51
|
Qi W, Cascarano MC, Schlapbach R, Katharios P, Vaughan L, Seth-Smith HMB. Ca. Endozoicomonas cretensis: A Novel Fish Pathogen Characterized by Genome Plasticity. Genome Biol Evol 2018; 10:1363-1374. [PMID: 29726925 PMCID: PMC6007542 DOI: 10.1093/gbe/evy092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Endozoicomonas bacteria are generally beneficial symbionts of diverse marine invertebrates including reef-building corals, sponges, sea squirts, sea slugs, molluscs, and Bryozoans. In contrast, the recently reported Ca. Endozoicomonas cretensis was identified as a vertebrate pathogen, causing epitheliocystis in fish larvae resulting in massive mortality. Here, we described the Ca. E. cretensis draft genome, currently undergoing genome decay as evidenced by massive insertion sequence (IS element) expansion and pseudogene formation. Many of the insertion sequences are also predicted to carry outward-directed promoters, implying that they may be able to modulate the expression of neighbouring coding sequences (CDSs). Comparative genomic analysis has revealed many Ca. E. cretensis-specific CDSs, phage integration and novel gene families. Potential virulence related CDSs and machineries were identified in the genome, including secretion systems and related effector proteins, and systems related to biofilm formation and directed cell movement. Mucin degradation would be of importance to a fish pathogen, and many candidate CDSs associated with this pathway have been identified. The genome may reflect a bacterium in the process of changing niche from symbiont to pathogen, through expansion of virulence genes and some loss of metabolic capacity.
Collapse
Affiliation(s)
- Weihong Qi
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Maria Chiara Cascarano
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Lloyd Vaughan
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland.,Pathovet AG, Tagelswangen, Switzerland
| | - Helena M B Seth-Smith
- Functional Genomics Center Zurich, University of Zurich, Switzerland.,Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
52
|
Beurmann S, Ushijima B, Videau P, Svoboda CM, Chatterjee A, Aeby GS, Callahan SM. Dynamics of acute Montipora white syndrome: bacterial communities of healthy and diseased M. capitata colonies during and after a disease outbreak. Microbiology (Reading) 2018; 164:1240-1253. [DOI: 10.1099/mic.0.000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Silvia Beurmann
- †Present address: Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- 2Hawai‘i Institute of Marine Biology, Kāne‘ohe, HI, USA
- 1Department of Microbiology, Universtiy of Hawai‘i at Mānoa, Honolulu, HI, USA
| | - Blake Ushijima
- 3Oregon State University, College of Veterinary Medicine, Corvallis, OR, USA
| | - Patrick Videau
- 4Dakota State University, College of Arts and Sciences, Madison, SD, USA
| | - Christina M. Svoboda
- 1Department of Microbiology, Universtiy of Hawai‘i at Mānoa, Honolulu, HI, USA
- 2Hawai‘i Institute of Marine Biology, Kāne‘ohe, HI, USA
| | | | - Greta S. Aeby
- 2Hawai‘i Institute of Marine Biology, Kāne‘ohe, HI, USA
| | - Sean M. Callahan
- 1Department of Microbiology, Universtiy of Hawai‘i at Mānoa, Honolulu, HI, USA
- 2Hawai‘i Institute of Marine Biology, Kāne‘ohe, HI, USA
| |
Collapse
|
53
|
Putnam HM, Barott KL, Ainsworth TD, Gates RD. The Vulnerability and Resilience of Reef-Building Corals. Curr Biol 2018; 27:R528-R540. [PMID: 28586690 DOI: 10.1016/j.cub.2017.04.047] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reef-building corals provide the foundation for the structural and biological diversity of coral-reef ecosystems. These massive biological structures, which can be seen from space, are the culmination of complex interactions between the tiny polyps of the coral animal in concert with its unicellular symbiotic algae and a wide diversity of closely associated microorganisms (bacteria, archaea, fungi, and viruses). While reef-building corals have persisted in various forms for over 200 million years, human-induced conditions threaten their function and persistence. The scope for loss associated with the destruction of coral reef systems is economically, biologically, physically and culturally immense. Here, we provide a micro-to-macro perspective on the biology of scleractinian corals and discuss how cellular processes of the host and symbionts potentially affect the response of these reef builders to the wide variety of both natural and anthropogenic stressors encountered by corals in the Anthropocene. We argue that the internal physicochemical settings matter to both the performance of the host and microbiome, as bio-physical feedbacks may enhance stress tolerance through environmentally mediated host priming and effects on microbiome ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Hollie M Putnam
- University of Rhode Island, Department of Biological Sciences, Kingston, RI, USA.
| | - Katie L Barott
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA; Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| | - Tracy D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Australia
| | - Ruth D Gates
- Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| |
Collapse
|
54
|
Shiu JH, Ding JY, Tseng CH, Lou SP, Mezaki T, Wu YT, Wang HI, Tang SL. A Newly Designed Primer Revealed High Phylogenetic Diversity of Endozoicomonas in Coral Reefs. Microbes Environ 2018; 33:172-185. [PMID: 29760298 PMCID: PMC6031392 DOI: 10.1264/jsme2.me18054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/08/2018] [Indexed: 11/29/2022] Open
Abstract
Endozoicomonas bacteria are commonly regarded as having a potentially symbiotic relationship with their coral hosts. However, their diversity and phylogeny in samples collected from various sources remain unclear. Therefore, we designed an Endozoicomonas-specific primer paired with a bacterial universal primer to detect the 16S ribosomal RNA (rRNA) genes of this taxon and conducted an in-depth investigation of the Endozoicomonas community structure in reef-building corals. The primer had high specificity in the V3-V4 region (95.6%) and its sensitivity was high, particularly when Endozoicomonas was rare in samples (e.g., in seawater, which had a higher alpha diversity of Endozoicomonas than corals). In coral samples, predominant V3-V4 ribotypes had greater divergence than predominant V1-V2 ribotypes, and were grouped into at least 9 novel clades in a phylogenetic tree, indicating Endozoicomonas had high phylogenetic diversity. Divergence within this genus was potentially higher than that among 7 outgroup genera based on the phylogenetic distances of partial 16S rDNA sequences, suggesting that the taxonomy of this genus needs to be revised. In conclusion, dominant Endozoicomonas populations had variable phylogenies; furthermore, the newly designed primers may be useful molecular tools for the reliable detection of the Endozoicomonas community in marine environments.
Collapse
Affiliation(s)
- Jia-Ho Shiu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Graduate Institute of Biotechnology, National Chung-Hsing UniversityTaichungTaiwan
| | - Jiun-Yan Ding
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Ching-Hung Tseng
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Institute of Biomedical Informatics, National Yang-Ming UniversityTaipeiTaiwan
| | - Shueh-Ping Lou
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Takuma Mezaki
- Biological Institute on Kuroshio, Kuroshio Biological Research FoundationKochiJapan
| | - Yu-Ting Wu
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Department of Forestry, National Pingtung University of Science and TechnologyPingtungTaiwan
| | - Hsiang-Iu Wang
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Sen-Lin Tang
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichungTaiwan
| |
Collapse
|
55
|
van Oppen MJH, Bongaerts P, Frade P, Peplow L, Boyd SE, Nim HT, Bay LK. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol Ecol 2018; 27:2956-2971. [DOI: 10.1111/mec.14763] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine Science; Townsville MC Qld Australia
- School of BioSciences; University of Melbourne; Parkville Vic. Australia
| | - Pim Bongaerts
- Global Change Institute; The University of Queensland; St Lucia Qld Australia
- California Academy of Sciences; San Francisco California
| | - Pedro Frade
- Centre of Marine Sciences (CCMAR); University of Algarve; Faro Portugal
| | - Lesa M. Peplow
- Australian Institute of Marine Science; Townsville MC Qld Australia
| | - Sarah E. Boyd
- Faculty of Information Technology; Monash University; Melbourne Vic. Australia
| | - Hieu T. Nim
- Faculty of Information Technology; Monash University; Melbourne Vic. Australia
- Australian Regenerative Medicine Institute; Monash University; Melbourne Vic. Australia
| | - Line K. Bay
- Australian Institute of Marine Science; Townsville MC Qld Australia
| |
Collapse
|
56
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
57
|
Laffy PW, Wood‐Charlson EM, Turaev D, Jutz S, Pascelli C, Botté ES, Bell SC, Peirce TE, Weynberg KD, van Oppen MJH, Rattei T, Webster NS. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol 2018; 20:2125-2141. [DOI: 10.1111/1462-2920.14110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Patrick W. Laffy
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | | | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Sabrina Jutz
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Cecilia Pascelli
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- College of Science and EngineeringJames Cook UniversityTownsville QLD Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook UniversityTownsville QLD Australia
| | | | - Sara C. Bell
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Tyler E. Peirce
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Karen D. Weynberg
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- School of BiosciencesUniversity of Melbourne, ParkvilleMelbourneVIC 3010 Australia
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Nicole S. Webster
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- Austalian Centre for Ecogenomics, University of QueenslandBrisbaneQLD 4072 Australia
| |
Collapse
|
58
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|
59
|
Roth‐Schulze AJ, Pintado J, Zozaya‐Valdés E, Cremades J, Ruiz P, Kjelleberg S, Thomas T. Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga
Ulva
spp. Mol Ecol 2018; 27:1952-1965. [DOI: 10.1111/mec.14529] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Alexandra J. Roth‐Schulze
- Centre for Marine Bio‐Innovation School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - José Pintado
- Centre for Marine Bio‐Innovation School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
- Instituto de Investigacións Mariñas (IIM ‐ CSIC) Vigo Spain
| | - Enrique Zozaya‐Valdés
- Centre for Marine Bio‐Innovation School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Javier Cremades
- BIOCOST Centro de Investigaciones Científicas Avanzadas (CICA) Universidade da Coruña A Coruña Spain
| | - Patricia Ruiz
- Instituto de Investigacións Mariñas (IIM ‐ CSIC) Vigo Spain
| | - Staffan Kjelleberg
- Centre for Marine Bio‐Innovation School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Torsten Thomas
- Centre for Marine Bio‐Innovation School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| |
Collapse
|
60
|
Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, Aurelle D, Mitta G, Toulza E. Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. MICROBIOME 2018; 6:39. [PMID: 29463295 PMCID: PMC5819220 DOI: 10.1186/s40168-018-0423-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/11/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although the term holobiont has been popularized in corals with the advent of the hologenome theory of evolution, the underlying concepts are still a matter of debate. Indeed, the relative contribution of host and environment and especially thermal regime in shaping the microbial communities should be examined carefully to evaluate the potential role of symbionts for holobiont adaptation in the context of global changes. We used the sessile, long-lived, symbiotic and environmentally sensitive reef-building coral Pocillopora damicornis to address these issues. RESULTS We sampled Pocillopora damicornis colonies corresponding to two different mitochondrial lineages in different geographic areas displaying different thermal regimes: Djibouti, French Polynesia, New Caledonia, and Taiwan. The community composition of bacteria and the algal endosymbiont Symbiodinium were characterized using high-throughput sequencing of 16S rRNA gene and internal transcribed spacer, ITS2, respectively. Bacterial microbiota was very diverse with high prevalence of Endozoicomonas, Arcobacter, and Acinetobacter in all samples. While Symbiodinium sub-clade C1 was dominant in Taiwan and New Caledonia, D1 was dominant in Djibouti and French Polynesia. Moreover, we also identified a high background diversity (i.e., with proportions < 1%) of A1, C3, C15, and G Symbiodinum sub-clades. Using redundancy analyses, we found that the effect of geography was very low for both communities and that host genotypes and temperatures differently influenced Symbiodinium and bacterial microbiota. Indeed, while the constraint of host haplotype was higher than temperatures on bacterial composition, we showed for the first time a strong relationship between the composition of Symbiodinium communities and minimal sea surface temperatures. CONCLUSION Because Symbiodinium assemblages are more constrained by the thermal regime than bacterial communities, we propose that their contribution to adaptive capacities of the holobiont to temperature changes might be higher than the influence of bacterial microbiota. Moreover, the link between Symbiodinium community composition and minimal temperatures suggests low relative fitness of clade D at lower temperatures. This observation is particularly relevant in the context of climate change, since corals will face increasing temperatures as well as much frequent abnormal cold episodes in some areas of the world.
Collapse
Affiliation(s)
- Kelly Brener-Raffalli
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Camille Clerissi
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Mehdi Adjeroud
- ENTROPIE, UMR 9220 & Laboratoire d’Excellence CORAIL, IRD, University of Perpignan Via Domitia, Perpignan, France
| | - François Bonhomme
- ISEM, UMR 5554, CNRS, University of Montpellier, IRD, EPHE, Sète, France
| | - Marine Pratlong
- IMBE, UMR 7263, Aix Marseille University, CNRS, IRD, Avignon University, Marseille, France
| | - Didier Aurelle
- IMBE, UMR 7263, Aix Marseille University, CNRS, IRD, Avignon University, Marseille, France
| | - Guillaume Mitta
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Eve Toulza
- IHPE, UMR 5244, University of Perpignan Via Domitia, CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
61
|
Exploring coral microbiome assemblages in the South China Sea. Sci Rep 2018; 8:2428. [PMID: 29402898 PMCID: PMC5799258 DOI: 10.1038/s41598-018-20515-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/18/2018] [Indexed: 12/29/2022] Open
Abstract
Coral reefs are significant ecosystems. The ecological success of coral reefs relies on not only coral-algal symbiosis but also coral-microbial partnership. However, microbiome assemblages in the South China Sea corals remain largely unexplored. Here, we compared the microbiome assemblages of reef-building corals Galaxea (G. fascicularis) and Montipora (M. venosa, M. peltiformis, M. monasteriata) collected from five different locations in the South China Sea using massively-parallel sequencing of 16S rRNA gene and multivariate analysis. The results indicated that microbiome assemblages for each coral species were unique regardless of location and were different from the corresponding seawater. Host type appeared to drive the coral microbiome assemblages rather than location and seawater. Network analysis was employed to explore coral microbiome co-occurrence patterns, which revealed 61 and 80 co-occurring microbial species assembling the Galaxea and Montipora microbiomes, respectively. Most of these co-occurring microbial species were commonly found in corals and were inferred to play potential roles in host nutrient metabolism; carbon, nitrogen, sulfur cycles; host detoxification; and climate change. These findings suggest that the co-occurring microbial species explored might be essential to maintain the critical coral-microbial partnership. The present study provides new insights into coral microbiome assemblages in the South China Sea.
Collapse
|
62
|
How Does the Coral Microbiome Cause, Respond to, or Modulate the Bleaching Process? ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
63
|
Paulino GVB, Félix CR, Broetto L, Landell MF. Diversity of culturable yeasts associated with zoanthids from Brazilian reef and its relation with anthropogenic disturbance. MARINE POLLUTION BULLETIN 2017; 123:253-260. [PMID: 28843512 DOI: 10.1016/j.marpolbul.2017.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Some of the main threats to coral reefs come from human actions on marine environment, such as tourism, overfishing and pollution from urban development. While several studies have demonstrated an association between bacteria and corals, demonstrating how these communities react to different anthropogenic stressors, yeast communities associated with corals have received far less attention from researchers. The aim of this work was therefore to describe cultivable yeasts associated with three coral species and to evaluate the influence of sewage discharge on yeasts community. We obtained 130 isolates, mostly belonging to phylum Ascomycota and many of them had previously been isolated from human samples or are considered pathogens. The mycobiota was more similar among corals collected from the same reef, indicating that the composition of reef yeast community is more influenced by environmental conditions than host species. We suggest further studies to elucidate which factors are most influential on the composition of the coral-associated yeast community.
Collapse
Affiliation(s)
- Gustavo Vasconcelos Bastos Paulino
- Universidade Federal de Alagoas, Maceió, AL, Brazil; Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP: 57072-900 Maceió, AL, Brazil
| | - Ciro Ramon Félix
- Universidade Federal de Alagoas, Maceió, AL, Brazil; Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP: 57072-900 Maceió, AL, Brazil
| | | | | |
Collapse
|
64
|
Godoy-Vitorino F, Ruiz-Diaz CP, Rivera-Seda A, Ramírez-Lugo JS, Toledo-Hernández C. The microbial biosphere of the coral Acropora cervicornis in Northeastern Puerto Rico. PeerJ 2017; 5:e3717. [PMID: 28875073 PMCID: PMC5580386 DOI: 10.7717/peerj.3717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/29/2017] [Indexed: 01/04/2023] Open
Abstract
Background Coral reefs are the most biodiverse ecosystems in the marine realm, and they not only contribute a plethora of ecosystem services to other marine organisms, but they also are beneficial to humankind via, for instance, their role as nurseries for commercially important fish species. Corals are considered holobionts (host + symbionts) since they are composed not only of coral polyps, but also algae, other microbial eukaryotes and prokaryotes. In recent years, Caribbean reef corals, including the once-common scleractinian coral Acropora cervicornis, have suffered unprecedented mortality due to climate change-related stressors. Unfortunately, our basic knowledge of the molecular ecophysiology of reef corals, particularly with respect to their complex bacterial microbiota, is currently too poor to project how climate change will affect this species. For instance, we do not know how light influences microbial communities of A. cervicornis, arguably the most endangered of all Caribbean coral species. To this end, we characterized the microbiota of A. cervicornis inhabiting water depths with different light regimes. Methods Six A. cervicornis fragments from different individuals were collected at two different depths (three at 1.5 m and three at 11 m) from a reef 3.2 km off the northeastern coast of Puerto Rico. We characterized the microbial communities by sequencing the 16S rRNA gene region V4 with the Illumina platform. Results A total of 173,137 good-quality sequences were binned into 803 OTUs with a 97% similarity. We uncovered eight bacterial phyla at both depths with a dominance of 725 Rickettsiales OTUs (Proteobacteria). A fewer number (38) of low dominance OTUs varied by depth and taxa enriched in shallow water corals included Proteobacteria (e.g. Rhodobacteraceae and Serratia) and Firmicutes (Streptococcus). Those enriched in deeper water corals featured different Proteobacterial taxa (Campylobacterales and Bradyrhizobium) and Firmicutes (Lactobacillus). Discussion Our results confirm that the microbiota of A. cervicornis inhabiting the northeastern region of Puerto Rico is dominated by a Rickettsiales-like bacterium and that there are significant changes in less dominant taxa at different water depths. These changes in less dominant taxa may potentially impact the coral’s physiology, particularly with respect to its ability to respond to future increases in temperature and CO2.
Collapse
Affiliation(s)
- Filipa Godoy-Vitorino
- Department of Natural Sciences, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, San Juan, PR, USA
| | - Claudia P Ruiz-Diaz
- Department of Environmental Sciences, University of Puerto Rico Rio Piedras Campus, San Juan, PR, USA.,Sociedad Ambiente Marino, San Juan, PR, USA
| | - Abigail Rivera-Seda
- Department of Natural Sciences, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, San Juan, PR, USA
| | - Juan S Ramírez-Lugo
- Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, PR, USA
| | | |
Collapse
|
65
|
Walsh K, Haggerty JM, Doane MP, Hansen JJ, Morris MM, Moreira APB, de Oliveira L, Leomil L, Garcia GD, Thompson F, Dinsdale EA. Aura-biomes are present in the water layer above coral reef benthic macro-organisms. PeerJ 2017; 5:e3666. [PMID: 28828261 PMCID: PMC5562181 DOI: 10.7717/peerj.3666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.
Collapse
Affiliation(s)
- Kevin Walsh
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - J Matthew Haggerty
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Michael P Doane
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - John J Hansen
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Megan M Morris
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Ana Paula B Moreira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louisi de Oliveira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Leomil
- Macae campus, Federal University of Rio de Janeiro, Macae, Rio de Janeiro, Brazil
| | - Gizele D Garcia
- Macae campus, Federal University of Rio de Janeiro, Macae, Rio de Janeiro, Brazil.,Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
66
|
Damjanovic K, Blackall LL, Webster NS, van Oppen MJH. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb Biotechnol 2017; 10:1236-1243. [PMID: 28696067 PMCID: PMC5609283 DOI: 10.1111/1751-7915.12769] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
The decline of coral reefs due to anthropogenic disturbances is having devastating impacts on biodiversity and ecosystem services. Here we highlight the potential and challenges of microbial manipulation strategies to enhance coral tolerance to stress and contribute to coral reef restoration and protection.
![]()
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| |
Collapse
|
67
|
Roach TNF, Abieri ML, George EE, Knowles B, Naliboff DS, Smurthwaite CA, Kelly LW, Haas AF, Rohwer FL. Microbial bioenergetics of coral-algal interactions. PeerJ 2017. [PMID: 28649468 PMCID: PMC5482263 DOI: 10.7717/peerj.3423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time) and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify microbial impacts on reef health.
Collapse
Affiliation(s)
- Ty N F Roach
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Maria L Abieri
- Department of Biology, San Diego State University, San Diego, CA, United States of America.,Department of Marine Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emma E George
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Ben Knowles
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Douglas S Naliboff
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Cameron A Smurthwaite
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Linda Wegley Kelly
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Andreas F Haas
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Forest L Rohwer
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
68
|
Yang SH, Tseng CH, Huang CR, Chen CP, Tandon K, Lee STM, Chiang PW, Shiu JH, Chen CA, Tang SL. Long-Term Survey Is Necessary to Reveal Various Shifts of Microbial Composition in Corals. Front Microbiol 2017; 8:1094. [PMID: 28659905 PMCID: PMC5468432 DOI: 10.3389/fmicb.2017.01094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
The coral holobiont is the assemblage of coral host and its microbial symbionts, which functions as a unit and is responsive to host species and environmental factors. Although monitoring surveys have been done to determine bacteria associated with coral, none have persisted for >1 year. Therefore, potential variations in minor or dominant community members that occur over extended intervals have not been characterized. In this study, 16S rRNA gene amplicon pyrosequencing was used to investigate the relationship between bacterial communities in healthy Stylophora pistillata in tropical and subtropical Taiwan over 2 years, apparently one of the longest surveys of coral-associated microbes. Dominant bacterial genera in S. pistillata had disparate changes in different geographical setups, whereas the constitution of minor bacteria fluctuated in abundance over time. We concluded that dominant bacteria (Acinetobacter, Propionibacterium, and Pseudomonas) were stable in composition, regardless of seasonal and geographical variations, whereas Endozoicomonas had a geographical preference. In addition, by combining current data with previous studies, we concluded that a minor bacteria symbiont, Ralstonia, was a keystone species in coral. Finally, we concluded that long-term surveys for coral microbial communities were necessary to detect compositional shifts, especially for minor bacterial members in corals.
Collapse
Affiliation(s)
- Shan-Hua Yang
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| | | | | | | | - Kshitij Tandon
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia SinicaTaipei, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan
| | - Sonny T M Lee
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago Medicine, ChicagoIL, United States
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| | - Jia-Ho Shiu
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia SinicaTaipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Chaolun A Chen
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| |
Collapse
|
69
|
Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, Pan Z, Yao Q, Wang W, Wu Z. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress. Front Microbiol 2017. [PMID: 28642738 PMCID: PMC5462945 DOI: 10.3389/fmicb.2017.00979] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.
Collapse
Affiliation(s)
- Jiayuan Liang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Ziliang Pan
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Qiucui Yao
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Wenhuan Wang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Zhengchao Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
70
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Sonthirod C, Naktang C, Thongtham N, Tangphatsornruang S. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci Rep 2017; 7:2774. [PMID: 28584301 PMCID: PMC5459821 DOI: 10.1038/s41598-017-03139-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
Coral reefs are a complex ecosystem consisting of coral animals and a vast array of associated symbionts including the dinoflagellate Symbiodinium, fungi, viruses and bacteria. Several studies have highlighted the importance of coral-associated bacteria and their fundamental roles in fitness and survival of the host animal. The scleractinian coral Porites lutea is one of the dominant reef-builders in the Indo-West Pacific. Currently, very little is known about the composition and structure of bacterial communities across P. lutea reefs. The purpose of this study is twofold: to demonstrate the advantages of using PacBio circular consensus sequencing technology in microbial community studies and to investigate the diversity and structure of P. lutea-associated microbiome in the Indo-Pacific. This is the first metagenomic study of marine environmental samples that utilises the PacBio sequencing system to capture full-length 16S rRNA sequences. We observed geographically distinct coral-associated microbial profiles between samples from the Gulf of Thailand and Andaman Sea. Despite the geographical and environmental impacts on the coral-host interactions, we identified a conserved community of bacteria that were present consistently across diverse reef habitats. Finally, we demonstrated the superior performance of full-length 16S rRNA sequences in resolving taxonomic uncertainty of coral associates at the species level.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lalita Putchim
- Phuket Marine Biological Center, Phuket, 83000, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
71
|
Brown T, Otero C, Grajales A, Rodriguez E, Rodriguez-Lanetty M. Worldwide exploration of the microbiome harbored by the cnidarian model, Exaiptasia pallida (Agassiz in Verrill, 1864) indicates a lack of bacterial association specificity at a lower taxonomic rank. PeerJ 2017; 5:e3235. [PMID: 28533949 PMCID: PMC5436572 DOI: 10.7717/peerj.3235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/27/2017] [Indexed: 02/01/2023] Open
Abstract
Examination of host-microbe interactions in early diverging metazoans, such as cnidarians, is of great interest from an evolutionary perspective to understand how host-microbial consortia have evolved. To address this problem, we analyzed whether the bacterial community associated with the cosmopolitan and model sea anemone Exaiptasia pallida shows specific patterns across worldwide populations ranging from the Caribbean Sea, and the Atlantic and Pacific oceans. By comparing sequences of the V1–V3 hypervariable regions of the bacterial 16S rRNA gene, we revealed that anemones host a complex and diverse microbial community. When examined at the phylum level, bacterial diversity and abundance associated with E. pallida are broadly conserved across geographic space with samples, containing largely Proteobacteria and Bacteroides. However, the species-level makeup within these phyla differs drastically across space suggesting a high-level core microbiome with local adaptation of the constituents. Indeed, no bacterial OTU was ubiquitously found in all anemones samples. We also revealed changes in the microbial community structure after rearing anemone specimens in captivity within a period of four months. Furthermore, the variation in bacterial community assemblages across geographical locations did not correlate with the composition of microalgal Symbiodinium symbionts. Our findings contrast with the postulation that cnidarian hosts might actively select and maintain species-specific microbial communities that could have resulted from an intimate co-evolution process. The fact that E. pallida is likely an introduced species in most sampled localities suggests that this microbial turnover is a relatively rapid process. Our findings suggest that environmental settings, not host specificity, seem to dictate bacterial community structure associated with this sea anemone. More than maintaining a specific composition of bacterial species some cnidarians associate with a wide range of bacterial species as long as they provide the same physiological benefits towards the maintenance of a healthy host. The examination of the previously uncharacterized bacterial community associated with the cnidarian sea anemone model E. pallida is the first global-scale study of its kind.
Collapse
Affiliation(s)
- Tanya Brown
- Biological Sciences, Florida International University, Miami, FL, USA
| | - Christopher Otero
- Biological Sciences, Florida International University, Miami, FL, USA
| | - Alejandro Grajales
- Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | | | | |
Collapse
|
72
|
Kellogg CA, Goldsmith DB, Gray MA. Biogeographic Comparison of Lophelia-Associated Bacterial Communities in the Western Atlantic Reveals Conserved Core Microbiome. Front Microbiol 2017; 8:796. [PMID: 28522997 PMCID: PMC5415624 DOI: 10.3389/fmicb.2017.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM). However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%). At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core sequences, whereas open Atlantic samples had a much higher proportion of locally consistent bacteria. Further, predictive functional profiling highlights the potential for the L. pertusa microbiome to contribute to chemoautotrophy, nutrient cycling, and antibiotic production.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Dawn B Goldsmith
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| | - Michael A Gray
- St. Petersburg Coastal and Marine Science Center, United States Geological Survey, St. PetersburgFL, USA
| |
Collapse
|
73
|
Gajigan AP, Diaz LA, Conaco C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiologyopen 2017; 6. [PMID: 28425179 PMCID: PMC5552946 DOI: 10.1002/mbo3.478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont.
Collapse
Affiliation(s)
- Andrian P Gajigan
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Leomir A Diaz
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
74
|
Reverter M, Sasal P, Tapissier-Bontemps N, Lecchini D, Suzuki M. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems. FEMS Microbiol Ecol 2017; 93:3738480. [DOI: 10.1093/femsec/fix051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
|
75
|
Water flow buffers shifts in bacterial community structure in heat-stressed Acropora muricata. Sci Rep 2017; 7:43600. [PMID: 28240318 PMCID: PMC5327421 DOI: 10.1038/srep43600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 11/16/2022] Open
Abstract
Deterioration of coral health and associated change in the coral holobiont’s bacterial community are often a result of different environmental stressors acting synergistically. There is evidence that water flow is important for a coral’s resistance to elevated seawater temperature, but there is no information on how water flow affects the coral-associated bacterial community under these conditions. In a laboratory cross-design experiment, Acropora muricata nubbins were subjected to interactive effects of seawater temperature (27 °C to 31 °C) and water flow (0.20 m s−1 and 0.03 m s−1). In an in situ experiment, water flow manipulation was conducted with three colonies of A. muricata during the winter and summer, by partially enclosing each colony in a clear plastic mesh box. 16S rRNA amplicon pyrosequencing showed an increase in the relative abundance of Flavobacteriales and Rhodobacterales in the laboratory experiment, and Vibrio spp. in the in situ experiment when corals were exposed to elevated temperature and slow water flow. In contrast, corals that were exposed to faster water flow under laboratory and in situ conditions had a stable bacterial community. These findings indicate that water flow plays an important role in the maintenance of specific coral-bacteria associations during times of elevated thermal stress.
Collapse
|
76
|
Weber L, DeForce E, Apprill A. Optimization of DNA extraction for advancing coral microbiota investigations. MICROBIOME 2017; 5:18. [PMID: 28179023 PMCID: PMC5299696 DOI: 10.1186/s40168-017-0229-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/04/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND DNA-based sequencing approaches are commonly used to identify microorganisms and their genes and document trends in microbial community diversity in environmental samples. However, extraction of microbial DNA from complex environmental samples like corals can be technically challenging, and extraction methods may impart biases on microbial community structure. METHODS We designed a two-phase study in order to propose a comprehensive and efficient method for DNA extraction from microbial cells present in corals and investigate if extraction method influences microbial community composition. During phase I, total DNA was extracted from seven coral species in a replicated experimental design using four different MO BIO Laboratories, Inc., DNA Isolation kits: PowerSoil®, PowerPlant® Pro, PowerBiofilm®, and UltraClean® Tissue & Cells (with three homogenization permutations). Technical performance of the treatments was evaluated using DNA yield and amplification efficiency of small subunit ribosomal RNA (SSU ribosomal RNA (rRNA)) genes. During phase II, potential extraction biases were examined via microbial community analysis of SSU rRNA gene sequences amplified from the most successful DNA extraction treatments. RESULTS In phase I of the study, the PowerSoil® and PowerPlant® Pro extracts contained low DNA concentrations, amplified poorly, and were not investigated further. Extracts from PowerBiofilm® and UltraClean® Tissue and Cells permutations were further investigated in phase II, and analysis of sequences demonstrated that overall microbial community composition was dictated by coral species and not extraction treatment. Finer pairwise comparisons of sequences obtained from Orbicella faveolata, Orbicella annularis, and Acropora humilis corals revealed subtle differences in community composition between the treatments; PowerBiofilm®-associated sequences generally had higher microbial richness and the highest coverage of dominant microbial groups in comparison to the UltraClean® Tissue and Cells treatments, a result likely arising from using a combination of different beads during homogenization. CONCLUSIONS Both the PowerBiofilm® and UltraClean® Tissue and Cells treatments are appropriate for large-scale analyses of coral microbiota. However, studies interested in detecting cryptic microbial members may benefit from using the PowerBiofilm® DNA treatment because of the likely enhanced lysis efficiency of microbial cells attributed to using a variety of beads during homogenization. Consideration of the methodology involved with microbial DNA extraction is particularly important for studies investigating complex host-associated microbiota.
Collapse
Affiliation(s)
- Laura Weber
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139 USA
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543 USA
| | | | - Amy Apprill
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543 USA
| |
Collapse
|
77
|
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol 2017; 25:125-140. [DOI: 10.1016/j.tim.2016.11.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
78
|
van de Water JAJM, Melkonian R, Voolstra CR, Junca H, Beraud E, Allemand D, Ferrier-Pagès C. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria. MICROBIAL ECOLOGY 2017; 73:466-478. [PMID: 27726033 DOI: 10.1007/s00248-016-0858-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/09/2016] [Indexed: 05/22/2023]
Abstract
Gorgonians are key habitat-forming species of Mediterranean benthic communities, but their populations have suffered from mass mortality events linked to high summer seawater temperatures and microbial disease. However, our knowledge on the diversity, dynamics and function of gorgonian-associated microbial communities is limited. Here, we analysed the spatial variability of the microbiomes of five sympatric gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia sarmentosa and Paramuricea clavata), collected from the Mediterranean Sea over a scale of ∼1100 km, using next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all gorgonian species were generally dominated by members of the genus Endozoicomonas, which were at very low abundance in the surrounding seawater. Although the composition of the core microbiome (operational taxonomic units consistently present in a species) was found to be unique for each host species, significant overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome composition were observed. Functional predictive profiling indicated that these differences could be attributed to seawater pollution. Taken together, our data indicate that gorgonian-associated microbiomes are composed of spatially conserved bacteria (core microbiome members) and locally variant members, and that local pollution may influence these local associations, potentially impacting gorgonian health.
Collapse
Affiliation(s)
| | - Rémy Melkonian
- Centre Scientifique de Monaco, 8 Quai Antoine 1, MC 98000, Monaco, Monaco
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Howard Junca
- Microbiomas Foundation - Division of Ecogenomics & Holobionts, Chia, Colombia
| | - Eric Beraud
- Centre Scientifique de Monaco, 8 Quai Antoine 1, MC 98000, Monaco, Monaco
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1, MC 98000, Monaco, Monaco
| | | |
Collapse
|
79
|
Paulino GVB, Broetto L, Pylro VS, Landell MF. Compositional shifts in bacterial communities associated with the coral Palythoa caribaeorum due to anthropogenic effects. MARINE POLLUTION BULLETIN 2017; 114:1024-1030. [PMID: 27889074 DOI: 10.1016/j.marpolbul.2016.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 11/18/2016] [Indexed: 05/06/2023]
Abstract
Corals harbor abundant and diverse prokaryotic communities that may be strongly influenced by human activities, which in turn compromise the normal functioning of coral species and predispose them to opportunistic infections. In this study, we investigated the effect of sewage dumping on the bacterial communities associated with the soft coral Palythoa caribaeorum at two sites in the Brazilian coast. We observed a dominance of bacterial species classified as human pathogens at sites exposed to untreated sewage discharge. The microbial diversity of undisturbed sites was more homogeneous and diverse and showed greater abundance. In addition, bacterial communities differed substantially between the exposed and undisturbed areas. The microbial community associated with the samples collected from the exposed sites revealed the anthropogenic effect caused by organic matter from untreated sewage dumping, with an abundance of pathogenic bacterial species.
Collapse
Affiliation(s)
- Gustavo Vasconcelos Bastos Paulino
- Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP 57072-900 Maceió, AL, Brazil
| | - Leonardo Broetto
- Universidade Federal de Alagoas, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, CEP 57309-005 Arapiraca, AL, Brazil
| | - Victor Satler Pylro
- René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP 57072-900 Maceió, AL, Brazil.
| |
Collapse
|
80
|
Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep 2017; 7:40579. [PMID: 28094347 PMCID: PMC5240137 DOI: 10.1038/srep40579] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/07/2016] [Indexed: 01/22/2023] Open
Abstract
Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.
Collapse
|
81
|
Morrow KM, Bromhall K, Motti CA, Munn CB, Bourne DG. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance. Appl Environ Microbiol 2017; 83:e02391-16. [PMID: 27795310 PMCID: PMC5165121 DOI: 10.1128/aem.02391-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml-1) than calculated natural concentrations (4.4 mg · ml-1). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. IMPORTANCE Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure.
Collapse
Affiliation(s)
| | - Katrina Bromhall
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom
| | - Cherie A Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Colin B Munn
- School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
82
|
White Syndrome-Affected Corals Have a Distinct Microbiome at Disease Lesion Fronts. Appl Environ Microbiol 2016; 83:AEM.02799-16. [PMID: 27815275 DOI: 10.1128/aem.02799-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 01/30/2023] Open
Abstract
Coral tissue loss diseases, collectively known as white syndromes (WSs), induce significant mortality on reefs throughout the Indo-Pacific, yet definitive confirmation of WS etiologies remains elusive. In this study, we integrated ecological disease monitoring, bacterial community profiling, in situ visualization of microbe-host interactions, and cellular responses of the host coral through an 18-month repeated-sampling regime. We assert that the observed pathogenesis of WS lesions on acroporid corals at Lizard Island (Great Barrier Reef) is not the result of apoptosis or infection by Vibrio bacteria, ciliates, fungi, cyanobacteria, or helminths. Histological analyses detected helminths, ciliates, fungi, and cyanobacteria in fewer than 25% of WS samples, and helminths and fungi were also observed in 12% of visually healthy samples. The abundances of Vibrio-affiliated sequences (assessed using 16S rRNA amplicon sequencing) did not differ significantly between health states and never exceeded 3.3% of reads in any individual sample. In situ visualization detected Vibrio bacteria only in summer WS lesion samples and revealed no signs of these bacteria in winter disease samples (or any healthy tissue samples), despite continued disease progression year round. However, a 4-fold increase in Rhodobacteraceae-affiliated bacterial sequences at WS lesion fronts suggests that this group of bacteria could play a role in WS pathogenesis and/or serve as a diagnostic criterion for disease differentiation. While the causative agent(s) underlying WSs remains elusive, the microbial and cellular processes identified in this study will help to identify and differentiate visually similar but potentially distinct WS etiologies. IMPORTANCE Over the past decade, a virulent group of coral diseases known as white syndromes have impacted coral reefs throughout the Indian and Pacific Oceans. This article provides a detailed case study of white syndromes to combine disease ecology, high-throughput microbial community profiling, and cellular-scale host-microbe visualization over seasonal time scales. We provide novel insights into the etiology of this devastating disease and reveal new diagnostic criteria that could be used to differentiate visually similar but etiologically distinct forms of white syndrome.
Collapse
|
83
|
Distinguishing between Microbial Habitats Unravels Ecological Complexity in Coral Microbiomes. mSystems 2016; 1:mSystems00143-16. [PMID: 27822559 PMCID: PMC5080407 DOI: 10.1128/msystems.00143-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023] Open
Abstract
The diverse prokaryotic communities associated with reef-building corals may provide important ecological advantages to their threatened hosts. The consistency of relationships between corals and specific prokaryotes, however, is debated, and the locations where microbially mediated processes occur in the host are not resolved. Here, we examined how the prokaryotic associates of five common Caribbean corals with different evolutionary and ecological traits differ across mucus and tissue habitats. We used physical and chemical separation of coral mucus and tissue and sequencing of partial small-subunit rRNA genes of bacteria and archaea from these samples to demonstrate that coral tissue and mucus harbor unique reservoirs of prokaryotes, with 23 to 49% and 31 to 56% of sequences exclusive to the tissue and mucus habitats, respectively. Across all coral species, we found that 46 tissue- and 22 mucus-specific microbial members consistently associated with the different habitats. Sequences classifying as "Candidatus Amoebophilus," Bacteroidetes-affiliated intracellular symbionts of amoebae, emerged as previously unrecognized tissue associates of three coral species. This study demonstrates how coral habitat differentiation enables highly resolved examination of ecological interactions between corals and their associated microorganisms and identifies previously unrecognized tissue and mucus associates of Caribbean corals for future targeted study. IMPORTANCE This study demonstrates that coral tissue or mucus habitats structure the microbiome of corals and that separation of these habitats facilitates identification of consistent microbial associates. Using this approach, we demonstrated that sequences related to "Candidatus Amoebophilus," recognized intracellular symbionts of amoebae, were highly associated with the tissues of Caribbean corals and possibly endosymbionts of a protistan host within corals, adding a further degree of intricacy to coral holobiont symbioses. Examining specific habitats within complex hosts such as corals is useful for targeting important microbial associations that may otherwise be masked by the sheer microbial diversity associated with all host habitats.
Collapse
|
84
|
Kellogg CA, Ross SW, Brooke SD. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ 2016; 4:e2529. [PMID: 27703865 PMCID: PMC5047221 DOI: 10.7717/peerj.2529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023] Open
Abstract
Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey , St. Petersburg , FL , United States of America
| | - Steve W Ross
- Center for Marine Science, University of North Carolina at Wilmington , Wilmington , NC , United States of America
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University , St. Teresa , FL , United States of America
| |
Collapse
|
85
|
Hernández-Zulueta J, Araya R, Vargas-Ponce O, Díaz-Pérez L, Rodríguez-Troncoso AP, Ceh J, Ríos-Jara E, Rodríguez-Zaragoza FA. First deep screening of bacterial assemblages associated with corals of the Tropical Eastern Pacific. FEMS Microbiol Ecol 2016; 92:fiw196. [DOI: 10.1093/femsec/fiw196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2016] [Indexed: 11/12/2022] Open
|
86
|
Lokmer A, Goedknegt MA, Thieltges DW, Fiorentino D, Kuenzel S, Baines JF, Wegner KM. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales. Front Microbiol 2016; 7:1367. [PMID: 27630625 PMCID: PMC5006416 DOI: 10.3389/fmicb.2016.01367] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics.
Collapse
Affiliation(s)
- Ana Lokmer
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research List auf Sylt, Germany
| | - M Anouk Goedknegt
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Utrecht University Texel, Netherlands
| | - David W Thieltges
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Utrecht University Texel, Netherlands
| | - Dario Fiorentino
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research List auf Sylt, Germany
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology Plön, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary BiologyPlön, Germany; Institute for Experimental Medicine, Christian-Albrechts-Universität zu KielKiel, Germany
| | - K Mathias Wegner
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research List auf Sylt, Germany
| |
Collapse
|
87
|
Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 2016; 100:8315-24. [PMID: 27557714 PMCID: PMC5018254 DOI: 10.1007/s00253-016-7777-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/01/2023]
Abstract
Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
Collapse
Affiliation(s)
- Matthew J Neave
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Amy Apprill
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
88
|
The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats. mBio 2016; 7:mBio.00560-16. [PMID: 27460792 PMCID: PMC4981706 DOI: 10.1128/mbio.00560-16] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats. Here, we propose that coral is a metaorganism hosting three functionally distinct microbial interactions: a ubiquitous core microbiome of very few symbiotic host-selected bacteria, a microbiome of spatially and/or regionally explicit core microbes filling functional niches (<100 phylotypes), and a highly variable bacterial community that is responsive to biotic and abiotic processes across spatial and temporal scales (>100,000 phylotypes). We find that this coral hosts upwards of 170,000 distinct phylotypes and provide evidence for the persistence of a select group of bacteria in corals across environmental habitats of the Great Barrier Reef and Coral Sea. We further show that a higher number of bacteria are consistently associated with corals on mesophotic reefs than on shallow reefs. An increase in microbial diversity with depth suggests reliance by this coral on bacteria for nutrient acquisition on reefs exposed to nutrient upwelling. Understanding the complex microbial communities of host organisms across broad biotic and abiotic environments as functionally distinct microbiomes can provide insight into those interactions that are ubiquitous niche symbioses and those that provide competitive advantage within the hosts' environment. IMPORTANCE Corals have been proposed as the most diverse microbial biosphere. The high variability of microbial communities has hampered the identification of bacteria playing key functional roles that contribute to coral survival. Exploring the bacterial community in a coral with a broad environmental distribution, we found a group of bacteria present across all environments and a higher number of bacteria consistently associated with mesophotic corals (60 to 80 m). These results provide evidence of consistent and ubiquitous coral-bacterial partnerships and support the consideration of corals as metaorganisms hosting three functionally distinct microbiomes: a ubiquitous core microbiome, a microbiome filling functional niches, and a highly variable bacterial community.
Collapse
|
89
|
Schreiber L, Kjeldsen KU, Funch P, Jensen J, Obst M, López-Legentil S, Schramm A. Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts. Front Microbiol 2016; 7:1042. [PMID: 27462299 PMCID: PMC4940369 DOI: 10.3389/fmicb.2016.01042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
Ascidians are marine filter feeders and harbor diverse microbiota that can exhibit a high degree of host-specificity. Pharyngeal samples of Scandinavian and Mediterranean ascidians were screened for consistently associated bacteria by culture-dependent and -independent approaches. Representatives of the Endozoicomonas (Gammaproteobacteria, Hahellaceae) clade were detected in the ascidian species Ascidiella aspersa, Ascidiella scabra, Botryllus schlosseri, Ciona intestinalis, Styela clava, and multiple Ascidia/Ascidiella spp. In total, Endozoicomonas was detected in more than half of all specimens screened, and in 25-100% of the specimens for each species. The retrieved Endozoicomonas 16S rRNA gene sequences formed an ascidian-specific subclade, whose members were detected by fluorescence in situ hybridization (FISH) as extracellular microcolonies in the pharynx. Two strains of the ascidian-specific Endozoicomonas subclade were isolated in pure culture and characterized. Both strains are chemoorganoheterotrophs and grow on mucin (a mucus glycoprotein). The strains tested negative for cytotoxic or antibacterial activity. Based on these observations, we propose ascidian-associated Endozoicomonas to be commensals, living off the mucus continuously secreted into the pharynx. Members of the ascidian-specific Endozoicomonas subclade were also detected in seawater from the Scandinavian sampling site, which suggests acquisition of the symbionts by horizontal transmission. The combined results indicate a host-specific, yet facultative symbiosis between ascidians and Endozoicomonas.
Collapse
Affiliation(s)
- Lars Schreiber
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| | - Kasper U Kjeldsen
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| | - Peter Funch
- Section of Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Jeppe Jensen
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| | - Matthias Obst
- Department of Marine Sciences, University of Gothenburg Gothenburg, Sweden
| | - Susanna López-Legentil
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington Wilmington NC, USA
| | - Andreas Schramm
- Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University Aarhus, Denmark
| |
Collapse
|
90
|
Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME JOURNAL 2016; 11:186-200. [PMID: 27392086 PMCID: PMC5335547 DOI: 10.1038/ismej.2016.95] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/19/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
Abstract
Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.
Collapse
Affiliation(s)
- Matthew J Neave
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Rita Rachmawati
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Liping Xun
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Craig T Michell
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David G Bourne
- Australian Institute of Marine Science and College of Science and Engineering, James Cook University Townsville, Townsville, Queensland, Australia
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
91
|
Robertson V, Haltli B, McCauley EP, Overy DP, Kerr RG. Highly Variable Bacterial Communities Associated with the Octocoral Antillogorgia elisabethae. Microorganisms 2016; 4:E23. [PMID: 27681917 PMCID: PMC5039583 DOI: 10.3390/microorganisms4030023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
Antillogorgia elisabethae (synonymous with Pseudopterogorgia elisabethae) is a common branching octocoral in Caribbean reef ecosystems. A. elisabethae is a rich source of anti-inflammatory diterpenes, thus this octocoral has been the subject of numerous natural product investigations, yet relatively little is known regarding the composition, diversity and the geographic and temporal stability of its microbiome. To characterize the composition, diversity and stability of bacterial communities of Bahamian A. elisabethae populations, 17 A. elisabethae samples originating from five sites within The Bahamas were characterized by 16S rDNA pyrosequencing. A. elisabethae bacterial communities were less diverse and distinct from those of surrounding seawater samples. Analyses of α- and β-diversity revealed that A. elisabethae bacterial communities were highly variable between A. elisabethae samples from The Bahamas. This contrasts results obtained from a previous study of three specimens collected from Providencia Island, Colombia, which found A. elisabethae bacterial communities to be highly structured. Taxa belonging to the Rhodobacteriales, Rhizobiales, Flavobacteriales and Oceanospiralles were identified as potential members of the A. elisabethae core microbiome.
Collapse
Affiliation(s)
- Veronica Robertson
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Brad Haltli
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Erin P McCauley
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - David P Overy
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Pathology and Microbiology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Russell G Kerr
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
92
|
Badhai J, Ghosh TS, Das SK. Composition and Functional Characterization of Microbiome Associated with Mucus of the Coral Fungia echinata Collected from Andaman Sea. Front Microbiol 2016; 7:936. [PMID: 27379066 PMCID: PMC4909750 DOI: 10.3389/fmicb.2016.00936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022] Open
Abstract
This study describes the community composition and functions of the microbiome associated with the mucus of the coral Fungia echinata based on metagenomic approach. Metagenome sequence data showed a dominance of the class Gammaproteobacteria followed by Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Flavobacteriia, Bacilli, and Clostridia. At the order level, the most abundant groups were Pseudomonadales, Oceanospirillales, Alteromonadales, and Rhodobacterales. The genus Psychrobacter was the most predominant followed by Thalassolituus and Cobetia, although other genera were also present, such as Sulfitobacter, Pseudoalteromonas, Oleispira, Halomonas, Oceanobacter, Acinetobacter, Pseudomonas, Vibrio, and Marinobacter. The metabolic profile of the bacterial community displayed high prevalence of genes associated with core-housekeeping processes, such as carbohydrates, amino acids, proteins, and nucleic acid metabolism. Further, high abundance of genes coding for DNA replication and repair, stress response, and virulence factors in the metagenome suggested acquisition of specific environmental adaptation by the microbiota. Comparative analysis with other coral metagenome exhibits marked differences at the taxonomical and functional level. This study suggests the bacterial community compositions are influenced by the specific coral micro-niche and the oligotrophic marine environment.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences Bhubaneswar, India
| | - Tarini S Ghosh
- Computational and Systems Biology Group, Genome Institute of Singapore Singapore, Singapore
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences Bhubaneswar, India
| |
Collapse
|
93
|
Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Sci Rep 2016; 6:27277. [PMID: 27263657 PMCID: PMC4893704 DOI: 10.1038/srep27277] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/18/2016] [Indexed: 02/04/2023] Open
Abstract
Mass mortality events in populations of the iconic red coral Corallium rubrum have been related to seawater temperature anomalies that may have triggered microbial disease development. However, very little is known about the bacterial community associated with the red coral. We therefore aimed to provide insight into this species’ bacterial assemblages using Illumina MiSeq sequencing of 16S rRNA gene amplicons generated from samples collected at five locations distributed across the western Mediterranean Sea. Twelve bacterial species were found to be consistently associated with the red coral, forming a core microbiome that accounted for 94.6% of the overall bacterial community. This core microbiome was particularly dominated by bacteria of the orders Spirochaetales and Oceanospirillales, in particular the ME2 family. Bacteria belonging to these orders have been implicated in nutrient cycling, including nitrogen, carbon and sulfur. While Oceanospirillales are common symbionts of marine invertebrates, our results identify members of the Spirochaetales as other important dominant symbiotic bacterial associates within Anthozoans.
Collapse
|
94
|
Salerno JL, Bowen BW, Rappé MS. Biogeography of planktonic and coral-associated microorganisms across the Hawaiian Archipelago. FEMS Microbiol Ecol 2016; 92:fiw109. [DOI: 10.1093/femsec/fiw109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
|
95
|
Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species. Front Microbiol 2016; 7:458. [PMID: 27092120 PMCID: PMC4820459 DOI: 10.3389/fmicb.2016.00458] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4–V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.
Collapse
Affiliation(s)
- Stephanie N Lawler
- College of Marine Science, University of South Florida, St. Petersburg FL, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg FL, USA
| | - Scott C France
- Department of Biology, University of Louisiana at Lafayette Lafayette, LA, USA
| | - Rachel W Clostio
- Department of Biology, University of Louisiana at Lafayette Lafayette, LA, USA
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University, St. Teresa FL, USA
| | - Steve W Ross
- Center for Marine Science, University of North Carolina Wilmington Wilmington, NC, USA
| |
Collapse
|
96
|
Röthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol 2016; 25:1308-23. [PMID: 26840035 PMCID: PMC4804745 DOI: 10.1111/mec.13567] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 01/03/2023]
Abstract
Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.
Collapse
Affiliation(s)
- Till Röthig
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Michael A Ochsenkühn
- Biological and Organometallic Catalysis Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Riaan van der Merwe
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
97
|
Frade PR, Roll K, Bergauer K, Herndl GJ. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs. PLoS One 2016; 11:e0144702. [PMID: 26788724 PMCID: PMC4720286 DOI: 10.1371/journal.pone.0144702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.
Collapse
Affiliation(s)
- Pedro R. Frade
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Caribbean Research and Management of Biodiversity (CARMABI) Foundation, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao
| | - Katharina Roll
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Kristin Bergauer
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), 1790AB Den Burg, The Netherlands
| |
Collapse
|
98
|
Age-Related Shifts in Bacterial Diversity in a Reef Coral. PLoS One 2015; 10:e0144902. [PMID: 26700869 PMCID: PMC4689413 DOI: 10.1371/journal.pone.0144902] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/24/2015] [Indexed: 01/19/2023] Open
Abstract
This study investigated the relationship between microbial communities in differently sized colonies of the massive coral Coelastrea aspera at Phuket, Thailand where colony size could be used as a proxy for age. Results indicated significant differences between the bacterial diversity (ANOSIM, R = 0.76, p = 0.001) of differently sized colonies from the same intertidal reef habitat. Juvenile and small colonies (<6cm mean diam) harboured a lower bacterial richness than medium (~10cm mean diam) and large colonies (>28 cm mean diam). Bacterial diversity increased in a step-wise pattern from juveniles<small<medium colonies, which was then followed by a slight decrease in the two largest size classes. These changes appear to resemble a successional process which occurs over time, similar to that observed in the ageing human gut. Furthermore, the dominant bacterial ribotypes present in the tissues of medium and large sized colonies of C. aspera, (such as Halomicronema, an Oscillospira and an unidentified cyanobacterium) were also the dominant ribotypes found within the endolithic algal band of the coral skeleton; a result providing some support for the hypothesis that the endolithic algae of corals may directly influence the bacterial community present in coral tissues.
Collapse
|
99
|
Kemp DW, Rivers AR, Kemp KM, Lipp EK, Porter JW, Wares JP. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata. PLoS One 2015; 10:e0143790. [PMID: 26659364 PMCID: PMC4682823 DOI: 10.1371/journal.pone.0143790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions—uppermost (high irradiance), underside (low irradiance), and the colony base—representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.
Collapse
Affiliation(s)
- Dustin W. Kemp
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, United States of America
- * E-mail:
| | - Adam R. Rivers
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, United States of America
| | - Keri M. Kemp
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, United States of America
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, United States of America
| | - James W. Porter
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, United States of America
| | - John P. Wares
- Department of Genetics, University of Georgia, Athens, GA, 30602, United States of America
| |
Collapse
|
100
|
Lee STM, Davy SK, Tang SL, Fan TY, Kench PS. Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol 2015; 91:fiv142. [PMID: 26564958 DOI: 10.1093/femsec/fiv142] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/29/2022] Open
Abstract
The coral mucus may harbor commensal bacteria that inhibit growth of pathogens. Therefore, there is a need to understand the dynamics of bacterial communities between the coral mucus and tissues. Nubbins of Acropora muricata were subjected to increasing water temperatures of 26°C-33°C, to simultaneously explore the bacterial diversity in coral mucus and tissues by 16S rRNA gene amplicon sequencing. Photochemical efficiency of symbiotic dinoflagellates within the corals declined above 31°C. Both the mucus and tissues of healthy A. muricata were dominated by γ-Proteobacteria, but under thermal stress there was a shift towards bacteria from the Verrucomicrobiaceae and α-Proteobacteria. Members of Cyanobacteria, Flavobacteria and Sphingobacteria also become more prominent at higher temperatures. The relative abundance of Vibrio spp. in the coral mucus increased at 29°C, but at 31°C, there was a drop in the relative abundance of Vibrio spp. in the mucus, with a reciprocal increase in the tissues. On the other hand, during bleaching, the relative abundance of Endozoicomonas spp. decreased in the tissues with a reciprocal increase in the mucus. This is the first systematic experiment that shows the potential for a bacterial community shift between the coral surface mucus and tissues in a thermally stressed coral.
Collapse
Affiliation(s)
- Sonny T M Lee
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington. PO Box 600, Wellington 6140, New Zealand
| | - Sen-Lin Tang
- Microbial Lab, Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tung-Yung Fan
- Science Education Department and Industry Academia Collaboration Center, National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan
| | - Paul S Kench
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|