51
|
Lara-Aguilar V, Rueda C, García-Barbazán I, Varona S, Monzón S, Jiménez P, Cuesta I, Zaballos Á, Zaragoza Ó. Adaptation of the emerging pathogenic yeast Candida auris to high caspofungin concentrations correlates with cell wall changes. Virulence 2021; 12:1400-1417. [PMID: 34180774 PMCID: PMC8244764 DOI: 10.1080/21505594.2021.1927609] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Candida auris has emerged as a fungal pathogen that causes nosocomial outbreaks worldwide. Diseases caused by this fungus are of concern, due to its reduced susceptibility to several antifungals. C. auris exhibits paradoxical growth (PG; defined as growth at high, but not intermediate antifungal concentrations) in the presence of caspofungin (CPF). We have characterized the cellular changes associated with adaptation to CPF. Using EUCAST AFST protocols, all C. auris isolates tested showed PG to CPF, although in some isolates it was more prominent. Most isolates also showed a trailing effect (TE) to micafungin and anidulafungin. We identified two FKS genes in C. auris that encode the echinocandins target, namely β-1,3-glucan synthase. FKS1 contained the consensus hot-spot (HS) 1 and HS2 sequences. FKS2 only contained the HS1 region which had a change (F635Y), that has been shown to confer resistance to echinocandins in C. glabrata. PG has been characterized in other species, mainly C. albicans, where high CPF concentrations induced an increase in chitin, cell volume and aggregation. In C. auris CPF only induced a slight accumulation of chitin, and none of the other phenomena. RNAseq experiments demonstrated that CPF induced the expression of genes encoding several GPI-anchored cell wall proteins, membrane proteins required for the stability of the cell wall, chitin synthase and mitogen-activated protein kinases (MAPKs) involved in cell integrity, such as BCK2, HOG1 and MKC1 (SLT2). Our work highlights some of the processes induced in C. auris to adapt to echinocandins.
Collapse
Affiliation(s)
- Violeta Lara-Aguilar
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Cristina Rueda
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Sarai Varona
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Sara Monzón
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Pilar Jiménez
- Genomics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Isabel Cuesta
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Ángel Zaballos
- Genomics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
52
|
Zeng G, Xu X, Gao J, da Silva Dantas A, Gow NA, Wang Y. Inactivating the mannose-ethanolamine phosphotransferase Gpi7 confers caspofungin resistance in the human fungal pathogen Candida albicans. Cell Surf 2021; 7:100057. [PMID: 34258484 PMCID: PMC8254124 DOI: 10.1016/j.tcsw.2021.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Understanding the molecular mechanisms governing antifungal resistance is crucial for identifying new cellular targets for developing new antifungal therapeutics. In this study, we performed a transposon-mediated genome-wide genetic screen in haploid Candida albicans to identify mutants resistant to caspofungin, the first member of the echinocandin class of antifungal drugs. A mutant exhibiting the highest resistance possessed a transposon insertion that inactivates GPI7, a gene encoding the mannose-ethanolamine phosphotransferase. Deleting GPI7 in diploid C. albicans caused similar caspofungin resistance. gpi7Δ/Δ cells showed significantly elevated cell wall chitin content and enhanced phosphorylation of Mkc1, a core component of the PKC-MAPK cell-wall integrity pathway. Deleting MKC1 suppressed the chitin elevation and caspofungin resistance of gpi7Δ/Δ cells, but overexpressing the dominant inactive form of RHO1, an upstream activator of PKC-MAPK signaling, did not. Transcriptome analysis uncovered 406 differentially expressed genes in gpi7Δ/Δ cells, many related to cell wall construction. Our results suggest that GPI7 deletion impairs cell wall integrity, which triggers the cell-wall salvage mechanism via the PKC-MAPK pathway independently of Rho1, resulting in the compensatory chitin synthesis to confer caspofungin resistance.
Collapse
Affiliation(s)
- Guisheng Zeng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xiaoli Xu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jiaxin Gao
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Alessandra da Silva Dantas
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Yue Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
53
|
Li D, Wang Y, Hu W, Chen F, Zhao J, Chen X, Han L. Application of Machine Learning Classifier to Candida auris Drug Resistance Analysis. Front Cell Infect Microbiol 2021; 11:742062. [PMID: 34722336 PMCID: PMC8554202 DOI: 10.3389/fcimb.2021.742062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Candida auris (C. auris) is an emerging fungus associated with high morbidity. It has a unique transmission ability and is often resistant to multiple drugs. In this study, we evaluated the ability of different machine learning models to classify the drug resistance and predicted and ranked the drug resistance mutations of C. auris. Two C. auris strains were obtained. Combined with other 356 strains collected from the European Bioinformatics Institute (EBI) databases, the whole genome sequencing (WGS) data were analyzed by bioinformatics. Machine learning classifiers were used to build drug resistance models, which were evaluated and compared by various evaluation methods based on AUC value. Briefly, two strains were assigned to Clade III in the phylogenetic tree, which was consistent with previous studies; nevertheless, the phylogenetic tree was not completely consistent with the conclusion of clustering according to the geographical location discovered earlier. The clustering results of C. auris were related to its drug resistance. The resistance genes of C. auris were not under additional strong selection pressure, and the performance of different models varied greatly for different drugs. For drugs such as azoles and echinocandins, the models performed relatively well. In addition, two machine learning algorithms, based on the balanced test and imbalanced test, were designed and evaluated; for most drugs, the evaluation results on the balanced test set were better than on the imbalanced test set. The mutations strongly be associated with drug resistance of C. auris were predicted and ranked by Recursive Feature Elimination with Cross-Validation (RFECV) combined with a machine learning classifier. In addition to known drug resistance mutations, some new resistance mutations were predicted, such as Y501H and I466M mutation in the ERG11 gene and R278H mutation in the ERG10 gene, which may be associated with fluconazole (FCZ), micafungin (MCF), and amphotericin B (AmB) resistance, respectively; these mutations were in the “hot spot” regions of the ergosterol pathway. To sum up, this study suggested that machine learning classifiers are a useful and cost-effective method to identify fungal drug resistance-related mutations, which is of great significance for the research on the resistance mechanism of C. auris.
Collapse
Affiliation(s)
- Dingchen Li
- Department of Disinfection and Infection Control, Chinese People's Liberation Army (PLA) Center for Disease Control and Prevention, Beijing, China
| | - Yaru Wang
- Department of Disinfection and Infection Control, Chinese People's Liberation Army (PLA) Center for Disease Control and Prevention, Beijing, China.,School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - Wenjuan Hu
- Department of Disinfection and Infection Control, Chinese People's Liberation Army (PLA) Center for Disease Control and Prevention, Beijing, China.,School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - Fangyan Chen
- Department of Disinfection and Infection Control, Chinese People's Liberation Army (PLA) Center for Disease Control and Prevention, Beijing, China
| | - Jingya Zhao
- Department of Disinfection and Infection Control, Chinese People's Liberation Army (PLA) Center for Disease Control and Prevention, Beijing, China
| | - Xia Chen
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - Li Han
- Department of Disinfection and Infection Control, Chinese People's Liberation Army (PLA) Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
54
|
Highly conserved gsc1 gene of Pneumocystis jirovecii in patients with or without prior exposure to Echinocandins. Antimicrob Agents Chemother 2021; 66:e0156321. [PMID: 34723629 DOI: 10.1128/aac.01563-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Echinocandins are noncompetitive inhibitors of the GSC1 subunit of the enzymatic complex involved in synthesis of 1,3-beta-D-glucan, a cell wall component of most fungi, including Pneumocystis spp. Echinocandins are widely used for treating systemic candidiasis and rarely used for treating Pneumocystis pneumonia. Consequently, data on P. jirovecii gsc1 gene diversity are still scarce, compared to the homologous fks1 gene of Candida spp. In this study, we analyzed P. jirovecii gsc1 gene diversity and the putative selection pressure of echinocandins on P. jirovecii. Gsc1 gene sequences of P. jirovecii specimens from two patient groups were compared. One group of 27 patients had prior exposure to echinocandins whereas the second group of 24 patients did not, at the time of P. jirovecii infection diagnoses. Two portions of P. jirovecii gsc1 gene, HS1 and HS2, homologous to hot spots described in Candida spp., were sequenced. Three SNPs at positions 2204, 2243, and 2303 close to the HS1 region and another SNP at position 4540 more distant from the HS2 region were identified. These SNPs represent synonymous mutations. Three gsc1 HS1 alleles, A, B, and C, and two gsc1 HS2 alleles, a and b, and four haplotypes, Ca, Cb, Aa, and Ba, were defined, without significant difference in haplotype distribution in both patient groups (p = 0.57). Considering the identical diversity of P. jirovecii gsc1 gene and the detection of synonymous mutations in both patient groups, no selection pressure of echinocandins among P. jirovecii microorganisms can be pointed out so far.
Collapse
|
55
|
Rollin-Pinheiro R, Borba-Santos LP, da Silva Xisto MID, de Castro-Almeida Y, Rochetti VP, Rozental S, Barreto-Bergter E. Identification of Promising Antifungal Drugs against Scedosporium and Lomentospora Species after Screening of Pathogen Box Library. J Fungi (Basel) 2021; 7:jof7100803. [PMID: 34682224 PMCID: PMC8539698 DOI: 10.3390/jof7100803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Fungal infections have been increasing during the last decades. Scedosporium and Lomentospora species are filamentous fungi most associated to those infections, especially in immunocompromised patients. Considering the limited options of treatment and the emergence of resistant isolates, an increasing concern motivates the development of new therapeutic alternatives. In this context, the present study screened the Pathogen Box library to identify compounds with antifungal activity against Scedosporium and Lomentospora. Using antifungal susceptibility tests, biofilm analysis, scanning electron microscopy (SEM), and synergism assay, auranofin and iodoquinol were found to present promising repurposing applications. Both compounds were active against different Scedosporium and Lomentospora, including planktonic cells and biofilm. SEM revealed morphological alterations and synergism analysis showed that both drugs present positive interactions with voriconazole, fluconazole, and caspofungin. These data suggest that auranofin and iodoquinol are promising compounds to be studied as repurposing approaches against scedosporiosis and lomentosporiosis.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Yuri de Castro-Almeida
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
- Correspondence: ; Tel.: +55-(21)-3938-6741
| |
Collapse
|
56
|
Garcia-Rubio R, Jimenez-Ortigosa C, DeGregorio L, Quinteros C, Shor E, Perlin DS. Multifactorial Role of Mitochondria in Echinocandin Tolerance Revealed by Transcriptome Analysis of Drug-Tolerant Cells. mBio 2021; 12:e0195921. [PMID: 34372698 PMCID: PMC8406274 DOI: 10.1128/mbio.01959-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fungal infections cause significant mortality and morbidity worldwide, and the limited existing antifungal reservoir is further weakened by the emergence of strains resistant to echinocandins, a first line of antifungal therapy. Candida glabrata is an opportunistic fungal pathogen that rapidly develops mutations in the echinocandin drug target β-1,3-glucan synthase (GS), which are associated with drug resistance and clinical failure. Although echinocandins are considered fungicidal in Candida sp., a subset of C. glabrata cells survive echinocandin exposure, forming a drug-tolerant cell reservoir, from which resistant mutations are thought to emerge. Despite their importance, the physiology of rare drug-tolerant cells is poorly understood. We used fluorescence-activated cell sorting to enrich for echinocandin-tolerant cells, followed by modified single-cell RNA sequencing to examine their transcriptional landscape. This analysis identified a transcriptional signature distinct from the stereotypical yeast environmental stress response and characterized by upregulation of pathways involved in chromosome structure and DNA topology and downregulation of oxidative stress responses, of which the latter was observed despite increased levels of reactive oxygen species. Further analyses implicated mitochondria in echinocandin tolerance, wherein inhibitors of mitochondrial complexes I and IV reduced echinocandin-mediated cell killing, but mutants lacking various mitochondrial components all showed an echinocandin hypotolerant phenotype. Finally, GS enzyme complexes purified from mitochondrial mutants exhibited normal in vitro inhibition kinetics, indicating that mitochondrial defects influence cell survival downstream of the drug-target interaction. Together, these results provide new insights into the C. glabrata response to echinocandins and reveal a multifactorial role of mitochondria in echinocandin tolerance. IMPORTANCE Echinocandin drugs are a first-line therapy to treat invasive candidiasis, which is a major source of morbidity and mortality worldwide. The opportunistic fungal pathogen Candida glabrata is a prominent bloodstream fungal pathogen, and it is notable for rapidly developing echinocandin-resistant strains associated with clinical failure. Echinocandin resistance is thought to emerge within a small echinocandin-tolerant subset of C. glabrata cells that are not killed by drug exposure, but mechanisms underlying echinocandin tolerance are still unknown. Here, we describe the unique transcriptional signature of echinocandin-tolerant cells and the results of follow-up analyses, which reveal a multifactorial role of mitochondria in C. glabrata echinocandin tolerance. In particular, although chemical inhibition of respiratory chain enzymes increased echinocandin tolerance, deletion of multiple mitochondrial components made C. glabrata cells hypotolerant to echinocandins. Together, these results provide new insights into the C. glabrata response to echinocandins and reveal the involvement of mitochondria in echinocandin tolerance.
Collapse
Affiliation(s)
- Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Lucius DeGregorio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Christopher Quinteros
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, New Jersey, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, New Jersey, USA
- Lombardi Comprehensive Cancer Center, Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
57
|
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 2021; 59:14-30. [PMID: 32400853 DOI: 10.1093/mmy/myaa031] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Although Candida albicans remains the main cause of candidiasis, in recent years a significant number of infections has been attributed to non-albicans Candida (NAC) species, including Candida krusei. This epidemiological change can be partly explained by the increased resistance of NAC species to antifungal drugs. C. krusei is a diploid, dimorphic ascomycetous yeast that inhabits the mucosal membrane of healthy individuals. However, this yeast can cause life-threatening infections in immunocompromised patients, with hematologic malignancy patients and those using prolonged azole prophylaxis being at higher risk. Fungal infections are usually treated with five major classes of antifungal agents which include azoles, echinocandins, polyenes, allylamines, and nucleoside analogues. Fluconazole, an azole, is the most commonly used antifungal drug due to its low host toxicity, high water solubility, and high bioavailability. However, C. krusei possesses intrinsic resistance to this drug while also rapidly developing acquired resistance to other antifungal drugs. The mechanisms of antifungal resistance of this yeast involve the alteration and overexpression of drug target, reduction in intracellular drug concentration and development of a bypass pathway. Antifungal resistance menace coupled with the paucity of the antifungal arsenal as well as challenges involved in antifungal drug development, partly due to the eukaryotic nature of both fungi and humans, have left researchers to exploit alternative therapies. Here we briefly review our current knowledge of the biology, pathophysiology and epidemiology of a potential multidrug-resistant fungal pathogen, C. krusei, while also discussing the mechanisms of drug resistance of Candida species and alternative therapeutic approaches.
Collapse
Affiliation(s)
- A T Jamiu
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - J Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - O M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - C H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| |
Collapse
|
58
|
Dahiya S, Sharma N, Punia A, Choudhary P, Gulia P, Parmar VS, Chhillar AK. Antimycotic Drugs and their Mechanisms of Resistance to Candida Species. Curr Drug Targets 2021; 23:116-125. [PMID: 34551694 DOI: 10.2174/1389450122666210719124143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Fungal infections have shown an upsurge in recent decades, which is mainly because of the increasing number of immunocompromised patients and the occurrence of invasive candidiasis has been found to be 7-15 fold greater than that of invasive aspergillosis. The genus Candida comprises more than 150 distinct species, however, only a few of them are found to be pathogenic to humans. Mortality rates of Candida species are found to be around 45% and the reasons for this intensified mortality are inefficient diagnostic techniques and unfitting initial treatment strategies. There are only a few antifungal drug classes that are employed for the remedy of invasive fungal infections. which include azoles, polyenes, echinocandins, and pyrimidine analogs. During the last 2-3 decades, the usage of antifungal drugs has increased several folds due to which the reports of escalating antifungal drug resistance have also been recorded. The resistance is mostly to the triazole- based compounds. Due to the occurrence of antifungal drug resistance, the success rates of treatment have been reduced as well as major changes have been observed in the frequency of fungal infections. In this review, we have summarized the major molecular mechanisms for the development of antifungal drug resistance.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Namita Sharma
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Aruna Punia
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Pooja Choudhary
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Prity Gulia
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue, Brooklyn, NY 11225. India
| | - Anil K Chhillar
- Centre for Biotechnology, MaharshiDayanand University Rohtak, Haryana. India
| |
Collapse
|
59
|
Caspofungin resistance in clinical Aspergillus Flavus isolates. J Mycol Med 2021; 31:101166. [PMID: 34293598 DOI: 10.1016/j.mycmed.2021.101166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION AND AIMS The present study was conducted to determine the candidate genes involved in caspofungin (CAS) resistance in clinical isolates of Aspergillus flavus (A. flavus). MATERIALS AND METHODS The antifungal susceptibility assay of the CAS was performed on 14 clinical isolates of A. flavus using the CLSI-M-38-A2 broth micro-dilution protocol. Since CAS had various potencies, the minimum effective concentration (MEC) of anidulafungin (AND) was also evaluated in the present study. The FKS1 gene sequencing was conducted to assess whether mutations occurred in the whole FKS1 gene as well as hot spot regions of the FKS1 gene of the two resistant isolates. A complementary DNA-amplified fragment length polymorphism (CDNA-AFLP) method was performed to investigate differential gene expression between the two resistant and two sensitive clinical isolates in the presence of CAS. Furthermore, quantitative real-time PCR (QRT-PCR) was utilized to determine the relative expression levels of the identified genes. RESULTS No mutations were observed in the whole FKS1 gene hot spot regions of the FKS1 genes in the resistant isolates. A subset of two genes with known biological functions and four genes with unknown biological functions were identified in the CAS-resistant isolates using the CDNA-AFLP. The QRT-PCR revealed the down-regulation of the P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 in the CAS-resistant isolates, compared to the susceptible isolates. CONCLUSION The findings showed that P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 might be involved in the CAS-resistance A. flavus clinical isolates. Moreover, a subset of genes was differentially expressed to enhance fungi survival in CAS exposure. Further studies are recommended to highlight the gene overexpression and knock-out experiments in A. flavus or surrogate organisms to confirm that these mentioned genes confer the CAS resistant A. flavus.
Collapse
|
60
|
Abstract
Pathogenic fungi have several mechanisms of resistance to antifungal drugs, driven by the genetic plasticity and versatility of their homeostatic responses to stressful environmental cues. We critically review the molecular mechanisms of resistance and cellular adaptations of pathogenic fungi in response to antifungals and discuss the factors contributing to such resistance. We offer suggestions for the translational and clinical research agenda of this rapidly evolving and medically important field. A better understanding of antifungal resistance should assist in developing better detection tools and inform optimal strategies for preventing and treating refractory mycoses in the future.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Department, Sackler School of Medicine, Tel Aviv University, Tel Aviv Sourasky Medical Center, 6 Weizmann, Tel Aviv 64239, Israel
| | - Dimitrios P Kontoyiannis
- Infectious Diseases, University of Texas M D Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA.
| |
Collapse
|
61
|
Sah SK, Hayes JJ, Rustchenko E. The role of aneuploidy in the emergence of echinocandin resistance in human fungal pathogen Candida albicans. PLoS Pathog 2021; 17:e1009564. [PMID: 34043737 PMCID: PMC8158998 DOI: 10.1371/journal.ppat.1009564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sudisht Kumar Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jeffrey Joseph Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
62
|
Carolus H, Pierson S, Muñoz JF, Subotić A, Cruz RB, Cuomo CA, Van Dijck P. Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio 2021; 12:e03333-20. [PMID: 33820824 PMCID: PMC8092288 DOI: 10.1128/mbio.03333-20] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
Collapse
Affiliation(s)
- Hans Carolus
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - José F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ana Subotić
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Rita B Cruz
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Patrick Van Dijck
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
63
|
Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem Rev 2021; 121:3390-3411. [PMID: 32441527 PMCID: PMC8519031 DOI: 10.1021/acs.chemrev.0c00199] [Citation(s) in RCA: 433] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
64
|
Jallow S, Govender NP. Ibrexafungerp: A First-in-Class Oral Triterpenoid Glucan Synthase Inhibitor. J Fungi (Basel) 2021; 7:jof7030163. [PMID: 33668824 PMCID: PMC7996284 DOI: 10.3390/jof7030163] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ibrexafungerp (formerly SCY-078 or MK-3118) is a first-in-class triterpenoid antifungal or “fungerp” that inhibits biosynthesis of β-(1,3)-D-glucan in the fungal cell wall, a mechanism of action similar to that of echinocandins. Distinguishing characteristics of ibrexafungerp include oral bioavailability, a favourable safety profile, few drug–drug interactions, good tissue penetration, increased activity at low pH and activity against multi-drug resistant isolates including C. auris and C. glabrata. In vitro data has demonstrated broad and potent activity against Candida and Aspergillus species. Importantly, ibrexafungerp also has potent activity against azole-resistant isolates, including biofilm-forming Candida spp., and echinocandin-resistant isolates. It also has activity against the asci form of Pneumocystis spp., and other pathogenic fungi including some non-Candida yeasts and non-Aspergillus moulds. In vivo data have shown IBX to be effective for treatment of candidiasis and aspergillosis. Ibrexafungerp is effective for the treatment of acute vulvovaginal candidiasis in completed phase 3 clinical trials.
Collapse
Affiliation(s)
- Sabelle Jallow
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses (CHARM), National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa;
- Correspondence: ; Tel.: +27-11-386-6395
| | - Nelesh P. Govender
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses (CHARM), National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa;
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
65
|
Rajasekar V, Darne P, Prabhune A, Kao RYT, Solomon AP, Ramage G, Samaranayake L, Neelakantan P. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids Surf B Biointerfaces 2021; 200:111617. [PMID: 33592455 DOI: 10.1016/j.colsurfb.2021.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen that is highly resistant to contemporary antifungals, due to their biofilm lifestyle. The ability of C. albicans to invade human tissues is due to its filamentation. Therefore, inhibition of biofilms and filamentation of the yeast are high value targets to develop the next-generation antifungals. Curcumin (CU) is a natural polyphenol with excellent pharmacological attributes, but limitations such as poor solubility, acid, and enzyme tolerance have impeded its practical utility. Sophorolipids (SL) are biologically-derived surfactants that serve as efficient carriers of hydrophobic molecules such as curcumin into biofilms. Here, we synthesised a curcumin-sophorolipid nanocomplex (CUSL), and comprehensively evaluated its effects on C. albicans biofilms and filamentation. Our results demonstrated that sub-inhibitory concentration of CUSL (9.37 μg/mL) significantly inhibited fungal adhesion to substrates, and subsequent biofilm development, maturation, and filamentation. This effect was associated with significant downregulation of a select group of biofilm, adhesins, and hyphal regulatory genes. In conclusion, the curcumin-sophorolipid nanocomplex is a potent inhibitor of the two major virulence attributes of C. albicans, biofilm formation and filamentation, thus highlighting its promise as a putative anti-fungal agent with biofilm penetrative potential.
Collapse
Affiliation(s)
- Vidhyashree Rajasekar
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region; Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Priti Darne
- Green Pyramid Biotech Private Limited, Pune, India
| | | | - Richard Y T Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lakshman Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
66
|
Spettel K, Galazka S, Kriz R, Camp I, Willinger B. Do Candida albicans Isolates with Borderline Resistant Micafungin MICs Always Harbor FKS1 Hot Spot Mutations? J Fungi (Basel) 2021; 7:jof7020093. [PMID: 33525326 PMCID: PMC7911425 DOI: 10.3390/jof7020093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Antifungal susceptibility testing is important in guiding patient therapy due to an increasing number of resistant Candida isolates. In the clinical strain collection of the Austrian resistance report (AURES), a high number of micafungin-resistant C. albicans isolates (18.2% 49/269) was detected in seven different centres in Austria from 2011–2016. Most of these isolates showed a micafungin MIC value that was just above the clinical breakpoint (CB) established by EUCAST (0.016 mg/L). The aim of this study was to analyse whether C. albicans strains showing a micafungin MIC value of 1–2 dilutions above the CB (0.032 mg/L and 0.064 mg/L) are associated with mutations in FKS1 hotspot (HS) regions. 115 C. albicans candidemia strains showing a micafungin MIC one or two dilutions above the EUCAST CB (0.032 mg/L and 0.064 mg/L) were categorized as borderline resistant and screened for mutations in FKS1 HS1, HS2, and HS3 regions, which are known locations for the development of echinocandin resistance. For this purpose, we implemented targeted resequencing utilizing a next generation sequencing technology. No missense mutations could be detected in FKS1 HS1, HS2, and HS3 in any of the 115 isolates, which indicated that resistance conferred by alteration of FKS1 seems unlikely.
Collapse
Affiliation(s)
- Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (S.G.); (I.C.)
| | - Sonia Galazka
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (S.G.); (I.C.)
| | - Richard Kriz
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Iris Camp
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (S.G.); (I.C.)
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (S.G.); (I.C.)
- Correspondence: ; Tel.: +43-140400-51580
| |
Collapse
|
67
|
Shen J, Lu R, Cai Q, Fan L, Yan W, Zhu Z, Yang L, Cao Y. Mangiferin enhances the antifungal activities of caspofungin by destroying polyamine accumulation. Virulence 2021; 12:217-230. [PMID: 33404349 PMCID: PMC7801120 DOI: 10.1080/21505594.2020.1870079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The incidence of fungal infections has increased continuously in recent years. Caspofungin (CAS) is one of the first-line drugs for the treatment of systemic fungal infection. However, the emerging CAS-resistant clinical isolates and high economic cost for CAS administration hamper the wide application of this drug. Thus, the combined administration of CAS with other compounds that can enhance the antifungal activity and reduce the dose of CAS has gained more and more attention. In this study, we investigated the effect of mangiferin (MG) on the antifungal activities of CAS. Our results showed that MG acted synergistically with CAS against various Candida spp., including CAS-resistant C. albicans. Moreover, MG could enhance the activity of CAS against biofilm. The in vivo synergism of MG and CAS was further confirmed in a mouse model of disseminated candidiasis. To explore the mechanisms, we found that SPE1-mediated polyamine biosynthesis pathway was involved in the fungal cell stress to caspofungin. Treatment of CAS alone could stimulate SPE1 expression and accumulation of polyamines, while combined treatment of MG and CAS inhibited SPE1 expression and destroyed polyamine accumulation, which might contribute to increased oxidative damage and cell death. These results provided a promising strategy for high efficient antifungal therapies and revealed novel mechanisms for CAS resistance.
Collapse
Affiliation(s)
- Juan Shen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - RenYi Lu
- School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Qing Cai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - LingZhi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - WanNian Yan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - LianJuan Yang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| |
Collapse
|
68
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
69
|
Garcia-Effron G. Rezafungin-Mechanisms of Action, Susceptibility and Resistance: Similarities and Differences with the Other Echinocandins. J Fungi (Basel) 2020; 6:E262. [PMID: 33139650 PMCID: PMC7711656 DOI: 10.3390/jof6040262] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Rezafungin (formerly CD101) is a new β-glucan synthase inhibitor that is chemically related with anidulafungin. It is considered the first molecule of the new generation of long-acting echinocandins. It has several advantages over the already approved by the Food and Drug Administration (FDA) echinocandins as it has better tissue penetration, better pharmacokinetic/phamacodynamic (PK/PD) pharmacometrics, and a good safety profile. It is much more stable in solution than the older echinocandins, making it more flexible in terms of dosing, storage, and manufacturing. These properties would allow rezafungin to be administered once-weekly (intravenous) and to be potentially administered topically and subcutaneously. In addition, higher dose regimens were tested with no evidence of toxic effect. This will eventually prevent (or reduce) the selection of resistant strains. Rezafungin also has several similarities with older echinocandins as they share the same in vitro behavior (very similar Minimum Inhibitory Concentration required to inhibit the growth of 50% of the isolates (MIC50) and half enzyme maximal inhibitory concentration 50% (IC50)) and spectrum, the same target, and the same mechanisms of resistance. The selection of FKS mutants occurred at similar frequency for rezafungin than for anidulafungin and caspofungin. In this review, rezafungin mechanism of action, target, mechanism of resistance, and in vitro data are described in a comparative manner with the already approved echinocandins.
Collapse
Affiliation(s)
- Guillermo Garcia-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.P. 3000 Santa Fe, Argentina; or ; Tel.: +54-9342-4575209 (ext. 135)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, C.P. 3000 Santa Fe, Argentina
| |
Collapse
|
70
|
Jaber QZ, Bibi M, Ksiezopolska E, Gabaldon T, Berman J, Fridman M. Elevated Vacuolar Uptake of Fluorescently Labeled Antifungal Drug Caspofungin Predicts Echinocandin Resistance in Pathogenic Yeast. ACS CENTRAL SCIENCE 2020; 6:1698-1712. [PMID: 33145409 PMCID: PMC7596861 DOI: 10.1021/acscentsci.0c00813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Echinocandins are the newest class of antifungal drugs in clinical use. These agents inhibit β-glucan synthase, which catalyzes the synthesis of β-glucan, an essential component of the fungal cell wall, and have a high clinical efficacy and low toxicity. Echinocandin resistance is largely due to mutations in the gene encoding β-glucan synthase, but the mode of action is not fully understood. We developed fluorescent probes based on caspofungin, the first clinically approved echinocandin, and studied their cellular biology in Candida species, the most common cause of human fungal infections worldwide. Fluorescently labeled caspofungin probes, like the unlabeled drug, were most effective against metabolically active cells. The probes rapidly accumulated in Candida vacuoles, as shown by colocalization with vacuolar proteins and vacuole-specific stains. The uptake of fluorescent caspofungin is facilitated by endocytosis: The labeled drug formed vesicles similar to fluorescently labeled endocytic vesicles, the vacuolar accumulation of fluorescent caspofungin was energy-dependent, and inhibitors of endocytosis reduced its uptake. In a panel comprised of isogenic Candida strains carrying different β-glucan synthase mutations as well as clinical isolates, resistance correlated with increased fluorescent drug uptake into vacuoles. Fluorescent drug uptake also associated with elevated levels of chitin, a sugar polymer that increases cell-wall rigidity. Monitoring the intracellular uptake of fluorescent caspofungin provides a rapid and simple assay that can enable the prediction of echinocandin resistance, which is useful for research applications as well as for selecting the appropriate drugs for treatments of invasive fungal infections.
Collapse
Affiliation(s)
- Qais Z. Jaber
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maayan Bibi
- School
of Molecular Cell Biology and Biotechnology, George Wise Faculty of
Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ewa Ksiezopolska
- Barcelona
Supercomputing Centre (BSC−CNS) Jordi Girona, 29, Barcelona 08034, Spain
- Institute
for Research in Biomedicine, The Barcelona
Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Toni Gabaldon
- Barcelona
Supercomputing Centre (BSC−CNS) Jordi Girona, 29, Barcelona 08034, Spain
- Institute
for Research in Biomedicine, The Barcelona
Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- Catalan
Institution for Research and Advanced Studies, Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - Judith Berman
- School
of Molecular Cell Biology and Biotechnology, George Wise Faculty of
Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
71
|
Fraser M, Borman AM, Thorn R, Lawrance LM. Resistance to echinocandin antifungal agents in the United Kingdom in clinical isolates of Candida glabrata: Fifteen years of interpretation and assessment. Med Mycol 2020; 58:219-226. [PMID: 31111912 DOI: 10.1093/mmy/myz053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Candidemia is widely reported as the fourth most common form of bloodstream infection worldwide. Reports of breakthrough cases of candidemia are increasing, especially in the context of a move away from azole antifungals as prophylactic or first line treatment toward the use of echinocandin agents. The global evaluation of echinocandin antifungal susceptibility since 2003 has included switches in testing methodologies and the move to a sentinel echinocandin approach for classification reporting. This study compiles previously unpublished data from echinocandin susceptibility testing of UK clinical isolates of C. glabrata received at the Public Health England Mycology Reference Laboratory from 2003 to 2016 and reevaluates the prevalence of resistance in light of currently accepted testing protocols. From 2015 onward, FKS gene mutation detection using a novel Pyrosequencing® assay was assessed as a predictor of echinocandin resistance alongside conventional susceptibility testing. Overall, our data show that echinocandin resistance in UK isolates of C. glabrata is a rare phenomenon and prevalence has not appreciably increased in the last 14 years. The pyrosequencing assay was able to successfully detect hot spot mutations in FKS1 and FKS2, although not all isolates that exhibited phenotypic resistance demonstrated detectable hot spot mutations. We propose that a rapid genomic based detection method for FKS mutations, as part of a multifactorial approach to susceptibility testing, could help provide accurate and timely management decisions especially in regions where echinocandin resistance has been reported to be emerging in this important pathogen.
Collapse
Affiliation(s)
- Mark Fraser
- UK National Mycology Reference Laboratory, Public Health England, Bristol, UK.,Centre for Research in Bioscience, University of the West of England, Coldharbour Lane, Bristol, UK
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Bristol, UK
| | - Robin Thorn
- Centre for Research in Bioscience, University of the West of England, Coldharbour Lane, Bristol, UK
| | - Lynne M Lawrance
- Centre for Research in Bioscience, University of the West of England, Coldharbour Lane, Bristol, UK
| |
Collapse
|
72
|
Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics (Basel) 2020; 9:antibiotics9090568. [PMID: 32887362 PMCID: PMC7558570 DOI: 10.3390/antibiotics9090568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Since Candida auris integrates strains resistant to multiple antifungals, research has been conducted focused on knowing which molecular mechanisms are involved. This review aims to summarize the results obtained in some of these studies. A search was carried out by consulting websites and online databases. The analysis indicates that most C. auris strains show higher resistance to fluconazole, followed by amphotericin B, and less resistance to 5-fluorocytosine and caspofungin. In C. auris, antifungal resistance to amphotericin B has been linked to an overexpression of several mutated ERG genes that lead to reduced ergosterol levels; fluconazole resistance is mostly explained by mutations identified in the ERG11 gene, as well as a higher number of copies of this gene and the overexpression of efflux pumps. For 5-fluorocytosine, it is hypothesized that the resistance is due to mutations in the FCY2, FCY1, and FUR1 genes. Resistance to caspofungin has been associated with a mutation in the FKS1 gene. Finally, resistance to each antifungal is closely related to the type of clade to which the strain belongs.
Collapse
|
73
|
Healey KR, Paderu P, Hou X, Jimenez Ortigosa C, Bagley N, Patel B, Zhao Y, Perlin DS. Differential Regulation of Echinocandin Targets Fks1 and Fks2 in Candida glabrata by the Post-Transcriptional Regulator Ssd1. J Fungi (Basel) 2020; 6:jof6030143. [PMID: 32825653 PMCID: PMC7558938 DOI: 10.3390/jof6030143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Invasive infections caused by the opportunistic pathogen Candida glabrata are treated with echinocandin antifungals that target β-1,3-glucan synthase, an enzyme critical for fungal cell wall biosynthesis. Echinocandin resistance develops upon mutation of genes (FKS1 or FKS2) that encode the glucan synthase catalytic subunits. We have analyzed cellular factors that influence echinocandin susceptibility and here describe effects of the post-transcriptional regulator Ssd1, which in S. cerevisiae, can bind cell wall related gene transcripts. The SSD1 homolog in C. glabrata was disrupted in isogenic wild type and equivalent FKS1 and FKS2 mutant strains that demonstrate echinocandin resistance (MICs ˃ 0.5 µg/mL). A reversal of resistance (8- to 128-fold decrease in MICs) was observed in FKS1 mutants, but not in FKS2 mutants, following SSD1 deletion. Additionally, this phenotype was complemented upon expression of SSD1 from plasmid (pSSD1). All SSD1 disruptants displayed susceptibility to the calcineurin inhibitor FK506, similar to fks1∆. Decreases in relative gene expression ratios of FKS1 to FKS2 (2.6- to 4.5-fold) and in protein ratios of Fks1 to Fks2 (2.7- and 8.4-fold) were observed in FKS mutants upon SSD1 disruption. Additionally, a complementary increase in protein ratio was observed in the pSSD1 expressing strain. Overall, we describe a cellular factor that influences Fks1-specific mediated resistance and demonstrates further differential regulation of FKS1 and FKS2 in C. glabrata.
Collapse
Affiliation(s)
- Kelley R. Healey
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA; (N.B.); (B.P.)
- Correspondence:
| | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
| | - Xin Hou
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
- Department of Clinical Laboratory, Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cristina Jimenez Ortigosa
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
| | - Nicole Bagley
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA; (N.B.); (B.P.)
| | - Biren Patel
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA; (N.B.); (B.P.)
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
| |
Collapse
|
74
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|
75
|
Accoceberry I, Couzigou C, Fitton-Ouhabi V, Biteau N, Noël T. Challenging SNP impact on caspofungin resistance by full-length FKS1 allele replacement in Candida lusitaniae. J Antimicrob Chemother 2020; 74:618-624. [PMID: 30517635 DOI: 10.1093/jac/dky475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically engineered for full-length replacement of the FKS1 gene encoding the target of echinocandin antifungals in order to assess the impact of FKS mutations on echinocandin resistance and reduced echinocandin susceptibility (RES). METHODS FKS1 allelic exchange was achieved by transforming C. lusitaniae with two DNA fragments covering the entire FKS1 ORF. Both fragments overlap a 40 bp region where SNPs or small indels of interest were inserted. To target integration at the FKS1 locus, each DNA fragment was fused with split auxotrophic markers of which complementary truncated parts were previously inserted into the chromosomal regions flanking FKS1, allowing selection on minimal medium. RESULTS Three SNPs described in the FKS1 hotspot (HS) regions HS1 or HS2 of clinical isolates of Candida albicans were expressed at an equivalent position in C. lusitaniae and were confirmed to confer either reduced susceptibility (F641V) or full resistance (S645P and R1361G) to caspofungin. The F659 deletion reported in an FKS2 allele of Candida glabrata and the naturally occurring P660A substitution in FKS1 of Candida parapsilosis were shown to confer a 256-fold and 6-fold increase in caspofungin MIC, respectively, when introduced into an FKS1 allele of C. lusitaniae. CONCLUSIONS We have successfully developed a C. lusitaniae strain for the expression of full-length FKS1 alleles harbouring known mutations contributing to reduced susceptibility or resistance to caspofungin, thus opening the way for the screening of other FKS1/FKS2 mutations potentially involved in RES.
Collapse
Affiliation(s)
- Isabelle Accoceberry
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, Bordeaux, France
| | - Célia Couzigou
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, Bordeaux, France
| | - Valérie Fitton-Ouhabi
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Nicolas Biteau
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Thierry Noël
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
76
|
Walker LA, Munro CA. Caspofungin Induced Cell Wall Changes of Candida Species Influences Macrophage Interactions. Front Cell Infect Microbiol 2020; 10:164. [PMID: 32528900 PMCID: PMC7247809 DOI: 10.3389/fcimb.2020.00164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Candida species are known to differ in their ability to cause infection and have been shown to display varied susceptibilities to antifungal drugs. Treatment with the echinocandin, caspofungin, leads to compensatory alterations in the fungal cell wall. This study was performed to compare the structure and composition of the cell walls of different Candida species alone and in response to caspofungin treatment, and to evaluate how changes at the fungal cell surface affects interactions with macrophages. We demonstrated that the length of the outer fibrillar layer varied between Candida species and that, in most cases, reduced fibril length correlated with increased exposure of β-1,3-glucan on the cell surface. Candida glabrata and Candida guilliermondii, which had naturally more β-1,3-glucan exposed on the cell surface, were phagocytosed significantly more efficiently by J774 macrophages. Treatment with caspofungin resulted in increased exposure of chitin and β-1,3-glucan on the surface of the majority of Candida species isolates that were tested, with the exception of C. glabrata and Candida parapsilosis isolates. This increase in exposure of the inner cell wall polysaccharides, in most cases, correlated with reduced uptake by macrophages and in turn, a decrease in production of TNFα. Here we show that differences in the exposure of cell wall carbohydrates and variations in the repertoire of covalently attached surface proteins of different Candida species contributes to their recognition by immune cells.
Collapse
Affiliation(s)
- Louise A Walker
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Carol A Munro
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
77
|
Mroczyńska M, Brillowska-Dąbrowska A. Review on Current Status of Echinocandins Use. Antibiotics (Basel) 2020; 9:antibiotics9050227. [PMID: 32370108 PMCID: PMC7277767 DOI: 10.3390/antibiotics9050227] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are rising all over the world every year. There are only five medical compound classes for treatment: triazoles, echinocandins, polyenes, flucytosine and allylamine. Currently, echinocandins are the most important compounds, because of their wide activity spectrum and much lower sides effects that may occur during therapy with other drugs. Echinocandins are secondary metabolites of fungi, which can inhibit the biosynthesis of β-(1,3)-D-glucan. These compounds have fungicidal and fungistatic activity depending on different genera of fungi, against which they are used. Echinocandin resistance is rare—the major cause of resistance is mutations in the gene encoding the β-(1,3)-D-glucan synthase enzyme. In this review of the literature we have summarized the characteristics of echinocandins, the mechanism of their antifungal activity with pharmacokinetics and pharmacodynamics, and the resistance issue.
Collapse
|
78
|
Abstract
Although not as ubiquitous as antibacterial susceptibility testing, antifungal susceptibility testing (AFST) is a tool of increasing importance in clinical microbiology laboratories. The goal of AFST is to reliably produce MIC values that may be used to guide patient therapy, inform epidemiological studies, and track rates of antifungal drug resistance. There are three methods that have been standardized by standards development organizations: broth dilution, disk diffusion, and azole agar screening for Aspergillus Other commonly used methods include gradient diffusion and the use of rapid automated instruments. Novel methodologies for susceptibility testing are in development. It is important for laboratories to consider not only the method of testing but also the interpretation (or lack thereof) of in vitro data.
Collapse
|
79
|
Farhadi Z, Farhadi T, Hashemian SM. Virtual screening for potential inhibitors of β(1,3)-D-glucan synthase as drug candidates against fungal cell wall. J Drug Assess 2020; 9:52-59. [PMID: 32284908 PMCID: PMC7144292 DOI: 10.1080/21556660.2020.1734010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 01/17/2023] Open
Abstract
Background To enhance the outcome in patients with invasive candidiasis, initiation of an efficient antifungal treatment in a suitable dosage is necessary. Echinocandins (e.g. caspofungin) inhibit the enzyme β(1,3)-D-glucan synthase of the fungal cell wall. Compared to azoles and other antifungal agents, echinocandins have lower adverse effects and toxicity in humans. Echinocandins are available in injectable (intravenous) form. Methods In this study, to identify the novel oral drug-like compounds that affect the fungal cell wall, downloaded oral drug-like compounds from the ZINC database were processed with a virtual screening procedure. The docking free energies were calculated and compared with the known inhibitor caspofungin. Four molecules were selected as the most potent ligands and subjected to hydrogen bonds analysis. Results Considering the hydrogen bond analysis, two compounds (ZINC71336662 and ZINC40910772) were predicted to better interact with the active site of β(1,3)-D-glucan synthase compared with caspofungin. Conclusion The introduced compound in this study may be valuable to analyze experimentally as a novel oral drug candidate targeting fungal cell walls.
Collapse
Affiliation(s)
- Zinat Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Behavioral Disease Counseling Center, Marvdasht Health Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Critical Care Department, Farhikhtegan Hospital, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
80
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
81
|
Hou X, Healey KR, Shor E, Kordalewska M, Ortigosa CJ, Paderu P, Xiao M, Wang H, Zhao Y, Lin LY, Zhang YH, Li YZ, Xu YC, Perlin DS, Zhao Y. Novel FKS1 and FKS2 modifications in a high-level echinocandin resistant clinical isolate of Candida glabrata. Emerg Microbes Infect 2020; 8:1619-1625. [PMID: 31711370 PMCID: PMC6853239 DOI: 10.1080/22221751.2019.1684209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Echinocandin resistance in Candida glabrata poses a serious clinical challenge. The underlying resistance mechanism of a pan-echinocandin-resistant C. glabrata isolate (strain L74) was investigated in this study. FKS mutants carrying specific mutations found in L74 were reconstructed by the Alt-R CRISPR-Cas9 system (Fks1 WT/Fks2-E655K, strain CRISPR 31) and site-directed mutagenesis (strain fks1Δ/Fks2-E655K). Sequence analysis of strain L74 revealed a premature stop codon W508stop in FKS1 and an E655K mutation preceding the hotspot 1 region in FKS2. Introduction of the Fks2-E655K mutation in ATCC 2001 (strain CRISPR 31) conferred a modest reduction in susceptibility. However, the same FKS2 mutation in the fks1Δ background (strain fks1Δ/Fks2-E655K) resulted in high levels of resistance to echinocandins. Glucan synthase isolated from L74 was dramatically less sensitive to micafungin (MCF) relative to ATCC 2001. Both FKS1/FKS2 transcript ratios and Fks1/Fks2 protein ratios were significantly lower in L74 and fks1Δ/Fks2-E655K compared to ATCC 2001 and CRISPR 31 (P <0.05). Mice challenged with CRISPR 31 and fks1Δ/Fks2-E655K mutants failed to respond to MCF. In conclusion, the high-level of echinocandin resistance in the clinical isolate of C. glabrata L74 was concluded to result from the combination of null function of Fks1 and the point mutation E655K in Fks2.
Collapse
Affiliation(s)
- Xin Hou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People's Republic of China.,Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Kelley R Healey
- Department of Biology, William Paterson University, Wayne, NJ, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Milena Kordalewska
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People's Republic of China
| | - He Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People's Republic of China
| | - Ying Zhao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People's Republic of China
| | - Li-Yan Lin
- School of Medicine, Peking University Health Science Center, Beijing, People's Republic of China
| | - Yan-Hai Zhang
- Central Laboratory, Hebei Yanda Hospital, Langfang, People's Republic of China
| | - Yong-Zhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People's Republic of China
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| |
Collapse
|
82
|
Salazar SB, Simões RS, Pedro NA, Pinheiro MJ, Carvalho MFNN, Mira NP. An Overview on Conventional and Non-Conventional Therapeutic Approaches for the Treatment of Candidiasis and Underlying Resistance Mechanisms in Clinical Strains. J Fungi (Basel) 2020; 6:E23. [PMID: 32050673 PMCID: PMC7151124 DOI: 10.3390/jof6010023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fungal infections and, in particular, those caused by species of the Candida genus, are growing at an alarming rate and have high associated rates of mortality and morbidity. These infections, generally referred as candidiasis, range from common superficial rushes caused by an overgrowth of the yeasts in mucosal surfaces to life-threatening disseminated mycoses. The success of currently used antifungal drugs to treat candidiasis is being endangered by the continuous emergence of resistant strains, specially among non-albicans Candida species. In this review article, the mechanisms of action of currently used antifungals, with emphasis on the mechanisms of resistance reported in clinical isolates, are reviewed. Novel approaches being taken to successfully inhibit growth of pathogenic Candida species, in particular those based on the exploration of natural or synthetic chemicals or on the activity of live probiotics, are also reviewed. It is expected that these novel approaches, either used alone or in combination with traditional antifungals, may contribute to foster the identification of novel anti-Candida therapies.
Collapse
Affiliation(s)
- Sara B. Salazar
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Rita S. Simões
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Nuno A. Pedro
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Maria Joana Pinheiro
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Maria Fernanda N. N. Carvalho
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Nuno P. Mira
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| |
Collapse
|
83
|
Yang F, Teoh F, Tan ASM, Cao Y, Pavelka N, Berman J. Aneuploidy Enables Cross-Adaptation to Unrelated Drugs. Mol Biol Evol 2020; 36:1768-1782. [PMID: 31028698 PMCID: PMC6657732 DOI: 10.1093/molbev/msz104] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aneuploidy is common both in tumor cells responding to chemotherapeutic agents and in fungal cells adapting to antifungal drugs. Because aneuploidy simultaneously affects many genes, it has the potential to confer multiple phenotypes to the same cells. Here, we analyzed the mechanisms by which Candida albicans, the most prevalent human fungal pathogen, acquires the ability to survive both chemotherapeutic agents and antifungal drugs. Strikingly, adaptation to both types of drugs was accompanied by the acquisition of specific whole-chromosome aneuploidies, with some aneuploid karyotypes recovered independently and repeatedly from very different drug conditions. Specifically, strains selected for survival in hydroxyurea, an anticancer drug, acquired cross-adaptation to caspofungin, a first-line antifungal drug, and both acquired traits were attributable to trisomy of the same chromosome: loss of trisomy was accompanied by loss of adaptation to both drugs. Mechanistically, aneuploidy simultaneously altered the copy number of most genes on chromosome 2, yet survival in hydroxyurea or caspofungin required different genes and stress response pathways. Similarly, chromosome 5 monosomy conferred increased tolerance to both fluconazole and to caspofungin, antifungals with different mechanisms of action. Thus, the potential for cross-adaptation is not a feature of aneuploidy per se; rather, it is dependent on specific genes harbored on given aneuploid chromosomes. Furthermore, pre-exposure to hydroxyurea increased the frequency of appearance of caspofungin survivors, and hydroxyurea-adapted C. albicans cells were refractory to antifungal drug treatment in a mouse model of systemic candidiasis. This highlights the potential clinical consequences for the management of cancer chemotherapy patients at risk of fungal infections.
Collapse
Affiliation(s)
- Feng Yang
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Flora Teoh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alrina Shin Min Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yongbing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai, China
| | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
84
|
Costa-de-Oliveira S, Rodrigues AG. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 2020; 8:E154. [PMID: 31979032 PMCID: PMC7074842 DOI: 10.3390/microorganisms8020154] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
Candida albicans represents the most frequent isolated yeast from bloodstream infections. Despite the remarkable progress in diagnostic and therapeutic approaches, these infections continue to be a critical challenge in intensive care units worldwide. The economic cost of bloodstream fungal infections and its associated mortality, especially in debilitated patients, remains unacceptably high. Candida albicans is a highly adaptable microorganism, being able to develop resistance following prolonged exposure to antifungals. Formation of biofilms, which diminish the accessibility of the antifungal, selection of spontaneous mutations that increase expression or decreased susceptibility of the target, altered chromosome abnormalities, overexpression of multidrug efflux pumps and the ability to escape host immune defenses are some of the factors that can contribute to antifungal tolerance and resistance. The knowledge of the antifungal resistance mechanisms can allow the design of alternative therapeutically options in order to modulate or revert the resistance. We have focused this review on the main factors that are involved in antifungal resistance and tolerance in patients with C. albicans bloodstream infections.
Collapse
Affiliation(s)
- Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Center for Research in Health Technologies and Information Systems (CINTESIS), R. Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Acácio G. Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Center for Research in Health Technologies and Information Systems (CINTESIS), R. Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Burn Unit, São João Hospital Center, Al. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
85
|
Caplan T, Lorente-Macías Á, Stogios PJ, Evdokimova E, Hyde S, Wellington MA, Liston S, Iyer KR, Puumala E, Shekhar-Guturja T, Robbins N, Savchenko A, Krysan DJ, Whitesell L, Zuercher WJ, Cowen LE. Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2. Cell Chem Biol 2020; 27:269-282.e5. [PMID: 31924499 DOI: 10.1016/j.chembiol.2019.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.
Collapse
Affiliation(s)
- Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Álvaro Lorente-Macías
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Peter J Stogios
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Elena Evdokimova
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Melanie A Wellington
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sean Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - William J Zuercher
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
86
|
Abstract
Antifungal therapy is a critical component of patient management for invasive fungal diseases. Yet, therapeutic choices are limited as only a few drug classes are available to treat systemic disease, and some infecting strains are resistant to one or more drug classes. The ideal antifungal inhibits a fungal-specific essential target not present in human cells to avoid off-target toxicities. The fungal cell wall is an ideal drug target because its integrity is critical to cell survival and a majority of biosynthetic enzymes and wall components is unique to fungi. Among currently approved antifungal agents and those in clinical development, drugs targeting biosynthetic enzymes of the cell wall show safe and efficacious antifungal properties, which validates the cell wall as a target. The echinocandins, which inhibit β-1,3-glucan synthase, are recommended as first-line therapy for Candida infections. Newer cell wall-active drugs in clinical development encompass next-generation glucan synthase inhibitors including a novel echinocandin and an enfumafungin, an inhibitor of Gwt1, a key component of GPI anchor protein biosynthesis, and a classic inhibitor of chitin biosynthesis. As the cell wall is rich in potential drug discovery targets, it is primed to help deliver the next generation of antifungal drugs.
Collapse
Affiliation(s)
- David S Perlin
- Center for Discovery and Innovation, 340 Kingsland Street, Nutley, 07110, USA.
| |
Collapse
|
87
|
Caplan T, Polvi EJ, Xie JL, Buckhalter S, Leach MD, Robbins N, Cowen LE. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans. Cell Rep 2019; 23:2292-2298. [PMID: 29791841 DOI: 10.1016/j.celrep.2018.04.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 01/28/2023] Open
Abstract
Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress.
Collapse
Affiliation(s)
- Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Shoshana Buckhalter
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
88
|
Chaabane F, Graf A, Jequier L, Coste AT. Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Front Microbiol 2019; 10:2788. [PMID: 31849919 PMCID: PMC6896226 DOI: 10.3389/fmicb.2019.02788] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Candida auris is an emerging multi-drug resistant yeast, that causes major issues regarding patient treatment and surface disinfection in hospitals. Indeed, an important proportion of C. auris strains isolated worldwide present a decreased sensitivity to multiple and sometimes even all available antifungals. Based on recent tentative breakpoints by the CDC, it appears that in the USA about 90, 30, and < 5% of isolates have been resistant to fluconazole, amphotericin B, and echinocandins, respectively. To date, this has lead to a low therapeutic success. Furthermore, C. auris is prone to cause outbreaks, especially since it can persist for weeks in a nosocomial environment and survive high-end disinfection procedures. In this review, we describe the molecular resistance mechanisms to antifungal drugs identified so far in C. auris and compare them to those previously discovered in other Candida species. Additionally, we examine the role that biofilm formation plays in the reduced antifungal sensitivity of this organism. Finally, we summarize the few insights on how this yeast survives on hospital surfaces and discuss the challenge it presents regarding nosocomial environment disinfection.
Collapse
Affiliation(s)
- Farid Chaabane
- School of Biology, University of Lausanne, Lausanne, Switzerland
| | - Artan Graf
- School of Biology, University of Lausanne, Lausanne, Switzerland
| | - Léonard Jequier
- School of Biology, University of Lausanne, Lausanne, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
89
|
Antifungal Susceptibility of Candida albicans Isolates at a Tertiary Care Hospital in Bulgaria. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.92079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
90
|
Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet Biol 2019; 132:103254. [PMID: 31326470 DOI: 10.1016/j.fgb.2019.103254] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Opportunistic fungal pathogens can cause a diverse range of diseases in humans. The increasing rate of fungal infections caused by strains that are resistant to commonly used antifungals results in difficulty to treat diseases, with accompanying high mortality rates. Existing and newly emerging molecular resistance mechanisms rapidly spread in fungal populations and need to be monitored. Fungi exhibit a diversity of mechanisms to maintain physiological resilience and create genetic variation; processes which eventually lead to the selection and spread of resistant fungal pathogens. To prevent and anticipate this dispersion, the role of evolutionary factors that drive fungal adaptation should be investigated. In this review, we provide an overview of resistance mechanisms against commonly used antifungal compounds in the clinic and for which fungal resistance has been reported. Furthermore, we aim to summarize and elucidate potent generators of genetic variability across the fungal kingdom that aid adaptation to stressful environments. This knowledge can lead to recognizing potential niches that facilitate fast resistance development and can provide leads for new management strategies to battle the emerging resistant populations in the clinic and the environment.
Collapse
|
91
|
Stress-Induced Changes in the Lipid Microenvironment of β-(1,3)-d-Glucan Synthase Cause Clinically Important Echinocandin Resistance in Aspergillus fumigatus. mBio 2019; 10:mBio.00779-19. [PMID: 31164462 PMCID: PMC6550521 DOI: 10.1128/mbio.00779-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Resistance to first-line triazole antifungal agents among Aspergillus species has prompted the use of second-line therapy with echinocandins. As the number of Aspergillus-infected patients treated with echinocandins is rising, clinical observations of drug resistance are also increasing, indicating an emerging global health threat. Our knowledge regarding the development of clinical echinocandin resistance is largely derived from Candida spp., while little is known about resistance in Aspergillus. Therefore, it is important to understand the specific cellular responses raised by A. fumigatus against echinocandins. We discovered a new mechanism of resistance in A. fumigatus that is independent of the well-characterized FKS mutation mechanism observed in Candida. This study identified an off-target effect of CAS, i.e., ROS production, and integrated oxidative stress and sphingolipid alterations into a novel mechanism of resistance. This stress-induced response has implications for drug resistance and/or tolerance mechanisms in other fungal pathogens. Aspergillus fumigatus is a leading cause of invasive fungal infections. Resistance to first-line triazole antifungals has led to therapy with echinocandin drugs. Recently, we identified several high-minimum-effective-concentration (MEC) A. fumigatus clinical isolates from patients failing echinocandin therapy. Echinocandin resistance is known to arise from amino acid substitutions in β-(1,3)-d-glucan synthase encoded by the fks1 gene. Yet these clinical isolates did not contain mutations in fks1, indicating an undefined resistance mechanism. To explore this new mechanism, we used a laboratory-derived strain, RG101, with a nearly identical caspofungin (CAS) susceptibility phenotype that also does not contain fks1 mutations. Glucan synthase isolated from RG101 was fully sensitive to echinocandins. Yet exposure of RG101 to CAS during growth yielded a modified enzyme that was drug insensitive (4 log orders) in kinetic inhibition assays, and this insensitivity was also observed for enzymes isolated from clinical isolates. To understand this alteration, we analyzed whole-enzyme posttranslational modifications (PTMs) but found none linked to resistance. However, analysis of the lipid microenvironment of the enzyme with resistance induced by CAS revealed a prominent increase in the abundances of dihydrosphingosine (DhSph) and phytosphingosine (PhSph). Exogenous addition of DhSph and PhSph to the sensitive enzyme recapitulated the drug insensitivity of the CAS-derived enzyme. Further analysis demonstrated that CAS induces mitochondrion-derived reactive oxygen species (ROS) and that dampening ROS formation by antimycin A or thiourea eliminated drug-induced resistance. We conclude that CAS induces cellular stress, promoting formation of ROS and triggering an alteration in the composition of plasma membrane lipids surrounding glucan synthase, rendering it insensitive to echinocandins.
Collapse
|
92
|
Genotypic and phenotypic characterization of Candida albicans Lebanese hospital isolates resistant and sensitive to caspofungin. Fungal Genet Biol 2019; 127:12-22. [DOI: 10.1016/j.fgb.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
|
93
|
A Novel, Drug Resistance-Independent, Fluorescence-Based Approach To Measure Mutation Rates in Microbial Pathogens. mBio 2019; 10:mBio.00120-19. [PMID: 30808701 PMCID: PMC6391916 DOI: 10.1128/mbio.00120-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Measurements of mutation rates—i.e., how often proliferating cells acquire mutations in their DNA—are essential for understanding cellular processes that maintain genome stability. Many traditional mutation rate measurement assays are based on detecting mutations that cause resistance to a particular drug. Such assays typically work well for laboratory strains but have significant limitations when comparing clinical or environmental isolates that have various intrinsic levels of drug tolerance, which confounds the interpretation of results. Here we report the development and validation of a novel method of measuring mutation rates, which detects mutations that cause loss of fluorescence rather than acquisition of drug resistance. Using this method, we measured the mutation rates of clinical isolates of fungal pathogen Candida glabrata. This assay can be adapted to other organisms and used to compare mutation rates in contexts where unequal drug sensitivity is anticipated. All evolutionary processes are underpinned by a cellular capacity to mutate DNA. To identify factors affecting mutagenesis, it is necessary to compare mutation rates between different strains and conditions. Drug resistance-based mutation reporters are used extensively to measure mutation rates, but they are suitable only when the compared strains have identical drug tolerance levels—a condition that is not satisfied under many “real-world” circumstances, e.g., when comparing mutation rates among a series of environmental or clinical isolates. Candida glabrata is a fungal pathogen that shows a high degree of genetic diversity and fast emergence of antifungal drug resistance. To enable meaningful comparisons of mutation rates among C. glabrata clinical isolates, we developed a novel fluorescence-activated cell sorting-based approach to measure the mutation rate of a chromosomally integrated GFP gene. We found that in Saccharomyces cerevisiae this approach recapitulated the reported mutation rate of a wild-type strain and the mutator phenotype of a shu1Δ mutant. In C. glabrata, the GFP reporter captured the mutation rate increases caused either by a genotoxic agent or by deletion of DNA mismatch repair gene MSH2, as well as the specific mutational signature associated with msh2Δ. Finally, the reporter was used to measure the mutation rates of C. glabrata clinical isolates carrying different alleles of MSH2. Together, these results show that fluorescence-based mutation reporters can be used to measure mutation rates in microbes under conditions of unequal drug susceptibility to reveal new insights about drivers of mutagenesis.
Collapse
|
94
|
Cortés JCG, Curto MÁ, Carvalho VSD, Pérez P, Ribas JC. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol Adv 2019; 37:107352. [PMID: 30797093 DOI: 10.1016/j.biotechadv.2019.02.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/23/2019] [Accepted: 02/16/2019] [Indexed: 12/17/2022]
Abstract
In the past three decades invasive mycoses have globally emerged as a persistent source of healthcare-associated infections. The cell wall surrounding the fungal cell opposes the turgor pressure that otherwise could produce cell lysis. Thus, the cell wall is essential for maintaining fungal cell shape and integrity. Given that this structure is absent in host mammalian cells, it stands as an important target when developing selective compounds for the treatment of fungal infections. Consequently, treatment with echinocandins, a family of antifungal agents that specifically inhibits the biosynthesis of cell wall (1-3)β-D-glucan, has been established as an alternative and effective antifungal therapy. However, the existence of many pathogenic fungi resistant to single or multiple antifungal families, together with the limited arsenal of available antifungal compounds, critically affects the effectiveness of treatments against these life-threatening infections. Thus, new antifungal therapies are required. Here we review the fungal cell wall and its relevance in biotechnology as a target for the development of new antifungal compounds, disclosing the most promising cell wall inhibitors that are currently in experimental or clinical development for the treatment of some invasive mycoses.
Collapse
Affiliation(s)
- Juan Carlos G Cortés
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| | - M-Ángeles Curto
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Vanessa S D Carvalho
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
95
|
Pais P, Galocha M, Viana R, Cavalheiro M, Pereira D, Teixeira MC. Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection. MICROBIAL CELL 2019; 6:142-159. [PMID: 30854392 PMCID: PMC6402363 DOI: 10.15698/mic2019.03.670] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infections by the pathogenic yeasts Candida albicans and Candida glabrata are among the most common fungal diseases. The success of these species as human pathogens is contingent on their ability to resist antifungal therapy and thrive within the human host. C. glabrata is especially resilient to azole antifungal treatment, while C. albicans is best known for its wide array of virulence features. The core mechanisms that underlie antifungal resistance and virulence in these pathogens has been continuously addressed, but the investigation on how such mechanisms evolve according to each environment is scarcer. This review aims to explore current knowledge on micro-evolution experiments to several treatment and host-associated conditions in C. albicans and C. glabrata. The analysis of adaptation strategies that evolve over time will allow to better understand the mechanisms by which Candida species are able to achieve stable phenotypes in real-life scenarios, which are the ones that should constitute the most interesting drug targets.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
96
|
Inflammatory Cell Recruitment in Candida glabrata Biofilm Cell-Infected Mice Receiving Antifungal Chemotherapy. J Clin Med 2019; 8:jcm8020142. [PMID: 30691087 PMCID: PMC6406391 DOI: 10.3390/jcm8020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Due to a high rate of antifungal resistance, Candida glabrata is one of the most prevalent Candida spp. linked to systemic candidiasis, which is particularly critical in catheterized patients. The goal of this work was to simulate a systemic infection exclusively derived from C. glabrata biofilm cells and to evaluate the effectiveness of the treatment of two echinocandins—caspofungin (Csf) and micafungin (Mcf). (2) Methods: CD1 mice were infected with 48 h-biofilm cells of C. glabrata and then treated with Csf or Mcf. After 72 h, the efficacy of each drug was evaluated to assess the organ fungal burden through colony forming units (CFU) counting. The immune cell recruitment into target organs was evaluated by flow cytometry or histopathology analysis. (3) Results: Fungal burden was found to be higher in the liver than in the kidneys. However, none of the drugs was effective in completely eradicating C. glabrata biofilm cells. At the evaluated time point, flow cytometry analysis showed a predominant mononuclear response in the spleen, which was also evident in the liver and kidneys of the infected mice, as observed by histopathology analysis. (4) Conclusions: Echinocandins do not have a significant impact on liver and kidney fungal burden, or recruited inflammatory infiltrate, when mice are intravenously (i.v.) infected with C. glabrata biofilm-grown cells.
Collapse
|
97
|
Spontaneous Mutational Frequency and FKS Mutation Rates Vary by Echinocandin Agent against Candida glabrata. Antimicrob Agents Chemother 2018; 63:AAC.01692-18. [PMID: 30373796 DOI: 10.1128/aac.01692-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/13/2018] [Indexed: 01/05/2023] Open
Abstract
Echinocandins are front-line agents for treatment of invasive candidiasis. There are no reported agent-specific differences in Candida mutational frequency of resistance or propensity to develop FKS mutations. The objective of this study was to measure spontaneous and FKS mutation rates among Candida glabrata strains. Twenty bloodstream isolates from patients with or without prior echinocandin exposure were included. Minimum inhibitory concentrations (MICs), minimum fungicidal concentrations (MFCs), and mutation prevention concentrations were higher for caspofungin than for anidulafungin (P < 0.0001) and micafungin (P < 0.0001). Mutational frequencies of resistance at 3× the baseline MIC were highest for caspofungin and lowest for micafungin. A total of 247 isolates were recovered at or above the MFC for caspofungin (n = 159), anidulafungin (n = 74), or micafungin (n = 14). Agent-specific MIC increases were noted for anidulafungin and caspofungin, but not micafungin. Thirty-three percent of isolates harbored hot spot mutations in FKS1 (n = 6) or FKS2 (n = 76). Mutations at the Ser629 (Fks1) or Ser663 (Fks2) loci were more common after selection with anidulafungin or micafungin than with caspofungin (P = 0.003). Four isolates demonstrated >4-fold increases in MICs without FKS hot spot mutations; three of these harbored Fks2 mutations upstream of hot spot 1. The final isolate was FKS1 and FKS2 wild-type, but the 50% inhibitory concentrations of caspofungin and micafungin were increased 2.7- and 8-fold, respectively. In conclusion, micafungin may be superior in vitro to the other agents in limiting the emergence of resistance among C. glabrata Caspofungin exposure may be most likely to promote resistance development. These data provide a foundation for future investigations of newly developed echinocandin agents.
Collapse
|
98
|
Site-Directed Mutagenesis of the 1,3-β-Glucan Synthase Catalytic Subunit of Pneumocystis jirovecii and Susceptibility Assays Suggest Its Sensitivity to Caspofungin. Antimicrob Agents Chemother 2018; 62:AAC.01159-18. [PMID: 30249686 DOI: 10.1128/aac.01159-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022] Open
Abstract
The echinocandin caspofungin inhibits the catalytic subunit Gsc1 of the enzymatic complex synthesizing 1,3-β-glucan, an essential compound of the fungal wall. Studies with rodents showed that caspofungin is effective against Pneumocystis asci. However, its efficacy against asci of Pneumocystis jirovecii, the species infecting exclusively humans, remains controversial. The aim of this study was to assess the sensitivity to caspofungin of the P. jirovecii Gsc1 subunit, as well as of those of Pneumocystis carinii and Pneumocystis murina infecting, respectively, rats and mice. In the absence of an established in vitro culture method for Pneumocystis species, we used functional complementation of the Saccharomyces cerevisiae gsc1 deletant. In the fungal pathogen Candida albicans, mutations leading to amino acid substitutions in Gsc1 confer resistance to caspofungin. We introduced the corresponding mutations into the Pneumocystis gsc1 genes using site-directed mutagenesis. In spot dilution tests, the sensitivity to caspofungin of the complemented strains decreased with the number of mutations introduced, suggesting that the wild-type enzymes are sensitive. The MICs of caspofungin determined by Etest and YeastOne for strains complemented with Pneumocystis enzymes (respectively, 0.125 and 0.12 μg/ml) were identical to those upon complementation with the enzyme of C. albicans, for which caspofungin presents low MICs. However, they were lower than the MICs upon complementation with the enzyme of the resistant species Candida parapsilosis (0.19 and 0.25 μg/ml). Sensitivity levels of Gsc1 enzymes of the three Pneumocystis species were similar. Our results suggest that P. jirovecii is sensitive to caspofungin during infections, as are P. carinii and P. murina.
Collapse
|
99
|
Brejová B, Lichancová H, Brázdovič F, Hegedűsová E, Forgáčová Jakúbková M, Hodorová V, Džugasová V, Baláž A, Zeiselová L, Cillingová A, Neboháčová M, Raclavský V, Tomáška Ľ, Lang BF, Vinař T, Nosek J. Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Curr Genet 2018; 65:539-560. [PMID: 30456648 DOI: 10.1007/s00294-018-0904-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023]
Abstract
The yeast Magnusiomyces capitatus is an opportunistic human pathogen causing rare yet severe infections, especially in patients with hematological malignancies. Here, we report the 20.2 megabase genome sequence of an environmental strain of this species as well as the genome sequences of eight additional isolates from human and animal sources providing an insight into intraspecies variation. The distribution of single-nucleotide variants is indicative of genetic recombination events, supporting evidence for sexual reproduction in this heterothallic yeast. Using RNAseq-aided annotation, we identified genes for 6518 proteins including several expanded families such as kexin proteases and Hsp70 molecular chaperones. Several of these families are potentially associated with the ability of M. capitatus to infect and colonize humans. For the purpose of comparative analysis, we also determined the genome sequence of a closely related yeast, Magnusiomyces ingens. The genome sequences of M. capitatus and M. ingens exhibit many distinct features and represent a basis for further comparative and functional studies.
Collapse
Affiliation(s)
- Bronislava Brejová
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Hana Lichancová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Brázdovič
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Eva Hegedűsová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Viktória Hodorová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimíra Džugasová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucia Zeiselová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrea Cillingová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martina Neboháčová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladislav Raclavský
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Ľubomír Tomáška
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Tomáš Vinař
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Nosek
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
100
|
Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. JOURNAL OF FUNGI (BASEL, SWITZERLAND) 2018; 4:jof4030105. [PMID: 30200517 PMCID: PMC6162769 DOI: 10.3390/jof4030105] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR: azole + echinocandin) adaptive resistance. Neither mechanism of resistance is intrinsic to C. glabrata, since stable genetic resistance depends on mutation of drug target genes, FKS1 and FKS2 (echinocandin resistance), and a transcription factor, PDR1, which controls expression of major drug transporters, such as CDR1 (azole resistance). However, another hallmark of C. glabrata is the ability to withstand drug pressure both in vitro and in vivo prior to stable "genetic escape". Additionally, these resistance events can arise within individual patients, which underscores the importance of understanding how this fungus is adapting to its environment and to drug exposure in vivo. Here, we explore the evolution of echinocandin resistance as a multistep model that includes general cell stress, drug adaptation (tolerance), and genetic escape. The extensive genetic diversity reported in C. glabrata is highlighted.
Collapse
|