51
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
52
|
Wang B, DeKosky BJ, Timm MR, Lee J, Normandin E, Misasi J, Kong R, McDaniel JR, Delidakis G, Leigh KE, Niezold T, Choi CW, Viox EG, Fahad A, Cagigi A, Ploquin A, Leung K, Yang ES, Kong WP, Voss WN, Schmidt AG, Moody MA, Ambrozak DR, Henry AR, Laboune F, Ledgerwood JE, Graham BS, Connors M, Douek DC, Sullivan NJ, Ellington AD, Mascola JR, Georgiou G. Functional interrogation and mining of natively paired human V H:V L antibody repertoires. Nat Biotechnol 2018; 36:152-155. [PMID: 29309060 PMCID: PMC5801115 DOI: 10.1038/nbt.4052] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
We present a technology to screen natively-paired human antibody repertoires from millions of B cells. Libraries of natively-paired variable region heavy and light (VH:VL) amplicons are expressed in a yeast display platform that is optimized for human Fab surface expression. Using our method we identify HIV-1 broadly neutralizing antibodies (bNAbs) from an HIV-1 slow progressor and high-affinity neutralizing antibodies against Ebola virus glycoprotein and influenza hemagglutinin.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Brandon J DeKosky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA.,Department of Chemical & Petroleum Engineering, The University of Kansas, Lawrence, Kansas, USA.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Morgan R Timm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jiwon Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Erica Normandin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - George Delidakis
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Kendra E Leigh
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Thomas Niezold
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Elise G Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ahmed Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - William N Voss
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Aaron G Schmidt
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical School, Durham, North Carolina, USA.,Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Mark Connors
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Bioengineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
53
|
Huang M, Joensson HN, Nielsen J. High-Throughput Microfluidics for the Screening of Yeast Libraries. Methods Mol Biol 2018; 1671:307-317. [PMID: 29170967 DOI: 10.1007/978-1-4939-7295-1_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell factory development is critically important for efficient biological production of chemicals, biofuels, and pharmaceuticals. Many rounds of the Design-Build-Test-Learn cycles may be required before an engineered strain meeting specific metrics required for industrial application. The bioindustry prefer products in secreted form (secreted products or extracellular metabolites) as it can lower the cost of downstream processing, reduce metabolic burden to cell hosts, and allow necessary modification on the final products , such as biopharmaceuticals. Yet, products in secreted form result in the disconnection of phenotype from genotype, which may have limited throughput in the Test step for identification of desired variants from large libraries of mutant strains. In droplet microfluidic screening, single cells are encapsulated in individual droplet and enable high-throughput processing and sorting of single cells or clones. Encapsulation in droplets allows this technology to overcome the throughput limitations present in traditional methods for screening by extracellular phenotypes. In this chapter, we describe a protocol/guideline for high-throughput droplet microfluidics screening of yeast libraries for higher protein secretion . This protocol can be adapted to screening by a range of other extracellular products from yeast or other hosts.
Collapse
Affiliation(s)
- Mingtao Huang
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Haakan N Joensson
- Division of Nanobiotechnology and Proteomics, KTH Royal Institute of Technology, Science for Life Laboratory, Box 1031, SE-17121, Solna, Sweden
- Novo Nordisk Foundation Center for Biosustainability, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
| |
Collapse
|
54
|
Efficient protein production by yeast requires global tuning of metabolism. Nat Commun 2017; 8:1131. [PMID: 29070809 PMCID: PMC5656615 DOI: 10.1038/s41467-017-00999-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/09/2017] [Indexed: 01/20/2023] Open
Abstract
The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion. The contribution of metabolic pathways to protein secretion is largely unknown. Here, the authors find conserved metabolic patterns in yeast by examining genome-wide transcriptional responses in high protein secretion mutants and reveal critical factors that can be tuned for efficient protein secretion.
Collapse
|
55
|
Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, Rodríguez-Sanoja R. Advances in molecular engineering of carbohydrate-binding modules. Proteins 2017; 85:1602-1617. [PMID: 28547780 DOI: 10.1002/prot.25327] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 11/06/2022]
Abstract
Carbohydrate-binding modules (CBMs) are non-catalytic domains that are generally appended to carbohydrate-active enzymes. CBMs have a broadly conserved structure that allows recognition of a notable variety of carbohydrates, in both their soluble and insoluble forms, as well as in their alpha and beta conformations and with different types of bonds or substitutions. This versatility suggests a high functional plasticity that is not yet clearly understood, in spite of the important number of studies relating protein structure and function. Several studies have explored the flexibility of these systems by changing or improving their specificity toward substrates of interest. In this review, we examine the molecular strategies used to identify CBMs with novel or improved characteristics. The impact of the spatial arrangement of the functional amino acids of CBMs is discussed in terms of unexpected new functions that are not related to the original biological roles of the enzymes. Proteins 2017; 85:1602-1617. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvia Armenta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Silvia Moreno-Mendieta
- CONACYT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Zaira Sánchez-Cuapio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| |
Collapse
|
56
|
Automated multiplex genome-scale engineering in yeast. Nat Commun 2017; 8:15187. [PMID: 28469255 PMCID: PMC5418614 DOI: 10.1038/ncomms15187] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/08/2017] [Indexed: 12/23/2022] Open
Abstract
Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast.
Collapse
|
57
|
de Ruijter JC, Jurgens G, Frey AD. Screening for novel genes of Saccharomyces cerevisiae involved in recombinant antibody production. FEMS Yeast Res 2016; 17:fow104. [PMID: 27956492 DOI: 10.1093/femsyr/fow104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/05/2016] [Indexed: 01/17/2023] Open
Abstract
Cost-effective manufacturing of biopharmaceuticals in non-mammalian hosts still requires tremendous efforts in strain development. In order to expedite identification of novel leads for strain engineering, we used a transposon-mutagenized yeast genomic DNA library to create a collection of Saccharomyces cerevisiae deletion strains expressing a full-length IgG antibody. Using a high-throughput screening, transformants with either significantly higher or lower IgG expression were selected. The integration site of the transposon in three of the selected strains was located by DNA sequencing. The inserted DNA lay within the VPS30 and TAR1 open reading frame, and upstream of the HEM13 open reading frame. The complete coding sequence of these genes was deleted in the wild-type strain background to confirm the IgG expression phenotypes. Production of recombinant antibody was increased 2-fold in the Δvps30 strain, but only mildly affected secretion levels in the Δtar1 strain. Remarkably, expression of endogenous yeast acid phosphatase was increased 1.7- and 2.4-fold in Δvps30 and Δtar1 strains. The study confirmed the power of genome-wide high-throughput screens for strain development and highlights the importance of using the target molecule during the screening process.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- Department of Biotechnology and Chemical Technology, Aalto University, 02150 Espoo, Finland
| | | | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
58
|
Ben Azoun S, Belhaj AE, Kallel H. Rabies virus glycoprotein enhanced expression in Pichia pastoris using the constitutive GAP promoter. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
59
|
Bae JH, Sung BH, Seo JW, Kim CH, Sohn JH. A novel fusion partner for enhanced secretion of recombinant proteins in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2016; 100:10453-10461. [PMID: 27412460 PMCID: PMC5119842 DOI: 10.1007/s00253-016-7722-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.
Collapse
Affiliation(s)
- Jung-Hoon Bae
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jeong-Woo Seo
- Industrial Microbiology and Bioprocess Research Center, Korean Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Chul Ho Kim
- Industrial Microbiology and Bioprocess Research Center, Korean Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jung-Hoon Sohn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
60
|
Abstract
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.
Collapse
Affiliation(s)
- Mitsuyoshi Ueda
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku , Japan
| |
Collapse
|
61
|
Tillotson BJ, Goulatis LI, Parenti I, Duxbury E, Shusta EV. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation. PLoS One 2015; 10:e0145820. [PMID: 26713870 PMCID: PMC4694649 DOI: 10.1371/journal.pone.0145820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Loukas I. Goulatis
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Isabelle Parenti
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Elizabeth Duxbury
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Eric V. Shusta
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
62
|
Li C, Lin Y, Zheng X, Pang N, Liao X, Liu X, Huang Y, Liang S. Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris. BMC Biotechnol 2015; 15:88. [PMID: 26410558 PMCID: PMC4584009 DOI: 10.1186/s12896-015-0204-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytase is used as an animal feed additive that degrades phytic acid and reduces feeding costs and pollution caused by fecal excretion of phosphorus. Some phytases have been expressed in Pichia pastoris, among which the phytase from Citrobacter amalonaticus CGMCC 1696 had high specific activity (3548 U/mg). Improvement of the phytase expression level will contribute to facilitate its industrial applications. METHODS To improve the phytase expression, we use modification of P AOX1 and the α-factor signal peptide, increasing the gene copy number, and overexpressing HAC1 (i) to enhance folding and secretion of the protein in the endoplasmic reticulum. The genetic stability and fermentation in 10-L scaled-up fed-batch fermenter was performed to prepare for the industrial production. RESULTS The phytase gene from C. amalonaticus CGMCC 1696 was cloned under the control of the AOX1 promoter (P AOX1 ) and expressed in P. pastoris. The phytase activity achieved was 414 U/mL. Modifications of P AOX1 and the α-factor signal peptide increased the phytase yield by 35 and 12%, respectively. Next, on increasing the copy number of the Phy gene to six, the phytase yield was 141% higher than in the strain containing only a single gene copy. Furthermore, on overexpression of HAC1 (i) (i indicating induced), a gene encoding Hac1p that regulates the unfolded protein response, the phytase yield achieved was 0.75 g/L with an activity of 2119 U/mL, 412% higher than for the original strain. The plasmids in this high-phytase expression strain were stable during incubation at 30 °C in Yeast Extract Peptone Dextrose (YPD) Medium. In a 10-L scaled-up fed-batch fermenter, the phytase yield achieved was 9.58 g/L with an activity of 35,032 U/mL. DISCUSSION The production of a secreted protein will reach its limit at a specific gene copy number where further increases in transcription and translation due to the higher abundance of gene copies will not enhance the secretion process any further. Enhancement of protein folding in the ER can alleviate bottlenecks in the folding and secretion pathways during the overexpression of heterologous proteins in P. pastoris. CONCLUSIONS Using modification of P AOX1 and the α-factor signal peptide, increasing the gene copy number, and overexpressing HAC1 (i) to enhance folding and secretion of the protein in the endoplasmic reticulum, we have successfully increased the phytase yield 412% relative to the original strain. In a 10-L fed-batch fermenter, the phytase yield achieved was 9.58 g/L with an activity of 35,032 U/mL. Large-scale production of phytase can be applied towards different biocatalytic and feed additive applications.
Collapse
Affiliation(s)
- Cheng Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Xueyun Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Nuo Pang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Xihao Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaoxiao Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Yuanyuan Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
63
|
Julian MC, Lee CC, Tiller KE, Rabia LA, Day EK, Schick AJ, Tessier PM. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Protein Eng Des Sel 2015; 28:339-50. [PMID: 26386257 DOI: 10.1093/protein/gzv050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments.
Collapse
Affiliation(s)
- Mark C Julian
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christine C Lee
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kathryn E Tiller
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lilia A Rabia
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Evan K Day
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Arthur J Schick
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
64
|
Tanaka T, Kondo A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 2015; 33:1403-11. [PMID: 26070720 DOI: 10.1016/j.biotechadv.2015.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
Abstract
In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan
| | - Akihiko Kondo
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan.
| |
Collapse
|
65
|
Marshall C, Grosskopf VA, Moehling TJ, Tillotson BJ, Wiepz GJ, Abbott NL, Raines RT, Shusta EV. An evolved Mxe GyrA intein for enhanced production of fusion proteins. ACS Chem Biol 2015; 10:527-38. [PMID: 25384269 PMCID: PMC4340354 DOI: 10.1021/cb500689g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
Expressing antibodies as fusions to the non-self-cleaving Mxe GyrA intein enables site-specific, carboxy-terminal chemical modification of the antibodies by expressed protein ligation (EPL). Bacterial antibody-intein fusion protein expression platforms typically yield insoluble inclusion bodies that require refolding to obtain active antibody-intein fusion proteins. Previously, we demonstrated that it was possible to employ yeast surface display to express properly folded single-chain antibody (scFv)-intein fusions, therefore permitting the direct small-scale chemical functionalization of scFvs. Here, directed evolution of the Mxe GyrA intein was performed to improve both the display and secretion levels of scFv-intein fusion proteins from yeast. The engineered intein was shown to increase the yeast display levels of eight different scFvs by up to 3-fold. Additionally, scFv- and green fluorescent protein (GFP)-intein fusion proteins can be secreted from yeast, and while fusion of the scFvs to the wild-type intein resulted in low expression levels, the engineered intein increased scFv-intein production levels by up to 30-fold. The secreted scFv- and GFP-intein fusion proteins retained their respective binding and fluorescent activities, and upon intein release, EPL resulted in carboxy-terminal azide functionalization of the target proteins. The azide-functionalized scFvs and GFP were subsequently employed in a copper-free, strain-promoted click reaction to site-specifically immobilize the proteins on surfaces, and it was demonstrated that the functionalized, immobilized scFvs retained their antigen binding specificity. Taken together, the evolved yeast intein platform provides a robust alternative to bacterial intein expression systems.
Collapse
Affiliation(s)
- Carrie
J. Marshall
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Vanessa A. Grosskopf
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Taylor J. Moehling
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Benjamin J. Tillotson
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Gregory J. Wiepz
- Dept.
of Biomolecular Chemistry, University of
Wisconsin-Madison, 420
Henry Mall, Madison, Wisconsin 53706, United States
| | - Nicholas L. Abbott
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Dept.
of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
- Dept.
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eric V. Shusta
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
66
|
Tanaka T, Kondo A. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology. FEMS Yeast Res 2015; 15:1-9. [PMID: 25243459 DOI: 10.1111/1567-1364.12212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/09/2014] [Accepted: 09/15/2014] [Indexed: 01/26/2023] Open
Abstract
In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe, Japan
| |
Collapse
|
67
|
Gu L, Zhang J, Du G, Chen J. Multivariate modular engineering of the protein secretory pathway for production of heterologous glucose oxidase in Pichia pastoris. Enzyme Microb Technol 2014; 68:33-42. [PMID: 25435503 DOI: 10.1016/j.enzmictec.2014.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/26/2022]
Abstract
Limitations in protein production and secretion have been attributed to the inefficient folding rate of overexpressed proteins and the cellular response to the presence of overexpressed proteins in the endoplasmic reticulum (ER). In this study, we improved the yield of glucose oxidase (GOD) by manipulating genes involved in protein folding machinery and abnormal folding stress responses. First, genes with folding and secretion functions were used to modulate the folding rate of GOD in the ER and its secretion level in the cytoplasm. Next, the potential benefits of the ERAD elements were determined. Cellular resistance to ER derived stress was then strengthened by overexpressing the stress response gene GCN4. Furthermore, a module combination strategy, which co-expressed the SEC53, CNE1 and GCN4 genes, was employed to construct the Pichia pastoris strain S17. This increased the yield of GOD to 21.81g/L, with an activity of 1972.9U/mL, which were 2.53- and 5.11-fold higher, respectively, than the control strain. The work described here improved GOD production significantly, and the strategies employed in this study provide novel information for the large-scale production of heterologous proteins.
Collapse
Affiliation(s)
- Lei Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
68
|
Improving the Secretory Production of the Heterologous Protein in Pichia pastoris by Focusing on Protein Folding. Appl Biochem Biotechnol 2014; 175:535-48. [DOI: 10.1007/s12010-014-1292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/09/2014] [Indexed: 01/07/2023]
|
69
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
70
|
Directed evolution of brain-derived neurotrophic factor for improved folding and expression in Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 80:5732-42. [PMID: 25015885 DOI: 10.1128/aem.01466-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in nervous system function and has therapeutic potential. Microbial production of BDNF has resulted in a low-fidelity protein product, often in the form of large, insoluble aggregates incapable of binding to cognate TrkB or p75 receptors. In this study, employing Saccharomyces cerevisiae display and secretion systems, it was found that BDNF was poorly expressed and partially inactive on the yeast surface and that BDNF was secreted at low levels in the form of disulfide-bonded aggregates. Thus, for the purpose of increasing the compatibility of yeast as an expression host for BDNF, directed-evolution approaches were employed to improve BDNF folding and expression levels. Yeast surface display was combined with two rounds of directed evolution employing random mutagenesis and shuffling to identify BDNF mutants that had 5-fold improvements in expression, 4-fold increases in specific TrkB binding activity, and restored p75 binding activity, both as displayed proteins and as secreted proteins. Secreted BDNF mutants were found largely in the form of soluble homodimers that could stimulate TrkB phosphorylation in transfected PC12 cells. Site-directed mutagenesis studies indicated that a particularly important mutational class involved the introduction of cysteines proximal to the native cysteines that participate in the BDNF cysteine knot architecture. Taken together, these findings show that yeast is now a viable alternative for both the production and the engineering of BDNF.
Collapse
|
71
|
Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering. Appl Environ Microbiol 2014; 80:5542-50. [PMID: 24973076 DOI: 10.1128/aem.00712-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis.
Collapse
|
72
|
Kuroda K, Ueda M. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering. Biomolecules 2013; 3:632-50. [PMID: 24970185 PMCID: PMC4030959 DOI: 10.3390/biom3030632] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022] Open
Abstract
Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
73
|
Tillotson BJ, de Larrinoa IF, Skinner CA, Klavas DM, Shusta EV. Antibody affinity maturation using yeast display with detergent-solubilized membrane proteins as antigen sources. Protein Eng Des Sel 2013; 26:101-12. [PMID: 23109730 PMCID: PMC3542525 DOI: 10.1093/protein/gzs077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 01/21/2023] Open
Abstract
Antigen preparations in the form of detergent-solubilized cell lysates could, in principle, render membrane proteins (MPs) compatible with in vitro antibody engineering technologies. To this end, detergent-solubilized cell lysates were coupled with the yeast surface display platform to affinity mature an anti-transferrin receptor (TfR) single-chain antibody (scFv). Lysates were generated from TfR-expressing HEK293 cells by solubilization with detergent-containing buffer after undergoing plasma membrane-restricted biotinylation. Lysate-resident TfR was then combined with a mutagenic anti-TfR scFv library in a competitive, dissociation rate screen, and scFvs were identified with up to 4-fold improved dissociation rates on the surface of yeast. Importantly, although the lysates contained a complex mixture of biotinylated proteins, the engineered scFvs retained their TfR binding specificity. When secreted by yeast as soluble proteins, mutant scFvs bound to cell surface TfR with 3-7-fold improvements in equilibrium binding affinity. Although a known MP antigen was targeted for purposes of this study, employing biotin tagging as a means of antigen detection makes the lysate-based approach particularly flexible. We have previously shown that yeast display can be used to identify lead antibodies using cell lysate-resident MP antigens, and combined with this work showing that antibodies can also be quantitatively engineered using cell lysates, these approaches may provide a high-throughput platform for generation and optimization of antibodies against MPs.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Iñigo F. de Larrinoa
- Departamento de Quimica Aplicada, Universidad del País Vasco, P M. Lardizabal 3, San Sebastian 20018, Spain
| | - Colin A. Skinner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Derek M. Klavas
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
74
|
Abstract
The non-essential Corynebacterium glutamicum sigma factor, sigB, modulates global gene expression during the transition from exponential growth to the stationary phase. Utilizing a signal peptide derived from C. glutamicum R CgR_0949, a sigB disruption mutant able to secrete 3- to 5-fold more green fluorescence protein (GFP) and α-amylase than the wild type strain was isolated. The signal peptide selectively enabled the mutant to produce greater amounts of both proteins, which were in turn secreted in culture medium in greater quantities than previously acknowledged. A peak GFP productivity of 2.8 g/l was attained, representing the highest GFP productivity reported in C. glutamicum to date. CgR_0949 signal sequence length (30 residues), type (Tat) or the target protein identity (GFP or α-amylase) had no measurable effect on the magnitude of the protein accumulation and consequent secretion. It therefore follows that actual experimentation remains the fastest way to identify suitable signal sequences in C. glutamicum. More secretion studies may reveal even greater secretion productivity by C. glutamicum and consequently present an attractive avenue to further enhance the utility of C. glutamicum as an industrial workhorse.
Collapse
|
75
|
Kazemi Seresht A, Nørgaard P, Palmqvist EA, Andersen AS, Olsson L. Modulating heterologous protein production in yeast: the applicability of truncated auxotrophic markers. Appl Microbiol Biotechnol 2012; 97:3939-48. [PMID: 22782252 DOI: 10.1007/s00253-012-4263-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 11/28/2022]
Abstract
The use of auxotrophic Saccharomyces cerevisiae strains for improved production of a heterologous protein was examined. Two different marker genes were investigated, encoding key enzymes in the metabolic pathways for amino acid (LEU2) and pyrimidine (URA3) biosynthesis, respectively. Expression plasmids, carrying the partly defective selection markers LEU2d and URA3d, were constructed. Two CEN.PK-derived strains were chosen and insulin analogue precursor was selected as a model protein. Different truncations of the LEU2 and URA3 promoters were used as the mean to titrate the plasmid copy number and thus the recombinant gene dosage in order to improve insulin productivity. Experiments were initially carried out in batch mode to examine the stability of yeast transformants and to select high yielding mutants. Next, chemostat cultivations were run at high cell density to address industrial applicability and long-term expression stability of the transformants. We found that the choice of auxotrophic marker is crucial for developing a yeast expression system with stable heterologous protein production. The incremental truncation of the URA3 promoter led to higher plasmid copy numbers and IAP yields, whereas the truncation of the LEU2 promoter caused low plasmid stability. We show that the modification of the level of the recombinant gene dosage by varying the degree of promoter truncation can be a strong tool for optimization of productivity. The application of the URA3d-based expression systems showed a high potential for industrial protein production and for further academic studies.
Collapse
Affiliation(s)
- Ali Kazemi Seresht
- Protein Expression, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark.
| | | | | | | | | |
Collapse
|
76
|
Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:491-510. [DOI: 10.1111/j.1567-1364.2012.00810.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | - Zihe Liu
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Dina Petranovic
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| |
Collapse
|
77
|
Mokdad-Gargouri R, Abdelmoula-Soussi S, Hadiji-Abbès N, Amor IYH, Borchani-Chabchoub I, Gargouri A. Yeasts as a tool for heterologous gene expression. Methods Mol Biol 2012; 824:359-370. [PMID: 22160908 DOI: 10.1007/978-1-61779-433-9_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The yeasts Saccharomyces cerevisiae and Pichia pastoris are attractive hosts for production of human proteins. The main advantages offered by these systems are the well-developed and easily accessible genetic tools, rapid growth, the simple and inexpensive culture media, and many of the cellular and metabolic processes found in higher eukaryotes are conserved in both yeast species. In this chapter, we describe the production of two proteins of therapeutic interest: the human P53 tumor suppressor and the viral HBsAg in P. pastoris and S. cerevisiae using the strong and inducible promoters AOX1 and Gal10/Cyc1, respectively. Besides the production as a goal of both expressions, we also report on an unexpected result that has occurred in S. cerevisiae: The overexpression of human p53 induces yeast cell death with characteristic markers of apoptosis, such as the externalization of phosphatidylserines and DNA strand cleavage.
Collapse
|
78
|
Baumann K, Adelantado N, Lang C, Mattanovich D, Ferrer P. Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris. Microb Cell Fact 2011; 10:93. [PMID: 22050768 PMCID: PMC3219557 DOI: 10.1186/1475-2859-10-93] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/03/2011] [Indexed: 12/27/2022] Open
Abstract
Background The increasing availability of 'omics' databases provide important platforms for yeast engineering strategies since they offer a lot of information on the physiology of the cells under diverse growth conditions, including environmental stresses. Notably, only a few of these approaches have considered a performance under recombinant protein production conditions. Recently, we have identified a beneficial effect of low oxygen availability on the expression of a human Fab fragment in Pichia pastoris. Transcriptional analysis and data mining allowed for the selection of potential targets for strain improvement. A first selection of these candidates has been evaluated as recombinant protein secretion enhancers. Results Based on previous transcriptomics analyses, we selected 8 genes for co-expression in the P. pastoris strain already secreting a recombinant Fab fragment. Notably, WSC4 (which is involved in trafficking through the ER) has been identified as a novel potential target gene for strain improvement, with up to a 1.2-fold increase of product yield in shake flask cultures. A further transcriptomics-based strategy to modify the yeast secretion system was focused on the ergosterol pathway, an aerobic process strongly affected by oxygen depletion. By specifically partially inhibiting ergosterol synthesis with the antifungal agent fluconazole (inhibiting Erg11p), we tried to mimic the hypoxic conditions, in which the cellular ergosterol content was significantly decreased. This strategy led to an improved Fab yield (2-fold) without impairing cellular growth. Since ergosterol shortage provokes alterations in the plasma membrane composition, an important role of this cellular structure in protein secretion is suggested. This hypothesis was additionally supported by the fact that the addition of non-ionic surfactants also enhanced Fab secretion. Conclusions The current study presents a systems biotechnology-based strategy for the engineering of the industrially important yeast P. pastoris combining the use of host specific DNA microarray technologies and physiological studies under well defined environmental conditions. Such studies allowed for the identification of novel targets related with protein trafficking and ergosterol biosynthesis for improved recombinant protein production. Nevertheless, further studies will be required to elucidate the precise mechanisms whereby membrane biogenesis and composition impact on protein secretion in P. pastoris.
Collapse
Affiliation(s)
- Kristin Baumann
- Department of Chemical Engineering, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | |
Collapse
|
79
|
Abstract
Recombinant antibody fragments, for example, the classic monovalent single-chain antibody (scFv), are emerging as credible alternatives to monoclonal antibody (mAb) products. scFv fragments maintain a diverse range of potential applications in biotechnology and can be implemented as powerful therapeutic and diagnostic agents. As such, a variety of hosts have been used to produce antibody fragments resulting in varying degrees of success. Yeast, Saccharomyces cerevisiae, is an attractive host due to quality control mechanisms of the secretory pathway that ensure secreted proteins are properly folded. However, the expression of a recombinant protein in yeast is not trivial; neither are the quality control mechanisms the cell initiates to respond to overwhelming stress, such as an increased protein load, simplistic. The endoplasmic reticulum (ER) is a dynamic organelle, capable of sensing and adjusting its folding capacity in response to increased demand. When protein abundance or terminally misfolded proteins overwhelm the ER's capacity, the unfolded protein response (UPR) is activated. In the guidelines presented here, we discuss varying aspects of quality control, its modulation, and ways to design appropriate constructs for yeast recombinant protein expression. Furthermore, we have provided protocols and methods to monitor intracellular protein expression and trafficking as well as evaluation of the UPR, with essential controls. The latter part of this chapter will review considerations for the experimental design of microarray and quantitative polymerase chain reaction (q-PCR) techniques while suggesting appropriate means of data analysis.
Collapse
|
80
|
Baumann K, Dato L, Graf AB, Frascotti G, Dragosits M, Porro D, Mattanovich D, Ferrer P, Branduardi P. The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis. BMC Genomics 2011; 12:218. [PMID: 21554735 PMCID: PMC3116504 DOI: 10.1186/1471-2164-12-218] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/09/2011] [Indexed: 01/05/2023] Open
Abstract
Background Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains. In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. Results The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. Conclusions The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production.
Collapse
Affiliation(s)
- Kristin Baumann
- Department of Chemical Engineering, Autonomous University of Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Kitagawa T, Kohda K, Tokuhiro K, Hoshida H, Akada R, Takahashi H, Imaeda T. Identification of genes that enhance cellulase protein production in yeast. J Biotechnol 2010; 151:194-203. [PMID: 21167225 DOI: 10.1016/j.jbiotec.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
In order to enhance heterologous cellulase protein production in yeast, a plasmid harboring the endoglucanase gene from Clostridium thermocellum (Ctcel8A) was used to systematically transform a homozygous diploid yeast deletion strain collection. We identified 55 deletion strains that exhibited enhanced endoglucanase activity compared with that of the wild-type strain. Genes disrupted in these strains were classified into the categories of transcription, translation, phospholipid synthesis, endosome/vacuole function, ER/Golgi function, nitrogen starvation response, and cytoskeleton. The vps3Δ and vps16Δ strains, which have deletion in genes encoding components of the class C core vacuole/endosome tethering (CORVET) complex, also exhibited enhanced β-glucosidase activity when Ctcel8A was heterologously expressed. Moreover, multiple gene deletion strains were constructed by using the vps3Δ strain. Endoglucanase activity of the resulting rav1Δvps3Δ double deletion strain was exhibited higher than that of the rav1Δ or vps3Δ strains. Our genome-wide analyses using the yeast deletion strain collection identified useful genes that allow efficient expression of cellulase.
Collapse
Affiliation(s)
- Takao Kitagawa
- Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube 755-8611, Japan.
| | | | | | | | | | | | | |
Collapse
|
82
|
Love KR, Panagiotou V, Jiang B, Stadheim TA, Love JC. Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically. Biotechnol Bioeng 2010; 106:319-25. [PMID: 20148400 DOI: 10.1002/bit.22688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The production of heterologous proteins by secretion from cellular hosts is an important determinant for the cost of biotherapeutics. A single-cell analytical method called microengraving was used to examine the heterogeneity in secretion by the methylotrophic yeast Pichia pastoris. We show that constitutive secretion of a human Fc fragment by P. pastoris is not cell-cycle dependent, but rather fluctuates between states of high and low productivity in a stochastic manner.
Collapse
Affiliation(s)
- Kerry Routenberg Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
83
|
Stadlmayr G, Benakovitsch K, Gasser B, Mattanovich D, Sauer M. Genome-scale analysis of library sorting (GALibSo): Isolation of secretion enhancing factors for recombinant protein production inPichia pastoris. Biotechnol Bioeng 2010; 105:543-55. [DOI: 10.1002/bit.22573] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
85
|
Stanton JB, Knowles DP, Call DR, Mathison BA, Baszler TV. Limited transcriptional response of ovine microglia to prion accumulation. Biochem Biophys Res Commun 2009; 386:345-50. [PMID: 19523453 DOI: 10.1016/j.bbrc.2009.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/08/2009] [Indexed: 01/22/2023]
Abstract
The conversion of normal cellular prion protein to disease-associated prion protein (PrP(Sc)) is a fundamental component of prion disease pathogenesis. The molecular mechanisms contributing to prion conversion and the impact of PrP(Sc) accumulation on cellular biology are not fully understood. To further define the molecular changes associated with PrP(Sc) accumulation in cultured cells, the transcriptional profile of PrP(Sc)-accumulating primary ovine microglia was compared to the profile of PrP(Sc)-lacking microglia using the Affymetrix Bovine Genome Array. The experimental design included three biological replicates, each with three technical replicates, and samples that were collected at the point of near maximal PrP(Sc) accumulation levels as measured by ELISA. The array analysis revealed only 19 upregulated genes and 30 downregulated genes in PrP(Sc)-accumulating microglia. The results support the hypothesis that chronic PrP(Sc) accumulation in cultured microglia results in a limited transcriptional response.
Collapse
Affiliation(s)
- James B Stanton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
86
|
Hrmova M, Fincher GB. Functional genomics and structural biology in the definition of gene function. Methods Mol Biol 2009; 513:199-227. [PMID: 19347658 DOI: 10.1007/978-1-59745-427-8_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
By mid-2007, the three-dimensional (3D) structures of some 45,000 proteins have been solved, over a period where the linear structures of millions of genes have been defined. Technical challenges associated with X-ray crystallography are being overcome and high-throughput methods both for crystallization of proteins and for solving their 3D structures are under development. The question arises as to how structural biology can be integrated with and adds value to functional genomics programs. Structural biology will assist in the definition of gene function through the identification of the likely function of the protein products of genes. The 3D information allows protein sequences predicted from DNA sequences to be classified into broad groups, according to the overall 'fold', or 3D shape, of the protein. Structural information can be used to predict the preferred substrate of a protein, and thereby greatly enhance the accurate annotation of the corresponding gene. Furthermore, it will enable the effects of amino acid substitutions in enzymes to be better understood with respect to enzyme function and could thereby provide insights into natural variation in genes. If the molecular basis of transcription factor-DNA interactions were defined through precise 3D knowledge of the protein-DNA binding site, it would be possible to predict the effects of base substitutions within the motif on the specificity and/or kinetics of binding. In this chapter, we present specific examples of how structural biology can provide valuable information for functional genomics programs.
Collapse
Affiliation(s)
- Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
87
|
Huang D, Gore PR, Shusta EV. Increasing yeast secretion of heterologous proteins by regulating expression rates and post-secretory loss. Biotechnol Bioeng 2008; 101:1264-75. [DOI: 10.1002/bit.22019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
88
|
Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008; 7:11. [PMID: 18394160 PMCID: PMC2322954 DOI: 10.1186/1475-2859-7-11] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/04/2008] [Indexed: 11/17/2022] Open
Abstract
Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | | | - Ursula Rinas
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martin Dragosits
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Escarlata Rodríguez-Carmona
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Kristin Baumann
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Giuliani
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Ermenegilda Parrilli
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Paola Branduardi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Christine Lang
- Technical University Berlin, Faculty III, Institute for Microbiology and Genetics, Berlin, Germany
| | - Danilo Porro
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Pau Ferrer
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Luisa Tutino
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Diethard Mattanovich
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Antonio Villaverde
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| |
Collapse
|
89
|
Pepper LR, Cho YK, Boder ET, Shusta EV. A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 2008; 11:127-34. [PMID: 18336206 PMCID: PMC2681324 DOI: 10.2174/138620708783744516] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yeast surface display has become an increasingly popular tool for protein engineering and library screening applications. Recent advances have greatly expanded the capability of yeast surface display, and are highlighted by cell-based selections, epitope mapping, cDNA library screening, and cell adhesion engineering. In this review, we discuss the state-of-the-art yeast display methodologies and the rapidly expanding set of applications afforded by this technology.
Collapse
Affiliation(s)
- Lauren R. Pepper
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Yong Ku Cho
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Eric T. Boder
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, 437 Dougherty Engineering Building, Knoxville, TN 37996
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| |
Collapse
|
90
|
Gai SA, Wittrup KD. Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 2007; 17:467-73. [PMID: 17870469 PMCID: PMC4038029 DOI: 10.1016/j.sbi.2007.08.012] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/03/2007] [Accepted: 08/19/2007] [Indexed: 11/23/2022]
Abstract
Yeast surface display is being employed to engineer desirable properties into proteins for a broad variety of applications. Labeling with soluble ligands enables rapid and quantitative analysis of yeast-displayed libraries by flow cytometry, while cell-surface selections allow screening of libraries with insoluble or even as-yet-uncharacterized binding targets. In parallel, the utilization of yeast surface display for protein characterization, including in particular the mapping of functional epitopes mediating protein–protein interactions, represents a significant recent advance.
Collapse
Affiliation(s)
- S Annie Gai
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E19-563, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E19-563, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E19-563, Cambridge, MA 02139, USA
| |
Collapse
|
91
|
Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 2007; 73:6499-507. [PMID: 17766460 PMCID: PMC2075068 DOI: 10.1128/aem.01196-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient production of heterologous proteins with yeasts and other eukaryotic hosts is often hampered by inefficient secretion of the product. Limitation of protein secretion has been attributed to a low folding rate, and a rational solution is the overexpression of proteins supporting folding, like protein disulfide isomerase (Pdi), or the unfolded protein response transcription factor Hac1. Assuming that other protein factors which are not directly involved in protein folding may also support secretion of heterologous proteins, we set out to analyze the differential transcriptome of a Pichia pastoris strain overexpressing human trypsinogen versus that of a nonexpressing strain. Five hundred twenty-four genes were identified to be significantly regulated. Excluding those genes with totally divergent functions (like, e.g., core metabolism), we reduced this number to 13 genes which were upregulated in the expression strain having potential function in the secretion machinery and in stress regulation. The respective Saccharomyces cerevisiae homologs of these genes, including the previously characterized secretion helpers PDI1, ERO1, SSO2, KAR2/BiP, and HAC1 as positive controls, were cloned and overexpressed in a P. pastoris strain expressing a human antibody Fab fragment. All genes except one showed a positive effect on Fab fragment secretion, as did the controls. Six out of these novel secretion helper factors, more precisely Bfr2 and Bmh2 (involved in protein transport), the chaperones Ssa4 and Sse1, the vacuolar ATPase subunit Cup5, and Kin2 (a protein kinase connected to exocytosis), proved their benefits for practical application in laboratory-scale production processes by increasing both specific production rates and the volumetric productivity of an antibody fragment up to 2.5-fold in fed-batch fermentations of P. pastoris.
Collapse
Affiliation(s)
- Brigitte Gasser
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
92
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|