51
|
Linking Geospatial and Laboratory Sciences to Define Mechanisms behind Landscape Level Drivers of Anthrax Outbreaks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193747. [PMID: 31590291 PMCID: PMC6801504 DOI: 10.3390/ijerph16193747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Background: A seasonal predictor of anthrax outbreaks is rainfall, which may be approximated by NDVI using remote sensing. How rainfall or vegetative green-up influences bacterial physiology or microecology to drive anthrax outbreaks is not known. Methods: Rainfall and NDVI dependency of anthrax epizootics was demonstrated with global and local phenological analysis. Growth analysis of B. anthracis in response to pH and calcium gradients was carried out. The influence of pH and calcium levels on expression of toxin and sporulation related proteins in broth culture models was characterized using engineered B. anthracis luminescent reporter strains. Results: Short-term bacterial growth and longer-term bacterial survival were altered by pH and calcium. These conditions also played a major role in pagA and sspB promoter-driven luminescent expression in B. anthracis. Conclusions: Rainfall induced cycling of pH and calcium in soils plays a plausible role in amplifying spore load and persistence in endemic anthrax zones. Observed evidence of B. anthracis favoring soil alkalinity and high soil calcium levels in the environment were linked to physiological conditions that promote bacterial growth, survival, toxin secretion and spore formation; illustrating the utility of bringing laboratory-based (controlled) microbiology experiments into the fold of zoonotic disease ecology.
Collapse
|
52
|
Benomar S, Evans KC, Unckless RL, Chandler JR. Efflux Pumps in Chromobacterium Species Increase Antibiotic Resistance and Promote Survival in a Coculture Competition Model. Appl Environ Microbiol 2019; 85:e00908-19. [PMID: 31324628 PMCID: PMC6752006 DOI: 10.1128/aem.00908-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Members of the Chromobacterium genus include opportunistic but often-fatal pathogens and soil saprophytes with highly versatile metabolic capabilities. In previous studies of Chromobacterium subtsugae (formerly C. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM) that confers resistance to several antibiotics, including the bactobolin antibiotic produced by the soil saprophyte Burkholderia thailandensis Here, we show the cdeAB-oprM genes increase C. subtsugae survival in a laboratory competition model with B. thailandensis We also demonstrate that adding sublethal bactobolin concentrations to the coculture increases C. subtsugae survival, but this effect is not through CdeAB-OprM. Instead, the increased survival requires a second, previously unreported pump we call CseAB-OprN. We show that in cells exposed to sublethal bactobolin concentrations, the cseAB-oprN genes are transcriptionally induced, and this corresponds to an increase in bactobolin resistance. Induction of this pump is highly specific and sensitive to bactobolin, while CdeAB-OprM appears to have a broader range of antibiotic recognition. We examine the distribution of cseAB-oprN and cdeAB-oprM gene clusters in members of the Chromobacterium genus and find the cseAB-oprN genes are limited to the nonpathogenic C. subtsugae strains, whereas the cdeAB-oprM genes are more widely distributed among members of the Chromobacterium genus. Our results provide new information on the antibiotic resistance mechanisms of Chromobacterium species and highlight the importance of efflux pumps for saprophytic bacteria existing in multispecies communities.IMPORTANCE Antibiotic efflux pumps are best known for increasing antibiotic resistance of pathogens; however, the role of these pumps in saprophytes is much less well defined. This study describes two predicted efflux pump gene clusters in the Chromobacterium genus, which is comprised of both nonpathogenic saprophytes and species that cause highly fatal human infections. One of the predicted efflux pump clusters is present in every member of the Chromobacterium genus and increases resistance to a broad range of antibiotics. The other gene cluster has more narrow antibiotic specificity and is found only in Chromobacterium subtsugae, a subset of entirely nonpathogenic species. We demonstrate the role of both pumps in increasing antibiotic resistance and demonstrate the importance of efflux-dependent resistance induction for C. subtsugae survival in a dual-species competition model. These results have implications for managing antibiotic-resistant Chromobacterium infections and for understanding the evolution of efflux pumps outside the host.
Collapse
Affiliation(s)
- Saida Benomar
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Kara C Evans
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Josephine R Chandler
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
53
|
Potent modulation of the CepR quorum sensing receptor and virulence in a Burkholderia cepacia complex member using non-native lactone ligands. Sci Rep 2019; 9:13449. [PMID: 31530834 PMCID: PMC6748986 DOI: 10.1038/s41598-019-49693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.
Collapse
|
54
|
Karlinsey JE, Stepien TA, Mayho M, Singletary LA, Bingham-Ramos LK, Brehm MA, Greiner DL, Shultz LD, Gallagher LA, Bawn M, Kingsley RA, Libby SJ, Fang FC. Genome-wide Analysis of Salmonella enterica serovar Typhi in Humanized Mice Reveals Key Virulence Features. Cell Host Microbe 2019; 26:426-434.e6. [PMID: 31447308 DOI: 10.1016/j.chom.2019.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhi causes typhoid fever only in humans. Murine infection with S. Typhimurium is used as a typhoid model, but its relevance to human typhoid is limited. Non-obese diabetic-scid IL2rγnull mice engrafted with human hematopoietic stem cells (hu-SRC-SCID) are susceptible to lethal S. Typhi infection. In this study, we use a high-density S. Typhi transposon library in hu-SRC-SCID mice to identify virulence loci using transposon-directed insertion site sequencing (TraDIS). Vi capsule, lipopolysaccharide (LPS), and aromatic amino acid biosynthesis were essential for virulence, along with the siderophore salmochelin. However, in contrast to the murine S. Typhimurium model, neither the PhoPQ two-component system nor the SPI-2 pathogenicity island was required for lethal S. Typhi infection, nor was the CdtB typhoid toxin. These observations highlight major differences in the pathogenesis of typhoid and non-typhoidal Salmonella infections and demonstrate the utility of humanized mice for understanding the pathogenesis of a human-specific pathogen.
Collapse
Affiliation(s)
- Joyce E Karlinsey
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Taylor A Stepien
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dale L Greiner
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Larry A Gallagher
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich, UK; Earlham Institute, Norwich, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich, UK; School of Biological Science, University of East Anglia, Norwich, UK
| | - Stephen J Libby
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ferric C Fang
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
55
|
Abstract
Acinetobacter baumannii is considered a problematic Gram-negative pathogen due to its widespread resistance to antibiotics. Understanding of resistance mechanisms in A. baumannii is critical for designing new and effective therapeutic options. However, this is hampered by the lack of tools to carry out genetic manipulations in A. baumannii. Here, we describe methods to use a chromosomal mini-Tn7-based single-copy gene expression system in A. baumannii. This system can be effectively used for performing genetic complementation studies, for tagging with fluorescent proteins, or for reporter fusion assays.
Collapse
|
56
|
Gonyar LA, Gelbach PE, McDuffie DG, Koeppel AF, Chen Q, Lee G, Temple LM, Stibitz S, Hewlett EL, Papin JA, Damron FH, Eby JC. In Vivo Gene Essentiality and Metabolism in Bordetella pertussis. mSphere 2019; 4:e00694-18. [PMID: 31118307 PMCID: PMC6531889 DOI: 10.1128/msphere.00694-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a serious respiratory illness affecting children and adults, associated with prolonged cough and potential mortality. Whooping cough has reemerged in recent years, emphasizing a need for increased knowledge of basic mechanisms of B. pertussis growth and pathogenicity. While previous studies have provided insight into in vitro gene essentiality of this organism, very little is known about in vivo gene essentiality, a critical gap in knowledge, since B. pertussis has no previously identified environmental reservoir and is isolated from human respiratory tract samples. We hypothesize that the metabolic capabilities of B. pertussis are especially tailored to the respiratory tract and that many of the genes involved in B. pertussis metabolism would be required to establish infection in vivo In this study, we generated a diverse library of transposon mutants and then used it to probe gene essentiality in vivo in a murine model of infection. Using the CON-ARTIST pipeline, 117 genes were identified as conditionally essential at 1 day postinfection, and 169 genes were identified as conditionally essential at 3 days postinfection. Most of the identified genes were associated with metabolism, and we utilized two existing genome-scale metabolic network reconstructions to probe the effects of individual essential genes on biomass synthesis. This analysis suggested a critical role for glucose metabolism and lipooligosaccharide biosynthesis in vivo This is the first genome-wide evaluation of in vivo gene essentiality in B. pertussis and provides tools for future exploration.IMPORTANCE Our study describes the first in vivo transposon sequencing (Tn-seq) analysis of B. pertussis and identifies genes predicted to be essential for in vivo growth in a murine model of intranasal infection, generating key resources for future investigations into B. pertussis pathogenesis and vaccine design.
Collapse
Affiliation(s)
- Laura A Gonyar
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Patrick E Gelbach
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis G McDuffie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alexander F Koeppel
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Qing Chen
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gloria Lee
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Louise M Temple
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, USA
| | - Scott Stibitz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Erik L Hewlett
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A Papin
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Joshua C Eby
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
57
|
Burkholderia cepacia Complex Contact-Dependent Growth Inhibition Systems Mediate Interbacterial Competition. J Bacteriol 2019; 201:JB.00012-19. [PMID: 30962350 DOI: 10.1128/jb.00012-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia species, including opportunistic pathogens in the Burkholderia cepacia complex (Bcc), have genes to produce contact-dependent growth inhibition (CDI) system proteins. CDI is a phenomenon in which Gram-negative bacteria use the toxic C terminus of a polymorphic surface-exposed exoprotein, BcpA, to inhibit the growth of susceptible bacteria upon direct cell-cell contact. Production of a small immunity protein, BcpI, prevents autoinhibition. Although CDI systems appear widespread in Gram-negative bacteria, their function has been primarily examined in several model species. Here we demonstrate that genes encoding predicted CDI systems in Bcc species exhibit considerable diversity. We also show that Burkholderia multivorans, which causes pulmonary infections in patients with cystic fibrosis, expresses genes that encode two CDI systems, both of which appear distinct from the typical Burkholderia-type CDI system. Each system can mediate intrastrain interbacterial competition and contributes to bacterial adherence. Surprisingly, the immunity-protein-encoding bcpI gene of CDI system 1 could be mutated without obvious deleterious effects. We also show that nonpathogenic Burkholderia thailandensis uses CDI to control B. multivorans growth during coculture, providing one of the first examples of interspecies CDI and suggesting that CDI systems could be manipulated to develop therapeutic strategies targeting Bcc pathogens.IMPORTANCE Competition among bacteria affects microbial colonization of environmental niches and host organisms, particularly during polymicrobial infections. The Bcc is a group of environmental bacteria that can cause life-threatening opportunistic infections in patients who have cystic fibrosis or are immunocompromised. Understanding the mechanisms used by these bacterial pathogens to compete with one another may lead to the development of more effective therapies. Findings presented here demonstrate that a Bcc species, Burkholderia multivorans, produces functional CDI system proteins and that growth of this pathogen can be controlled by CDI system proteins produced by neighboring Burkholderia cells.
Collapse
|
58
|
Ocasio AB, Cotter PA. CDI/CDS system-encoding genes of Burkholderia thailandensis are located in a mobile genetic element that defines a new class of transposon. PLoS Genet 2019; 15:e1007883. [PMID: 30615607 PMCID: PMC6350997 DOI: 10.1371/journal.pgen.1007883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/29/2019] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
Intercellular communication and self-recognition are critical for coordinating cooperative and competitive behaviors during sociomicrobiological community development. Contact-dependent growth inhibition (CDI) proteins are polymorphic toxin delivery systems that inhibit the growth of non-self neighboring bacteria that lack the appropriate immunity protein. In Burkholderia thailandensis, CDI system proteins (encoded by bcpAIOB genes) also induce cooperative behaviors among sibling (self) cells, a phenomenon called contact-dependent signaling (CDS). Here we describe a mobile genetic element (MGE) that carries the bcpAIOB genes in B. thailandensis E264. It is a ~210 kb composite transposon with insertion sequence (IS) elements at each end. Although the ISs are most similar to IS2 of Escherichia coli, the transposase-dependent intermediate molecule displays characteristics more similar to those of the IS26 translocatable unit (TU). A reaction requiring only the "left" IS-encoded transposase results in formation of an extrachromosomal circular dsDNA intermediate ("the megacircle") composed of the left IS and the sequences intervening between the ISs. Insertion of the megacircle into the chromosome occurs next to a pre-existing copy of an IS2-like element, recreating a functional composite transposon. We found that BcpA activity is required for megacircle formation, and in turn, megacircle formation is required for CDS phenotypes. Our data support a model in which the bcpAIOB genes function as both helping and harming greenbeard genes, simultaneously enhancing the fitness of self bacteria that possess the same allele plus tightly linked genes that mediate cooperative behaviors, and killing non-self bacteria that do not possess the same bcpAIOB allele. Mobility of the megacircle between cells could allow bacteria invading a community to be converted to self, and would facilitate propagation of the bcpAIOB genes in the event that the invading strain is capable of overtaking the resident community.
Collapse
Affiliation(s)
- Angelica B. Ocasio
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, NC, United States of America
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, NC, United States of America
| |
Collapse
|
59
|
Perault AI, Cotter PA. Three Distinct Contact-Dependent Growth Inhibition Systems Mediate Interbacterial Competition by the Cystic Fibrosis Pathogen Burkholderia dolosa. J Bacteriol 2018; 200:e00428-18. [PMID: 30150233 PMCID: PMC6199481 DOI: 10.1128/jb.00428-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 02/08/2023] Open
Abstract
The respiratory tracts of individuals afflicted with cystic fibrosis (CF) harbor complex polymicrobial communities. By an unknown mechanism, species of the Gram-negative Burkholderia cepacia complex, such as Burkholderia dolosa, can displace other bacteria in the CF lung, causing cepacia syndrome, which has a poor prognosis. The genome of Bdolosa strain AU0158 (BdAU0158) contains three loci that are predicted to encode contact-dependent growth inhibition (CDI) systems. CDI systems function by translocating the toxic C terminus of a large exoprotein directly into target cells, resulting in growth inhibition or death unless the target cells produce a cognate immunity protein. We demonstrate here that each of the three bcpAIOB loci in BdAU0158 encodes a distinct CDI system that mediates interbacterial competition in an allele-specific manner. While only two of the three bcpAIOB loci were expressed under the in vitro conditions tested, the third conferred immunity under these conditions due to the presence of an internal promoter driving expression of the bcpI gene. One BdAU0158 bcpAIOB allele is highly similar to bcpAIOB in Burkholderia thailandensis strain E264 (BtE264), and we showed that their BcpI proteins are functionally interchangeable, but contact-dependent signaling (CDS) phenotypes were not observed in BdAU0158. Our findings suggest that the CDI systems of BdAU0158 may provide this pathogen an ecological advantage during polymicrobial infections of the CF respiratory tract.IMPORTANCE Human-associated polymicrobial communities can promote health and disease, and interbacterial interactions influence the microbial ecology of such communities. Polymicrobial infections of the cystic fibrosis respiratory tract impair lung function and lead to the death of individuals suffering from this disorder; therefore, a greater understanding of these microbial communities is necessary for improving treatment strategies. Bacteria utilize contact-dependent growth inhibition systems to kill neighboring competitors and maintain their niche within multicellular communities. Several cystic fibrosis pathogens have the potential to gain an ecological advantage during infection via contact-dependent growth inhibition systems, including Burkholderia dolosa Our research is significant, as it has identified three functional contact-dependent growth inhibition systems in Bdolosa that may provide this pathogen a competitive advantage during polymicrobial infections.
Collapse
Affiliation(s)
- Andrew I Perault
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
60
|
A Novel Bvg-Repressed Promoter Causes vrg-Like Transcription of fim3 but Does Not Result in the Production of Serotype 3 Fimbriae in Bvg - Mode Bordetella pertussis. J Bacteriol 2018; 200:JB.00175-18. [PMID: 30061354 DOI: 10.1128/jb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
In Bordetella pertussis, two serologically distinct fimbriae, FIM2 and FIM3, undergo on/off phase variation independently of each other via variation in the lengths of C stretches in the promoters for their major subunit genes, fim2 and fim3 These two promoters are also part of the BvgAS virulence regulon and therefore, if in an on configuration, are activated by phosporylated BvgA (BvgA~P) under normal growth conditions (Bvg+ mode) but not in the Bvg- mode, inducible by growth in medium containing MgSO4 or other compounds, termed modulators. In the B. pertussis Tohama I strain (FIM2+ FIM3-), the fim3 promoter is in the off state. However, a high level of transcription of the fim3 gene is observed in the Bvg- mode. In this study, we provide an explanation for this anomalous behavior by defining a Bvg-repressed promoter (BRP), located approximately 400 bp upstream of the Pfim3 transcriptional start. Although transcription of the fim3 gene in the Bvg- mode resulted in Fim3 translation, as measured by LacZ translational fusions, no accumulation of Fim3 protein was detectable. We propose that Fim3 protein resulting from translation of mRNA driven by BRP in the Bvg- mode is unstable due to a lack of the fimbrial assembly apparatus encoded by the fimBC genes, located within the fha operon, and therefore is not expressed in the Bvg- mode.IMPORTANCE In Bordetella pertussis, the promoter Pfim3-15C for the major fimbrial subunit gene fim3 is activated by the two-component system BvgAS in the Bvg+ mode but not in the Bvg- mode. However, many transcriptional profiling studies have shown that fim3 is transcribed in the Bvg- mode even when Pfim3 is in a nonpermissive state (Pfim3-13C), suggesting the presence of a reciprocally regulated element upstream of Pfim3 Here, we provide evidence that BRP is the cause of this anomalous behavior of fim3 Although BRP effects vrg-like transcription of fim3 in the Bvg- mode, it does not lead to stable production of FIM3 fimbriae, because expression of the chaperone and usher proteins FimB and FimC occurs only in the Bvg+ mode.
Collapse
|
61
|
Webb JR, Price EP, Somprasong N, Schweizer HP, Baird RW, Currie BJ, Sarovich DS. Development and validation of a triplex quantitative real-time PCR assay to detect efflux pump-mediated antibiotic resistance in Burkholderia pseudomallei. Future Microbiol 2018; 13:1403-1418. [PMID: 30256166 PMCID: PMC6190177 DOI: 10.2217/fmb-2018-0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/23/2018] [Indexed: 01/12/2023] Open
Abstract
AIM To develop a probe-based triplex quantitative real-time PCR assay to simultaneously detect the upregulation of the efflux pumps AmrAB-OprA, BpeAB-OprB and BpeEF-OprC in Burkholderia pseudomallei strains exhibiting increased minimum inhibitory concentrations toward meropenem, doxycycline or trimethoprim-sulfamethoxazole. METHODS The triplex assay was developed and subsequently tested on RNA isolated from eight clinical and eight laboratory-generated B. pseudomallei mutants harboring efflux pump regulator mutations. RESULTS The triplex assay accurately detected efflux pump upregulation in all clinical and laboratory mutants, which corresponded with decreased antibiotic susceptibility or antibiotic resistance. CONCLUSION Rapid detection of antibiotic resistance provides clinicians with a tool to identify potential treatment failure in near real time, enabling informed alteration of treatment during an infection and improved patient outcomes.
Collapse
Affiliation(s)
- Jessica R Webb
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Erin P Price
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nawarat Somprasong
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Robert W Baird
- Departments of Infectious Diseases & Pathology & Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Departments of Infectious Diseases & Pathology & Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- Global & Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
62
|
Heacock-Kang Y, McMillan IA, Zarzycki-Siek J, Sun Z, Bluhm AP, Cabanas D, Hoang TT. The heritable natural competency trait of Burkholderia pseudomallei in other Burkholderia species through comE and crp. Sci Rep 2018; 8:12422. [PMID: 30127446 PMCID: PMC6102250 DOI: 10.1038/s41598-018-30853-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022] Open
Abstract
Natural competency requires uptake of exogenous DNA from the environment and the integration of that DNA into recipient bacteria can be used for DNA-repair or genetic diversification. The Burkholderia genus is unique in that only some of the species and strains are naturally competent. We identified and characterized two genes, comE and crp, from naturally competent B. pseudomallei 1026b that play a role in DNA uptake and catabolism. Single-copies of rhamnose-inducible comE and crp genes were integrated into a Tn7 attachment-site in non-naturally competent Burkholderia including pathogens B. pseudomallei K96243, B. cenocepacia K56-2, and B. mallei ATCC23344. Strains expressing comE or crp were assayed for their ability to uptake and catabolize DNA. ComE and Crp allowed non-naturally competent Burkholderia species to catabolize DNA, uptake exogenous gfp DNA and express GFP. Furthermore, we used synthetic comE and crp to expand the utility of the λ-red recombineering system for genetic manipulation of non-competent Burkholderia species. A newly constructed vector, pKaKa4, was used to mutate the aspartate semialdehyde dehydrogenase (asd) gene in four B. mallei strains, leading to the complete attenuation of these tier-1 select-agents. These strains have been excluded from select-agent regulations and will be of great interest to the field.
Collapse
Affiliation(s)
- Yun Heacock-Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Ian A McMillan
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Andrew P Bluhm
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Darlene Cabanas
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Tung T Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| |
Collapse
|
63
|
Rhodes KA, Somprasong N, Podnecky NL, Mima T, Chirakul S, Schweizer HP. Molecular determinants of Burkholderia pseudomallei BpeEF-OprC efflux pump expression. MICROBIOLOGY-SGM 2018; 164:1156-1167. [PMID: 30024368 DOI: 10.1099/mic.0.000691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Burkholderia pseudomallei, the cause of melioidosis, is intrinsically resistant to many antibiotics. Acquired multidrug resistance, including resistance to doxycycline and co-trimoxazole used for melioidosis eradication phase therapy, is mainly attributed to constitutive expression of the BpeEF-OprC efflux pump. Constitutive expression of this pump is caused by mutations affecting two highly similar LysR-type transcriptional regulators (LTTR), BpeT and BpeS, but their interaction with the regulatory region governing BpeEF-OprC expression has not yet been studied. The bpeE-bpeF-oprC genes are distally located in the llpE-bpeE-bpeF-oprC operon. The llpE gene encodes a putative lipase/esterase of unknown function. We show that in a bpeT mutant llpE is constitutively co-transcribed with bpeE-bpeF-oprC. As expected from previous studies with B. cenocepacia, deletion of llpE does not affect antibiotic efflux. Using transcriptional bpeE'-lacZ fusions, we demonstrate that the 188 bp bpeT-llpE intergenic region located between bpeT and the llpE-bpeE-bpeF-oprC operon contains regulatory elements needed for control of bpeT and llpE-bpeE-bpeF-oprC operon expression. By native polyacrylamide gel electrophoresis and electrophoretic mobility shift assays with purified recombinant BpeT and BpeS proteins, we show BpeT and BpeS form oligomers that share a 14 bp binding site overlapping the essential region required for llpE-bpeE-bpeF-oprC expression. The binding site contains the conserved T-N11-A LTTR box motif involved in binding of LysR proteins, which in concert with two other possible LTTR boxes may mediate BpeT and BpeS regulation of BpeEF-OprC expression. These studies form the basis for further investigation of BpeEF-OprC expression and regulation at the molecular level by yet unknown external stimuli.
Collapse
Affiliation(s)
- Katherine A Rhodes
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,†Present address: University of Arizona BIO5 Institute, Tucson, AZ 85721, USA
| | - Nawarat Somprasong
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Nicole L Podnecky
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,‡Present address: Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Tromsø, 9037 Tromsø, Norway
| | - Takehiko Mima
- 1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,§Present address: Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sunisa Chirakul
- 2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- 3Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,2Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,1Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
64
|
Chirakul S, Norris MH, Pagdepanichkit S, Somprasong N, Randall LB, Shirley JF, Borlee BR, Lomovskaya O, Tuanyok A, Schweizer HP. Transcriptional and post-transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance. Sci Rep 2018; 8:10652. [PMID: 30006637 PMCID: PMC6045580 DOI: 10.1038/s41598-018-28843-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/01/2018] [Indexed: 01/15/2023] Open
Abstract
Therapy of Burkholderia pseudomallei acute infections is largely limited to a few β-lactam antibiotics such as ceftazidime or meropenem. Although relatively rare, resistance emergence during therapy leads to treatment failures with high mortality rates. In the absence of acquired external resistance determinants in B. pseudomallei emergence of β-lactam resistance is invariably caused by mutational modification of genomically encoded factors. These include the deletion of the ceftazidime target penicillin-binding protein 3 or amino acid changes in the Class A PenA β-lactamase that expand its substrate spectrum, as well as penA gene duplication and amplification or its overexpression via transcriptional up-regulation. Evidence is presented that penA is co-transcribed with the upstream nlpD1 gene, that the transcriptional terminator for nlpD1 serves as a penA attenuator and that generation of a new promoter immediately upstream of the terminator/attenuator by a conserved G to A transition leads to anti-termination and thus constitutive PenA expression and extended β-lactam resistance. Further evidence obtained with the extensively β-lactam resistant clinical isolate Bp1651 shows that in addition to PenA overexpression and structural mutations other adaptive mechanisms contribute to intrinsic and acquired B. pseudomallei β-lactam resistance.
Collapse
Affiliation(s)
- Sunisa Chirakul
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Michael H Norris
- University of Florida, College of Veterinary Medicine, Emerging Pathogens Institute, Department of Infectious Diseases and Immunity, Gainesville, FL, 32610, USA
| | - Sirawit Pagdepanichkit
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
- Chulalongkorn University, Faculty of Veterinary Science, Department of Veterinary Public Health, Research Unit in Microbial Food Safety and Antimicrobial Resistance, Bangkok, 10330, Thailand
| | - Nawarat Somprasong
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Linnell B Randall
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
- Cornell University, Boyd Thompson Institute, Ithaca, NY, 14853, USA
| | - James F Shirley
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA
| | - Bradley R Borlee
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Fort Collins, CO, 80523, USA
| | | | - Apichai Tuanyok
- University of Florida, College of Veterinary Medicine, Emerging Pathogens Institute, Department of Infectious Diseases and Immunity, Gainesville, FL, 32610, USA
| | - Herbert P Schweizer
- University of Florida, College of Medicine, Emerging Pathogens Institute, Department of Molecular Genetics and Microbiology, Gainesville, FL, 32610, USA.
| |
Collapse
|
65
|
Wong YC, Abd El Ghany M, Ghazzali RNM, Yap SJ, Hoh CC, Pain A, Nathan S. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model. Front Microbiol 2018; 9:1118. [PMID: 29896180 PMCID: PMC5987112 DOI: 10.3389/fmicb.2018.01118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.
Collapse
Affiliation(s)
- Yee-Chin Wong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Moataz Abd El Ghany
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,The Westmead Institute for Medical Research and The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Raeece N M Ghazzali
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
66
|
Pinweha P, Pumirat P, Cuccui J, Jitprasutwit N, Muangsombut V, Srinon V, Boonyuen U, Thiennimitr P, Vattanaviboon P, Cia F, Willcocks S, Bancroft GJ, Wren BW, Korbsrisate S. Inactivation of bpsl1039-1040 ATP-binding cassette transporter reduces intracellular survival in macrophages, biofilm formation and virulence in the murine model of Burkholderia pseudomallei infection. PLoS One 2018; 13:e0196202. [PMID: 29771915 PMCID: PMC5957425 DOI: 10.1371/journal.pone.0196202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/09/2018] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei, a gram-negative intracellular bacillus, is the causative agent of a tropical infectious disease called melioidosis. Bacterial ATP-binding cassette (ABC) transporters import and export a variety of molecules across bacterial cell membranes. At present, their significance in B. pseudomallei pathogenesis is poorly understood. We report here characterization of the BPSL1039-1040 ABC transporter. B. pseudomallei cultured in M9 medium supplemented with nitrate, demonstrated that BPSL1039-1040 is involved in nitrate transport for B. pseudomallei growth under anaerobic, but not aerobic conditions, suggesting that BPSL1039-1040 is functional under reduced oxygen tension. In addition, a nitrate reduction assay supported the function of BPSL1039-1040 as nitrate importer. A bpsl1039-1040 deficient mutant showed reduced biofilm formation as compared with the wild-type strain (P = 0.027) when cultured in LB medium supplemented with nitrate under anaerobic growth conditions. This reduction was not noticeable under aerobic conditions. This suggests that a gradient in oxygen levels could regulate the function of BPSL1039-1040 in B. pseudomallei nitrate metabolism. Furthermore, the B. pseudomallei bpsl1039-1040 mutant had a pronounced effect on plaque formation (P < 0.001), and was defective in intracellular survival in both non-phagocytic (HeLa) and phagocytic (J774A.1 macrophage) cells, suggesting reduced virulence in the mutant strain. The bpsl1039-1040 mutant was found to be attenuated in a BALB/c mouse intranasal infection model. Complementation of the bpsl1039-1040 deficient mutant with the plasmid-borne bpsl1039 gene could restore the phenotypes observed. We propose that the ability to acquire nitrate for survival under anaerobic conditions may, at least in part, be important for intracellular survival and has a contributory role in the pathogenesis of B. pseudomallei.
Collapse
Affiliation(s)
- Peechanika Pinweha
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Niramol Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varintip Srinon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Felipe Cia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sam Willcocks
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gregory J. Bancroft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail: (BWW); (SK)
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: (BWW); (SK)
| |
Collapse
|
67
|
Development of an Sce-I mutagenesis system for Burkholderia cepacia complex strains. J Microbiol Methods 2018; 146:16-21. [PMID: 29360487 DOI: 10.1016/j.mimet.2018.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/22/2022]
Abstract
The Burkholderia cepacia complex (Bcc) consists of at least 20 phenotypically similar but genotypically distinct Gram-negative bacteria that are ubiquitous in nature, are capable of promoting plant growth and biodegradation of pollutants, but that also are highly antibiotic resistant and produce damaging effects towards plants, fungi, and humans. To study these genetically recalcitrant bacteria in detail, molecular tools are required that work efficiently with the many strains and species of the Bcc. One mutagenesis strategy that has been used effectively to analyze the genes of Burkholderia cenocepacia is based upon the activity of the Sce-I restriction enzyme. Unfortunately, this system is limited in its applicability to many members of the Bcc. Therefore, we undertook the expansion of this system to create an Sce-I mutagenesis system that could be used with many different species and strains of the Bcc, including members of the B. cenocepacia IIIB Midwest clones. We demonstrated the use of this system by clean-deleting the lipo-oligosaccharide (LOS) inner core biosynthesis gene waaC, to create a B. cenocepacia PC184 strain variant with truncated LOS. This enhanced mutagenesis system can be used to analyze a wide range of Burkholderia and other Gram-negative bacteria.
Collapse
|
68
|
Roux D, Schaefers M, Clark BS, Weatherholt M, Renaud D, Scott D, LiPuma JJ, Priebe G, Gerard C, Yoder-Himes DR. A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production. PLoS One 2018; 13:e0189810. [PMID: 29346379 PMCID: PMC5773237 DOI: 10.1371/journal.pone.0189810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023] Open
Abstract
Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children's Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response.
Collapse
Affiliation(s)
- Damien Roux
- INSERM, IAME, UMR 1137, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP-HP, Louis Mourier Hospital, Intensive Care Unit, Colombes, France
| | - Matthew Schaefers
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bradley S. Clark
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Molly Weatherholt
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Diane Renaud
- Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - David Scott
- Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - John J. LiPuma
- Division of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig Gerard
- Division of Respiratory Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Deborah R. Yoder-Himes
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
69
|
Abstract
Bacterial luminescence allows for noninvasive continuous monitoring of promoter activity in a wide range of model systems. This chapter details various examples of use of the lux reporter system to measure promoter activity in bacteria using the vector pUC18T-mini-Tn7T-lux-Tp. Here, we describe the construction of promoter fusions with bacterial luciferase, and how to quantify promoter activity in real time in vitro and in vivo in plant, insect, and murine infection models.
Collapse
|
70
|
Pseudomonas aeruginosa Contact-Dependent Growth Inhibition Plays Dual Role in Host-Pathogen Interactions. mSphere 2017; 2:mSphere00336-17. [PMID: 29152577 PMCID: PMC5687917 DOI: 10.1128/msphere.00336-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance. Microorganisms exist in a diverse ecosystem and have evolved many different mechanisms for sensing and influencing the polymicrobial environment around them, utilizing both diffusible and contact-dependent signals. Contact-dependent growth inhibition (CDI) is one such communication system employed by Gram-negative bacteria. In addition to CDI mediation of growth inhibition, recent studies have demonstrated CDI-mediated control of communal behaviors such as biofilm formation. We postulated that CDI may therefore play an active role in host-pathogen interactions, allowing invading strains to establish themselves at polymicrobial mucosal interfaces through competitive interactions while simultaneously facilitating pathogenic capabilities via CDI-mediated signaling. Here, we show that Pseudomonas aeruginosa produces two CDI systems capable of mediating competition under conditions of growth on a surface or in liquid. Furthermore, we demonstrated a novel role for these systems in contributing to virulence in acute infection models, likely via posttranscriptional regulation of beneficial behaviors. While we did not observe any role for the P. aeruginosa CDI systems in biofilm biogenesis, we did identify for the first time robust CDI-mediated competition during interaction with a mammalian host using a model of chronic respiratory tract infection, as well as evidence that CDI expression is maintained in chronic lung infections. These findings reveal a previously unappreciated role for CDI in host-pathogen interactions and emphasize their importance during infection. IMPORTANCE How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance.
Collapse
|
71
|
Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK. J Bacteriol 2017; 199:JB.00475-17. [PMID: 28827216 DOI: 10.1128/jb.00475-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
The two-component response regulator RisA, encoded by open reading frame BP3554 in the Bordetella pertussis Tohama I genomic sequence, is a known activator of vrg genes, a set of genes whose expression is increased under the same environmental conditions (known as modulation) that result in repression of the bvgAS virulence regulon. Here we demonstrate that RisA is phosphorylated in vivo and that RisA phosphorylation is required for activation of vrg genes. An adjacent histidine kinase gene, risS, is truncated by frameshift mutation in B. pertussis but not in Bordetella bronchiseptica or Bordetella parapertussis Neither deletion of risS' or bvgAS nor phenotypic modulation with MgSO4 affected levels of phosphorylated RisA (RisA∼P) in B. pertussis However, RisA phosphorylation did require the histidine kinase encoded by BP3223, here named RisK (cognate histidine kinase of RisA). RisK was also required for expression of the vrg genes. This requirement could be obviated by the introduction of the phosphorylation-mimicking RisAD60E mutant, indicating that an active conformation of RisA, but not phosphorylation per se, is crucial for vrg activation. Interestingly, expression of vrg genes is still modulated by MgSO4 in cells harboring the RisAD60E mutation, suggesting that the activated RisA senses additional signals to control vrg expression in response to environmental stimuli.IMPORTANCE In B. pertussis, the BvgAS two-component system activates the expression of virulence genes by binding of BvgA∼P to their promoters. Expression of the reciprocally regulated vrg genes requires RisA and is also repressed by the Bvg-activated BvgR. RisA is an OmpR-like response regulator, but RisA phosphorylation was not expected because the gene for its presumed, cooperonic, histidine kinase is inactivated by mutation. In this study, we demonstrate phosphorylation of RisA in vivo by a noncooperonic histidine kinase. We also show that RisA phosphorylation is necessary but not sufficient for vrg activation but, importantly, is not affected by BvgAS status. Instead, we propose that vrg expression is controlled by BvgAS through its regulation of BvgR, a cyclic di-GMP (c-di-GMP) phosphodiesterase.
Collapse
|
72
|
Mima T, Gotoh K, Yamamoto Y, Maeda K, Shirakawa T, Matsui S, Murata Y, Koide T, Tokumitsu H, Matsushita O. Expression of Collagenase is Regulated by the VarS/VarA Two-Component Regulatory System in Vibrio alginolyticus. J Membr Biol 2017; 251:51-63. [PMID: 28993850 DOI: 10.1007/s00232-017-9991-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
Vibrio alginolyticus is an opportunistic pathogen in both humans and marine animals. Collagenase encoded by colA is considered to be one of the virulence factors. Expression of colA is regulated by multiple environmental factors, e.g., temperature, growth phase, and substrate. To elucidate the mechanism of regulation of colA expression, transposon mutagenesis was performed. VarS, a sensor histidine kinase of the two-component regulatory system, was demonstrated to regulate the expression of colA. VarA, a cognate response regulator of VarS, was also identified and shown to be involved in the regulation of colA expression. In vitro phosphorylation assays showed that phosphorylated VarS acted as a phosphoryl group donor to VarA. A site-directed mutagenesis study showed that the His300, Asp718 and His874 residues in VarS were essential for the phosphorylation of VarS, and the Asp54 residue in VarA was likely to receive the phosphoryl group from VarS. The results demonstrate that the VarS/VarA two-component regulatory system regulates the expression of collagenase in V. alginolyticus.
Collapse
Affiliation(s)
- Takehiko Mima
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yumiko Yamamoto
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiko Maeda
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Matsui
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yumi Murata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takaki Koide
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Tokumitsu
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
73
|
Mechanisms of Resistance to Folate Pathway Inhibitors in Burkholderia pseudomallei: Deviation from the Norm. mBio 2017; 8:mBio.01357-17. [PMID: 28874476 PMCID: PMC5587915 DOI: 10.1128/mbio.01357-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The trimethoprim and sulfamethoxazole combination, co-trimoxazole, plays a vital role in the treatment of Burkholderia pseudomallei infections. Previous studies demonstrated that the B. pseudomallei BpeEF-OprC efflux pump confers widespread trimethoprim resistance in clinical and environmental isolates, but this is not accompanied by significant resistance to co-trimoxazole. Using the excluded select-agent strain B. pseudomallei Bp82, we now show that in vitro acquired trimethoprim versus co-trimoxazole resistance is mainly mediated by constitutive BpeEF-OprC expression due to bpeT mutations or by BpeEF-OprC overexpression due to bpeS mutations. Mutations in bpeT affect the carboxy-terminal effector-binding domain of the BpeT LysR-type activator protein. Trimethoprim resistance can also be mediated by dihydrofolate reductase (FolA) target mutations, but this occurs rarely unless BpeEF-OprC is absent. BpeS is a transcriptional regulator that is 62% identical to BpeT. Mutations affecting the BpeS DNA-binding or carboxy-terminal effector-binding domains result in constitutive BpeEF-OprC overexpression, leading to trimethoprim and sulfamethoxazole efflux and thus to co-trimoxazole resistance. The majority of laboratory-selected co-trimoxazole-resistant mutants often also contain mutations in folM, encoding a pterin reductase. Genetic analyses of these mutants established that both bpeS mutations and folM mutations contribute to co-trimoxazole resistance, although the exact role of folM remains to be determined. Mutations affecting bpeT, bpeS, and folM are common in co-trimoxazole-resistant clinical isolates, indicating that mutations affecting these genes are clinically significant. Co-trimoxazole resistance in B. pseudomallei is a complex phenomenon, which may explain why resistance to this drug is rare in this bacterium. Burkholderia pseudomallei causes melioidosis, a tropical disease that is difficult to treat. The bacterium’s resistance to antibiotics limits therapeutic options. The paucity of orally available drugs further complicates therapy. The oral drug of choice is co-trimoxazole, a combination of trimethoprim and sulfamethoxazole. These antibiotics target two distinct enzymes, FolA (dihydrofolate reductase) and FolP (dihydropteroate synthase), in the bacterial tetrahydrofolate biosynthetic pathway. Although co-trimoxazole resistance is minimized due to two-target inhibition, bacterial resistance due to folA and folP mutations does occur. Co-trimoxazole resistance in B. pseudomallei is rare and has not yet been studied. Co-trimoxazole resistance in this bacterium employs a novel strategy involving differential regulation of BpeEF-OprC efflux pump expression that determines the drug resistance profile. Contributing are mutations affecting folA, but not folP, and folM, a folate pathway-associated gene whose function is not yet well understood and which has not been previously implicated in folate inhibitor resistance in clinical isolates.
Collapse
|
74
|
Norris MH, Rahman Khan MS, Schweizer HP, Tuanyok A. An avirulent Burkholderia pseudomallei ∆purM strain with atypical type B LPS: expansion of the toolkit for biosafe studies of melioidosis. BMC Microbiol 2017; 17:132. [PMID: 28592242 PMCID: PMC5461690 DOI: 10.1186/s12866-017-1040-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The work was undertaken to expand the tools available for researching Burkholderia pseudomallei (Bp), the etiological agent of the tropical disease melioidosis. Melioidosis has the potential to pose a severe threat to public health and safety. In the United States, Bp is listed as a Tier-1 select agent by the Centers for Disease Control and Prevention (CDC), thus requiring high levels of regulation and biosafety level 3 (BSL3) facilities for experimental manipulation of live organisms. An avirulent ∆purM derivative of strain 1026b (Bp82) has proven to be a valuable tool for biosafe research as a select-agent excluded strain, but the high level of genetic diversity between Bp strains necessitates an expansion of the biosafe toolset. RESULTS The ∆purM mutation was recapitulated in the Bp 576a strain, a serotype B background. An important difference between strains 1026b and 576a is the lipopolysaccharide (LPS), a major virulence factor and protective antigen. Polyclonal sera from 1026b-challenged non-human primates showed no cross reactivity with strain 576a LPS and low reactivity with whole cell lysate. Strain 576a replicates to higher levels in mouse organs and induces more TNF-α in the lungs of BALB/c mice compared to 1026b. The newly created Bp 576a ∆purM strain, designated 576mn, was auxotrophic for adenine in minimal media, capable of wild-type growth in rich media with addition of adenine, and auxotrophy was abrogated with single-copy complementation. Bp 576mn was unable to replicate in human cells and was avirulent in BALB/c mice following high-dose intranasal inoculation, similar to Bp82. Organ loads indicated a significant reduction in bacterial replication. CONCLUSIONS In this work, the new biosafe strain 576mn with atypical type B LPS was generated. This strain should prove a valuable addition to the toolkit for biosafe studies of Bp and development of therapeutic and preventative strategies aimed at combatting melioidosis. Strain 576mn is an ideal candidate for select-agent exclusion.
Collapse
Affiliation(s)
- Michael H Norris
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Md Siddiqur Rahman Khan
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Apichai Tuanyok
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Univeristy of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
75
|
Bugrysheva JV, Sue D, Gee JE, Elrod MG, Hoffmaster AR, Randall LB, Chirakul S, Tuanyok A, Schweizer HP, Weigel LM. Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis. Antimicrob Agents Chemother 2017; 61:e00010-17. [PMID: 28396541 PMCID: PMC5444168 DOI: 10.1128/aac.00010-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A β-lactamase and was previously implicated in resistance to β-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis.
Collapse
Affiliation(s)
| | - David Sue
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jay E Gee
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mindy G Elrod
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Linnell B Randall
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Sunisa Chirakul
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Apichai Tuanyok
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Linda M Weigel
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
76
|
Borlee GI, Plumley BA, Martin KH, Somprasong N, Mangalea MR, Islam MN, Burtnick MN, Brett PJ, Steinmetz I, AuCoin DP, Belisle JT, Crick DC, Schweizer HP, Borlee BR. Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster. PLoS Negl Trop Dis 2017; 11:e0005689. [PMID: 28658258 PMCID: PMC5507470 DOI: 10.1371/journal.pntd.0005689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/11/2017] [Accepted: 06/08/2017] [Indexed: 11/19/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is an important public health threat due to limited therapeutic options for treatment. Efforts to improve therapeutics for B. pseudomallei infections are dependent on the need to understand the role of B. pseudomallei biofilm formation and its contribution to antibiotic tolerance and persistence as these are bacterial traits that prevent effective therapy. In order to reveal the genes that regulate and/or contribute to B. pseudomallei 1026b biofilm formation, we screened a sequence defined two-allele transposon library and identified 118 transposon insertion mutants that were deficient in biofilm formation. These mutants include transposon insertions in genes predicted to encode flagella, fimbriae, transcriptional regulators, polysaccharides, and hypothetical proteins. Polysaccharides are key constituents of biofilms and B. pseudomallei has the capacity to produce a diversity of polysaccharides, thus there is a critical need to link these biosynthetic genes with the polysaccharides they produce to better understand their biological role during infection. An allelic exchange deletion mutant of the entire B. pseudomallei biofilm-associated exopolysaccharide biosynthetic cluster was decreased in biofilm formation and produced a smooth colony morphology suggestive of the loss of exopolysaccharide production. Conversely, deletion of the previously defined capsule I polysaccharide biosynthesis gene cluster increased biofilm formation. Bioinformatics analyses combined with immunoblot analysis and glycosyl composition studies of the partially purified exopolysaccharide indicate that the biofilm-associated exopolysaccharide is neither cepacian nor the previously described acidic exopolysaccharide. The biofilm-associated exopolysaccharide described here is also specific to the B. pseudomallei complex of bacteria. Since this novel exopolysaccharide biosynthesis cluster is retained in B. mallei, it is predicted to have a role in colonization and infection of the host. These findings will facilitate further advances in understanding the pathogenesis of B. pseudomallei and improve diagnostics and therapeutic treatment strategies.
Collapse
Affiliation(s)
- Grace I. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brooke A. Plumley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kevin H. Martin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nawarat Somprasong
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Mihnea R. Mangalea
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - M. Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
| | - Ivo Steinmetz
- Institute of Hygiene, Microbiology, and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - David P. AuCoin
- Department of Molecular Microbiology and Immunology, University of Nevada-Reno, School of Medicine Reno, Nevada, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Dean C. Crick
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Herbert P. Schweizer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Bradley R. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
77
|
Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa. Infect Immun 2017; 85:IAI.00765-16. [PMID: 28348057 DOI: 10.1128/iai.00765-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species.
Collapse
|
78
|
Abstract
Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Erin C Garcia
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
79
|
Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase. J Bacteriol 2017; 199:JB.00780-16. [PMID: 27956524 DOI: 10.1128/jb.00780-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
Burkholderia pseudomallei, a tier 1 select agent and the etiological agent of melioidosis, transitions from soil and aquatic environments to infect a variety of vertebrate and invertebrate hosts. During the transition from an environmental saprophyte to a mammalian pathogen, B. pseudomallei encounters and responds to rapidly changing environmental conditions. Environmental sensing systems that control cellular levels of cyclic di-GMP promote pathogen survival in diverse environments. Cyclic di-GMP controls biofilm production, virulence factors, and motility in many bacteria. This study is an evaluation of cyclic di-GMP-associated genes that are predicted to metabolize and interact with cyclic di-GMP as identified from the annotated genome of B. pseudomallei 1026b. Mutants containing transposon disruptions in each of these genes were characterized for biofilm formation and motility at two temperatures that reflect conditions that the bacteria encounter in the environment and during the infection of a mammalian host. Mutants with transposon insertions in a known phosphodiesterase (cdpA) and a predicted hydrolase (Bp1026b_I2285) gene exhibited decreased motility regardless of temperature. In contrast, the phenotypes exhibited by mutants with transposon insertion mutations in a predicted diguanylate cyclase gene (Bp1026b_II2523) were strikingly influenced by temperature and were dependent on a conserved GG(D/E)EF motif. The transposon insertion mutant exhibited enhanced biofilm formation at 37°C but impaired biofilm formation at 30°C. These studies illustrate the importance of studying behaviors regulated by cyclic di-GMP under varied environmental conditions in order to better understand cyclic di-GMP signaling in bacterial pathogens.IMPORTANCE This report evaluates predicted cyclic di-GMP binding and metabolic proteins from Burkholderia pseudomallei 1026b, a tier 1 select agent and the etiologic agent of melioidosis. Transposon insertion mutants with disruptions in each of the genes encoding these predicted proteins were characterized in order to identify key components of the B. pseudomallei cyclic di-GMP-signaling network. A predicted hydrolase and a phosphodiesterase that modulate swimming motility were identified, in addition to a diguanylate cyclase that modulates biofilm formation and motility in response to temperature. These studies warrant further evaluation of the contribution of cyclic di-GMP to melioidosis in the context of pathogen acquisition from environmental reservoirs and subsequent colonization, dissemination, and persistence within the host.
Collapse
|
80
|
Schaefers MM, Liao TL, Boisvert NM, Roux D, Yoder-Himes D, Priebe GP. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity. PLoS Pathog 2017; 13:e1006116. [PMID: 28046077 PMCID: PMC5234846 DOI: 10.1371/journal.ppat.1006116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/13/2017] [Accepted: 12/09/2016] [Indexed: 12/22/2022] Open
Abstract
Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC), which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF) and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence. In people with cystic fibrosis (CF), infection with bacteria in the Burkholderia cepacia complex (BCC) is often associated with clinical deterioration. In a whole-genome sequencing study of the BCC species B. dolosa, we previously identified the fixL gene of the FixL/FixJ two-component system called FixLJ to be under strong positive selective pressure during chronic infection. In this study we show that low oxygen levels activate FixLJ, and that a mutant of B. dolosa in which the fixLJ genes are deleted is less able to persist in the lungs and spread to the spleen in a lung infection model in mice. The fixLJ deletion mutant has defective motility and intracellular survival within epithelial cells and macrophage cell lines. However, a flagella mutant is fully infectious, suggesting that low motility is not responsible for the fixLJ deletion mutant’s inability to persist within the host. Analysis of global RNA expression shows that the fixLJ system regulates many genes, indicating that multiple pathways likely contribute to the low virulence of the fixLJ deletion mutant. In conclusion, B. dolosa FixLJ compose an oxygen sensor that regulates the ability of the bacteria to survive inside host cells.
Collapse
Affiliation(s)
- Matthew M. Schaefers
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Tiffany L. Liao
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole M. Boisvert
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Damien Roux
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de Réanimation médico-chirurgicale, Hôpital Louis Mourier, AP-HP, Colombes, France
| | - Deborah Yoder-Himes
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Gregory P. Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
81
|
Lehman SS, Mladinich KM, Boonyakanog A, Mima T, Karkhoff-Schweizer RR, Schweizer HP. Versatile nourseothricin and streptomycin/spectinomycin resistance gene cassettes and their use in chromosome integration vectors. J Microbiol Methods 2016; 129:8-13. [PMID: 27457407 PMCID: PMC5018448 DOI: 10.1016/j.mimet.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022]
Abstract
An obstacle for the development of genetic systems for many bacteria is the limited number of antibiotic selection markers, especially for bacteria that are intrinsically antibiotic resistant or where utilization of such markers is strictly regulated. Here we describe the development of versatile cassettes containing nourseothricin, streptomycin/spectinomycin, and spectinomycin selection markers. The antibiotic resistance genes contained on these cassettes are flanked by loxP sites with allow their in vivo excision from the chromosome of target bacteria using Cre recombinase. The respective selection marker cassettes were used to derive mini-Tn7 elements that can be used for single-copy insertion of genes into bacterial chromosomes. The utility of the selection markers was tested by insertion of the resulting mini-Tn7 elements into the genomes of Burkholderia thailandensis and B. pseudomallei efflux pump mutants susceptible to aminoglycosides, aminocyclitols, and streptothricins, followed by Cre-mediated antibiotic resistance marker excision. The versatile nourseothricin, streptomycin/spectinomycin and spectinomycin resistance loxP cassette vectors described here extend the repertoire of antibiotic selection markers for genetic manipulation of diverse bacteria that are susceptible to aminoglycosides and aminocyclitols.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Katherine M. Mladinich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Angkana Boonyakanog
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Takehiko Mima
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Herbert P. Schweizer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 30610, USA
| |
Collapse
|
82
|
Dharmasena MN, Feuille CM, Starke CEC, Bhagwat AA, Stibitz S, Kopecko DJ. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery. PLoS One 2016; 11:e0163511. [PMID: 27673328 PMCID: PMC5046385 DOI: 10.1371/journal.pone.0163511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023] Open
Abstract
The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain.
Collapse
Affiliation(s)
- Madushini N. Dharmasena
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
- * E-mail: (MND); (DJK)
| | - Catherine M. Feuille
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
| | - Carly Elizabeth C. Starke
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
| | - Arvind A. Bhagwat
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Scott Stibitz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
| | - Dennis J. Kopecko
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
- * E-mail: (MND); (DJK)
| |
Collapse
|
83
|
Jaing CJ, McLoughlin KS, Thissen JB, Zemla A, Gardner SN, Vergez LM, Bourguet F, Mabery S, Fofanov VY, Koshinsky H, Jackson PJ. Identification of Genome-Wide Mutations in Ciprofloxacin-Resistant F. tularensis LVS Using Whole Genome Tiling Arrays and Next Generation Sequencing. PLoS One 2016; 11:e0163458. [PMID: 27668749 PMCID: PMC5036845 DOI: 10.1371/journal.pone.0163458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, provide better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. Genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms.
Collapse
Affiliation(s)
- Crystal J. Jaing
- Physical Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
- * E-mail:
| | - Kevin S. McLoughlin
- Computations Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| | - James B. Thissen
- Physical Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| | - Adam Zemla
- Computations Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| | - Shea N. Gardner
- Computations Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| | - Lisa M. Vergez
- Physical Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| | - Feliza Bourguet
- Physical Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| | - Shalini Mabery
- Physical Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| | | | | | - Paul J. Jackson
- Physical Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States of America
| |
Collapse
|
84
|
Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor. Sci Rep 2016; 6:27475. [PMID: 27273550 PMCID: PMC4895344 DOI: 10.1038/srep27475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023] Open
Abstract
Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis.
Collapse
|
85
|
Jung DH, Kim EJ, Jung E, Kazlauskas RJ, Choi KY, Kim BG. Production ofp-hydroxybenzoic acid fromp-coumaric acid byBurkholderia glumaeBGR1. Biotechnol Bioeng 2015; 113:1493-503. [DOI: 10.1002/bit.25908] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Da-Hye Jung
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
| | - Eun-Jung Kim
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
| | - Eunok Jung
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
| | - Romas J Kazlauskas
- Department of Biochemistry; Molecular Biology & Biophysics and The Biotechnology Institute; University of Minnesota; Saint Paul Minnesota 55108
| | - Kwon-Young Choi
- Department of Environmental Engineering; College of Engineering; Ajou University; Suwon 443-749 Kyeonggi-do South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
- Institute of Bioengineering; Seoul National University; Seoul 151-742 South Korea
| |
Collapse
|
86
|
In Vitro Efficacy of Nonantibiotic Treatments on Biofilm Disruption of Gram-Negative Pathogens and an In Vivo Model of Infectious Endometritis Utilizing Isolates from the Equine Uterus. J Clin Microbiol 2015; 54:631-9. [PMID: 26719448 DOI: 10.1128/jcm.02861-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
In this study, we evaluated the ability of the equine clinical treatments N-acetylcysteine, EDTA, and hydrogen peroxide to disrupt in vitro biofilms and kill equine reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolated from clinical cases. N-acetylcysteine (3.3%) decreased biofilm biomass and killed bacteria within the biofilms of E. coli isolates. The CFU of recoverable P. aeruginosa and K. pneumoniae isolates were decreased, but the biofilm biomass was unchanged. Exposure to hydrogen peroxide (1%) decreased the biofilm biomass and reduced the CFU of E. coli isolates, K. pneumoniae isolates were observed to have a reduction in CFU, and minimal effects were observed for P. aeruginosa isolates. Chelating agents (EDTA formulations) reduced E. coli CFU but were ineffective at disrupting preformed biofilms or decreasing the CFU of P. aeruginosa and K. pneumoniae within a biofilm. No single nonantibiotic treatment commonly used in equine veterinary practice was able to reduce the CFU and biofilm biomass of all three Gram-negative species of bacteria evaluated. An in vivo equine model of infectious endometritis was also developed to monitor biofilm formation, utilizing bioluminescence imaging with equine P. aeruginosa isolates from this study. Following infection, the endometrial surface contained focal areas of bacterial growth encased in a strongly adherent "biofilm-like" matrix, suggesting that biofilms are present during clinical cases of infectious equine endometritis. Our results indicate that Gram-negative bacteria isolated from the equine uterus are capable of producing a biofilm in vitro, and P. aeruginosa is capable of producing biofilm-like material in vivo.
Collapse
|
87
|
Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei. Antimicrob Agents Chemother 2015; 60:1509-14. [PMID: 26711764 DOI: 10.1128/aac.02444-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/09/2015] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose.
Collapse
|
88
|
Mutant Alleles of lptD Increase the Permeability of Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics. Antimicrob Agents Chemother 2015; 60:845-54. [PMID: 26596941 DOI: 10.1128/aac.01747-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/15/2015] [Indexed: 01/11/2023] Open
Abstract
Gram-negative bacteria provide a particular challenge to antibacterial drug discovery due to their cell envelope structure. Compound entry is impeded by the lipopolysaccharide (LPS) of the outer membrane (OM), and those molecules that overcome this barrier are often expelled by multidrug efflux pumps. Understanding how efflux and permeability affect the ability of a compound to reach its target is paramount to translating in vitro biochemical potency to cellular bioactivity. Herein, a suite of Pseudomonas aeruginosa strains were constructed in either a wild-type or efflux-null background in which mutations were engineered in LptD, the final protein involved in LPS transport to the OM. These mutants were demonstrated to be defective in LPS transport, resulting in compromised barrier function. Using isogenic strain sets harboring these newly created alleles, we were able to define the contributions of permeability and efflux to the intrinsic resistance of P. aeruginosa to a variety of antibiotics. These strains will be useful in the design and optimization of future antibiotics against Gram-negative pathogens.
Collapse
|
89
|
Gutierrez MG, Yoder-Himes DR, Warawa JM. Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis. Front Cell Infect Microbiol 2015; 5:78. [PMID: 26583079 PMCID: PMC4631991 DOI: 10.3389/fcimb.2015.00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 12/23/2022] Open
Abstract
Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory melioidosis when delivered as a single strain challenge, suggesting that competition studies may provide a higher resolution analysis of fitness factors in the lung. The use of Tn-seq phenotypic screening also provided key insights into the selective pressure encountered in the liver.
Collapse
Affiliation(s)
- Maria G Gutierrez
- Department of Microbiology and Immunology, University of Louisville Louisville, KY, USA
| | | | - Jonathan M Warawa
- Department of Microbiology and Immunology, University of Louisville Louisville, KY, USA ; Center for Predictive Medicine, University of Louisville Louisville, KY, USA
| |
Collapse
|
90
|
Abstract
Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knock-ins, as well as single-nucleotide insertions, deletions and substitutions, in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selections are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic-resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ∼2 weeks.
Collapse
|
91
|
Kernan T, Majumdar S, Li X, Guan J, West AC, Banta S. Engineering the iron‐oxidizing chemolithoautotroph
Acidithiobacillus ferrooxidans
for biochemical production. Biotechnol Bioeng 2015; 113:189-97. [DOI: 10.1002/bit.25703] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Timothy Kernan
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Sudipta Majumdar
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Xiaozheng Li
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Jingyang Guan
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Alan C. West
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| | - Scott Banta
- Department of Chemical EngineeringColumbia University500 W. 120th StreetNew York CityNew York10027
| |
Collapse
|
92
|
Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 2015; 161:348-60. [PMID: 25860613 DOI: 10.1016/j.cell.2015.02.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.
Collapse
|
93
|
Allard N, Garneau D, Poulin-Laprade D, Burrus V, Brzezinski R, Roy S. A diaminopimelic acid auxotrophic Escherichia coli donor provides improved counterselection following intergeneric conjugation with actinomycetes. Can J Microbiol 2015; 61:565-74. [PMID: 26166710 DOI: 10.1139/cjm-2015-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considering the medical, biotechnological, and economical importance of actinobacteria, there is a continuous need to improve the tools for genetic engineering of a broad range of these microorganisms. Intergeneric conjugation has proven to be a valuable yet imperfect tool for this purpose. The natural resistance of many actinomycetes to nalidixic acid (Nal) is generally exploited to eliminate the sensitive Escherichia coli donor strain following conjugation. Nevertheless, Nal can delay growth and have other unexpected effects on the recipient strain. To provide an improved alternative to antibiotics, we propose a postconjugational counterselection using a diaminopimelic acid (DAP) auxotrophic donor strain. The DAP-negative phenotype was obtained by introducing a dapA deletion into the popular methylase-negative donor strain E. coli ET12567/pUZ8002. The viability of ET12567 and its ΔdapA mutant exposed to DAP deprivation or Nal selection were compared in liquid pure culture and after mating with Streptomyces coelicolor. Results showed that death of the E. coli ΔdapA Nal-sensitive donor strain occurred more efficiently when subjected to DAP deprivation than when exposed to Nal. Our study shows that postconjugational counterselection based on DAP deprivation circumvents the use of antibiotics and will facilitate the transfer of plasmids into actinomycetes with high biotechnological potential, yet currently not accessible to conjugative techniques.
Collapse
Affiliation(s)
- Nancy Allard
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Daniel Garneau
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Dominic Poulin-Laprade
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Vincent Burrus
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Ryszard Brzezinski
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Roy
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
94
|
Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. mBio 2015; 6:e00500-15. [PMID: 26015497 PMCID: PMC4447244 DOI: 10.1128/mbio.00500-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bordetella fimbriae (FIM) are generally considered to function as adhesins despite a lack of experimental evidence supporting this conclusion for Bordetella pertussis and evidence against a requirement for FIM in adherence of Bordetella bronchiseptica to mammalian cell lines. Using B. bronchiseptica and mice, we developed an in vivo adherence assay that revealed that FIM do function as critically important adhesins in the lower respiratory tract. In the first few days postinoculation, FIM-deficient B. bronchiseptica induced a more robust inflammatory response than wild-type bacteria did, suggesting that FIM, like filamentous hemagglutinin (FHA), allow B. bronchiseptica to suppress the innate immune response to infection. Localization analyses indicated that FIM are required for efficient attachment to airway epithelium, as bacteria lacking FIM localized to alveoli. FHA-deficient bacteria, in contrast, localized to airways. Bacteria unable to produce both FIM and FHA localized to alveoli and caused increased inflammation and histopathology identical to that caused by FIM-deficient bacteria, demonstrating that lack of FIM is epistatic to lack of FHA. Coinoculation experiments provided evidence that wild-type B. bronchiseptica suppresses inflammation locally within the respiratory tract and that both FHA and FIM are required for defense against clearance by the innate immune system. Altogether, our data suggest that FIM-mediated adherence to airway epithelium is a critical first step in Bordetella infection that allows FHA-dependent interactions to mediate tight adherence, suppression of inflammation, and resistance to inflammatory cell-mediated clearance. Our results suggest that mucosal antibodies capable of blocking FIM-mediated interactions could prevent bacterial colonization of the lower respiratory tract. Although fimbriae (FIM) have been shown to be important mediators of adherence for many bacterial pathogens, there is surprisingly little experimental evidence supporting this role for Bordetella fimbria. Our results provide the first demonstration that Bordetella FIM function as adhesins in vivo, specifically to airway epithelium. Furthermore, our results suggest that FIM mediate initial interactions with airway epithelial cells that are followed by tight filamentous hemagglutinin (FHA)-mediated binding and that together, FIM and FHA allow Bordetella to suppress inflammation, leading to prolonged colonization. Given the shortcoming of the current acellular component pertussis (aP) vaccine in preventing colonization, these findings suggest that generation of antibodies capable of blocking FIM-mediated adherence could potentially prevent Bordetella colonization.
Collapse
|
95
|
Kibdelomycin is a bactericidal broad-spectrum aerobic antibacterial agent. Antimicrob Agents Chemother 2015; 59:3474-81. [PMID: 25845866 DOI: 10.1128/aac.00382-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 11/20/2022] Open
Abstract
Bacterial resistance to antibiotics continues to grow and pose serious challenges, while the discovery rate for new antibiotics declines. Kibdelomycin is a recently discovered natural-product antibiotic that inhibits bacterial growth by inhibiting the bacterial DNA replication enzymes DNA gyrase and topoisomerase IV. It was reported to be a broad-spectrum aerobic Gram-positive agent with selective inhibition of the anaerobic bacterium Clostridium difficile. We have extended the profiling of kibdelomycin by using over 196 strains of Gram-positive and Gram-negative aerobic pathogens recovered from worldwide patient populations. We report the MIC50s, MIC90s, and bactericidal activities of kibdelomycin. We confirm the Gram-positive spectrum and report for the first time that kibdelomycin shows strong activity (MIC90, 0.125 μg/ml) against clinical strains of the Gram-negative nonfermenter Acinetobacter baumannii but only weak activity against Pseudomonas aeruginosa. We confirm that well-characterized resistant strains of Staphylococcus aureus and Streptococcus pneumoniae show no cross-resistance to kibdelomycin and quinolones and coumarin antibiotics. We also show that kibdelomycin is not subject to efflux in Pseudomonas, though it is in Escherichia coli, and it is generally affected by the outer membrane permeability entry barrier in the nonfermenters P. aeruginosa and A. baumannii, which may be addressable by structure-based chemical modification.
Collapse
|
96
|
In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology. Appl Environ Microbiol 2015; 81:3623-30. [PMID: 25795676 DOI: 10.1128/aem.03909-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/11/2015] [Indexed: 02/04/2023] Open
Abstract
Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation.
Collapse
|
97
|
Colony morphology variation of Burkholderia pseudomallei is associated with antigenic variation and O-polysaccharide modification. Infect Immun 2015; 83:2127-38. [PMID: 25776750 DOI: 10.1128/iai.02785-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/05/2015] [Indexed: 12/12/2022] Open
Abstract
Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns.
Collapse
|
98
|
Gómez E, Álvarez B, Duchaud E, Guijarro JA. Development of a markerless deletion system for the fish-pathogenic bacterium Flavobacterium psychrophilum. PLoS One 2015; 10:e0117969. [PMID: 25692569 PMCID: PMC4333118 DOI: 10.1371/journal.pone.0117969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 11/18/2022] Open
Abstract
Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.
Collapse
Affiliation(s)
- Esther Gómez
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Beatriz Álvarez
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | - Eric Duchaud
- Virologie et Immunologie Moléculaires UR892, INRA (Institut National de la Recherche Agronomique), 78350, Jouy-en-Josas, France
| | - José A. Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006, Oviedo, Spain
- * E-mail:
| |
Collapse
|
99
|
Bruckbauer ST, Kvitko BH, Karkhoff-Schweizer RR, Schweizer HP. Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria. BMC Microbiol 2015; 15:17. [PMID: 25648327 PMCID: PMC4328036 DOI: 10.1186/s12866-015-0354-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The combination of imaging technologies and luciferase-based bioluminescent bacterial reporter strains provide a sensitive and simple non-invasive detection method (photonic bioimaging) for the study of diverse biological processes, as well as efficacy of therapeutic interventions, in live animal models of disease. The engineering of bioluminescent bacteria required for photonic bioimaging is frequently hampered by lack of promoters suitable for strong, yet stable luciferase gene expression. RESULTS We devised a novel method for identification of constitutive native promoters in Gram-negative bacteria. The method is based on a Tn5/7 transposon that exploits the unique features of Tn5 (random transposition) and Tn7 (site-specific transposition). The transposons are designed such that Tn5 transposition will allow insertion of a promoter-less bacterial luxCDABE operon downstream of a bacterial gene promoter. Cloning of DNA fragments from luminescent isolates results in a plasmid that replicates in pir (+) hosts. Sequencing of the lux-chromosomal DNA junctions on the plasmid reveals transposon insertion sites within genes or operons. The plasmid is also a mini-Tn7-lux delivery vector that can be used to introduce the promoter-lux operon fusion into other derivatives of the bacterium of interest in an isogenic fashion. Alternatively, promoter-containing sequences can be PCR-amplified from plasmid or chromosomal DNA and cloned into a series of accompanying mini-Tn7-lux vectors. The mini-Tn5/7-lux and mini-Tn7-lux vectors are equipped with diverse selection markers and thus applicable in numerous Gram-negative bacteria. Various mini-Tn5/7-lux vectors were successfully tested for transposition and promoter identification by imaging in Acinetobacter baumannii, Escherichia coli, and Burkholderia pseudomallei. Strong promoters were captured for lux expression in E. coli and A. baumannii. Some mini-Tn7-lux vectors are also equipped with attB sites for swapping of the lux operon with other reporter genes using Gateway technology. CONCLUSIONS Although mini-Tn5-lux and mini-Tn7-lux elements have previously been developed and used for bacterial promoter identification and chromosomal insertion of promoter-lux gene fusions, respectively, the newly developed mini-Tn5/7-lux and accompanying accessory plasmids streamline and accelerate the promoter discovery and bioluminescent strain engineering processes. Availability of vectors with diverse selection markers greatly extend the host-range of promoter probe and lux gene fusion vectors.
Collapse
Affiliation(s)
- Steven T Bruckbauer
- Department of Microbiology, Immunology and Pathology, and Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Colorado State University, Fort Collins, 80523, CO, USA. .,Present Address: Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, 53706, WI, USA.
| | - Brian H Kvitko
- Department of Microbiology, Immunology and Pathology, and Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Colorado State University, Fort Collins, 80523, CO, USA. .,Present Address: MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, 48824, MI, USA.
| | - RoxAnn R Karkhoff-Schweizer
- Department of Microbiology, Immunology and Pathology, and Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Colorado State University, Fort Collins, 80523, CO, USA.
| | - Herbert P Schweizer
- Department of Microbiology, Immunology and Pathology, and Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Colorado State University, Fort Collins, 80523, CO, USA. .,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Emerging Pathogens Institute, PO Box 100266, Gainesville, 32610-0266, FL, USA.
| |
Collapse
|
100
|
I-SceI-mediated scarless gene modification via allelic exchange in Clostridium. J Microbiol Methods 2015; 108:49-60. [DOI: 10.1016/j.mimet.2014.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023]
|