitivities at 90% and 95% specificity.
Collapse
Affiliation(s)
- Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Lars Schroeder
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Manuel Debald
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | | | - Karina Hettwer
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Steffen Uhlig
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Walther Kuhn
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| |
Collapse
|
91
|
Swellam M, El Magdoub HM, Hassan NM, Hefny MM, Sobeih ME. Potential diagnostic role of circulating MiRNAs in breast cancer: Implications on clinicopathological characters. Clin Biochem 2018; 56:47-54. [PMID: 29679553 DOI: 10.1016/j.clinbiochem.2018.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Circulating miRNAs are stable in body fluids and resembles their levels in cancer tissue/cells. They have been expressed in many cancers among them is breast cancer. Authors aimed to investigate the expression levels of three circulating oncomiRNAs (miRNA-21, miRNA-222 and miRNA-373) in serum samples as a minimally non-invasive method for early detection of breast cancer, and study their relation with clinicopathological characters. METHODS MiRNAs expression levels were determined using quantitative real-time polymerase chain reaction (qPCR) in serum samples from three groups: primary breast cancer patients (n = 137), benign breast lesion patients (n = 60), and healthy individuals as control group (n = 38). Statistical analyses were carried out using SPSS. RESULTS Significant differences were observed between the expression levels of the studied miRNAs in the investigated groups, as their median levels were increased in breast cancer patients followed by benign group patients then the healthy individuals. MiRNA-373 reported the highest diagnostic efficacy as compared to miRNA-21 and miRNA-222 with high area under the curve (AUC equals 0.987). The relation between tested miRNAs and clinicopathological factors revealed significant difference with clinical stages and histological grades. Level of miRNA-21 and miRNA-373 were statistically significantly higher in invasive duct carcinoma (IDC) as compared to non-IDC. Similarly, their levels were increased in lymph node metastasis (P < 0.01). MiRNA-222 and miRNA-373 were significantly increased in positive PgR and positive Her-2/neu status, respectively. CONCLUSION Assessment of miRNAs in serum samples can be applied as minimally non-invasive markers for early detection of breast cancer, and as discriminator between different clinicopathological characters.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/blood
- Breast Neoplasms/diagnosis
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/secondary
- Diagnosis, Differential
- Early Diagnosis
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis/diagnosis
- Lymphatic Metastasis/pathology
- MicroRNAs/blood
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- RNA, Neoplasm/blood
- RNA, Neoplasm/metabolism
- Up-Regulation
- Young Adult
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Hekmat M El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo, Egypt
| | - Mona M Hefny
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
92
|
Yun MR, Lim SM, Kim SK, Choi HM, Pyo KH, Kim SK, Lee JM, Lee YW, Choi JW, Kim HR, Hong MH, Haam K, Huh N, Kim JH, Kim YS, Shim HS, Soo RA, Shih JY, Yang JCH, Kim M, Cho BC. Enhancer Remodeling and MicroRNA Alterations Are Associated with Acquired Resistance to ALK Inhibitors. Cancer Res 2018; 78:3350-3362. [PMID: 29669761 DOI: 10.1158/0008-5472.can-17-3146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 11/16/2022]
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors are highly effective in patients with ALK fusion-positive lung cancer, but acquired resistance invariably emerges. Identification of secondary mutations has received considerable attention, but most cases cannot be explained by genetic causes alone, raising the possibility of epigenetic mechanisms in acquired drug resistance. Here, we investigated the dynamic changes in the transcriptome and enhancer landscape during development of acquired resistance to ALK inhibitors. Histone H3 lysine 27 acetylation (H3K27ac) was profoundly altered during acquisition of resistance, and enhancer remodeling induced expression changes in both miRNAs and mRNAs. Decreased H3K27ac levels and reduced miR-34a expression associated with the activation of target genes such as AXL. Panobinostat, a pan-histone deacetylase inhibitor, altered the H3K27ac profile and activated tumor-suppressor miRNAs such as miR-449, another member of the miR-34 family, and synergistically induced antiproliferative effects with ALK inhibitors on resistant cells, xenografts, and EML4-ALK transgenic mice. Paired analysis of patient samples before and after treatment with ALK inhibitors revealed that repression of miR-34a or miR-449a and activation of AXL were mutually exclusive of secondary mutations in ALK. Our findings indicate that enhancer remodeling and altered expression of miRNAs play key roles in cancer drug resistance and suggest that strategies targeting epigenetic pathways represent a potentially effective method for overcoming acquired resistance to cancer therapy.Significance: Epigenetic deregulation drives acquired resistance to ALK inhibitors in ALK-positive lung cancer. Cancer Res; 78(12); 3350-62. ©2018 AACR.
Collapse
Affiliation(s)
- Mi Ran Yun
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Kyungbuk, Korea.,Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Division of Medical Oncology, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hun Mi Choi
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Keun Kim
- Department of Internal Medicine, Division of Medical Oncology, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Korea
| | - Ji Min Lee
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - You Won Lee
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Woo Choi
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Min Hee Hong
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Keeok Haam
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Nanhyung Huh
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Yong Sung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Ross Andrew Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Jin-Yuan Shih
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, National Taiwan University; and Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Kyungbuk, Korea. .,Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
93
|
Liu H, Liao Y, Tang M, Wu T, Tan D, Zhang S, Wang H. Trps1 is associated with the multidrug resistance of lung cancer cell by regulating MGMT gene expression. Cancer Med 2018; 7:1921-1932. [PMID: 29601666 PMCID: PMC5943538 DOI: 10.1002/cam4.1421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) often leads to chemotherapy failure of lung cancer and has been linking to the cellular expression of several DNA transcription- and repair-related genes such as Trps1 and MGMT. However, their roles in the formation of MDR are largely unknown. In this study, overexpression/knockdown, luciferase assay and ChIP assay were performed to study the relationship between Trps1 and MGMT, as well as their roles in MDR formation. Our results demonstrated that Trps1 and MGMT expression both increased in drug-resistant lung cancer cell line (H446/CDDP). Silencing of Trps1 resulted in downregulation of MGMT expression and decrease in the multidrug sensitivity of H446/CDDP cells, while Trps1 overexpression exhibited the opposite effects in H446 cells. Ectopic expression of MGMT had no effect on Trps1 expression, but enhanced the IC50 values of H446 cells or rescued the IC50 values of Trps1-silenced H446/CDDP cells in treatment of multidrug. Our data further showed that, mechanistically, Trps1 acted as a transcription activator that directly induced MGMT transcription by binding to the MGMT promoter. Taken together, we consider that upregulation of Trps1 induces MGMT transcription contributing to the formation of MDR in lung cancer cells. Our findings proved potential targets for reversing MDR in clinical chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Hongxiang Liu
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Liao
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Tang
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Wu
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Deli Tan
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shixin Zhang
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haidong Wang
- Cardiothoracic Surgery Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
94
|
Yousefi M, Nosrati R, Salmaninejad A, Dehghani S, Shahryari A, Saberi A. Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol (Dordr) 2018; 41:123-140. [PMID: 29568985 DOI: 10.1007/s13402-018-0376-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common type of cancer in women and the second cause of cancer-related mortality world-wide. The majority of BC-related deaths is due to metastasis. Bone, lung, brain and liver are the primary target sites of BC metastasis. The clinical implications and mechanisms underlying bone metastasis have been reviewed before. Given the fact that BC lung metastasis (BCLM) usually produces symptoms only after the lungs have been vastly occupied with metastatic tumor masses, it is of paramount importance for diagnostic and prognostic, as well as therapeutic purposes to comprehend the molecular and cellular mechanisms underlying BCLM. Here, we review current insights into the organ-specificity of BC metastasis, including the role of cancer stem cells in triggering BC spread, the traveling of tumor cells in the blood stream and their migration across endothelial barriers, their adaptation to the lung microenvironment and the initiation of metastatic colonization within the lung. CONCLUSIONS Detailed understanding of the mechanisms underlying BCLM will shed a new light on the identification of novel molecular targets to impede daunting pulmonary metastases in patients with breast cancer.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shahryari
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
95
|
Taslim C, Weng DY, Brasky TM, Dumitrescu RG, Huang K, Kallakury BVS, Krishnan S, Llanos AA, Marian C, McElroy J, Schneider SS, Spear SL, Troester MA, Freudenheim JL, Geyer S, Shields PG. Discovery and replication of microRNAs for breast cancer risk using genome-wide profiling. Oncotarget 2018; 7:86457-86468. [PMID: 27833082 PMCID: PMC5349926 DOI: 10.18632/oncotarget.13241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 01/06/2023] Open
Abstract
Background Genome-wide miRNA expression may be useful for predicting breast cancer risk and/or for the early detection of breast cancer. Results A 41-miRNA model distinguished breast cancer risk in the discovery study (accuracy of 83.3%), which was replicated in the independent study (accuracy = 63.4%, P=0.09). Among the 41 miRNA, 20 miRNAs were detectable in serum, and predicted breast cancer occurrence within 18 months of blood draw (accuracy 53%, P=0.06). These risk-related miRNAs were enriched for HER-2 and estrogen-dependent breast cancer signaling. Materials and Methods MiRNAs were assessed in two cross-sectional studies of women without breast cancer and a nested case-control study of breast cancer. Using breast tissues, a multivariate analysis was used to model women with high and low breast cancer risk (based upon Gail risk model) in a discovery study of women without breast cancer (n=90), and applied to an independent replication study (n=71). The model was then assessed using serum samples from the nested case-control study (n=410). Conclusions Studying breast tissues of women without breast cancer revealed miRNAs correlated with breast cancer risk, which were then found to be altered in the serum of women who later developed breast cancer. These results serve as proof-of-principle that miRNAs in women without breast cancer may be useful for predicting breast cancer risk and/or as an adjunct for breast cancer early detection. The miRNAs identified herein may be involved in breast carcinogenic pathways because they were first identified in the breast tissues of healthy women.
Collapse
Affiliation(s)
- Cenny Taslim
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Kun Huang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Shiva Krishnan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adana A Llanos
- Department of Epidemiology, Rutgers University, New Brunswick, NJ, USA
| | - Catalin Marian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Joseph McElroy
- Center for Biostatistics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Scott L Spear
- Department of Plastic Surgery, Georgetown University Hospital, Washington, DC, USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jo L Freudenheim
- Departement of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Susan Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
96
|
Hu J, Su P, Jiao M, Bai X, Qi M, Liu H, Wu Z, Sun J, Zhou G, Han B. TRPS1 Suppresses Breast Cancer Epithelial-mesenchymal Transition Program as a Negative Regulator of SUZ12. Transl Oncol 2018; 11:416-425. [PMID: 29471243 PMCID: PMC5884189 DOI: 10.1016/j.tranon.2018.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is among the most common malignant diseases and metastasis is the handcuff of treatment. Cancer metastasis is a multistep process associated with the epithelial-mesenchymal transition (EMT) program. Several studies have demonstrated that transcriptional repressor GATA binding 1 (TRPS1) played important roles in development and progression of primary BC. In this study we sought to identify the mechanisms responsible for this function of TRPS1 in the continuum of the metastatic cascade. Here we described that TRPS1 was significantly associated with BC metastasis using public assessable datasets. Clinically, loss of TRPS1 expression in BC was related to higher histological grade. In vitro functional study and bioinformatics analysis revealed that TRPS1 inhibited cell migration and EMT in BC. Importantly, we identified SUZ12 as a novel target of TRPS1 related to EMT program. ChIP assay demonstrated TRPS1 directly inhibited SUZ12 transcription by binding to the SUZ12 promoter. Loss of TRPS1 resulted in increased SUZ12 binding and H3K27 tri-methylation at the CDH1 promoter and repression of E-cadherin. In all, our data indicated that TRPS1 maintained the expression of E-cadherin by inhibiting SUZ12, which might provide novel insight into how loss of TRPS1 contributed to BC progression.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Meng Jiao
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Xinnuo Bai
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Hui Liu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Zhen Wu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Jingtian Sun
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Bo Han
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China; Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China.
| |
Collapse
|
97
|
Hoppe R, Fan P, Büttner F, Winter S, Tyagi AK, Cunliffe H, Jordan VC, Brauch H. Profiles of miRNAs matched to biology in aromatase inhibitor resistant breast cancer. Oncotarget 2018; 7:71235-71254. [PMID: 27659519 PMCID: PMC5342075 DOI: 10.18632/oncotarget.12103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Aromatase inhibitor (AI) resistance during breast cancer treatment is mimicked by MCF-7:5C (5C) and MCF-7:2A (2A) cell lines that grow spontaneously. Survival signaling is reconfigured but cells are vulnerable to estradiol (E2)-inducible apoptosis. These model systems have alterations of stress related pathways including the accumulation of endoplasmic reticulum, oxidative, and inflammatory stress that occur prior to E2-induced apoptosis. We investigated miRNA expression profiles of 5C and 2A to characterize their AI resistance phenotypes. Affymetrix GeneChip miRNA2.0 arrays identified 184 miRNAs differentially expressed in 2A and 5C compared to E2-free wild-type MCF-7:WS8. In 5C, 34 miRNAs of the DLK1-DIO3 locus and miR-31 were overexpressed, whereas miR-222 was low. TCGA data revealed poor and favorable overall survival for low miR-31 and miR-222 levels, respectively (HR=3.0, 95% CI:1.9-4.8; HR=0.3, 95% CI:0.1-0.6). Targets of deregulated miRNAs were identified using CLIP-confirmed TargetScan predictions. KEGG enrichment analyses for 5C- and 2A-specific target gene sets revealed pathways associated with cell proliferation including insulin, mTOR, and ErbB signaling as well as immune response and metabolism. Key genes overrepresented in 5C- and 2A-specific pathway interaction networks including EGFR, IGF1R and PIK3R1 had lower protein levels in 5C compared to 2A and were found to be differentially modulated by respective miRNA sets. Distinct up-regulated miRNAs from the DLK1-DIO3 locus may cause these attenuative effects as they are predicted to interact with corresponding 3′ untranslated regions. These new miRNA profiles become an important regulatory database to explore E2-induced apoptotic mechanisms of clinical relevance for the treatment of resistant breast cancer.
Collapse
Affiliation(s)
- Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Ping Fan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Florian Büttner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Amit K Tyagi
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Heather Cunliffe
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - V Craig Jordan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
98
|
Annis MG, Ouellet V, Rennhack JP, L'Esperance S, Rancourt C, Mes-Masson AM, Andrechek ER, Siegel PM. Integrin-uPAR signaling leads to FRA-1 phosphorylation and enhanced breast cancer invasion. Breast Cancer Res 2018; 20:9. [PMID: 29382358 PMCID: PMC5791353 DOI: 10.1186/s13058-018-0936-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Background The Fos-related antigen 1 (FRA-1) transcription factor promotes tumor cell growth, invasion and metastasis. Phosphorylation of FRA-1 increases protein stability and function. We identify a novel signaling axis that leads to increased phosphorylation of FRA-1, increased extracellular matrix (ECM)-induced breast cancer cell invasion and is prognostic of poor outcome in patients with breast cancer. Methods While characterizing five breast cancer cell lines derived from primary human breast tumors, we identified BRC-31 as a novel basal-like cell model that expresses elevated FRA-1 levels. We interrogated the functional contribution of FRA-1 and an upstream signaling axis in breast cancer cell invasion. We extended this analysis to determine the prognostic significance of this signaling axis in samples derived from patients with breast cancer. Results BRC-31 cells display elevated focal adhesion kinase (FAK), SRC and extracellular signal-regulated (ERK2) phosphorylation relative to luminal breast cancer models. Inhibition of this signaling axis, with pharmacological inhibitors, reduces the phosphorylation and stabilization of FRA-1. Elevated integrin αVβ3 and uPAR expression in these cells suggested that integrin receptors might activate this FAK-SRC-ERK2 signaling. Transient knockdown of urokinase/plasminogen activator urokinase receptor (uPAR) in basal-like breast cancer cells grown on vitronectin reduces FRA-1 phosphorylation and stabilization; and uPAR and FRA-1 are required for vitronectin-induced cell invasion. In clinical samples, a molecular component signature consisting of vitronectin-uPAR-uPA-FRA-1 predicts poor overall survival in patients with breast cancer and correlates with an FRA-1 transcriptional signature. Conclusions We have identified a novel signaling axis that leads to phosphorylation and enhanced activity of FRA-1, a transcription factor that is emerging as an important modulator of breast cancer progression and metastasis. Electronic supplementary material The online version of this article (10.1186/s13058-018-0936-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Departments of Medicine, McGill University, Montréal, Québec, Canada
| | - Veronique Ouellet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montreal, Canada
| | - Jonathan P Rennhack
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Sylvain L'Esperance
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montreal, Canada
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. .,Departments of Biochemistry, McGill University, Montréal, Québec, Canada. .,Departments of Medicine, McGill University, Montréal, Québec, Canada. .,Departments of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
99
|
Chen TY, Lee SH, Dhar SS, Lee MG. Protein arginine methyltransferase 7-mediated microRNA-221 repression maintains Oct4, Nanog, and Sox2 levels in mouse embryonic stem cells. J Biol Chem 2018; 293:3925-3936. [PMID: 29378844 DOI: 10.1074/jbc.ra117.000425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/09/2018] [Indexed: 11/06/2022] Open
Abstract
The stemness maintenance of embryonic stem cells (ESCs) requires pluripotency transcription factors, including Oct4, Nanog, and Sox2. We have previously reported that protein arginine methyltransferase 7 (PRMT7), an epigenetic modifier, is an essential pluripotency factor that maintains the stemness of mouse ESCs, at least in part, by down-regulating the expression of the anti-stemness microRNA (miRNA) miR-24-2. To gain greater insight into the molecular basis underlying PRMT7-mediated maintenance of mouse ESC stemness, we searched for new PRMT7-down-regulated anti-stemness miRNAs. Here, we show that miR-221 gene-encoded miR-221-3p and miR-221-5p are anti-stemness miRNAs whose expression levels in mouse ESCs are directly repressed by PRMT7. Notably, both miR-221-3p and miR-221-5p targeted the 3' untranslated regions of mRNA transcripts of the major pluripotency factors Oct4, Nanog, and Sox2 to antagonize mouse ESC stemness. Moreover, miR-221-5p silenced also the expression of its own transcriptional repressor PRMT7. Transfection of miR-221-3p and miR-221-5p mimics induced spontaneous differentiation of mouse ESCs. CRISPR-mediated deletion of the miR-221 gene, as well as specific antisense inhibitors of miR-221-3p and miR-221-5p, inhibited the spontaneous differentiation of PRMT7-depleted mouse ESCs. Taken together, these findings reveal that the PRMT7-mediated repression of miR-221-3p and miR-221-5p expression plays a critical role in maintaining mouse ESC stemness. Our results also establish miR-221-3p and miR-221-5p as anti-stemness miRNAs that target Oct4, Nanog, and Sox2 mRNAs in mouse ESCs.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- From the Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Sung-Hun Lee
- From the Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Shilpa S Dhar
- From the Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Min Gyu Lee
- From the Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and .,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| |
Collapse
|
100
|
Chernyy V, Pustylnyak V, Kozlov V, Gulyaeva L. Increased expression of miR-155 and miR-222 is associated with lymph node positive status. J Cancer 2018; 9:135-140. [PMID: 29290778 PMCID: PMC5743720 DOI: 10.7150/jca.22181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Identification of prognostic molecular markers of breast cancer is extremely important. The spreading out of the primary breast tumour cells to the lymphatic system is at the forefront of symbolising the first signs of distant organ metastasis. Deregulated genes in breast cancer tissues that spread to lymph nodes may show early predictive molecular markers. In the present study, we selected five microRNAs, which play a key function in the invasion-metastasis cascade. We investigated the levels of microRNAs in 80 paired samples of BC and matched adjoining tissues, and we examined the potential relationships between microRNA levels and positive lymph node status. Our results attest that three microRNAs (miR-21, miR-155, miR-222) were significantly up-regulated, whilst miR-205 was substantially down-regulated in BC tissues in relation to normal adjoining tissues in a heterogeneous patient cohort. The high levels of two microRNAs, miR-155 and miR-222, showed a statistical relation with the positive lymph node status, especially in patients that had triple negative BC. Conversely, miR-155 was substantially down-regulated in tumour tissues of patients who received preoperative neoadjuvant chemotherapy (NAC) compared with tumour tissues of patients without NAC in cohorts sub-classified to lymph node positive status. Our findings show evidence that the miR-155 and the miR-222 can be defined as molecular markers in regards to cancer patients to prognosticate spread to the lymph node. They also showed that the miR-155 could have crucial significances in BC treatment.
Collapse
Affiliation(s)
- Vladimir Chernyy
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| | - Vladimir Pustylnyak
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| | - Vadim Kozlov
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| | - Lyudmila Gulyaeva
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| |
Collapse
|