51
|
|
52
|
Fossou RK, Ziegler D, Zézé A, Barja F, Perret X. Two Major Clades of Bradyrhizobia Dominate Symbiotic Interactions with Pigeonpea in Fields of Côte d'Ivoire. Front Microbiol 2016; 7:1793. [PMID: 27891120 PMCID: PMC5104742 DOI: 10.3389/fmicb.2016.01793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/25/2016] [Indexed: 12/03/2022] Open
Abstract
In smallholder farms of Côte d'Ivoire, particularly in the northeast of the country, Cajanus cajan (pigeonpea) has become an important crop because of its multiple beneficial facets. Pigeonpea seeds provide food to make ends meet, are sold on local markets, and aerial parts serve as forage for animals. Since it fixes atmospheric nitrogen in symbiosis with soil bacteria collectively known as rhizobia, C. cajan also improves soil fertility and reduces fallow time. Yet, seed yields remain low mostly because farmers cannot afford chemical fertilizers. To identify local rhizobial strains susceptible to be used as bio-inoculants to foster pigeonpea growth, root nodules were collected in six fields of three geographically distant regions of Côte d'Ivoire. Nodule bacteria were isolated and characterized using various molecular techniques including matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) and DNA sequencing. These molecular analyses showed that 63 out of 85 nodule isolates belonged to two major clades of bradyrhizobia, one of which is known as the Bradyrhizobium elkanii super clade. Phylogenies of housekeeping (16S-ITS-23S, rpoB) and symbiotic (nifH) genes were not always congruent suggesting that lateral transfer of nitrogen fixation genes also contributed to define the genome of these bradyrhizobial isolates. Interestingly, no field-, plant-, or cultivar-specific effect was found to shape the profiles of symbiotic strains. In addition, nodule isolates CI-1B, CI-36E, and CI-41A that belong to distinct species, showed similar symbiotic efficiencies suggesting that any of these strains might serve as a proficient inoculant for C. cajan.
Collapse
Affiliation(s)
- Romain K Fossou
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Dominik Ziegler
- Microbiology Unit, Department of Botany and Plant Biology, University of GenevaGeneva, Switzerland; Mabritec AGRiehen, Switzerland
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, Unité Mixte de Recherche et d'Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Félix Houphouët-Boigny (INPHB) Yamoussoukro, Côte d'Ivoire
| | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| | - Xavier Perret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva Geneva, Switzerland
| |
Collapse
|
53
|
Hahn J, Tsoy OV, Thalmann S, Čuklina J, Gelfand MS, Evguenieva-Hackenberg E. Small Open Reading Frames, Non-Coding RNAs and Repetitive Elements in Bradyrhizobium japonicum USDA 110. PLoS One 2016; 11:e0165429. [PMID: 27788207 PMCID: PMC5082802 DOI: 10.1371/journal.pone.0165429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
Small open reading frames (sORFs) and genes for non-coding RNAs are poorly investigated components of most genomes. Our analysis of 1391 ORFs recently annotated in the soybean symbiont Bradyrhizobium japonicum USDA 110 revealed that 78% of them contain less than 80 codons. Twenty-one of these sORFs are conserved in or outside Alphaproteobacteria and most of them are similar to genes found in transposable elements, in line with their broad distribution. Stabilizing selection was demonstrated for sORFs with proteomic evidence and bll1319_ISGA which is conserved at the nucleotide level in 16 alphaproteobacterial species, 79 species from other taxa and 49 other Proteobacteria. Further we used Northern blot hybridization to validate ten small RNAs (BjsR1 to BjsR10) belonging to new RNA families. We found that BjsR1 and BjsR3 have homologs outside the genus Bradyrhizobium, and BjsR5, BjsR6, BjsR7, and BjsR10 have up to four imperfect copies in Bradyrhizobium genomes. BjsR8, BjsR9, and BjsR10 are present exclusively in nodules, while the other sRNAs are also expressed in liquid cultures. We also found that the level of BjsR4 decreases after exposure to tellurite and iron, and this down-regulation contributes to survival under high iron conditions. Analysis of additional small RNAs overlapping with 3’-UTRs revealed two new repetitive elements named Br-REP1 and Br-REP2. These REP elements may play roles in the genomic plasticity and gene regulation and could be useful for strain identification by PCR-fingerprinting. Furthermore, we studied two potential toxin genes in the symbiotic island and confirmed toxicity of the yhaV homolog bll1687 but not of the newly annotated higB homolog blr0229_ISGA in E. coli. Finally, we revealed transcription interference resulting in an antisense RNA complementary to blr1853, a gene induced in symbiosis. The presented results expand our knowledge on sORFs, non-coding RNAs and repetitive elements in B. japonicum and related bacteria.
Collapse
Affiliation(s)
- Julia Hahn
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
| | - Olga V. Tsoy
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny Ln. 19, Moscow, 127051, Russia
| | - Sebastian Thalmann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
| | - Jelena Čuklina
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny Ln. 19, Moscow, 127051, Russia
- ETH, Institute of Molecular Systems Biology, Zürich, Switzerland
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny Ln. 19, Moscow, 127051, Russia
- Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russia
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Vorobyevy Gory 1–73, Moscow, 119234, Russia
- Faculty of Computer Science, Higher School of Economics, Kochnovsky Dr. 3, Moscow, 125319, Russia
- * E-mail: (EEH); (MSG)
| | - Elena Evguenieva-Hackenberg
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
- * E-mail: (EEH); (MSG)
| |
Collapse
|
54
|
Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci U S A 2016; 113:12268-12273. [PMID: 27733511 DOI: 10.1073/pnas.1613358113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are ubiquitous mobile genetic elements present as "genomic islands" within bacterial chromosomes. Symbiosis islands are ICEs that convert nonsymbiotic mesorhizobia into symbionts of legumes. Here we report the discovery of symbiosis ICEs that exist as three separate chromosomal regions when integrated in their hosts, but through recombination assemble as a single circular ICE for conjugative transfer. Whole-genome comparisons revealed exconjugants derived from nonsymbiotic mesorhizobia received three separate chromosomal regions from the donor Mesorhizobium ciceri WSM1271. The three regions were each bordered by two nonhomologous integrase attachment (att) sites, which together comprised three homologous pairs of attL and attR sites. Sequential recombination between each attL and attR pair produced corresponding attP and attB sites and joined the three fragments to produce a single circular ICE, ICEMcSym1271 A plasmid carrying the three attP sites was used to recreate the process of tripartite ICE integration and to confirm the role of integrase genes intS, intM, and intG in this process. Nine additional tripartite ICEs were identified in diverse mesorhizobia and transfer was demonstrated for three of them. The transfer of tripartite ICEs to nonsymbiotic mesorhizobia explains the evolution of competitive but suboptimal N2-fixing strains found in Western Australian soils. The unheralded existence of tripartite ICEs raises the possibility that multipartite elements reside in other organisms, but have been overlooked because of their unusual biology. These discoveries reveal mechanisms by which integrases dramatically manipulate bacterial genomes to allow cotransfer of disparate chromosomal regions.
Collapse
|
55
|
Pathak A, Chauhan A, Blom J, Indest KJ, Jung CM, Stothard P, Bera G, Green SJ, Ogram A. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation. PLoS One 2016; 11:e0161032. [PMID: 27532207 PMCID: PMC4988695 DOI: 10.1371/journal.pone.0161032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
The genome of Rhodococcus opacus strain M213, isolated from a fuel-oil contaminated soil, was sequenced and annotated which revealed a genome size of 9,194,165 bp encoding 8680 putative genes and a G+C content of 66.72%. Among the protein coding genes, 71.77% were annotated as clusters of orthologous groups of proteins (COGs); 55% of the COGs were present as paralog clusters. Pulsed field gel electrophoresis (PFGE) analysis of M213 revealed the presence of three different sized replicons- a circular chromosome and two megaplasmids (pNUO1 and pNUO2) estimated to be of 750Kb 350Kb in size, respectively. Conversely, using an alternative approach of optical mapping, the plasmid replicons appeared as a circular ~1.2 Mb megaplasmid and a linear, ~0.7 Mb megaplasmid. Genome-wide comparative analysis of M213 with a cohort of sequenced Rhodococcus species revealed low syntenic affiliation with other R. opacus species including strains B4 and PD630. Conversely, a closer affiliation of M213, at the functional (COG) level, was observed with the catabolically versatile R. jostii strain RHA1 and other Rhodococcii such as R. wratislaviensis strain IFP 2016, R. imtechensis strain RKJ300, Rhodococcus sp. strain JVH1, and Rhodococcus sp. strain DK17, respectively. An in-depth, genome-wide comparison between these functional relatives revealed 971 unique genes in M213 representing 11% of its total genome; many associating with catabolic functions. Of major interest was the identification of as many as 154 genomic islands (GEIs), many with duplicated catabolic genes, in particular for PAHs; a trait that was confirmed by PCR-based identification of naphthalene dioxygenase (NDO) as a representative gene, across PFGE-resolved replicons of strain M213. Interestingly, several plasmid/GEI-encoded genes, that likely participate in degrading naphthalene (NAP) via a peculiar pathway, were also identified in strain M213 using a combination of bioinformatics, metabolic analysis and gene expression measurements of selected catabolic genes by RT-PCR. Taken together, this study provides a comprehensive understanding of the genome plasticity and ecological competitiveness of strain M213 likely facilitated by horizontal gene transfer (HGT), bacteriophage attacks and genomic reshuffling- aspects that continue to be understudied and thus poorly understood, in particular for the soil-borne Rhodococcii.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, Tallahassee, Florida, United States of America
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, Tallahassee, Florida, United States of America
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Karl J. Indest
- Environmental Processes Branch, United States Army Engineer Research and Development Center, Vicksburg, Mississippi, United States of America
| | - Carina M. Jung
- Environmental Processes Branch, United States Army Engineer Research and Development Center, Vicksburg, Mississippi, United States of America
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Gopal Bera
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, United States of America
| | - Stefan J. Green
- DNA Services Facility, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andrew Ogram
- Soil and Water Science Department, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
56
|
Chiboub M, Saadani O, Fatnassi IC, Abdelkrim S, Abid G, Jebara M, Jebara SH. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. C R Biol 2016; 339:391-8. [PMID: 27498183 DOI: 10.1016/j.crvi.2016.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 11/28/2022]
Abstract
The inoculation of plants with plant-growth-promoting rhizobacteria has become a priority in the phytoremediation of heavy-metal-contaminated soils. A total of 82 bacteria were isolated from Sulla coronaria root nodules cultivated on four soil samples differently contaminated by heavy metals. The phenotypic characterization of these isolates demonstrated an increased tolerance to cadmium reaching 4.1mM, and to other metals, including Zn, Cu and Ni. Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (PCR/RFLP) analysis showed a large diversity represented by genera related to Agrobacterium sp., R. leguminosarum, Sinorhizobium sp., Pseudomonas sp., and Rhizobium sp. Their symbiotic effectiveness was evaluated by nodulation tests. Taking into consideration efficiency and cadmium tolerance, four isolates were chosen; their 16SrRNA gene sequence showed that they belonged to Pseudomonas sp. and the Rhizobium sullae. The selected consortium of soil bacteria had the ability to produce plant-growth-promoting substances such as indole acetic acid and siderophore. The intracellular Cd accumulation was enhanced by increasing the time of incubation of the four soil bacteria cultivated in a medium supplemented with 0.1mM Cd. The existence of a cadmium-resistant gene was confirmed by PCR. These results suggested that Sulla coronaria in symbiosis with the consortium of plant-growth-promoting rhizobacteria (PGPR) could be useful in the phytoremediation of cadmium-contaminated soils.
Collapse
Affiliation(s)
- Manel Chiboub
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Omar Saadani
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Imen Challougui Fatnassi
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Souhir Abdelkrim
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Ghassen Abid
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Salwa Harzalli Jebara
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia.
| |
Collapse
|
57
|
Soares SC, Geyik H, Ramos RT, de Sá PH, Barbosa EG, Baumbach J, Figueiredo HC, Miyoshi A, Tauch A, Silva A, Azevedo V. GIPSy: Genomic island prediction software. J Biotechnol 2016; 232:2-11. [DOI: 10.1016/j.jbiotec.2015.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
58
|
Beukes CW, Stępkowski T, Venter SN, Cłapa T, Phalane FL, le Roux MM, Steenkamp ET. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Mol Phylogenet Evol 2016; 100:206-218. [DOI: 10.1016/j.ympev.2016.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
|
59
|
Souza RC, Mendes IC, Reis-Junior FB, Carvalho FM, Nogueira MA, Vasconcelos ATR, Vicente VA, Hungria M. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado? BMC Microbiol 2016; 16:42. [PMID: 26983403 PMCID: PMC4794851 DOI: 10.1186/s12866-016-0657-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Cerrado--an edaphic type of savannah--comprises the second largest biome of the Brazilian territory and is the main area for grain production in the country, but information about the impact of land conversion to agriculture on microbial diversity is still scarce. We used a shotgun metagenomic approach to compare undisturbed (native) soil and soils cropped for 23 years with soybean/maize under conservation tillage--"no-till" (NT)--and conventional tillage (CT) systems in the Cerrado biome. RESULTS Soil management and fertilizer inputs with the introduction of agriculture improved chemical properties, but decreased soil macroporosity and microbial biomass of carbon and nitrogen. Principal coordinates analyses confirmed different taxonomic and functional profiles for each treatment. There was predominance of the Bacteria domain, especially the phylum Proteobacteria, with higher numbers of sequences in the NT and CT treatments; Archaea and Viruses also had lower numbers of sequences in the undisturbed soil. Within the Alphaproteobacteria, there was dominance of Rhizobiales and of the genus Bradyrhizobium in the NT and CT systems, attributed to massive inoculation of soybean, and also of Burkholderiales. In contrast, Rhizobium, Azospirillum, Xanthomonas, Pseudomonas and Acidobacterium predominated in the native Cerrado. More Eukaryota, especially of the phylum Ascomycota were detected in the NT. The functional analysis revealed lower numbers of sequences in the five dominant categories for the CT system, whereas the undisturbed Cerrado presented higher abundance. CONCLUSION High impact of agriculture in taxonomic and functional microbial diversity in the biome Cerrado was confirmed. Functional diversity was not necessarily associated with taxonomic diversity, as the less conservationist treatment (CT) presented increased taxonomic sequences and reduced functional profiles, indicating a strategy to try to maintain soil functioning by favoring taxa that are probably not the most efficient for some functions. Our results highlight that underneath the rustic appearance of the Cerrado vegetation there is a fragile soil microbial community.
Collapse
Affiliation(s)
- Renata Carolini Souza
- />Embrapa Soja, Soil Biotechnology, C.P. 231, 86001-970 Londrina, PR Brazil
- />Department Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990 Curitiba, PR Brazil
| | - Iêda Carvalho Mendes
- />Embrapa Cerrado, Soil Microbiology, C.P. 08223, 73301-970 Planaltina, DF Brazil
| | | | | | | | | | - Vânia Aparecida Vicente
- />Department Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990 Curitiba, PR Brazil
| | - Mariangela Hungria
- />Embrapa Soja, Soil Biotechnology, C.P. 231, 86001-970 Londrina, PR Brazil
| |
Collapse
|
60
|
Baymiev AK, Ivanova ES, Gumenko RS, Chubukova OV, Baymiev AK. Analysis of symbiotic genes of leguminous root nodule bacteria grown in the southern urals. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415110034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Lemaire B, Van Cauwenberghe J, Chimphango S, Stirton C, Honnay O, Smets E, Muasya AM. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome. FEMS Microbiol Ecol 2015; 91:fiv118. [PMID: 26433010 DOI: 10.1093/femsec/fiv118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.
Collapse
Affiliation(s)
- Benny Lemaire
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Samson Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Charles Stirton
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Naturalis Biodiversity Center, Leiden University, 2300 RA Leiden, the Netherlands
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
62
|
Wielbo J, Podleśna A, Kidaj D, Podleśny J, Skorupska A. The Diversity of Pea Microsymbionts in Various Types of Soils and Their Effects on Plant Host Productivity. Microbes Environ 2015; 30:254-61. [PMID: 26370165 PMCID: PMC4567564 DOI: 10.1264/jsme2.me14141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/06/2015] [Indexed: 11/17/2022] Open
Abstract
The growth and yield of peas cultivated on eight different soils, as well as the diversity of pea microsymbionts derived from these soils were investigated in the present study. The experimental plot was composed of soils that were transferred from different parts of Poland more than a century ago. The soils were located in direct vicinity of each other in the experimental plot. All soils examined contained pea microsymbionts, which were suggested to belong to Rhizobium leguminosarum sv. viciae based on the nucleotide sequence of the partial 16S rRNA gene. PCR-RFLP analyses of the 16S-23S rRNA gene ITS region and nodD alleles revealed the presence of numerous and diversified groups of pea microsymbionts and some similarities between the tested populations, which may have been the result of the spread or displacement of strains. However, most populations retained their own genetic distinction, which may have been related to the type of soil. Most of the tested populations comprised low-effective strains for the promotion of pea growth. No relationships were found between the characteristics of soil and symbiotic effectiveness of rhizobial populations; however, better seed yield was obtained for soil with medium biological productivity inhabited by high-effective rhizobial populations than for soil with high agricultural quality containing medium-quality pea microsymbionts, and these results showed the importance of symbiosis for plant hosts.
Collapse
Affiliation(s)
- Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| | - Anna Podleśna
- Institute of Soil Science and Plant Cultivation—State Research Institute,
Czartoryskich 8 str., 24–100 Puławy,
Poland
| | - Dominika Kidaj
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| | - Janusz Podleśny
- Institute of Soil Science and Plant Cultivation—State Research Institute,
Czartoryskich 8 str., 24–100 Puławy,
Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| |
Collapse
|
63
|
Babalola OO. Does nature make provision for backups in the modification of bacterial community structures? Biotechnol Genet Eng Rev 2015; 30:31-48. [PMID: 25023461 DOI: 10.1080/02648725.2014.921497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Self-balancing is an inherent character in nature in response to community structure modification pressure and modern biotechnology has revolutionized the way such detections are made. Presented here is an overview of the forces and process interactions between released bacteria and indigenous microflora which encompass soil bacterial diversity, community structure, indigenous endorhizosphere micro-organisms, molecular detection methodologies, and transgenic plants and microbes. Issues of soil bacterial diversity and community structure as well as the interpretation of results from various findings are highlighted and discussed as inferred from research articles. An understanding of the factors influencing bio-inoculant modification of bacterial community structure in the colonization of the rhizosphere is essential for improved establishment of biocontrol agents, and is critically reviewed.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- a Faculty of Agriculture, Science and Technology, Department of Biological Sciences , North-West University , Private Bag X2046, Mmabatho 2735 , South Africa
| |
Collapse
|
64
|
Bakhoum N, Galiana A, Le Roux C, Kane A, Duponnois R, Ndoye F, Fall D, Noba K, Sylla SN, Diouf D. Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) Mesorhizobium strains from different regions of Senegal. MICROBIAL ECOLOGY 2015; 69:641-651. [PMID: 25315832 DOI: 10.1007/s00248-014-0507-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.
Collapse
Affiliation(s)
- Niokhor Bakhoum
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, BP 5005, Dakar, Senegal,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Jebara SH, Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Jebara M. Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2537-45. [PMID: 25185494 DOI: 10.1007/s11356-014-3510-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/24/2014] [Indexed: 05/08/2023]
Abstract
Phytoremediation comprises a set of plant and microbe-based technologies for remediation of soil heavy metal contamination. In this work, four Pb-resistant bacteria (Agrobacterium tumefaciens, Rahnella aquatilis, and two Pseudomonas sp.) were selected among a collection of isolates from root nodule of Lens culinaris. They had a high degree of bioaccumulation ability in nutrient medium containing 2 mM Pb, and the maximum Pb accumulation of whole cell was found after 48-h incubation. These Pb-resistant bacteria synthesized plant growth promoting substances such as indole acetic acid and siderophore. The presence of the Pb resistance genes (pbrA) in these bacteria has been confirmed by PCR. L. culinaris cultivated in two experimental soils with different levels of contamination showed that Pb contamination affected plant growth; therefore, it's co-inoculation with the consortium of Pb-resistant bacteria improved plant biomass. The present study demonstrated that lentil accumulated Pb primarily in their roots and poorly in their shoots; in addition, it's co-inoculation in moderately Pb-contaminated soil induced a reduction in Pb accumulation in roots and shoots by 22 and 80 %, respectively. Whereas in highly Pb-contaminated soil, we registered a diminution in concentration of Pb in shoots (66 %) and an augmentation in roots (21 %). The contamination of soil by Pb caused an oxidative stress in lentil plant, inducing modulation in antioxidant enzymes activities, essentially in superoxide dismutase (SOD) and peroxidase (GPOX) activities which were more pronounced in lentil cultivated in highly Pb-contaminated soil, in addition, co-inoculation enhanced these activities, suggesting the protective role of enzymatic antioxidant against Pb-induced plant stress.Thus, the present study demonstrated that co-inoculation of lentil with A. tumefaciens, R. aquatilis, and Pseudomonas sp. formed a symbiotic system useful for phytostabilization of highly and moderately Pb-contaminated soils.
Collapse
Affiliation(s)
- Salwa Harzalli Jebara
- Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisie,
| | | | | | | | | | | |
Collapse
|
66
|
Verástegui-Valdés MM, Zhang YJ, Rivera-Orduña FN, Cheng HP, Sui XH, Wang ET. Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico. Syst Appl Microbiol 2014; 37:605-12. [PMID: 25294010 DOI: 10.1016/j.syapm.2014.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
In order to investigate bean-nodulating rhizobia in different types of soil, 41 nodule isolates from acid and alkaline soils in Mexico were characterized. Based upon the phylogenetic studies of 16S rRNA, atpD, glnII, recA, rpoB, gyrB, nifH and nodC genes, the isolates originating from acid soils were identified as the phaseoli symbiovar of the Rhizobium leguminosarum-like group and Rhizobium grahamii, whereas the isolates from alkaline soils were defined as Ensifer americanum sv. mediterranense and Rhizobium radiobacter. The isolates of "R. leguminosarum" and E. americanum harbored nodC and nifH genes, but the symbiotic genes were not detected in the four isolates of the other two species. It was the first time that "R. leguminosarum" and E. americanum have been reported as bean-nodulating bacteria in Mexico. The high similarity of symbiotic genes in the Rhizobium and Ensifer populations showed that these genes had the same origin and have diversified recently in different rhizobial species. Phenotypic characterization revealed that the "R. leguminosarum" population was more adapted to the acid and low salinity conditions, while the E. americanum population preferred alkaline conditions. The findings of this study have improved the knowledge of the diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico.
Collapse
Affiliation(s)
- Myrthala M Verástegui-Valdés
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11430, Mexico, D.F., Mexico
| | - Yu Jing Zhang
- State Key Laboratory of Agrobiotechnology and Center of Biomass Engineering, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Flor N Rivera-Orduña
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11430, Mexico, D.F., Mexico
| | - Hai-Ping Cheng
- Biological Sciences Department, Lehman College and Graduate Center, The City University of New York, Bronx, NY, USA
| | - Xing Hua Sui
- State Key Laboratory of Agrobiotechnology and Center of Biomass Engineering, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11430, Mexico, D.F., Mexico.
| |
Collapse
|
67
|
Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Syst Appl Microbiol 2014; 37:457-65. [DOI: 10.1016/j.syapm.2014.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
|
68
|
Gomes DF, da Silva Batista JS, Rolla AAP, da Silva LP, Bloch C, Galli-Terasawa LV, Hungria M. Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics 2014; 15:643. [PMID: 25086822 PMCID: PMC4287336 DOI: 10.1186/1471-2164-15-643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available. RESULTS We provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as "NO related COG" group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation. CONCLUSIONS The proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach-combining bioinformatics and gene-expression assays-resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariangela Hungria
- Embrapa Soja, Embrapa Soja, C,P, 231, 86001-970 Londrina, Paraná, Brazil.
| |
Collapse
|
69
|
Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 2014; 15:420. [PMID: 24888481 PMCID: PMC4070871 DOI: 10.1186/1471-2164-15-420] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
Collapse
Affiliation(s)
- Arthur Fernandes Siqueira
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| | - Ernesto Ormeño-Orrillo
- />Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Rangel Celso Souza
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Luiz Gonzaga Paula Almeida
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Jesiane Stefânia Silva Batista
- />Department Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti 4748, Ponta Grossa, PR 84030-900 Brazil
| | | | | | | | - Mariangela Hungria
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| |
Collapse
|
70
|
Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2-17. [DOI: 10.1016/j.micres.2013.09.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/24/2022]
|
71
|
Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol Phylogenet Evol 2013; 67:626-30. [DOI: 10.1016/j.ympev.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
|
72
|
Yang W, Kong Z, Chen W, Wei G. Genetic diversity and symbiotic evolution of rhizobia from root nodules of Coronilla varia. Syst Appl Microbiol 2012; 36:49-55. [PMID: 23245852 DOI: 10.1016/j.syapm.2012.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 12/15/2022]
Abstract
Ninety symbiotic rhizobial isolates from root nodules of Coronilla varia growing in the Shaanxi province of China were characterized. Combined with the results of RFLP patterns, six genotypes were defined among the rhizobial strains and they were divided into three genomic genera. These included Mesorhizobium sp., M. alhagi, M. amorphae, M. metallidurans/M. gobiense as the dominant group (86.7%), and Rhizobium yanglingense and Agrobacterium tumefaciens as the minor groups, according to analysis of the corresponding 16S rRNA, nodC and nifH genes. Five nodC types, which mainly grouped into the Mesorhizobium genus, were obtained from all the isolates examined, implying that nodC genes probably occurred from the native habitat through lateral transfer and long-term adaptation, finally evolving toward M. alhagi. Four different nifH types, displaying obvious differences compared to those of 16S rRNA and nodC, implied that possible lateral transfer of the symbiotic genes occurred between different genera. The association between soil components and the genetic diversity of the rhizobial population demonstrated that combined genotypes were positively correlated with the pH of soil samples.
Collapse
Affiliation(s)
- Wenquan Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling Shaanxi 712100, China
| | | | | | | |
Collapse
|
73
|
Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae strain VF39SM. J Bacteriol 2012; 195:328-39. [PMID: 23144250 DOI: 10.1128/jb.01234-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum strain VF39SM contains two plasmids that have previously been shown to be self-transmissible by conjugation. One of these plasmids, pRleVF39b, is shown in this study to carry a set of plasmid transfer genes that differs significantly from conjugation systems previously studied in the rhizobia but is similar to an uncharacterized set of genes found in R. leguminosarum bv. trifolii strain WSM2304. The entire sequence of the transfer region on pRleVF39b was determined as part of a genome sequencing project, and the roles of the various genes were examined by mutagenesis. The transfer region contains a complete set of mating pair formation (Mpf) genes, a traG gene, and a relaxase gene, traA, all of which appear to be necessary for plasmid transfer. Experimental evidence suggested the presence of two putative origins of transfer within the gene cluster. A regulatory gene, trbR, was identified in the region between traA and traG and was mutated. TrbR was shown to function as a repressor of both trb gene expression and plasmid transfer.
Collapse
|
74
|
Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579-2588. [DOI: 10.1099/ijs.0.035097-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus
Microvirga
, with ≥96.1 % sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6T and WSM3557T was
Microvirga flocculans
TFBT, with 97.6–98.0 % similarity, while WSM3693T was most closely related to
Microvirga aerilata
5420S-16T, with 98.8 % similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6T, WSM3557T and WSM3693T within the genus
Microvirga
. DNA–DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6T, WSM3557T and WSM3693T from each other and from other
Microvirga
species with validly published names. The nodA sequence of Lut6T was placed in a clade that contained strains of
Rhizobium
,
Mesorhizobium
and
Sinorhizobium
, while the 100 % identical nodA sequences of WSM3557T and WSM3693T clustered with
Bradyrhizobium
,
Burkholderia
and
Methylobacterium
strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6T, WSM3557T and WSM3693T were most closely related to that of
Rhizobium etli
CFN42T
nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of
Microvirga
are proposed: Microvirga lupini sp. nov. (type strain Lut6T = LMG 26460T = HAMBI 3236T), Microvirga lotononidis sp. nov. (type strain WSM3557T = LMG 26455T = HAMBI 3237T) and Microvirga zambiensis sp. nov. (type strain WSM3693T = LMG 26454T = HAMBI 3238T).
Collapse
Affiliation(s)
- Julie K. Ardley
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Matthew A. Parker
- Department of Biological Sciences, State University of New York, Binghamton, 4400 Vestal Parkway, Vestal, NY 13850, USA
| | - Sofie E. De Meyer
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - Robert D. Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Graham W. O’Hara
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Wayne G. Reeve
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Ron J. Yates
- Department of Agriculture Western Australia, 3 Baron Hay Court, South Perth, WA 6151, Australia
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Michael J. Dilworth
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Anne Willems
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - John G. Howieson
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
75
|
Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K. Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of Crotalaria spp., Indigofera spp., Erythrina brucei and Glycine max growing in Ethiopia. Mol Phylogenet Evol 2012; 65:595-609. [PMID: 22842091 DOI: 10.1016/j.ympev.2012.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/09/2012] [Accepted: 07/14/2012] [Indexed: 12/16/2022]
Abstract
Ethiopian Bradyrhizobium strains isolated from root nodules of Crotalaria spp., Indigofera spp., Erythina brucei and soybean (Glycine max) represented genetically diverse phylogenetic groups of the genus Bradyrhizobium. Strains were characterized using the amplified fragment length polymorphism fingerprinting technique (AFLP) and multilocus sequence analysis (MLSA) of core and symbiotic genes. Based on phylogenetic analyses of concatenated recA-glnII-rpoB-16S rRNA genes sequences, Bradyrhizobium strains were distributed into fifteen phylogenetic groups under B. japonicum and B. elkanii super clades. Some of the isolates belonged to the species B. yuanmingense, B. elkanii and B. japonicum type I. However, the majority of the isolates represented unnamed Bradyrhizobium genospecies and of these, two unique lineages that most likely represent novel Bradyrhizobium species were identified among Ethiopian strains. The nodulation nodA gene sequence analysis revealed that all Ethiopian Bradyrhizobium isolates belonged to nodA sub-clade III.3. Strains were further classified into 14 groups together with strains from Africa, as well as some originating from the other tropical and subtropics regions. Strains were also clustered into 14 groups in nodY/K phylogeny similarly to the nodA tree. The nifH phylogenies of the Ethiopian Bradyrhizobium were generally also congruent with the nodA gene phylogeny, supporting the monophyletic origin of the symbiotic genes in Bradyrhizobium. The phylogenies of nodA and nifH genes were also partially congruent with that inferred from the concatenated core genes sequences, reflecting that the strains obtained their symbiotic genes vertically from their ancestor as well as horizontally from more distantly related Bradyrhizobium species.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- University of Helsinki, Department of Food and Environmental Sciences, POB 56, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
76
|
Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0032-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe term ‘Rhizobium-legume symbiosis’ refers to numerous plant-bacterial interrelationships. Typically, from an evolutionary perspective, these symbioses can be considered as species-to-species interactions, however, such plant-bacterial symbiosis may also be viewed as a low-scale environmental interplay between individual plants and the local microbial population. Rhizobium-legume interactions are therefore highly important in terms of microbial diversity and environmental adaptation thereby shaping the evolution of plant-bacterial symbiotic systems. Herein, the mechanisms underlying and modulating the diversity of rhizobial populations are presented. The roles of several factors impacting successful persistence of strains in rhizobial populations are discussed, shedding light on the complexity of rhizobial-legume interactions.
Collapse
|
77
|
Baymiev AK, Ivanova ES, Ptitsyn KG, Chubukova OV, Baymiev AK. Phylogenetic analysis of symbiotic genes of nodule bacteria in plants of the genus Lathyrus (L.) (Fabaceae). MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416811040021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
78
|
Giusti MDLÁ, Pistorio M, Lozano MJ, Tejerizo GAT, Salas ME, Martini MC, López JL, Draghi WO, Del Papa MF, Pérez-Mendoza D, Sanjuán J, Lagares A. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria. Plasmid 2012; 67:199-210. [PMID: 22233546 DOI: 10.1016/j.plasmid.2011.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.
Collapse
Affiliation(s)
- María de los Ángeles Giusti
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Risal CP, Djedidi S, Dhakal D, Ohkama-Ohtsu N, Sekimoto H, Yokoyama T. Phylogenetic diversity and symbiotic functioning in mungbean (Vigna radiata L. Wilczek) bradyrhizobia from contrast agro-ecological regions of Nepal. Syst Appl Microbiol 2011; 35:45-53. [PMID: 22178390 DOI: 10.1016/j.syapm.2011.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 11/16/2022]
Abstract
Nepal consists wide range of climatic and topographical variations. Here, we explored the phylogeny of native mungbean bradyrhizobia isolated from different agro-ecological regions of Nepal and accessed their nodulation and nitrogen fixation characteristics. Soil samples were collected from three agro-ecological regions with contrasting climate and topography. A local mungbean cultivar, Kalyan, was used as a trap plant. We characterized isolates based on the full nucleotide sequence of the 16S rRNA, ITS region, and nodA genes; and partial sequences of nodD1 and nifD genes. We found 50% of isolates phylogenetically related to B. yuanmingense, 13% to B. japonicum, 8% to B. elkanii, and 29% to novel phylogenetic origin. Results of the inoculation test suggested that expression of different symbiotic genes in isolates resulted in different degrees of symbiotic functioning. Our results indicate B. yuanmingense and novel strains are more efficient symbiotic partners than B. elkanii for the local mungbean cv. Kalyan. We also found most mungbean rhizobial genotypes were conserved across agro-ecological regions. All the strains from tropical Terai region belonged to B. yuanmingense or a novel lineage of B. yuanmingense, and dominance of B. japonicum related strains was observed in the Hill region. Higher genetic diversity of Bradyrhizobium strains was observed in temperate and sub-tropical region than in the tropical region.
Collapse
Affiliation(s)
- Chandra Prasad Risal
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Menna P, Hungria M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 2011; 61:3052-3067. [DOI: 10.1099/ijs.0.028803-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the genus Bradyrhizobium are capable of establishing symbiotic relationships with a broad range of plants belonging to the three subfamilies of the family Leguminosae ( = Fabaceae), with the formation of specialized structures on the roots called nodules, where fixation of atmospheric nitrogen takes place. Symbiosis is under the control of finely tuned expression of common and host-specific nodulation genes and also of genes related to the assembly and activity of the nitrogenase, which, in Bradyrhizobium strains investigated so far, are clustered in a symbiotic island. Information about the diversity of these genes is essential to improve our current poor understanding of their origin, spread and maintenance and, in this study, we provide information on 40 Bradyrhizobium strains, mostly of tropical origin. For the nodulation trait, common (nodA), Bradyrhizobium-specific (nodY/K) and host-specific (nodZ) nodulation genes were studied, whereas for fixation ability, the diversity of nifH was investigated. In general, clustering of strains in all nod and nifH trees was similar and the Bradyrhizobium group could be clearly separated from other rhizobial genera. However, the congruence of nod and nif genes with ribosomal and housekeeping genes was low. nodA and nodY/K were not detected in three strains by amplification or hybridization with probes using Bradyrhizobium japonicum and Bradyrhizobium elkanii type strains, indicating the high diversity of these genes or that strains other than photosynthetic Bradyrhizobium must have alternative mechanisms to initiate the process of nodulation. For a large group of strains, the high diversity of nod genes (with an emphasis on nodZ), the low relationship between nod genes and the host legume, and some evidence of horizontal gene transfer might indicate strategies to increase host range. On the other hand, in a group of five symbionts of Acacia mearnsii, the high congruence between nod and ribosomal/housekeeping genes, in addition to shorter nodY/K sequences and the absence of nodZ, highlights a co-evolution process. Additionally, in a group of B. japonicum strains that were symbionts of soybean, vertical transfer seemed to represent the main genetic event. In conclusion, clustering of nodA and nifH gives additional support to the theory of monophyletic origin of the symbiotic genes in Bradyrhizobium and, in addition to the analysis of nodY/K and nodZ, indicates spread and maintenance of nod and nif genes through both vertical and horizontal transmission, apparently with the dominance of one or other of these events in some groups of strains.
Collapse
Affiliation(s)
- Pâmela Menna
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-MCT), Brasilia, Federal District, Brazil
- Embrapa Soja, Cx Postal 231, 86001-970 Londrina, Paraná, Brazil
| | - Mariangela Hungria
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-MCT), Brasilia, Federal District, Brazil
- Embrapa Soja, Cx Postal 231, 86001-970 Londrina, Paraná, Brazil
| |
Collapse
|
81
|
da Silva Batista JS, Hungria M. Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J Proteomics 2011; 75:1211-9. [PMID: 22119543 DOI: 10.1016/j.jprot.2011.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 11/19/2022]
Abstract
The rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis. Spot profiles were compared between the two conditions and selected spots were excised and identified by mass spectrometry. Forty-seven proteins were significantly induced by genistein, including several hypothetical proteins, the cytoplasmic flagellar component FliG, periplasmic ABC transporters, a protein related to biosynthesis of exopolysaccharides (ExoN), and proteins involved in redox-state maintenance. Noteworthy was the induction of the PhyR-σ(EcfG) regulon, recently demonstrated to be involved in the symbiotic efficiency of, and general stress response in B. japonicum. Our results confirm that the role of flavonoids, such as genistein, can go far beyond the expression of nodulation-related proteins in B. japonicum.
Collapse
|
82
|
Qin W, Deng ZS, Xu L, Wang NN, Wei GH. Rhizobium helanshanense sp. nov., a bacterium that nodulates Sphaerophysa salsula (Pall.) DC. in China. Arch Microbiol 2011; 194:371-8. [DOI: 10.1007/s00203-011-0766-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
|
83
|
First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group. J Biotechnol 2011; 155:3-10. [DOI: 10.1016/j.jbiotec.2011.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 01/13/2011] [Indexed: 11/20/2022]
|
84
|
Althabegoiti MJ, Covelli JM, Pérez-Giménez J, Quelas JI, Mongiardini EJ, López MF, López-García SL, Lodeiro AR. Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean. FEMS Microbiol Lett 2011; 319:133-9. [PMID: 21470300 DOI: 10.1111/j.1574-6968.2011.02280.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bradyrhizobium japonicum has two types of flagella. One has thin filaments consisting of the 33-kDa flagellins FliCI and FliCII (FliCI-II) and the other has thick filaments consisting of the 65-kDa flagellins FliC1, FliC2, FliC3, and FliC4 (FliC1-4). To investigate the roles of each flagellum in competition for nodulation, we obtained mutants deleted in fliCI-II and/or fliC1-4 in the genomic backgrounds of two derivatives from the reference strain USDA 110: the streptomycin-resistant derivative LP 3004 and its more motile derivative LP 3008. All mutations diminished swimming motility. When each mutant was co-inoculated with the parental strain on soybean plants cultivated in vermiculite either at field capacity or flooded, their competitiveness differed according to the flagellin altered. ΔfliCI-II mutants were more competitive, occupying 64-80% of the nodules, while ΔfliC1-4 mutants occupied 45-49% of the nodules. Occupation by the nonmotile double mutant decreased from 55% to 11% as the water content of the vermiculite increased from 85% to 95% field capacity to flooding. These results indicate that the influence of motility on competitiveness depended on the water status of the rooting substrate.
Collapse
Affiliation(s)
- Maria Julia Althabegoiti
- Departamento de Ciencias Biológicas, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Li QQ, Wang ET, Zhang YZ, Zhang YM, Tian CF, Sui XH, Chen WF, Chen WX. Diversity and biogeography of rhizobia isolated from root nodules of Glycine max grown in Hebei Province, China. MICROBIAL ECOLOGY 2011; 61:917-31. [PMID: 21340735 DOI: 10.1007/s00248-011-9820-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
A total of 215 rhizobial strains were isolated and analyzed with 16S rRNA gene, 16S-23S intergenic spacer, housekeeping genes atpD, recA, and glnII, and symbiotic genes nifH and nodC to understand the genetic diversity of soybean rhizobia in Hebei province, China. All the strains except one were symbiotic bacteria classified into nine genospecies in the genera of Bradyrhizobium and Sinorhizobium. Surveys on the distribution of these rhizobia in different regions showed that Bradyrhizobium japonicum and Bradyrhizobium elkanii strains were found only in neutral to slightly alkaline soils whereas Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense-related strains and strains of five Sinorhizobium genospecies were found in alkaline-saline soils. Correspondence and canonical correspondence analyses on the relationship of rhizobial distribution and their soil characteristics reveal that high soil pH, electrical conductivity, and potassium content favor distribution of the B. yuanmingense and the five Sinorhizobium species but inhibit B. japonicum and B. elkanii. High contents of available phosphorus and organic matters benefit Sinorhizobium fredii and B. liaoningense-related strains and inhibit the others groups mentioned above. The symbiotic gene (nifH and nodC) lineages among B. elkanii, B. japonicum, B. yuanmingense, and Sinorhizobium spp. were observed in the strains, signifying that vertical gene transfer was the main mechanism to maintain these genes in the soybean rhizobia. However, lateral transfer of symbiotic genes commonly in Sinorhizobium spp. and rarely in Bradyrhizobium spp. was also detected. These results showed the genetic diversity, the biogeography, and the soil determinant factors of soybean rhizobia in Hebei province of China.
Collapse
Affiliation(s)
- Qin Qin Li
- State Key Laboratory of Agrobiotechnology/College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Perrineau MM, Le Roux C, de Faria SM, de Carvalho Balieiro F, Galiana A, Prin Y, Béna G. Genetic diversity of symbiotic Bradyrhizobium elkanii populations recovered from inoculated and non-inoculated Acacia mangium field trials in Brazil. Syst Appl Microbiol 2011; 34:376-84. [PMID: 21531520 DOI: 10.1016/j.syapm.2011.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
Acacia mangium is a legume tree native to Australasia. Since the eighties, it has been introduced into many tropical countries, especially in a context of industrial plantations. Many field trials have been set up to test the effects of controlled inoculation with selected symbiotic bacteria versus natural colonization with indigenous strains. In the introduction areas, A. mangium trees spontaneously nodulate with local and often ineffective bacteria. When inoculated, the persistence of inoculants and possible genetic recombination with local strains remain to be explored. The aim of this study was to describe the genetic diversity of bacteria spontaneously nodulating A. mangium in Brazil and to evaluate the persistence of selected strains used as inoculants. Three different sites, several hundred kilometers apart, were studied, with inoculated and non-inoculated plots in two of them. Seventy-nine strains were isolated from nodules and sequenced on three housekeeping genes (glnII, dnaK and recA) and one symbiotic gene (nodA). All but one of the strains belonged to the Bradyrhizobium elkanii species. A single case of housekeeping gene transfer was detected among the 79 strains, suggesting an extremely low rate of recombination within B. elkanii, whereas the nodulation gene nodA was found to be frequently transferred. The fate of the inoculant strains varied depending on the site, with a complete disappearance in one case, and persistence in another. We compared our results with the sister species Bradyrhizobium japonicum, both in terms of population genetics and inoculant strain destiny.
Collapse
Affiliation(s)
- M M Perrineau
- CIRAD, Laboratoire des Symbioses Tropicales & Méditerranéennes, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
87
|
Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindström K, Wang ET, Wei GH. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 2011; 76:463-75. [PMID: 21303396 DOI: 10.1111/j.1574-6941.2011.01063.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A total of 115 endophytic bacteria were isolated from root nodules of the wild legume Sphaerophysa salsula grown in two ecological regions of Loess Plateau in China. The genetic diversity and phylogeny of the strains were revealed by restriction fragment length polymorphism and sequencing of 16S rRNA gene and enterobacterial repetitive intergenic consensus-PCR. Their symbiotic capacity was checked by nodulation tests and analysis of nifH gene sequence. This is the first systematic study on endophytic bacteria associated with S. salsula root nodules. Fifty of the strains found were symbiotic bacteria belonging to eight putative species in the genera Mesorhizobium, Rhizobium and Sinorhizobium, harboring similar nifH genes; Mesorhizobium gobiense was the main group and 65 strains were nonsymbiotic bacteria related to 17 species in the genera Paracoccus, Sphingomonas, Inquilinus, Pseudomonas, Serratia, Mycobacterium, Nocardia, Streptomyces, Paenibacillus, Brevibacillus, Staphylococcus, Lysinibacillus and Bacillus, which were universally coexistent with symbiotic bacteria in the nodules. Differing from other similar studies, the present study is the first time that symbiotic and nonsymbiotic bacteria have been simultaneously isolated from the same root nodules, offering the possibility to accurately reveal the correlation between these two kinds of bacteria. These results provide valuable information about the interactions among the symbiotic bacteria, nonsymbiotic bacteria and their habitats.
Collapse
Affiliation(s)
- Zhen Shan Deng
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
88
|
Xu L, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH. Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie van Leeuwenhoek 2011; 99:845-54. [PMID: 21308410 DOI: 10.1007/s10482-011-9559-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Four gram-negative, aerobic, motile, non-spore, forming rods with a wide pH and temperature range for growth (pH 7.0-11.0, optimum pH 8.0; 20-45°C, optimum 28°C) strains were isolated from root nodules of Sphaerophysa salsula and characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the four strains formed a new lineage related to the genus Rhizobium and the sequence similarities between the isolate and the most related type strain Rhizobium giardinii was 96.5%. These strains also formed a distinctive group from the reference strains for defined Rhizobium species based on housekeeping gene sequences (atpD and recA), BOX-PCR fingerprinting, phenotypic features and symbiotic properties. The representative strain CCNWGS0238(T) has DNA-DNA relatedness of less than 33.4% with the most closely related species R. giardinii. It is therefore proposed as a new species, Rhizobium sphaerophysae sp. nov., with isolate CCNWGS0238(T) (=ACCC17498(T) = HAMBI3074(T)) as the type strain.
Collapse
Affiliation(s)
- Lin Xu
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
89
|
Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. BIORESOURCE TECHNOLOGY 2011; 102:703-709. [PMID: 20843682 DOI: 10.1016/j.biortech.2010.08.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 05/27/2023]
Abstract
A root nodule bacterium, Sinorhizobium meliloti CCNWSX0020, resistant to 1.4 mM Cu2+ was isolated from Medicago lupulina growing in mine tailings. In medium supplied with copper, this bacterium showed cell deformation and aggregation due to precipitation of copper on the cell surface. Genes similar to the copper-resistant genes, pcoR and pcoA from Escherichia coli, were amplified by PCR from a 1.4-Mb megaplasmid. Inoculation with S. meliloti CCNWSX0020 increased the biomass of M. lupulina grown in medium added 0 and 100 mg Cu2+ kg(-1) by 45.8% and 78.2%, respectively, and increased the copper concentration inside the plant tissues grown in medium supplied with 100 μM Cu2+ by 39.3%, demonstrating that it is a prospective symbiotic system for bioremediation purposes.
Collapse
Affiliation(s)
- Lian-Mei Fan
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|
90
|
Risal CP, Yokoyama T, Ohkama-Ohtsu N, Djedidi S, Sekimoto H. Genetic diversity of native soybean bradyrhizobia from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal. Syst Appl Microbiol 2010; 33:416-25. [PMID: 20851547 DOI: 10.1016/j.syapm.2010.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/11/2010] [Accepted: 06/17/2010] [Indexed: 11/29/2022]
Abstract
Soybean-nodulating bradyrhizobia are genetically diverse and are classified into different species. In this study, the genetic diversity of native soybean bradyrhizobia isolated from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal was explored. Soil samples were collected from three different topographical regions with contrasting climates. A local soybean cultivar, Cobb, was used as a trap plant to isolate bradyrhizobia. A total of 24 isolates selected on the basis of their colony morphology were genetically characterized. For each isolate, the full nucleotide sequence of the 16S rRNA gene and ITS region, and partial sequences of the nifD and nodD1 genes were determined. Two lineages were evident in the conserved gene phylogeny; one representing Bradyrhizobium elkanii (71% of isolates), and the other representing Bradyrhizobium japonicum (21%) and Bradyrhizobium yuanmingense (8%). Phylogenetic analyses revealed three novel lineages in the Bradyrhizobium elkanii clade, indicating high levels of genetic diversity among Bradyrhizobium isolates in Nepal. B. japonicum and B. yuanmingense strains were distributed in areas from 2420 to 2660 m above sea level (asl), which were mountain regions with a temperate climate. The B. elkanii clade was distributed in two regions; hill regions ranging from 1512 to 1935 m asl, and mountain regions ranging from 2420 to 2660 m asl. Ten multi-locus genotypes were detected; seven among B. elkanii, two among B. japonicum, and one among B. yuanmingense-related isolates. The results indicated that there was higher species-level diversity of Bradyrhizobium in the temperate region than in the sub-tropical region along the southern slopes of the Himalayan Mountains in Nepal.
Collapse
Affiliation(s)
- Chandra Prasad Risal
- United Graduate School of Agri. Science, Tokyo Univ. of Agri. and Tech., Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
91
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
92
|
da Silva Batista JS, Torres AR, Hungria M. Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum
CPAC 15: Spotlighting “hypothetical proteins”. Proteomics 2010; 10:3176-89. [DOI: 10.1002/pmic.201000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
93
|
Coffey L, Owens E, Tambling K, O'Neill D, O'Connor L, O'Reilly C. Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera. Antonie van Leeuwenhoek 2010; 98:455-63. [PMID: 20502965 DOI: 10.1007/s10482-010-9459-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/14/2010] [Indexed: 11/25/2022]
Abstract
Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.
Collapse
Affiliation(s)
- Lee Coffey
- Pharmaceutical & Molecular Biotechnology Research Centre, Chemical & Life Sciences Department, Waterford Institute of Technology, Ireland.
| | | | | | | | | | | |
Collapse
|
94
|
Diouf D, Fall D, Chaintreuil C, Ba A, Dreyfus B, Neyra M, Ndoye I, Moulin L. Phylogenetic analyses of symbiotic genes and characterization of functional traits of
Mesorhizobium
spp. strains associated with the promiscuous species
Acacia seyal
Del. J Appl Microbiol 2010; 108:818-830. [DOI: 10.1111/j.1365-2672.2009.04500.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. Diouf
- Département de Biologie Végétale, Université Cheikh Anta Diop, BP, Dakar, Senegal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP, Dakar, Senegal
| | - D. Fall
- Département de Biologie Végétale, Université Cheikh Anta Diop, BP, Dakar, Senegal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP, Dakar, Senegal
| | - C. Chaintreuil
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F‐34398, Montpellier, France
| | - A.T. Ba
- Département de Biologie Végétale, Université Cheikh Anta Diop, BP, Dakar, Senegal
- Université de Ziguinchor, Ziguinchor, Senegal
| | - B. Dreyfus
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F‐34398, Montpellier, France
| | - M. Neyra
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F‐34398, Montpellier, France
| | - I. Ndoye
- Département de Biologie Végétale, Université Cheikh Anta Diop, BP, Dakar, Senegal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP, Dakar, Senegal
| | - L. Moulin
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F‐34398, Montpellier, France
| |
Collapse
|
95
|
Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 2010; 10:37. [PMID: 20144182 PMCID: PMC2907836 DOI: 10.1186/1471-2180-10-37] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. RESULTS Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. CONCLUSIONS The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.
Collapse
Affiliation(s)
- Fabíola M Carvalho
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Av Getúlio Vargas 333, 25651-075 Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
96
|
Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009; 17:458-66. [PMID: 19766492 DOI: 10.1016/j.tim.2009.07.004] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 11/27/2022]
Abstract
Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen (N(2)) in symbiosis with legumes. All rhizobia elicit the formation of root - or occasionally stem - nodules, plant organs dedicated to the fixation and assimilation of nitrogen. Bacterial colonization of these nodules culminates in a remarkable case of sustained intracellular infection in plants. Rhizobial phylogenetic diversity raised the question of whether these soil bacteria shared a common core of symbiotic genes. In this article, we review the cumulative evidence from recent genomic and genetic analyses pointing toward an unexpected variety of mechanisms that lead to symbiosis with legumes.
Collapse
Affiliation(s)
- Catherine Masson-Boivin
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, BP 52627, 31326 Castanet Tolosan Cedex, France.
| | | | | | | |
Collapse
|
97
|
Coffey L, Clarke A, Duggan P, Tambling K, Horgan S, Dowling D, O'Reilly C. Isolation of identical nitrilase genes from multiple bacterial strains and real-time PCR detection of the genes from soils provides evidence of horizontal gene transfer. Arch Microbiol 2009; 191:761-71. [PMID: 19730817 DOI: 10.1007/s00203-009-0507-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Bacterial enzymes capable of nitrile hydrolysis have significant industrial potential. Microbacterium sp. AJ115, Rhodococcus erythropolis AJ270 and AJ300 were isolated from the same location in England and harbour identical nitrile hydratase/amidase gene clusters. Strain AJ270 has been well studied due to its nitrile hydratase and amidase activity. R. erythropolis ITCBP was isolated from Denmark and carries a very similar nitrile hydratase/amidase gene cluster. In this study, an identical nitrilase gene (nit1) was isolated from the four strains, and the nitrilase from strain AJ270 cloned and expressed in Escherichia coli. Analysis of the recombinant nitrilase has shown it to be functional with activity demonstrated towards phenylacetonitrile. A real-time PCR TaqMan assay was developed that allowed nit1 detection directly from soil enrichment cultures without DNA extraction, with nit1 detected in all samples tested. Real-time PCR screening of isolates from these soils resulted in the isolation of nit1 and also very similar nitrilase gene nit2 from a number of Burkholderia sp. The genes nit1 and nit2 have also been detected in many bacteria of different genera but are unstable in these isolates. It is likely that the genes were acquired by horizontal gene transfer and may be wide-spread in the environment.
Collapse
Affiliation(s)
- Lee Coffey
- Department of Chemical and Life Sciences, Waterford Institute of Technology, Waterford, Ireland.
| | | | | | | | | | | | | |
Collapse
|
98
|
Okazaki S, Zehner S, Hempel J, Lang K, Göttfert M. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 2009; 295:88-95. [PMID: 19473255 DOI: 10.1111/j.1574-6968.2009.01593.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cloning and sequencing of a 47.1-kb chromosomal DNA region revealed the presence of a type III secretion system (T3SS) in Bradyrhizobium elkanii USDA61. The identified genes are likely to encode the transcriptional activator TtsI, core components of the secretion apparatus and secreted proteins. Several ORFs within the cluster are not conserved in other rhizobia. Nine tts box motifs, a promoter element of TtsI-regulated genes, were found; six of them upstream of annotated genes. For functional analyses, the rhcC2 and rhcJ genes were disrupted. These mutations had a cultivar-specific effect on nodulation. Vigna radiata cv. KPS1 developed nodules if infected with the mutant strains but not with the wild type. In contrast, V. radiata cv. CN36 was nodulated by all strains. Nodulation of rj(1) soybean depended on the T3SS. A comparison of the protein patterns from supernatants of the wild type and rhcJ mutant by two-dimensional gel electrophoresis revealed proteins that are secreted only in the wild-type background. These results show that B. elkanii encodes a functional T3SS that is involved in the interaction with host legumes.
Collapse
Affiliation(s)
- Shin Okazaki
- Institute of Genetics, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
99
|
Binde DR, Menna P, Bangel EV, Barcellos FG, Hungria M. rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobial strains. Appl Microbiol Biotechnol 2009; 83:897-908. [PMID: 19290521 DOI: 10.1007/s00253-009-1927-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
In tropical soils, diversity and biotechnological potential of symbiotic diazotrophic bacteria are high. However, the phylogenetic relationships of prominent strains are still poorly understood. In addition, in countries such as Brazil, despite the broad use of rhizobial inoculants, molecular methods are rarely used in the analysis of strains or determination of inoculant performance. In this study, both rep-PCR (BOX) fingerprintings and the DNA sequences of the 16S rRNA gene were obtained for 54 rhizobial strains officially authorized for the production of commercial inoculants in Brazil. BOX-PCR has proven to be a reliable fingerprinting tool, reinforcing the suggestion of its applicability to track rhizobial strains in culture collections and for quality control of commercial inoculants. On the other hand, the method is not adequate for grouping or defining species or even genera. Nine strains differed in more than 1.03% (15) nucleotides of the 16S rRNA gene in relation to the closest type strain, strongly indicative of new species. Those strains were distributed across the genera Burkholderia, Rhizobium, and Bradyrhizobium.
Collapse
|
100
|
Genetic diversity ofBradyrhizobium japonicum within soybean growing regions of the north-eastern Great Plains of North America as determined by REP-PCR and ERIC-PCR profiling. Symbiosis 2009. [DOI: 10.1007/bf03179992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|