51
|
|
52
|
Keane A, Lau PCK, Ghoshal S. Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactants. Biotechnol Bioeng 2008; 99:86-98. [PMID: 17570716 DOI: 10.1002/bit.21524] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The whole-cell bioluminescent biosensor Pseudomonas putida F1G4 (PpF1G4), which contains a chromosomally-based sep-lux transcriptional fusion, was used as a tool for direct measurement of the bioavailability of hydrophobic organic compounds (HOCs) partitioned into surfactant micelles. The increased bioluminescent response of PpF1G4 in micellar solutions (up to 10 times the critical micellar concentration) of Triton X-100 and Brij 35 indicated higher intracellular concentrations of the test compounds, toluene, naphthalene, and phenanthrene, compared to control systems with no surfactants present. In contrast, Brij 30 caused a decrease in the bioluminescent response to the test compounds in single-solute systems, without adversely affecting cell growth. The decrease in bioluminescent response in the presence of Brij 30 did not occur in the presence of multiple HOCs extracted into the surfactant solutions from crude oil and creosote. The effect of the micellar solutions on the toluene biodegradation rate was consistent with the bioluminescent response in single-solute systems. None of the surfactants were toxic to PpF1G4 at the doses employed in this study, and PpF1G4 did not produce a bioluminescent response to the surfactants nor utilize them as growth substrates. TEM images suggest that the surfactants did not rupture the cell membranes. The results demonstrate that for Pseudomonas putida F1, nonionic surfactants such as Triton X-100 and Brij 35, at doses between 2 and 10 CMC, may increase the bioavailability and direct uptake of micellar phase HOCs that are common pollutants at contaminated sites.
Collapse
Affiliation(s)
- Angela Keane
- Department of Civil Engineering, McGill University, Macdonald Engineering Bldg, 817 Sherbrooke Street West, Montreal, Quebec, Canada
| | | | | |
Collapse
|
53
|
Bettaieb F, Ponsonnet L, Lejeune P, Ouada HB, Martelet C, Bakhrouf A, Jaffrézic-Renault N, Othmane A. Immobilization of E. coli bacteria in three-dimensional matrices for ISFET biosensor design. Bioelectrochemistry 2007; 71:118-25. [PMID: 17398167 DOI: 10.1016/j.bioelechem.2007.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 02/17/2007] [Accepted: 02/19/2007] [Indexed: 11/22/2022]
Abstract
In recent years, cell-based biosensors (CBBs) have been very useful in biomedicine, food industry, environmental monitoring and pharmaceutical screening. They constitute an economical substitute for enzymatic biosensors, but cell immobilization remains a limitation in this technology. To investigate into the potential applications of cell-based biosensors, we describe an electrochemical system based on a microbial biosensor using an Escherichia coli K-12 derivative as a primary transducer to detect biologically active agents. pH variations were recorded by an ion-sensitive field effect transistor (ISFET) sensor on bacteria immobilized in agarose gels. The ISFET device was directly introduced in 100 ml of this mixture or in a miniaturized system using a dialysis membrane that contains 1 ml of the same mixture. The bacterial activity could be detected for several days. The extracellular acidification rate (ECAR) was analyzed with or without the addition of a culture medium or an antibiotic solution. At first, the microorganisms acidified their micro-environment and then they alkalinized it. These two phases were attributed to an apparent substrate preference of bacteria. Cell treatment with an inhibitor or an activator of their metabolism was then monitored and streptomycin effect was tested.
Collapse
Affiliation(s)
- F Bettaieb
- CEGELY, UMR-CNRS 5005, Ecole Centrale de Lyon, 69134 Ecully Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Trögl J, Kuncová G, Kubicová L, Parík P, Hálová J, Demnerová K, Ripp S, Sayler GS. Response of the bioluminescent bioreporterPseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol (Praha) 2007; 52:3-14. [PMID: 17571789 DOI: 10.1007/bf02932131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pseudomonasfluorescens HK44 is a lux-based bioluminescent bioreporter capable of selective luminescence in the presence of naphthalene and/or salicylic acid intermediate of its metabolism. We attempted to induce bioluminescence (BL) in this strain with 72 compounds, viz. substituted naphthalenes, naphthalene-like compounds (e.g., quinoline), substituted salicylic acids, salicylic acid-like compounds (e.g., 2-anthranilic acid), oligocyclic aromates, and intermediates of naphthalene metabolism to better discriminate response specificity. From them, 42 induced BL significantly lower as compared to naphthalene, three (viz. isoquinoline, o-cresol, and salicylamide) induced BL significantly greater than naphthalene, and 27 yielded no bioluminescent response whatsoever. Strain HK44 is therefore not prone to extensive false-positive signaling and can serve as a fairly specific indicator organism for naphthalene bioavailability. At elevated concentrations, 41 compounds inhibited BL. Thus, the inclusion of constitutive bioreporter controls as indicators of sample toxicity is vital to successful biosensing application.
Collapse
Affiliation(s)
- J Trögl
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 165 02 Prague, Czechia
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 2007; 73:1251-8. [PMID: 17111136 DOI: 10.1007/s00253-006-0718-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 09/30/2006] [Accepted: 10/12/2006] [Indexed: 11/26/2022]
Abstract
Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, beta-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry.
Collapse
Affiliation(s)
- Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
56
|
Wilder DR. New Directions in Industrial Environmental Analytical Chemistry: Beyond Compliance Testing. Crit Rev Anal Chem 2006. [DOI: 10.1080/10408349508050558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
57
|
Live bacterial cells as analytical tools for speciation analysis: Hypothetical or practical? Trends Analyt Chem 2006. [DOI: 10.1016/j.trac.2006.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
58
|
Michelini E, Guardigli M, Magliulo M, Mirasoli M, Roda A, Simoni P, Baraldini M. Bioluminescent Biosensors Based on Genetically Engineered Living Cells in Environmental and Food Analysis. ANAL LETT 2006. [DOI: 10.1080/00032710600713156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
59
|
Tecon R, Wells M, van der Meer JR. A new green fluorescent protein-based bacterial biosensor for analysing phenanthrene fluxes. Environ Microbiol 2006; 8:697-708. [PMID: 16584481 DOI: 10.1111/j.1462-2920.2005.00948.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polycyclic aromatic hydrocarbon (PAH)-degrading strain Burkholderia sp. RP007 served as host strain for the design of a bacterial biosensor for the detection of phenanthrene. RP007 was transformed with a reporter plasmid containing a transcriptional fusion between the phnS putative promoter/operator region and the gene encoding the enhanced green fluorescent protein (GFP). The resulting bacterial biosensor--Burkholderia sp. strain RP037--produced significant amounts of GFP after batch incubation in the presence of phenanthrene crystals. Co-incubation with acetate did not disturb the phenanthrene-specific response but resulted in a homogenously responding population of cells. Active metabolism was required for induction with phenanthrene. The magnitude of GFP induction was influenced by physical parameters affecting the phenanthrene flux to the cells, such as the contact surface area between solid phenanthrene and the aqueous phase, addition of surfactant, and slow phenanthrene release from Model Polymer Release System beads or from a water-immiscible oil. These results strongly suggest that the bacterial biosensor can sense different phenanthrene fluxes while maintaining phenanthrene metabolism, thus acting as a genuine sensor for phenanthrene bioavailability. A relationship between GFP production and phenanthrene mass transfer is proposed.
Collapse
Affiliation(s)
- Robin Tecon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
60
|
Harms H, Wells MC, van der Meer JR. Whole-cell living biosensors—are they ready for environmental application? Appl Microbiol Biotechnol 2006; 70:273-80. [PMID: 16463172 DOI: 10.1007/s00253-006-0319-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/20/2005] [Accepted: 12/24/2005] [Indexed: 10/25/2022]
Abstract
Since the development of the first whole-cell living biosensor or bioreporter about 15 years ago, construction and testing of new genetically modified microorganisms for environmental sensing and reporting has proceeded at an ever increasing rate. One and a half decades appear as a reasonable time span for a new technology to reach the maturity needed for application and commercial success. It seems, however, that the research into cellular biosensors is still mostly in a proof-of-principle or demonstration phase and not close to extensive or commercial use outside of academia. In this review, we consider the motivations for bioreporter developments and discuss the suitability of extant bioreporters for the proposed applications to stimulate complementary research and to help researchers to develop realistic objectives. This includes the identification of some popular misconceptions about the qualities and shortcomings of bioreporters.
Collapse
Affiliation(s)
- Hauke Harms
- Department of Environmental Microbiology, UFZ Centre for Environmental Research Leipzig-Halle GmbH, Permoserstr. 15, 04318, Leipzig, Germany.
| | | | | |
Collapse
|
61
|
Abstract
Here, we describe the fabrication of whole mammalian cell biosensors for the optical monitoring of cell viability. Three phenotypes were examined for their response to the addition of two model chemotoxins: sodium hypochlorite and sodium azide, and one model biotoxin, concanavalin A. Two sensing platforms containing cells, hydrogel microspheres, or hydrogel arrays, were also explored. Step changes in viability in response to small doses of sodium hypochlorite were seen nearly instantaneously in all cell lines, in solution, microspheres, and microarrays. Linear detection of sodium azide by entrapped hepatocytes was 0-10 microM, whereas the linear detection range for macrophages and endothelial cells was 0-75 microM. Macrophages and hepatocytes have a greater sensitivity, as indicated by a 40% change in fluorescence over the linear range, whereas endothelial cells show only a 15% change in fluorescence over the linear range. Using photoreaction injection molding, we were also able to generate a multiphenotype sensor that enables the measurement of the toxic effect of 100 microg/mL concanavalin A on macrophages and hepatocytes, but not on endothelial cells.
Collapse
Affiliation(s)
- Laura J Itle
- Department of Chemical Engineering and The Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802-4420, USA
| | | |
Collapse
|
62
|
Paitan Y, Biran I, Shechter N, Biran D, Rishpon J, Ron EZ. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 2005; 335:175-83. [PMID: 15556555 DOI: 10.1016/j.ab.2004.08.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Indexed: 10/26/2022]
Abstract
In this article, we describe a bacterial whole cell electrochemical biosensors system that can be used for monitoring aromatic hydrocarbons. These bacterial biosensors are based on fusions of a promoter that is sensitive to aromatic compounds (the promoter region of the xylS gene and the xylR gene coding for the transcriptional regulator of the xyl operon) to reporter genes that can be monitored electrochemically at real-time and on-line. The xylS promoter was fused upstream of two promoterless genes coding the lacZ gene and phoA. These constructs reacted specifically to aromatic compounds but not to nonaromatic compounds, and we could detect, within minutes, micromolar concentrations of different aromatic hydrocarbons such as xylene and toluene. The use of two different reporter genes allows the future construction of a multianalyte detection system for simultaneous monitoring of several pollutants. These whole cell biosensors are potentially useful for on-line and in situ detection of aromatic compounds and as early warning systems of environmental hazards.
Collapse
Affiliation(s)
- Yossi Paitan
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
63
|
Cho JC, Park KJ, Ihm HS, Park JE, Kim SY, Kang I, Lee KH, Jahng D, Lee DH, Kim SJ. A novel continuous toxicity test system using a luminously modified freshwater bacterium. Biosens Bioelectron 2005; 20:338-44. [PMID: 15308239 DOI: 10.1016/j.bios.2004.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/31/2004] [Accepted: 02/04/2004] [Indexed: 11/28/2022]
Abstract
An automated continuous toxicity test system was developed using a recombinant bioluminescent freshwater bacterium. The groundwater-borne bacterium, Janthinobacterium lividum YH9-RC, was modified with luxAB and optimized for toxicity tests using different kinds of organic carbon compounds and heavy metals. luxAB-marked YH9-RC cells were much more sensitive (average 7.3-8.6 times) to chemicals used for toxicity detection than marine Vibrio fischeri cells used in the Microtox assay. Toxicity tests for wastewater samples using the YH9-RC-based toxicity assay showed that EC50-5 min values in an untreated raw wastewater sample (23.9 +/- 12.8%) were the lowest, while those in an effluent sample (76.7 +/- 14.9%) were the highest. Lyophilization conditions were optimized in 384-multiwell plates containing bioluminescent bacteria that were pre-incubated for 15 min in 0.16 M of trehalose prior to freeze-drying, increasing the recovery of bioluminescence and viability by 50%. Luminously modified cells exposed to continuous phenol or wastewater stream showed a rapid decrease in bioluminescence, which fell below detectable range within 1 min. An advanced toxicity test system, featuring automated real-time toxicity monitoring and alerting functions, was designed and finely tuned. This novel continuous toxicity test system can be used for real-time biomonitoring of water toxicity, and can potentially be used as a biological early warning system.
Collapse
Affiliation(s)
- Jang-Cheon Cho
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Shetty RS, Deo SK, Liu Y, Daunert S. Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 2005; 88:664-70. [PMID: 15515160 DOI: 10.1002/bit.20331] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A whole cell-based optical sensing system for copper was developed based on Saccharomyces cerevisiae cells harboring plasmid pYEX-GFPuv. The basis of this system was the ability of the transcriptional activator protein Ace1 present in S. cerevisiae to control the expression of the reporter protein, GFPuv. When copper ions are present in the sample, the Ace1 protein activates the cup1 promoter located upstream from the gfpuv gene in plasmid pYEX-GFPuv, thus inducing the production of GFPuv. The concentration of copper ions in the sample can then be related to the GFPuv expressed in the yeast. The amount of GFPuv produced in the system was determined by monitoring the fluorescence emitted at 507 nm after excitation at 397 nm. This system can detect copper at concentrations as low as 5 x 10(-7) M, and is selective for copper over a variety of metal ions, with the exception of silver. The applicability of this sensing system to different analytical platforms and in real samples is demonstrated.
Collapse
Affiliation(s)
- Ranjit S Shetty
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | |
Collapse
|
65
|
Chapter 10 Non-affinity sensing technology: the exploitation of biocatalytic events for environmental analysis. BIOSENSORS AND MODERN BIOSPECIFIC ANALYTICAL TECHNIQUES 2005. [DOI: 10.1016/s0166-526x(05)44010-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Abstract
Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically, the reasons for this are the lack of engineering principles in the detection chain in the bioreporters. Here, we dissect critical steps in the detection chain and illustrate how bioreporter design could be improved by mutagenizing specificity and selectivity of the sensing and regulatory proteins, by newer expression strategies and application of different signalling networks. Furthermore, we describe how redesigning bioreporter assays with respect to pollutant transport into the cells and application of other detection devices can decrease detection limits and increase the speed of detection.
Collapse
Affiliation(s)
- Jan Roelof van der Meer
- Department of Fundamental Microbiology, Bâtiment de Biologie, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
67
|
Smirnova IA, Dian C, Leonard GA, McSweeney S, Birse D, Brzezinski P. Development of a bacterial biosensor for nitrotoluenes: the crystal structure of the transcriptional regulator DntR. J Mol Biol 2004; 340:405-18. [PMID: 15210343 DOI: 10.1016/j.jmb.2004.04.071] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 04/19/2004] [Accepted: 04/19/2004] [Indexed: 11/22/2022]
Abstract
The transcriptional regulator DntR, a member of the LysR family, is a central element in a prototype bacterial cell-based biosensor for the detection of hazardous contamination of soil and groundwater by dinitrotoluenes. To optimise the sensitivity of the biosensor for such compounds we have chosen a rational design of the inducer-binding cavity based on knowledge of the three-dimensional structure of DntR. We report two crystal structures of DntR with acetate (resolution 2.6 angstroms) and thiocyanate (resolution 2.3 angstroms), respectively, occupying the inducer-binding cavity. These structures allow for the construction of models of DntR in complex with salicylate (Kd approximately or = 4 microM) and 2,4-dinitrotoluene that provide a basis for the design of mutant DntR with enhanced specificity for dinitrotoluenes. In both crystal structures DntR crystallises as a homodimer with a "head-to-tail" arrangement of monomers in the asymmetric unit. Analysis of the crystal structure has allowed the building of a full-length model of DntR in its biologically active homotetrameric form consisting of two "head-to-head" dimers. The implications of this model for the mechanism of transcription regulation by LysR proteins are discussed.
Collapse
Affiliation(s)
- Irina A Smirnova
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
68
|
Valdman E, Valdman B, Battaglini F, Leite S. On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00248-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
69
|
Werlen C, Jaspers MCM, van der Meer JR. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 2004; 70:43-51. [PMID: 14711624 PMCID: PMC321291 DOI: 10.1128/aem.70.1.43-51.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.
Collapse
Affiliation(s)
- Christoph Werlen
- Process of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH 8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
70
|
Park SH, Lee K, Chae JC, Kim CK. Construction of transformant reporters carrying fused genes using pcbC promoter of Pseudomonas sp DJ-12 for detection of aromatic pollutants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2004; 92:241-251. [PMID: 15038547 DOI: 10.1023/b:emas.0000014513.00754.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three reporter gene fusions were constructed by a transcriptional fusion method using the pcbC promoter of Pseudomonas sp. DJ-12, which can extensively degrade biphenyl and 4-chlorobiphenyl by meta-cleavage dioxygenase. The reporter genes used for the construction of the fusions were luc, luxCDABE and gfpuv. The reporter fusion plasmids were introduced into E. coli XL1-Blue, and the transformant reporters examined for the production of fluorescent light by exposure to aromatic compounds, such as biphenyl, 4-chlorobiphenyl, 4-hydroxybiphenyl, 2,3-dihydroxybiphenyl, catechol and 4-chlorocatechol. The reporter cells, carrying the respective gene fusions, responded well to the aromatics when exposed to a concentration of 0.1 mM for 10 min. In particular, the reporter cells carrying the pcbCp::luxCDABE gene fusion produced bioluminescence most extensively to the above mentioned aromatics. This means that the pcbCp::luxCDABE reporter gene fusion may be useful in bacterial biosensors for the detection of aromatic pollutants in the environment, and may also be valuable for examining the bioavailability of the inducing pollutants.
Collapse
Affiliation(s)
- Sang-Ho Park
- Department of Microbiology and Biotechnology Research Institute, Chungbuk National University, Cheongju, Korea
| | | | | | | |
Collapse
|
71
|
Hinde P, Meadows J, Saunders J, Edwards C. The potential of site-specific recombinases as novel reporters in whole-cell biosensors of pollution. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:29-74. [PMID: 12964239 DOI: 10.1016/s0065-2164(03)01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA recombinases show some promise as reporters of pollutants providing that appropriate promoters are used and that the apparent dependence of expression on cell density can be solved. Further work is in progress using different recombinases and other promoters to optimize recombinase expression as well as to test these genetic constructs in contaminated environmental samples such as soil and water. It may be that a graded response reflecting pollutant concentration may not be possible. However, they show great promise for providing definitive detection systems for the presence of a pollutant and may be applicable to address the problem of bioavailability of pollutants in complex environments such as soil.
Collapse
Affiliation(s)
- Paul Hinde
- School of Biological Sciences, University of Liverpool, Liverpool, L69 7ZB United Kingdom
| | | | | | | |
Collapse
|
72
|
Abstract
Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H(2)S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.
Collapse
Affiliation(s)
- Jonathan D Van Hamme
- Department of Biological Sciences, The University College of the Cariboo, Kamloops, British Columbia V2C 5N3
| | | | | |
Collapse
|
73
|
Durand MJ, Thouand G, Dancheva-Ivanova T, Vachon P, DuBow M. Specific detection of organotin compounds with a recombinant luminescent bacteria. CHEMOSPHERE 2003; 52:103-111. [PMID: 12729692 DOI: 10.1016/s0045-6535(03)00225-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organotin compounds are widely used as biocides in marine and terrestrial environments. Several currently used techniques allow either the measurement of the chemicals or their effects on living organisms. Our current research focuses on the development of a complementary method based on a bacterial bioluminescence-based bioassay for the specific detection of organotin compounds. The performance of the bioassay was assessed. The Escherichia coli bacterial strain used in this study is specific for TBT and DBT (with Cl, Br or I as the halogen group) with the central tin atom important for light production. The assay is conducted after overnight culture of the bacterial strain, followed by 60 min of contact time with the organotin compound for significant light production. The detection limits were found to be 0.08 microM for TBT (26 microgl(-1)) and 0.0001 microM for DBT (0.03 microgl(-1)) with a linear range of one logarithm. The repeatability of the bioassay is 8% and the reproducibility for TBT and DBT was approximately 14%. Lyophilization of the strains did not significantly modify the detection limit as well as the range of detection. Applications of the bioassay to environmental samples are discussed.
Collapse
Affiliation(s)
- Marie José Durand
- Département Génie Biologique, Laboratoire de Microbiologie, Université de Nantes, IUT, 18 Bd G. Defferre, 85000, La Roche sur Yon, France
| | | | | | | | | |
Collapse
|
74
|
Continuous water toxicity monitoring using immobilizedPhotobacterium phosphoreum. BIOTECHNOL BIOPROC E 2003. [DOI: 10.1007/bf02940271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
75
|
Dorn JG, Frye RJ, Maier RM. Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353. Appl Environ Microbiol 2003; 69:2209-16. [PMID: 12676702 PMCID: PMC154800 DOI: 10.1128/aem.69.4.2209-2216.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Accepted: 01/02/2003] [Indexed: 11/20/2022] Open
Abstract
One limitation of employing lux bioreporters to monitor in situ microbial gene expression in dynamic, laboratory-scale systems is the confounding variability in the luminescent responses. For example, despite careful control of oxygen tension, growth stage, and cell number, luminescence from Pseudomonas putida RB1353, a naphthalene-degrading lux bioreporter, varied by more than sevenfold during saturated flow column experiments in our laboratory. Therefore, this study was conducted to determine what additional factors influence the luminescent response. Specifically, this study investigated the impact of temperature, pH, and initial cell number (variations within an order of magnitude) on the peak luminescence of P. putida RB1353 and the maximum degradation rate (V(max)) during salicylate and naphthalene catabolism. Statistical analyses based on general linear models indicated that under constant oxygen tension, temperature and pH accounted for 98.1% of the variability in luminescence during salicylate catabolism and 94.2 and 49.5% of the variability in V(max) during salicylate and naphthalene catabolism, respectively. Temperature, pH, and initial substrate concentration accounted for 99.9% of the variability in luminescence during naphthalene catabolism. Initial cell number, within an order of magnitude, did not have a significant influence on either peak luminescence or V(max) during salicylate and naphthalene catabolism. Over the ranges of temperature and pH evaluated, peak luminescence varied by more than 4 orders of magnitude. The minimum parameter deviation required to alter lux gene expression during salicylate and naphthalene catabolism was a change in temperature of 1 degrees C, a change in pH of 0.2, or a change in initial cell number of 1 order of magnitude. Results from this study indicate that there is a need for careful characterization of the impact of environmental conditions on both the expression of the reporter and catabolic genes and the activities of the gene products. For example, even though lux gene expression was occurring at approximately 35 degrees C, the luciferase enzyme was inactive. Furthermore, this study demonstrates that with careful characterization and standardization of measurement conditions, the attainment of a reproducible luminescent response and an understanding of the response are feasible.
Collapse
Affiliation(s)
- Jonathan G Dorn
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
76
|
Taranova L, Semenchuk I, Manolov T, Iliasov P, Reshetilov A. Bacteria-degraders as the base of an amperometric biosensor for detection of anionic surfactants. Biosens Bioelectron 2002; 17:635-40. [PMID: 12052348 DOI: 10.1016/s0956-5663(01)00307-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several strains belonging to genera Pseudomonas and Achromobacter and characterized by the ability to degrade anionic surfactants were tested as potential bases of microbial biosensors for surfactant detection. For each strain the substrate specificity and stability of sensor signals were studied. The total amount of the substrates tested (including carbohydrates, alcohols, aromatics, organic acids, etc.) was equal to 60; the maximal signals were observed towards the anionic surfactants. The lower limit of detection for sodium dodecyl sulfate used as a model surfactant was in the field of 1 microM for all the strains. The created microbial biosensor model can extend the practical possibilities for rapid evaluation of surfactants in water media.
Collapse
Affiliation(s)
- L Taranova
- Institute of Colloid Chemistry and Chemistry of Water, Ukrainian Academy of Sciences, 03142 bvd. Vernadsky, 42, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
77
|
Yarwood RR, Rockhold ML, Niemet MR, Selker JS, Bottomley PJ. Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions. Appl Environ Microbiol 2002; 68:3597-605. [PMID: 12089048 PMCID: PMC126793 DOI: 10.1128/aem.68.7.3597-3605.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r(2) = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 x 10(12) cells; calculated, 1.7 x 10(12) cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.
Collapse
Affiliation(s)
- R R Yarwood
- Department of Microbiolog, Oregon State University, Corvallis, OR 97331-3804, USA
| | | | | | | | | |
Collapse
|
78
|
Rajan Premkumar J, Rosen R, Belkin S, Lev O. Sol–gel luminescence biosensors: Encapsulation of recombinant E. coli reporters in thick silicate films. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00301-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
79
|
Horsburgh AM, Mardlin DP, Turner NL, Henkler R, Strachan N, Glover LA, Paton GI, Killham K. On-line microbial biosensing and fingerprinting of water pollutants. Biosens Bioelectron 2002; 17:495-501. [PMID: 11959470 DOI: 10.1016/s0956-5663(01)00321-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The potential for biosensors to contribute to on-line toxicity testing for monitoring of water quality is currently constrained both by the relevance of the biosensors available and the technology for biosensor delivery. This paper reports the use of novel slow release biosensor delivery for on-line monitoring instrumentation, with environmentally relevant bacteria for both simple toxicity testing and more complex toxicity fingerprinting of industrial effluents. The on-line toxicity test, using bioluminescence-based biosensors, proved to be as sensitive and reliable as the corresponding batch test, with comparable contaminant EC(50) values from both methods. Toxicity fingerprinting through the investigation of the kinetics (dose-response) and the dynamics (response with time) of the biosensor test response proved to be diagnostic of both effluent type and composition. Furthermore, the slow release of biosensors immobilised in a polyvinyl alcohol (PVA) matrix greatly improved biosensor delivery, did not affect the sensitivity of toxicity testing, and demonstrated great potential for inclusion in on-line monitoring instrumentation.
Collapse
Affiliation(s)
- Alison M Horsburgh
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Ashgrove Road West, Aberdeen, Scotland AB25 2ZD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
MacLeod CJ, Morriss AW, Semple KT. The role of microorganisms in ecological risk assessment of hydrophobic organic contaminants in soils. ADVANCES IN APPLIED MICROBIOLOGY 2002; 48:171-212. [PMID: 11677679 DOI: 10.1016/s0065-2164(01)48003-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C J MacLeod
- Department of Environmental Science, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | | | | |
Collapse
|
81
|
Stiner L, Halverson LJ. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 2002; 68:1962-71. [PMID: 11916719 PMCID: PMC123894 DOI: 10.1128/aem.68.4.1962-1971.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A green fluorescent protein-based Pseudomonas fluorescens strain A506 biosensor was constructed and characterized for its potential to measure benzene, toluene, ethylbenzene, and related compounds in aqueous solutions. The biosensor is based on a plasmid carrying the toluene-benzene utilization (tbu) pathway transcriptional activator TbuT from Ralstonia pickettii PKO1 and a transcriptional fusion of its promoter PtbuA1 with a promoterless gfp gene on a broad-host-range promoter probe vector. TbuT was not limiting, since it was constitutively expressed by being fused to the neomycin phosphotransferase (nptII) promoter. The biosensor cells were readily induced, and fluorescence emission after induction periods of 3 h correlated well with toluene, benzene, ethylbenzene, and trichloroethylene concentrations. Our experiments using flow cytometry show that intermediate levels of gfp expression in response to toluene reflect uniform induction of cells. As the toluene concentration increases, the level of gfp expression per cell increases until saturation kinetics of the TbuT-PtbuA1 system are observed. Each inducer had a unique minimum concentration that was necessary for induction, with K(app) values that ranged from 3.3 +/- 1.8 microM for toluene to 35.6 +/- 16.6 microM for trichloroethylene (means +/- standard errors of the means), and maximal fluorescence response. The fluorescence response was specific for alkyl-substituted benzene derivatives and branched alkenes (di- and trichloroethylene, 2-methyl-2-butene). The biosensor responded in an additive fashion to the presence of multiple inducers and was unaffected by the presence of compounds that were not inducers, such as those present in gasoline. Flow cytometry revealed that, in response to toxic concentrations of gasoline, there was a small uninduced population and another larger fully induced population whose levels of fluorescence corresponded to the amount of effectors present in the sample. These results demonstrate the potential for green fluorescent protein-based bacterial biosensors to measure environmental contaminants.
Collapse
Affiliation(s)
- Lawrence Stiner
- Department of Microbiology, Iowa State University, Ames, Iowa 50011-1010, USA
| | | |
Collapse
|
82
|
Abstract
There is a continuing need for monitoring the health of the environment due to the presence of pollutants. Here, we review the development and attributes of biosensors by which bacteria have been genetically modified to express the luminescence genes, i.e. to glow, in a quantified manner, in response to pollutants. We have concentrated on the detection of organic hydrocarbon pollutants and discussed the molecular mechanisms by which some of these chemicals act as effector molecules on the respective regulatory systems. The future of environmental biosensors is predictably bright. As more knowledge is gathered on the sensing regulatory component, the possibility of developing targeted or pollutant-specific biosensors is promising. Moreover, the repertoire of biosensors for culprit organic pollutants is expected to be enlarged through advances in genomics technology and identification of new sensory or receptor molecules. The need for pollutant detection at concentrations in the parts per trillion range or biosensors configured in a nanoscale is anticipated.
Collapse
Affiliation(s)
- Angela Keane
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
83
|
Valtonen SJ, Kurittu JS, Karp MT. A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:127-34. [PMID: 12006111 DOI: 10.1177/108705710200700205] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A group-specific bioluminescent Escherichia coli strain for studying the action of beta-lactam antibiotics is described. The strain contains a plasmid, pBlaLux1, in which the luciferase genes from Photorhabdus luminescens are inserted under the control of the beta-lactam-responsive element ampR/ampC from Citrobacter freundii. In the presence of beta-lactams, the bacterial cells are induced to express the luciferase enzyme and three additional enzymes generating the substrate for the luciferase reaction. This biosensor for beta-lactams does not need any substrate or cofactor additions, and the bioluminescence can be measured very sensitively in real time by using a luminometer. Basic parameters affecting the light production and induction in the gram-negative model organism E. coli SNO301/pBlaLux1 by various beta-lactams were studied. The dose-response curves were bell shaped, indicating toxic effects for the sensor strain at high concentrations of beta-lactams. Various beta-lactams had fairly different assay ranges: ampicillin, 0.05-1.0 microg/ml; piperacillin, 0.0025-25 microg/ml; imipenem, 0.0025-0.25 microg/ml; cephapirin, 0.025-2.5 microg/ml; cefoxitin, 0.0025-1.5 microg/ml; and oxacillin, 25-500 microg/ml. Also, the induction coefficients (signal over background noninduced control) varied considerably from 3 to 158 in a 2-hour assay. Different non-beta-lactam antibiotics did not cause induction. Because the assay can be automated using microplate technologies, the approach may be suitable for higher throughput analysis of beta-lactam action.
Collapse
Affiliation(s)
- Satu J Valtonen
- Karolinska Institutet, Center for Genomics and Bioinformatics, Stockholm, Sweden
| | | | | |
Collapse
|
84
|
Sze CC, Bernardo LMD, Shingler V. Integration of global regulation of two aromatic-responsive sigma(54)-dependent systems: a common phenotype by different mechanisms. J Bacteriol 2002; 184:760-70. [PMID: 11790746 PMCID: PMC139538 DOI: 10.1128/jb.184.3.760-770.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas-derived regulators DmpR and XylR are structurally and mechanistically related sigma(54)-dependent activators that control transcription of genes involved in catabolism of aromatic compounds. The binding of distinct sets of aromatic effectors to these regulatory proteins results in release of a repressive interdomain interaction and consequently allows the activators to promote transcription from their cognate target promoters. The DmpR-controlled Po promoter region and the XylR-controlled Pu promoter region are also similar, although homology is limited to three discrete DNA signatures for binding sigma(54) RNA polymerase, the integration host factor, and the regulator. These common properties allow cross-regulation of Pu and Po by DmpR and XylR in response to appropriate aromatic effectors. In vivo, transcription of both the DmpR/Po and XylR/Pu regulatory circuits is subject to dominant global regulation, which results in repression of transcription during growth in rich media. Here, we comparatively assess the contribution of (p)ppGpp, the FtsH protease, and a component of an alternative phosphoenolpyruvate-sugar phosphotransferase system, which have been independently implicated in mediating this level of regulation. Further, by exploiting the cross-regulatory abilities of these two circuits, we identify the target component(s) that are intercepted in each case. The results show that (i) contrary to previous speculation, FtsH is not universally required for transcription of sigma(54)-dependent systems; (ii) the two factors found to impact the XylR/Pu regulatory circuit do not intercept the DmpR/Po circuit; and (iii) (p)ppGpp impacts the DmpR/Po system to a greater extent than the XylR/Pu system in both the native Pseudomonas putida and a heterologous Escherichia coli host. The data demonstrate that, despite the similarities of the specific regulatory circuits, the host global regulatory network latches onto and dominates over these specific circuits by exploiting their different properties. The mechanistic implications of how each of the host factors exerts its action are discussed.
Collapse
Affiliation(s)
- Chun Chau Sze
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
85
|
Leth S, Maltoni S, Simkus R, Mattiasson B, Corbisier P, Klimant I, Wolfbeis O, Csöregi E. Engineered Bacteria Based Biosensors for Monitoring Bioavailable Heavy Metals. ELECTROANAL 2002. [DOI: 10.1002/1521-4109(200201)14:1<35::aid-elan35>3.0.co;2-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
86
|
Bastiaens L, Springael D, Dejonghe W, Wattiau P, Verachtert H, Diels L. A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes. Res Microbiol 2001; 152:849-59. [PMID: 11766960 DOI: 10.1016/s0923-2508(01)01268-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The promoter probe mini-Tn5-luxAB-tet was used to create a luxAB transcriptional fusion responding to fluorene in the fluorene utilising bacterium Sphingomonas sp. LB126. The mutant strain, named L-132, was impaired in fluorene utilisation and strongly emitted light upon addition of fluorene to the growth medium. L-132 was initially characterised and examined for its potential use as a whole-cell biosensor in the perspective of quantifying fluorene in environmental samples. Activity of the reporter gene as a response to fluorene was detectable after 30 min and was optimal after 4 h. A linear response to fluorene concentrations within the water solubility range was achieved, with a detection limit of 200 microg per litre. Besides fluorene, L-132 weakly responded to the polycyclic aromatic hydrocarbons phenanthrene and dibenzothiophene, whereas strong responses were obtained with 9-fluorenone, 9-hydroxyfluorene, phthalic acid and protocatechuic acid. The latter four compounds are metabolites formed in course of fluorene degradation, which suggested that a fluorene metabolite rather than fluorene itself was the true inducer of the luxAB fusion in L-132.
Collapse
Affiliation(s)
- L Bastiaens
- Environmental Technology, Flemish Institute for Technological Research (Vito), Mol, Belgium
| | | | | | | | | | | |
Collapse
|
87
|
Schreiter PP, Gillor O, Post A, Belkin S, Schmid RD, Bachmann TT. Monitoring of phosphorus bioavailability in water by an immobilized luminescent cyanobacterial reporter strain. Biosens Bioelectron 2001; 16:811-8. [PMID: 11679259 DOI: 10.1016/s0956-5663(01)00224-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Massive growth of cyanobacteria, known as "algal blooms", has become a major concern for water monitoring. It has been observed that environmental factors like temperature, light, and certain patterns of availability of nutrients such as P, N, Fe influence cyanobacterial proliferation and toxin production. In order to monitor nutrients in aquatic ecosystems, an assay for monitoring phosphorus bioavailability to cyanobacteria was developed. The test consists of an immobilized luminescent reporter strain of Synechococcus PCC 7942, designated APL. The reporter strain harbours the gene coding the reporter protein luciferase from Vibrio harveyi under control of the inducible alkaline phosphatase promoter from Synechococcus PCC 7942, and can be induced under phosphorus limitation. The resultant CyanoSensor detects PO(3-)(4)-P in a concentration range of 0.3-8 microM after a sample incubation time of 8 h under continuous illumination (50 microE m(-2) s(-1)). The sensor also responded to a variety of organic phosphorus sources and was storable for 3 weeks at 4 degrees C. It could be demonstrated that the CyanoSensor for bioavailability monitoring is an improvement to conventional phosphorus detection methods.
Collapse
Affiliation(s)
- P P Schreiter
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Gu MB, Chang ST. Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 2001; 16:667-74. [PMID: 11679243 DOI: 10.1016/s0956-5663(01)00230-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A biosensor for detecting the toxicity of polycylic aromatic hydrocarbons (PAHs) contaminated soil has been successfully constructed using an immobilized recombinant bioluminescent bacterium, GC2 (lac::luxCDABE), which constitutively produces bioluminescence. The biosurfactant, rhamnolipids, was used to extract a model PAH, phenanthrene, and was found to enhance the bioavailability of phenanthrene via an increase in its rate of mass transfer from sorbed soil to the aqueous phase. The monitoring of phenanthrene toxicity was achieved through the measurement of the decrease in bioluminescence when a sample extracted with the biosurfactant was injected into the minibioreactor. The concentrations of phenanthrene in the aqueous phase were found to correlate well with the corresponding toxicity data obtained by using this toxicity biosensor. In addition, it was also found that the addition of glass beads to the agar media enhanced the stability of the immobilized cells. This biosensor system using a biosurfactant may be applied as an in-situ biosensor to detect the toxicity of hydrophobic contaminants in soils and for performance evaluation of PAH degradation in soils.
Collapse
Affiliation(s)
- M B Gu
- Department of Environmental Science and Engineering, Advanced Environmental Monitoring Research Center (ADEMRC), Kwangju Institute of Science and Technology (K-JIST), 1 Oryong-dong, Puk-gu, Kwangju 500-712, South Korea.
| | | |
Collapse
|
89
|
Uesugi SL, Yarwood RR, Selker JS, Bottomley PJ. A model that uses the induction phase of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 to quantify cell density in translucent porous media. J Microbiol Methods 2001; 47:315-22. [PMID: 11714522 DOI: 10.1016/s0167-7012(01)00337-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A cooled charge-coupled device (CCD) camera was used to follow the kinetics of induction of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 held either in aqueous suspensions minus sand, saturated or unsaturated translucent sand (0.348 and 0.07 cm(3) H(2)O/cm(3) of sand, respectively), and at cell densities ranging between 1 x 10(6) and 8.5 x 10(8) cells/ml. Before O(2) availability became a limiting factor, the rate of light emission (L) increased with the square of time (t) and linearly with increasing cell density (c). A nonlinear model was developed that contains a "rate of increase in light emission" constant, B', which is determined directly from the slope of a plot of radical L/c against t. The model predicted the behavior of lux induction in HK44 under a variety of conditions. Similar B' values were determined [49.0-57.6 x 10(-10) light units/(cell min(2))] for cell suspensions held in aqueous medium minus sand, in saturated or unsaturated 40/50 grade sand (0.36 mm grain diameter) and in two other textural classes of translucent sand. Although both the growth phase, and the presence of glucose during lux induction affected the first detectable time (FDT) of bioluminescence by HK44 in sand, the kinetics of induction of light emission were similar among treatments (stationary phase cells plus glucose, B'=61.6+/-3.2, log phase cells plus glucose, B'=63.2+/-7.2). The potential exists to use a combination of a CCD camera system, an inducible lux gene containing bioluminescent bacterium, and a light transmission chamber to nonintrusively visualize and quantify in real time the interactions between bacterial growth and unsaturated flow of water and solutes in porous media.
Collapse
Affiliation(s)
- S L Uesugi
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97331-3804, USA
| | | | | | | |
Collapse
|
90
|
Abstract
A microbial biosensor consists of a transducer in conjunction with immobilised viable or non-viable microbial cells. Non-viable cells obtained after permeabilisation or whole cells containing periplasmic enzymes have mostly been used as an economical substitute for enzymes. Viable cells make use of the respiratory and metabolic functions of the cell, the analyte to be monitored being either a substrate or an inhibitor of these processes. Bioluminescence-based microbial biosensors have also been developed using genetically engineered microorganisms constructed by fusing the lux gene with an inducible gene promoter for toxicity and bioavailability testing. In this review, some of the recent trends in microbial biosensors with reference to the advantages and limitations are been discussed. Some of the recent applications of microbial biosensors in environmental monitoring and for use in food, fermentation and allied fields have been reviewed. Prospective future microbial biosensor designs have also been identified.
Collapse
Affiliation(s)
- S F D'Souza
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
91
|
Simpson ML, Sayler GS, Patterson G, Nivens DE, Bolton EK, Rochelle JM, Arnott JC, Applegate BM, Ripp S, Guillorn MA. An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit. SENSORS AND ACTUATORS. B, CHEMICAL 2001; 72:134-140. [PMID: 12192685 DOI: 10.1016/s0925-4005(00)00641-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report an integrated CMOS microluminometer for the detection of low-level bioluminescence in whole cell biosensing applications. This microluminometer is the microelectronic portion of the bioluminescent bioreporter integrated circuit (BBIC). This device uses the n-well/p-substrate junction of a standard bulk CMOS IC process to form the integrated photodetector. This photodetector uses a distributed electrode configuration that minimizes detector noise. Signal processing is accomplished with a current-to-frequency converter circuit that forms the causal portion of the matched filter for dc luminescence in wide-band white noise. Measurements show that luminescence can be detected from as few as 4 x 10(5) cells/ml.
Collapse
Affiliation(s)
- M L Simpson
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Cases I, de Lorenzo V. The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 2001; 20:1-11. [PMID: 11226149 PMCID: PMC140184 DOI: 10.1093/emboj/20.1.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 10/30/2000] [Accepted: 11/08/2000] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Víctor de Lorenzo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
Corresponding author e-mail:
| |
Collapse
|
93
|
|
94
|
Yolcubal I, Piatt JJ, Pierce SA, Brusseau ML, Maier RM. Fiber optic detection of in situ lux reporter gene activity in porous media: system design and performance. Anal Chim Acta 2000. [DOI: 10.1016/s0003-2670(00)01072-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
95
|
Hansen LH, Sørensen SJ. Detection and quantification of tetracyclines by whole cell biosensors. FEMS Microbiol Lett 2000; 190:273-8. [PMID: 11034291 DOI: 10.1111/j.1574-6968.2000.tb09298.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Three different mini-Tn5 plasmids, containing a tetracycline-inducible promoter, Ptet and a regulatory gene, tetR, in operon fusions with a reporter gene system (lacZYA, luxCDABE or gfp), were constructed. These biosensor constructs responded to low levels of tetracyclines by producing beta-galactosidase, light or green fluorescent protein. They did so in a quantitative manner, thus enabling the quantification of tetracyclines in the immediate surroundings of the biosensor organism. All three constructs were transferred successfully to different gram-negative bacteria by conjugation. An Escherichia coli strain containing the Ptet-lac construct was used to determine oxytetracycline in milk as a demonstration of the application of these biosensors.
Collapse
Affiliation(s)
- L H Hansen
- Department of General Microbiology, University of Copenhagen, Denmark
| | | |
Collapse
|
96
|
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 2000; 100:2705-38. [PMID: 11749302 DOI: 10.1021/cr990115p] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S Daunert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | | | | | | | | | | |
Collapse
|
97
|
Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S. Chlorocatechol detection based on a clc operon/reporter gene system. Anal Chem 2000; 72:2423-7. [PMID: 10857616 DOI: 10.1021/ac9913917] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sensitive and selective sensing system for chlorocatechols (3-chlorocatechol and 4-chlorocatechol) was developed based on Pseudomonas putida bacteria harboring the plasmid pSMM50R-B'. In this plasmid, the regulatory protein of the clc operon, ClcR, controls the expression of the reporter enzyme beta-galactosidase. When bacteria containing components of the clc operon are grown in the presence of chlorocatechols, ClcR activates the clcA promoter, which is located upstream from the beta-galactosidase gene. Thus, the concentration of chlorocatechols can be related to the production of beta-galactosidase in the bacteria. The concentration of beta-galactosidase expressed in the bacteria was determined by measuring the chemiluminescence signal emitted with the use of a 1,2-dioxetane substrate. ClcR has a high specificity for chlorocatechols and provides the sensing system with high selectivity. This was demonstrated by evaluating several structurally related organic compounds as potential interfering agents. Both 3-chlorocatechol and 4-chlorocatechol can be detected with this sensing system at concentrations as low as 8 x 10(-10) and 2 x 10(-9) M, respectively, using a 2-h induction period. In the case of 3-chlorocatechol, a highly selective sensing system was developed that can detect this species at concentrations as low as 6 x 10(-8) M after a 5-min induction period; the presence of 4-chlorocatechol at concentrations as high as 2 x 10(-4) M did not interfere with this system.
Collapse
Affiliation(s)
- X Guan
- Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Sayler GS, Ripp S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 2000; 11:286-9. [PMID: 10851144 DOI: 10.1016/s0958-1669(00)00097-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genetically engineered microorganisms (GEMs) have shown potential for bioremediation applications in soil, groundwater, and activated sludge environments, exhibiting enhanced degradative capabilities encompassing a wide range of chemical contaminants. However, the vast majority of studies pertaining to genetically engineered microbial bioremediation are supported by laboratory-based experimental data. In general, relatively few examples of GEM applications in environmental ecosystems exist. Unfortunately, the only manner in which to fully address the competence of GEMs in bioremediation efforts is through long-term field release studies. It is therefore essential that field studies be performed to acquire the requisite information for determining the overall effectiveness and risks associated with GEM introduction into natural ecosystems.
Collapse
Affiliation(s)
- G S Sayler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, USA.
| | | |
Collapse
|
99
|
Gil GC, Mitchell RJ, Chang ST, Gu MB. A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 2000; 15:23-30. [PMID: 10826640 DOI: 10.1016/s0956-5663(99)00074-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A whole-cell biosensor was developed for the detection of gas toxicity using a recombinant bioluminescent Escherichia coli harboring a lac::luxCDABE fusion. Immobilization of the cells within LB agar has been done to maintain the activity of the microorganisms and to detect the toxicity of chemicals through the direct contact with gas. Benzene, known as a representative volatile organic compound, was chosen as a sample toxic gas to evaluate the performance of this biosensor based on the bioluminescent response. This biosensor showed a dose-dependent response, and was found to be reproducible. The immobilizing matrices of this biosensor were stored at 4 degrees C and were maintained for at least a month without any noticeable change in its activity. The optimal temperature for sensing was 37 degrees C. A small size of this sensor kit has been successfully fabricated, and found to be applicable as a disposable and portable biosensor to monitor the atmospheric environment of a workplace in which high concentrations of toxic gases could be discharged.
Collapse
Affiliation(s)
- G C Gil
- Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), South Korea
| | | | | | | |
Collapse
|
100
|
Taranova LA, Semenchuk IN, Il’yasov PV, Reshetilov AN. Effects ofPseudomonas rathonis T cultivation conditions on the functional performance of a biosensor for anionic surfactants. APPL BIOCHEM MICRO+ 2000. [DOI: 10.1007/bf02737915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|