51
|
Higdon LE, Ahmad AA, Schaffert S, Margulies KB, Maltzman JS. CMV-Responsive CD4 T Cells Have a Stable Cytotoxic Phenotype Over the First Year Post-Transplant in Patients Without Evidence of CMV Viremia. Front Immunol 2022; 13:904705. [PMID: 35837398 PMCID: PMC9275561 DOI: 10.3389/fimmu.2022.904705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a known cause of morbidity and mortality in solid organ transplant recipients. While primary infection is controlled by a healthy immune system, CMV is never eradicated due to viral latency and periodic reactivation. Transplantation and associated therapies hinder immune surveillance of CMV. CD4 T cells are an important part of control of CMV reactivation. We therefore investigated how CMV impacts differentiation, functionality, and expansion of protective CD4 T cells from recipients of heart or kidney transplant in the first year post-transplant without evidence of CMV viremia. We analyzed longitudinal peripheral blood samples by flow cytometry and targeted single cell RNA sequencing coupled to T cell receptor (TCR) sequencing. At the time of transplant, CD4 T cells from CMV seropositive transplant recipients had a higher degree of immune aging than the seronegative recipients. The phenotype of CD4 T cells was stable over time. CMV-responsive CD4 T cells in our transplant cohort included a large proportion with cytotoxic potential. We used sequence analysis of TCRαβ to identify clonal expansion and found that clonally expanded CMV-responsive CD4 T cells were of a predominantly aged cytotoxic phenotype. Overall, our analyses suggest that the CD4 response to CMV is dominated by cytotoxicity and not impacted by transplantation in the first year. Our findings indicate that CMV-responsive CD4 T cells are homeostatically stable in the first year after transplantation and identify subpopulations relevant to study the role of this CD4 T cell population in post-transplant health.
Collapse
Affiliation(s)
- Lauren E. Higdon
- Department of Medicine, Nephrology, Stanford University, Palo Alto, CA, United States
- *Correspondence: Lauren E. Higdon, ; Jonathan S. Maltzman,
| | - Ayah A. Ahmad
- Macaulay Honors College, Hunter College, The City University of New York, New York, NY, United States
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA, United States
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jonathan S. Maltzman
- Department of Medicine, Nephrology, Stanford University, Palo Alto, CA, United States
- Geriatric Research Education and Clinical Center, Veteran's Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- *Correspondence: Lauren E. Higdon, ; Jonathan S. Maltzman,
| |
Collapse
|
52
|
Grossi PA, Kamar N, Saliba F, Baldanti F, Aguado JM, Gottlieb J, Banas B, Potena L. Cytomegalovirus Management in Solid Organ Transplant Recipients: A Pre-COVID-19 Survey From the Working Group of the European Society for Organ Transplantation. Transpl Int 2022; 35:10332. [PMID: 35812158 PMCID: PMC9257585 DOI: 10.3389/ti.2022.10332] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022]
Abstract
Infections are leading causes of morbidity/mortality following solid organ transplantation (SOT) and cytomegalovirus (CMV) is among the most frequent pathogens, causing a considerable threat to SOT recipients. A survey was conducted 19 July–31 October 2019 to capture clinical practices about CMV in SOT recipients (e.g., how practices aligned with guidelines, how adequately treatments met patients’ needs, and respondents’ expectations for future developments). Transplant professionals completed a ∼30-minute online questionnaire: 224 responses were included, representing 160 hospitals and 197 SOT programs (41 countries; 167[83%] European programs). Findings revealed a heterogenous approach to CMV diagnosis and management and, sometimes, significant divergence from international guidelines. Valganciclovir prophylaxis (of variable duration) was administered by 201/224 (90%) respondents in D+/R− SOT and by 40% in R+ cases, with pre-emptive strategies generally reserved for R+ cases: DNA thresholds to initiate treatment ranged across 10–10,000 copies/ml. Ganciclovir-resistant CMV strains were still perceived as major challenges, and tailored treatment was one of the most important unmet needs for CMV management. These findings may help to design studies to evaluate safety and efficacy of new strategies to prevent CMV disease in SOT recipients, and target specific educational activities to harmonize CMV management in this challenging population.
Collapse
Affiliation(s)
- Paolo Antonio Grossi
- Department of Medicine and Surgery, University of Insubria, ASST-Sette Laghi, Varese, Italy
- *Correspondence: Paolo Antonio Grossi,
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Université Paul Sabatier, Toulouse, France
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Center Hépato-Biliaire, Université Paris-Saclay, INSERM Unit N°1193, Villejuif, France
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jose M. Aguado
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jens Gottlieb
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Luciano Potena
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
53
|
Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nat Microbiol 2022; 7:1041-1053. [DOI: 10.1038/s41564-022-01136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
|
54
|
Utility of Cytomegalovirus Cell-Mediated Immunity Assays in Solid Organ Transplantation. J Clin Microbiol 2022; 60:e0171621. [PMID: 35543099 DOI: 10.1128/jcm.01716-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the most important viral complications after solid organ transplantation (SOT). Current preventive and management strategies rely primarily on serologic and viral load testing and remain suboptimal. To address these issues, multiple techniques to measure CMV-specific cell-mediated immunity (CMI) have been developed and evaluated in clinical studies over the past two decades. These assays show significant promise for the personalization of CMV management. For example, CMI assays can be used to help determine the optimal duration of antiviral prophylaxis or whether antiviral therapy is indicated in patients with low levels of CMV reactivation. However, despite numerous studies showing potential utility, these assays are not yet in widespread routine clinical use. Barriers to adoption include variations in test complexity, standardization, and thresholds for positivity and insufficient interventional clinical trials. Here, we provide an updated assessment of commonly available tests and the clinical utility of CMV-specific CMI testing in SOT recipients.
Collapse
|
55
|
Gardiner BJ, Lee SJ, Robertson AN, Cristiano Y, Snell GI, Morrissey CO, Peleg AY, Westall GP. Real-world experience of Quantiferon®-CMV directed prophylaxis in lung transplant recipients. J Heart Lung Transplant 2022; 41:1258-1267. [DOI: 10.1016/j.healun.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022] Open
|
56
|
Congenital Cytomegalovirus Infection and Advances in Murine Models of Neuropathogenesis. Virol Sin 2022; 37:318-320. [PMID: 35504536 PMCID: PMC9170950 DOI: 10.1016/j.virs.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022] Open
Abstract
Congenital human cytomegalovirus (CMV) infection causes severe neuropathogenesis. Murine CMV failed to break through the placental barrier to transmit to fetus. Zhou et al. established a novel mouse system to model congenital HCMV infection. The mouse CMV system by Zhou et al can be used for drug screening.
Collapse
|
57
|
Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022; 14:v14040812. [PMID: 35458542 PMCID: PMC9028007 DOI: 10.3390/v14040812] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that alternates lytic and latent infection, infecting between 40 and 95% of the population worldwide, usually without symptoms. During its lytic cycle, HCMV can result in fever, asthenia, and, in some cases, can lead to severe symptoms such as hepatitis, pneumonitis, meningitis, retinitis, and severe cytomegalovirus disease, especially in immunocompromised individuals. Usually, the host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in the HCMV genomic diversity in humans and the high level of HCMV intrahost genomic variability. The oncomodulatory role of HCMV has been reported, where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells and might therefore be defined as the eighth human oncovirus. In light of these new findings, it is critical to understand the role of the immune landscape, including the tumor microenvironment present in HCMV-harboring tumors. Finally, the oncomodulatory/oncogenic potential of HCMV could lead to the development of novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies and new therapeutic approaches are actively needed, particularly to fight tumors of poor prognosis.
Collapse
|
58
|
Seroprevalence of Cytomegalovirus in Haemodialysis Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytomegalovirus (CMV) is prevalent worldwide. It belongs to the β-herpesvirinae subfamily of Herpesviridae and comprises a double-stranded linear DNA genome and capsid, surrounded by an envelope. CMV infection is most prominently found in patients with kidney failure caused by various possible reasons such as urinary tract infection or systemic disease and are undergoing dialysis. The present study was conducted during the period of March 2020 to April 2021. It included 96 patients with chronic kidney disease undergoing hemodialysis (44 of patients were women and 52 men) within the age range of 11-70 years. Five-mL of the venous blood sample was drawn from each patient to conduct the rapid antibody test for the presence of CMV-specific antibodies (both IgG, and IgM). This study showed that the seroprevalence of CMV infection among haemodialysis patients was 75%. The seropositivity for CMV-IgG was 72.9% which was significantly higher than that for CMV-IgM (2.1%) for both sexes. The present study further demonstrated that the prevalence of positive CMV-IgG in males was higher than that in females (38.5% and 34.4%, respectively). In addition, the positivity of CMV-IgM was highest in the age group 61–70 years old (2.1%), while the positivity of CMV-IgG was highest in patients age groups 41–50 years (24%). The present study revealed a high seroprevalence of CMV infection among haemodialysis patients in Basrah City. The elevated seroprevalence could be related to many factors, including the endemicity of the virus, public health, patient immunity, environmental factors, and geographical location. CMV infection increases with age, and the infection rate in men was higher than that in women. The seroprevalence rate of CMV-IgG antibodies was higher than that of CMV-IgM antibodies, indicating a previous infection or reactivation of CMV virus among haemodialysis patients, leading to a high risk of CMV infection.
Collapse
|
59
|
Rozman B, Nachshon A, Levi Samia R, Lavi M, Schwartz M, Stern-Ginossar N. Temporal dynamics of HCMV gene expression in lytic and latent infections. Cell Rep 2022; 39:110653. [PMID: 35417700 PMCID: PMC9035752 DOI: 10.1016/j.celrep.2022.110653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
During productive human cytomegalovirus (HCMV) infection, viral genes are expressed in a coordinated cascade that conventionally relies on the dependencies of viral genes on protein synthesis and viral DNA replication. By contrast, the transcriptional landscape of HCMV latency is poorly understood. Here, we examine viral gene expression dynamics during the establishment of both productive and latent HCMV infections. We redefine HCMV gene expression kinetics during productive infection and reveal that viral gene regulation does not represent a simple sequential cascade; many viral genes are regulated by multiple independent modules. Using our improved gene expression classification combined with transcriptome-wide measurements of the effects of a wide array of epigenetic inhibitors on viral gene expression during latency, we show that a defining feature of latency is the unique repression of immediate-early (IE) genes. Altogether, we recharacterize HCMV gene expression kinetics and reveal governing principles of lytic and latent gene expression. Redefining HCMV gene expression cascade during productive infection Many viral genes are regulated by multiple independent modules Diverse inhibitors induce broad viral gene expression in monocytes In monocytes, immediate-early (IE) genes are repressed compared to all other HCMV genes
Collapse
Affiliation(s)
- Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Roi Levi Samia
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Lavi
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
60
|
Pursell T, Spencer Clinton JL, Tan J, Peng R, Ling PD. Modified vaccinia Ankara expressing EEHV1A glycoprotein B elicits humoral and cell-mediated immune responses in mice. PLoS One 2022; 17:e0265424. [PMID: 35312707 PMCID: PMC8936464 DOI: 10.1371/journal.pone.0265424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease (EEHV-HD) in Asian elephants and is the largest cause of death in captive juvenile Asian elephants in North America and Europe. EEHV-HD also has been documented in captive and wild elephants in their natural range countries. A safe and effective vaccine to prevent lethal EEHV infection would significantly improve conservation efforts for this endangered species. Recent studies from our laboratory suggest that EEHV morbidity and mortality are often associated with primary infection. Therefore, we aim to generate a vaccine, particularly for EEHV1 naïve animals, with the goal of preventing lethal EEHV-HD. To address this goal, we generated a Modified Vaccinia Ankara (MVA) recombinant virus expressing a truncated form of glycoprotein B (gBΔfur731) from EEHV1A, the strain associated with the majority of lethal EEHV cases. Vaccination of CD-1 mice with this recombinant virus induced robust antibody and polyfunctional T cell responses significantly above mice inoculated with wild-type MVA. Although the vaccine-induced T cell response was mainly observed in CD8+ T cell populations, the CD4+ T cell response was also polyfunctional. No adverse responses to vaccination were observed. Overall, our data demonstrates that MVA-gBΔfur731 stimulates robust humoral and cell-mediated responses, supporting its potential translation for use in elephants.
Collapse
Affiliation(s)
- Taylor Pursell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
61
|
Zhu W, Zhang H, Wang S. Vitamin D3 Suppresses Human Cytomegalovirus-Induced Vascular Endothelial Apoptosis via Rectification of Paradoxical m6A Modification of Mitochondrial Calcium Uniporter mRNA, Which Is Regulated by METTL3 and YTHDF3. Front Microbiol 2022; 13:861734. [PMID: 35359726 PMCID: PMC8963461 DOI: 10.3389/fmicb.2022.861734] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection can induce apoptosis of vascular endothelial cells, which may be the most important element of development and progression of reported atherosclerosis caused by HCMV. As there are no specific drugs to clear HCMV infection, exploration of relevant drugs and mechanisms that can intervene in HCMV-induced atherosclerosis is urgently needed. The present study confirmed that vitamin D3 protected vascular endothelial cells from HCMV-induced apoptosis by inhibiting endoplasmic reticulum (ER) and mitochondrial apoptosis pathway. Mechanistically, HCMV infection could induce aberrantly elevated m6A modification, especially the increases of methyltransferases-“writers” (METTL3) and m6A binding proteins-“readers” (YTHDF3). METTL3 methylates mitochondrial calcium uniporter (MCU), the main contributor to HCMV-induced apoptosis of vascular endothelial cells, at three m6A residues in the 3′-UTR, which promotes the association of the YTHDF3 with methylated MCU mRNA and subsequently increases the translation and expression of MCU. Further analysis shows that ALKBH5 is the demethylases-“eraser” of MCU mRNA, which can negatively regulate the m6A modification process of MCU. Conversely, vitamin D3 downregulated the METTL3 by inhibiting the activation of AMPK, thereby inhibiting the m6A modification of MCU and cell apoptosis. Our findings extend the understanding of m6A driven machinery in virus-induced vascular endothelium damage and highlight the significance of vitamin D3 in the intervention of HCMV-induced atherosclerosis.
Collapse
Affiliation(s)
- Wenbo Zhu
- Clinical Medical Research Center, First Affiliated Hospital, University of South China, Hengyang, China
| | - Hongbo Zhang
- Clinical Medical Research Center, First Affiliated Hospital, University of South China, Hengyang, China
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, LA, United States
- *Correspondence: Hongbo Zhang,
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Science, Fuzhou, China
- Shao Wang,
| |
Collapse
|
62
|
Berg C, Wedemeyer MJ, Melynis M, Schlimgen RR, Hansen LH, Våbenø J, Peterson FC, Volkman BF, Rosenkilde MM, Lüttichau HR. The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist. PLoS Pathog 2022; 18:e1010355. [PMID: 35271688 PMCID: PMC8939814 DOI: 10.1371/journal.ppat.1010355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/22/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile. To determine the receptor target for vCXCL1GT5, the chemokine was probed in a G protein signaling assay on all 18 classical human chemokine receptors, where CXCR2 was the only receptor being activated. In addition, vCXCL1GT5 recruited β-arrestin in a BRET-based assay and induced migration in a chemotaxis assay through CXCR2, but not CXCR1. In contrast, vCXCL1GT1 stimulated G protein signaling, recruited β-arrestin and induced migration through both CXCR1 and CXCR2. Both vCXCL1GT1 and vCXCL1GT5 induced equally potent and efficacious migration of neutrophils, and ELR vCXCL1GT4 and non-ELR vCXCL1GT6 activated only CXCR2. In contrast to most human chemokines, the 14 UL146 genotypes have remarkably long C-termini. Comparative modeling using Rosetta showed that each genotype could adopt the classic chemokine core structure, and predicted that the extended C-terminal tail of several genotypes (including vCXCL1GT1, vCXCL1GT4, vCXCL1GT5, and vCXCL1GT6) forms a novel β-hairpin not found in human chemokines. Secondary NMR shift and TALOS+ analysis of vCXCL1GT1 supported the existence of two stable β-strands. C-terminal deletion of vCXCL1GT1 resulted in a non-functional protein and in a shift to solvent exposure for tryptophan residues likely due to destabilization of the chemokine fold. The results demonstrate that non-ELR chemokines can activate CXCR2 and suggest that the UL146 chemokines have unique C-terminal structures that stabilize the chemokine fold. Increased knowledge of the structure and interaction partners of the chemokine variants encoded by UL146 is key to understanding why circulating HCMV strains sustain 14 stable genotypes. Human cytomegalovirus (HCMV) is a prevalent herpesvirus infecting an estimated 60% of the human population worldwide. It is commonly transmitted during early childhood and leads to life-long latency, where viral reactivation can cause severe complications in case of host immune suppression. Furthermore, HCMV is the leading cause of congenital infections. Circulating HCMV strains exhibit great genetic diversity unusual for DNA viruses. One of its most diverse genes is UL146, which encodes a chemokine that facilitates viral dissemination by exploiting the human immune system through mimicry of key immunity components. In this study, we investigate how the diversity of UL146 affects its signaling and structural properties to understand why its genetic diversity is maintained across human populations. We find that certain genotypes that lack key structural domains present in the human homologs nonetheless exert similar functions in the virus-host relationship. Furthermore, many of the UL146 genotypes contain novel structural elements critical for correct protein folding and with the potential to provide HCMV with additional immune modulatory and evasive features. Together, our data highlight a considerable degree of host-adaptation by HCMV and propose novel structural interactions with implications for the virus-host interplay.
Collapse
Affiliation(s)
- Christian Berg
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Unit for Infectious Diseases, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Michael J. Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Motiejus Melynis
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Roman R. Schlimgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lasse H. Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jon Våbenø
- Helgeland Hospital Trust, Sandnessjøen, Norway
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mette M. Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MMR); (HRL)
| | - Hans R. Lüttichau
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Unit for Infectious Diseases, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- * E-mail: (MMR); (HRL)
| |
Collapse
|
63
|
Pardieck IN, van Duikeren S, Veerkamp DMB, Brasem DJ, Redeker A, van Bergen J, Han W, Ossendorp F, Zondag G, Arens R. Dominant Antiviral CD8 + T Cell Responses Empower Prophylactic Antibody-Eliciting Vaccines Against Cytomegalovirus. Front Immunol 2022; 13:680559. [PMID: 35154089 PMCID: PMC8828907 DOI: 10.3389/fimmu.2022.680559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an ubiquitous herpesvirus that can cause serious morbidity and mortality in immunocompromised or immune-immature individuals. A vaccine that induces immunity to CMV in these target populations is therefore highly needed. Previous attempts to generate efficacious CMV vaccines primarily focused on the induction of humoral immunity by eliciting neutralizing antibodies. Current insights encourage that a protective immune response to HCMV might benefit from the induction of virus-specific T cells. Whether addition of antiviral T cell responses enhances the protection by antibody-eliciting vaccines is however unclear. Here, we assessed this query in mouse CMV (MCMV) infection models by developing synthetic vaccines with humoral immunity potential, and deliberately adding antiviral CD8+ T cells. To induce antibodies against MCMV, we developed a DNA vaccine encoding either full-length, membrane bound glycoprotein B (gB) or a secreted variant lacking the transmembrane and intracellular domain (secreted (s)gB). Intradermal immunization with an increasing dose schedule of sgB and booster immunization provided robust viral-specific IgG responses and viral control. Combined vaccination of the sgB DNA vaccine with synthetic long peptides (SLP)-vaccines encoding MHC class I-restricted CMV epitopes, which elicit exclusively CD8+ T cell responses, significantly enhanced antiviral immunity. Thus, the combination of antibody and CD8+ T cell-eliciting vaccines provides a collaborative improvement of humoral and cellular immunity enabling enhanced protection against CMV.
Collapse
Affiliation(s)
- Iris N Pardieck
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Dena J Brasem
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anke Redeker
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
64
|
Ishiyama K, Arakawa-Hoyt J, Aguilar OA, Damm I, Towfighi P, Sigdel T, Tamaki S, Babdor J, Spitzer MH, Reed EF, Sarwal MM, Lanier LL. Mass cytometry reveals single-cell kinetics of cytotoxic lymphocyte evolution in CMV-infected renal transplant patients. Proc Natl Acad Sci U S A 2022; 119:e2116588119. [PMID: 35181606 PMCID: PMC8872722 DOI: 10.1073/pnas.2116588119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) infection is associated with graft rejection in renal transplantation. Memory-like natural killer (NK) cells expressing NKG2C and lacking FcεRIγ are established during CMV infection. Additionally, CD8+ T cells expressing NKG2C have been observed in some CMV-seropositive patients. However, in vivo kinetics detailing the development and differentiation of these lymphocyte subsets during CMV infection remain limited. Here, we interrogated the in vivo kinetics of lymphocytes in CMV-infected renal transplant patients using longitudinal samples compared with those of nonviremic (NV) patients. Recipient CMV-seropositive (R+) patients had preexisting memory-like NK cells (NKG2C+CD57+FcεRIγ-) at baseline, which decreased in the periphery immediately after transplantation in both viremic and NV patients. We identified a subset of prememory-like NK cells (NKG2C+CD57+FcεRIγlow-dim) that increased during viremia in R+ viremic patients. These cells showed a higher cytotoxic profile than preexisting memory-like NK cells with transient up-regulation of FcεRIγ and Ki67 expression at the acute phase, with the subsequent accumulation of new memory-like NK cells at later phases of viremia. Furthermore, cytotoxic NKG2C+CD8+ T cells and γδ T cells significantly increased in viremic patients but not in NV patients. These three different cytotoxic cells combinatorially responded to viremia, showing a relatively early response in R+ viremic patients compared with recipient CMV-seronegative viremic patients. All viremic patients, except one, overcame viremia and did not experience graft rejection. These data provide insights into the in vivo dynamics and interplay of cytotoxic lymphocytes responding to CMV viremia, which are potentially linked with control of CMV viremia to prevent graft rejection.
Collapse
Affiliation(s)
- Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| | - Oscar A Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| | - Izabella Damm
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Parhom Towfighi
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Tara Sigdel
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Stanley Tamaki
- Parnassus Flow Cytometry Core, University of California, San Francisco, CA 94143
| | - Joel Babdor
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94143
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Minnie M Sarwal
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143;
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143
| |
Collapse
|
65
|
Production- and Purification-Relevant Properties of Human and Murine Cytomegalovirus. Viruses 2021; 13:v13122481. [PMID: 34960750 PMCID: PMC8706497 DOI: 10.3390/v13122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
There is a large unmet need for a prophylactic vaccine against human cytomegalovirus (HCMV) to combat the ubiquitous infection that is ongoing with this pathogen. A vaccination against HCMV could protect immunocompromised patients and prevent birth defects caused by congenital HCMV infections. Moreover, cytomegalovirus (CMV) has a number of features that make it a very interesting vector platform for gene therapy. In both cases, preparation of a highly purified virus is a prerequisite for safe and effective application. Murine CMV (MCMV) is by far the most studied model for HCMV infections with regard to the principles that govern the immune surveillance of CMVs. Knowledge transfer from MCMV and mice to HCMV and humans could be facilitated by better understanding and characterization of the biological and biophysical properties of both viruses. We carried out a detailed investigation of HCMV and MCMV growth kinetics as well as stability under the influence of clarification and different storage conditions. Further, we investigated the possibilities to concentrate and purify both viruses by ultracentrifugation and ion-exchange chromatography. Defective enveloped particles were not separately analyzed; however, the behavior of exosomes was examined during all experiments. The effectiveness of procedures was monitored using CCID50 assay, Nanoparticle tracking analysis, ELISA for host cell proteins, and quantitative PCR for host cell DNA. MCMV generally proved to be more robust in handling. Despite its greater sensitivity, HCMV was efficiently (100% recovery) purified and concentrated by anion-exchange chromatography using QA monolithic support. The majority of the host genomic DNA as well as most of the host cell proteins were removed by this procedure.
Collapse
|
66
|
Ingels J, De Smet S, Heyns K, Lootens N, Segaert J, Taghon T, Leclercq G, Vermaelen K, Willems E, Baudoux E, Kerre T, Baron F, Vandekerckhove B. Treatment of a patient with severe cytomegalovirus (CMV) infection after haploidentical stem cell transplantation with donor derived CMV specific T cells. Acta Clin Belg 2021; 76:482-486. [PMID: 32285755 DOI: 10.1080/17843286.2020.1752446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: Cytomegalovirus (CMV) infection is one of the most common complications in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. The classic antiviral treatments have shown clinical efficacy but are often associated with drug resistance. Reconstitution of CMV-specific cellular immunity is essential in controlling CMV infection; therefore, adoptive transfer of CMV-specific T cells is a promising treatment option. We treated a patient with a multidrug resistant CMV infection after haploidentical HSCT with CMV-specific T cells.Methods: The T cells were derived from the HSCT donor who was CMV seropositive. We generated the T cells by a short-term Good Manufacturing Practice (GMP) grade protocol in which a leukapheresis product of the HSCT donor was stimulated with the immunodominant antigen pp65 and interferon-γ secreting cells were isolated. A total of 5 × 105 T cells were administered to the patient within 30 hours after leukapheresis.Results: The patient was closely monitored for reconstitution of antiviral T cell immunity and viral replication after adoptive T cell transfer. We observed an in vivo expansion of both CD4+ and CD8+ CMV-specific T cells associated with a significant decrease in viral burden and clinical improvement.Conclusion: This case report further supports the feasibility and effectiveness of adoptive donor T cell transfer for the treatment of drug resistant CMV infections after allo-HSCT.
Collapse
Affiliation(s)
- Joline Ingels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| | - Saskia De Smet
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kelly Heyns
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Nele Lootens
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jonas Segaert
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Evelyne Willems
- Department of Medicine, Division of Hematology, University of Liège, Liège, Belgium
| | - Etienne Baudoux
- Department of Medicine, Division of Hematology, University of Liège, Liège, Belgium
| | - Tessa Kerre
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Frédéric Baron
- Department of Medicine, Division of Hematology, University of Liège, Liège, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
67
|
Suàrez-Fernández P, Utrero-Rico A, Sandonis V, García-Ríos E, Arroyo-Sánchez D, Fernández-Ruiz M, Andrés A, Polanco N, González-Cuadrado C, Almendro-Vázquez P, Pérez-Romero P, Aguado JM, Paz-Artal E, Laguna-Goya R. Circulatory follicular helper T lymphocytes associate with lower incidence of CMV infection in kidney transplant recipients. Am J Transplant 2021; 21:3946-3957. [PMID: 34153157 DOI: 10.1111/ajt.16725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/25/2023]
Abstract
Primary infection and/or reactivation of cytomegalovirus (CMV) in kidney transplant recipients (KTR) favor rejection and mortality. T follicular helper cells (TFH) could contribute to protection against CMV. Circulatory TFH (cTFH) were studied pretransplant and early posttransplant in 90 CMV seropositive KTR not receiving antithymocyte globulin or antiviral prophylaxis, followed-up for 1 year. Patients who presented CMV infection had significantly lower cTFH and activated cTFH pretransplant and early posttransplant. Pretransplant activated cTFH were also lower within patients who developed CMV disease. Pre- and 14 days posttransplant activated cTFH were an independent protective factor for CMV infection (HR 0.41, p = .01; and 0.52, p = .02, respectively). KTR with low cTFH 7 days posttransplant (<11.9%) had lower CMV infection-free survival than patients with high cTFH (28.2% vs. 67.6%, p = .002). cTFH were associated with CMV-specific neutralizing antibodies (Nabs). In addition, IL-21 increased interferon-γ secretion by CMV-specific CD8+ T cells in healthy controls. Thus, we show an association between cTFH and lower incidence of CMV infection, probably through their cooperation in CMV-specific Nab production and IL-21-mediated enhancement of CD8+ T cell activity. Moreover, monitoring cTFH pre- and early posttransplant could improve CMV risk stratification and help select KTR catalogued at low/intermediate risk who could benefit from prophylaxis.
Collapse
Affiliation(s)
| | - Alberto Utrero-Rico
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Virginia Sandonis
- National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Majadahonda, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Majadahonda, Spain
| | - Daniel Arroyo-Sánchez
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mario Fernández-Ruiz
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Amado Andrés
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Majadahonda, Spain
| | - José María Aguado
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Immunology, Universidad Complutense de Madrid, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
68
|
Godsell J, Chan S, Slade C, Bryant V, Douglass JA, Sasadeusz J, Yong MK. Cytomegalovirus in primary immunodeficiency. Curr Opin Infect Dis 2021; 34:663-671. [PMID: 34608876 DOI: 10.1097/qco.0000000000000797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Cytomegalovirus (CMV) infection and disease are well described in the setting of secondary immunodeficiency. Less is known about CMV in the context of primary immunodeficiencies (PIDs), where inborn errors in one or more arms of the immune system result in variable degrees of CMV susceptibility. RECENT FINDINGS PID presents unique challenges in the diagnosis and management of CMV disease. The clinical presentation of CMV in PID is often severe, accelerated by underlying immune dysregulation and iatrogenic immunosuppression. Here we describe the clinical significance of CMV infection in PID, the key components of immune defence against CMV and how these are affected in specific PIDs. CMV disease is under-recognized as a complication of common variable immunodeficiency (CVID). High rates of CMV end-organ disease, mortality, development of CMV resistance and prolonged antiviral use have been observed in individuals with CVID. SUMMARY We recommend that clinicians tailor their approach to the individual based on their underlying immune deficit and maintain a high index of suspicion and low threshold for treatment. More research is required to improve stratification of CMV risk in PID, develop new diagnostic tools and manage end-organ disease in this cohort.
Collapse
Affiliation(s)
- Jack Godsell
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
| | - Samantha Chan
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Immunology Division, Walter & Eliza Hall Institute of Medical Research
- Department of Medicine, University of Melbourne
| | - Charlotte Slade
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Immunology Division, Walter & Eliza Hall Institute of Medical Research
| | - Vanessa Bryant
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Immunology Division, Walter & Eliza Hall Institute of Medical Research
| | - Jo Anne Douglass
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Department of Medicine, University of Melbourne
| | - Joe Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne
| | - Michelle K Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
69
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
70
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
71
|
Low dose thymoglobulin versus basiliximab in cytomegalovirus positive kidney transplant recipients: Effectiveness of preemptive cytomegalovirus modified strategy. Nefrologia 2021. [DOI: 10.1016/j.nefro.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
72
|
Deml L, Hüber CM, Barabas S, Spindler T, Cozzi E, Grossi P. Stimulatory Effect of CMV Immunoglobulin on Innate Immunity and on the Immunogenicity of CMV Antigens. Transplant Direct 2021; 7:e781. [PMID: 34712781 PMCID: PMC8547921 DOI: 10.1097/txd.0000000000001236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background. Cytomegalovirus (CMV) immunoglobulin (CMVIG) is used for the prophylaxis of CMV infection after transplantation. Beyond providing passive CMV-specific immunity, CMVIG exerts enhancing and suppressive immunomodulatory functions. Although the anti-inflammatory activities of CMVIG have been extensively documented, its immunostimulatory activities remain poorly characterized. Methods. This exploratory study analyzed the capacity of CMVIG to modulate cell-mediated innate and adaptive immunities in vitro on freshly isolated peripheral blood mononuclear cells (PBMCs) of CMV-seropositive and -seronegative healthy individuals, using interferon-γ (IFN-γ) enzyme-linked immunospot and intracellular cytokine staining assays. Results. We showed that CMVIG treatment increases the number of IFN-γ–secreting PBMCs of both CMV-seronegative and -seropositive individuals, indicating a global stimulatory effect on innate immune cells. Indeed, CMVIG significantly increased the frequency of natural killer cells producing the T helper cell 1–type cytokines tumor necrosis factor and IFN-γ. This was associated with the induction of interleukin-12–expressing monocytes and the activation of cluster of differentiation (CD) 4+ and CD8+ T cells, as measured by the expression of tumor necrosis factor and IFN-γ. Interestingly, stimulation of PBMCs from CMV-seropositive subjects with CMVIG-opsonized CMV antigens (phosphoprotein 65, CMV lysate) enhanced CD4+ and CD8+ T-cell activation, suggesting that CMVIG promotes the immunogenicity of CMV antigens. Conclusions. Our data demonstrate that CMVIG can stimulate effector cells of both innate and adaptive immunities and promote the immunogenicity of CMV antigens. These immunostimulatory properties might contribute to the protective effect against CMV infection mediated by CMVIG.
Collapse
Affiliation(s)
- Ludwig Deml
- Lophius Biosciences GmbH, Regensburg, Germany
| | | | | | | | - Emanuele Cozzi
- Transplant Immunology Unit, University of Padua, Padova, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| |
Collapse
|
73
|
Higdon LE, Schaffert S, Cohen RH, Montez-Rath ME, Lucia M, Saligrama N, Margulies KB, Martinez OM, Tan JC, Davis MM, Khatri P, Maltzman JS. Functional Consequences of Memory Inflation after Solid Organ Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2086-2095. [PMID: 34551963 PMCID: PMC8492533 DOI: 10.4049/jimmunol.2100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
CMV is a major infectious complication following solid organ transplantation. Reactivation of CMV leads to memory inflation, a process in which CD8 T cells expand over time. Memory inflation is associated with specific changes in T cell function, including increased oligoclonality, decreased cytokine production, and terminal differentiation. To address whether memory inflation during the first year after transplantation in human subjects alters T cell differentiation and function, we employed single-cell-matched TCRαβ and targeted gene expression sequencing. Expanded T cell clones exhibited a terminally differentiated, immunosenescent, and polyfunctional phenotype whereas rare clones were less differentiated. Clonal expansion occurring between pre- and 3 mo posttransplant was accompanied by enhancement of polyfunctionality. In contrast, polyfunctionality and differentiation state were largely maintained between 3 and 12 mo posttransplant. Highly expanded clones had a higher degree of polyfunctionality than rare clones. Thus, CMV-responsive CD8 T cells differentiated during the pre- to posttransplant period then maintained their differentiation state and functional capacity despite posttransplant clonal expansion.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA; and
| | - Rachel H Cohen
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | | | - Marc Lucia
- Department of Surgery, Stanford University, Stanford, CA
| | - Naresha Saligrama
- Department of Microbiology and Immunology, Stanford University, Stanford CA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Jane C Tan
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA; and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA; and
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
74
|
Higdon LE, Schaffert S, Huang H, Montez-Rath ME, Lucia M, Jha A, Saligrama N, Margulies KB, Martinez OM, Davis MM, Khatri P, Maltzman JS. Evolution of Cytomegalovirus-Responsive T Cell Clonality following Solid Organ Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2077-2085. [PMID: 34551964 PMCID: PMC8492537 DOI: 10.4049/jimmunol.2100404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
CMV infection is a significant complication after solid organ transplantation. We used single cell TCR αβ sequencing to determine how memory inflation impacts clonality and diversity of the CMV-responsive CD8 and CD4 T cell repertoire in the first year after transplantation in human subjects. We observed CD8 T cell inflation but no changes in clonal diversity, indicating homeostatic stability in clones. In contrast, the CD4 repertoire was diverse and stable over time, with no evidence of CMV-responsive CD4 T cell expansion. We identified shared CDR3 TCR motifs among patients but no public CMV-specific TCRs. Temporal changes in clonality in response to transplantation and in the absence of detectable viral reactivation suggest changes in the repertoire immediately after transplantation followed by an expansion with stable clonal competition that may mediate protection.
Collapse
Affiliation(s)
- Lauren E Higdon
- Nephrology Division, Department of Medicine, Stanford University, Palo Alto, CA
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Biomedical Informatics Division, Department of Medicine, Stanford University, Stanford, CA
| | - Huang Huang
- Department of Microbiology and Immunology, Stanford University, Stanford CA
| | - Maria E Montez-Rath
- Nephrology Division, Department of Medicine, Stanford University, Palo Alto, CA
| | - Marc Lucia
- Department of Surgery, Stanford University, Stanford, CA
| | - Alokkumar Jha
- Cardiovascular Institute, Stanford University, Stanford, CA
| | - Naresha Saligrama
- Department of Microbiology and Immunology, Stanford University, Stanford CA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford University, Stanford, CA; and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Biomedical Informatics Division, Department of Medicine, Stanford University, Stanford, CA
| | - Jonathan S Maltzman
- Nephrology Division, Department of Medicine, Stanford University, Palo Alto, CA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
75
|
Yu SC, Ko KY, Teng SC, Huang TC, Lo HT, Cheng CL, Yao M, Hong RL, Chen CN, Chen TC, Yang TL. A Clinicopathological Study of Cytomegalovirus Lymphadenitis and Tonsillitis and Their Association with Epstein-Barr Virus. Infect Dis Ther 2021; 10:2661-2675. [PMID: 34623624 PMCID: PMC8572917 DOI: 10.1007/s40121-021-00528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Histopathological characteristics of cytomegalovirus (CMV) lymphadenitis have been well described. Rare studies have reported the immune status and clinical features. Clinically, experts believed that CMV lymphadenitis develops in immunocompromised and immunocompetent patients. Infectious mononucleosis (IM)-like syndrome is the most well-known clinical presentation. Methods We reviewed archived CMV immunohistochemical stains on lymphoid tissues. The clinicopathological features of CMV-positive cases were studied. Results For lymph nodes, we detected CMV in 29% (5/17) allogeneic peripheral blood hematopoietic stem cell transplantation (PBSCT) recipients, 29% (4/14) post-autologous PBSCT patients, 13% (6/47) patients treated with intravenous chemotherapy, and 9% (9/96) immunocompetent patients. We detected CMV in 7% (2/24) of tonsils but not in the nasopharynx, tongue base, or spleen specimens. The patients with iatrogenic immunodeficiency ranged from 37 to 76 years old. CMV infections developed a few years after lymphoma treatment (median duration after allogeneic PBSCT, 932 days; after autologous PBSCT, 370 days; and after chemotherapy, 626 days). The most common clinical presentation was neck mass (13/25, 42%), followed by asymptomatic image finding (10/25, 40%). Positron emission tomography/computed tomography (PET/CT) scan showed increased uptake compared to the liver in all patients (11/11, 100%). Of 10 lymphoma patients, 8 (80%) had a Deauville score of 4–5; they accounted for 30% (8/27) of lymphoma patients with false-positive PET/CT scan results. All cases were self-limiting. 96% (23/25) cases had Epstein–Barr virus coinfection, and EBER-positive cells were predominantly in a few germinal centers. Conclusions Cytomegalovirus (CMV) lymphadenitis and tonsillitis were subclinical infections, not primary CMV infection with IM-like syndrome. The lymphadenopathy typically developed a few years after lymphoma treatments in the middle-aged and the elderly. The lesions mimicked lymphoma relapse in PET scans. Therefore, recognizing CMV infection in lymphoid tissues is of clinical importance. Graphic abstract ![]()
Collapse
Affiliation(s)
- Shan-Chi Yu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Ren-Ai Road, Taipei, 100, Taiwan. .,Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Pathology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| | - Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Cancer Center, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Chun Teng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Ren-Ai Road, Taipei, 100, Taiwan.
| | - Tai-Chung Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Ting Lo
- Department of Pathology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chieh-Lung Cheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Long Hong
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Nan Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
76
|
Lazar K, Kussmann T, Pawelec G, Pöschel S, Goelz R, Hamprecht K, Wistuba-Hamprecht K. Immunomonitoring of Human Breast Milk Cells During HCMV-Reactivation. Front Immunol 2021; 12:723010. [PMID: 34566980 PMCID: PMC8462275 DOI: 10.3389/fimmu.2021.723010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Breast milk leukocytes may play a role in protecting the infant from pathogens. The dynamics and the role of lymphocytes in human cytomegalovirus (HCMV)-seropositive mothers shedding HCMV into breast milk during the first months postpartum (p.p.) are mostly unclear. Methods Breast milk cells were analyzed by Pappenheim panoptic and alpha-naphthyl acetate esterase staining as well as by imaging and polychromatic flow cytometry to simultaneously establish their morphological and phenotypic properties. The latter were characterized in HCMV-seropositive and seronegative mothers´ breast milk cells at different time points p.p. Results Panoptic staining of breast milk cells revealed the presence of monocytes/macrophages, granulocytes and lymphocytes. Imaging flow cytometry data combining phenotypic and morphological analysis identified NKT-like cells, NK cells, epithelial cells, T cells and monocytes/macrophages. HCMV-seropositive but not -seronegative mothers had significantly higher T cell frequencies in mature milk. Conclusions The presence of lymphocyte subsets in breast milk may be more influenced by the HCMV-seropositivity of the mother than previously recognized.
Collapse
Affiliation(s)
- Katrin Lazar
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Thorsten Kussmann
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Simone Pöschel
- Flow Cytometry Core Facility, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Rangmar Goelz
- Department of Neonatology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Section of Dermatooncology, Department of Dermatology, University Medical Center, Tübingen, Germany.,Section for Clinical Bioinformatics, Internal Medicine I, University Medical Center, Tübingen, Germany
| |
Collapse
|
77
|
El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021; 12:730765. [PMID: 34566995 PMCID: PMC8456041 DOI: 10.3389/fimmu.2021.730765] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently infecting high percentages of the world population. Despite the apparent robust host immune responses, HCMV is capable of replicating, evading host defenses, and establishing latency throughout life by developing multiple immune-modulatory strategies. HCMV has coexisted with humans mounting various mechanisms to evade immune cells and effectively win the HCMV-immune system battle mainly through maintaining its viral genome, impairing HLA Class I and II molecule expression, evading from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive cytokines (immune tolerance). HCMV expresses several gene products that modulate the host immune response and promote modifications in non-coding RNA and regulatory proteins. These changes are linked to several complications, such as immunosenescence and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME) and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation and survival, invasion, immune evasion, immunosuppression, and giving rise to angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal role in developing novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire immune evasion strategies, anti-tumor immunity could be prominently triggered by multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to actively oppose the immune suppressive microenvironment, on the other side.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
- Department of Virology, Centre hospitalier régional universitaire de Besançon (CHRU) Besançon, Besancon, France
| |
Collapse
|
78
|
CARs-A New Perspective to HCMV Treatment. Viruses 2021; 13:v13081563. [PMID: 34452428 PMCID: PMC8402902 DOI: 10.3390/v13081563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV), by primary infection or reactivation, represents a great risk for immune-suppressed or compromised patients. In immunocompetent humans, the immune system suppresses the spread of HCMV during an infection, resulting in a mostly asymptomatic or mild course of the disease, whereas in immune suppressed patients, the compromised host immune response cannot control the viral infection. Multiple viral immunomodulatory mechanisms additionally contribute to immune evasion. Use of chimeric antigen receptors (CARs), a treatment strategy adapted from cancer immunotherapy, is investigated for possible application to combat HCMV and other infections in immunocompromised patients. The administration of CAR+ T-cells directed against HCMV antigens can bypass viral immune evasion and may complement existing treatment methods. This review gives a short overview of HCMV, the obstacles of current treatment options as well as a brief introduction to CARs and the current research situation on CAR+ T-cells against HCMV.
Collapse
|
79
|
Méndez-Lagares G, Chin N, Chang WW, Lee J, Rosás-Umbert M, Kieu HT, Merriam D, Lu W, Kim S, Adamson L, Brander C, Luciw PA, Barry PA, Hartigan-O’Connor DJ. Cytomegalovirus mediates expansion of IL-15-responsive innate-memory cells with SIV killing function. J Clin Invest 2021; 131:148542. [PMID: 34153005 PMCID: PMC8321572 DOI: 10.1172/jci148542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Interindividual immune variability is driven predominantly by environmental factors, including exposure to chronic infectious agents such as cytomegalovirus (CMV). We investigated the effects of rhesus CMV (RhCMV) on composition and function of the immune system in young macaques. Within months of infection, RhCMV was associated with impressive changes in antigen presenting cells, T cells, and NK cells-and marked expansion of innate-memory CD8+ T cells. These cells express high levels of NKG2A/C and the IL-2 and IL-15 receptor beta chain, CD122. IL-15 was sufficient to drive differentiation of the cells in vitro and in vivo. Expanded NKG2A/C+CD122+CD8+ T cells in RhCMV-infected macaques, but not their NKG2-negative counterparts, were endowed with cytotoxicity against class I-deficient K562 targets and prompt IFN-γ production in response to stimulation with IL-12 and IL-18. Because RhCMV clone 68-1 forms the viral backbone of RhCMV-vectored SIV vaccines, we also investigated immune changes following administration of RhCMV 68-1-vectored SIV vaccines. These vaccines led to impressive expansion of NKG2A/C+CD8+ T cells with capacity to inhibit SIV replication ex vivo. Thus, CMV infection and CMV-vectored vaccination drive expansion of functional innate-like CD8 cells via host IL-15 production, suggesting that innate-memory expansion could be achieved by other vaccine platforms expressing IL-15.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Ning Chin
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - W.L. William Chang
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Jaewon Lee
- Graduate Group in Immunology, and
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | | | - Hung T. Kieu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - David Merriam
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Wenze Lu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Sungjin Kim
- Department of Medical Microbiology and Immunology
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Lourdes Adamson
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paul A. Luciw
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Peter A. Barry
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
80
|
Akhtar N, Joshi A, Singh J, Kaushik V. Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
81
|
Jakharia N, Howard D, Riedel DJ. CMV Infection in Hematopoietic Stem Cell Transplantation: Prevention and Treatment Strategies. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2021; 13:123-140. [PMID: 34305463 PMCID: PMC8294301 DOI: 10.1007/s40506-021-00253-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Purpose of Review Cytomegalovirus (CMV) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (Allo-HSCT). New strategies and methods for prevention and management of CMV infection are urgently needed. We aim to review the new developments in diagnostics, prevention, and management strategies of CMV infection in Allo-HSCT recipients. Recent Findings The approval of the novel anti-CMV drug letermovir in 2017 has led to an increase in the use of antiviral prophylaxis as a preferred approach for prevention in many centers. Real-world studies have shown efficacy similar to the clinical trial. CMV-specific T cell-mediated immunity assays identify patients with immune reconstitution and predict disease progression. Phase 2 trials of maribavir have shown its efficacy as preemptive therapy and treatment of resistant and refractory CMV infections. Adoptive T cell therapy is an emerging option for treatment of refractory and resistant CMV. Of the different CMV vaccine trials, PepVax has shown promising results in a phase 1 trial. Summary CMV cell-mediated immunity assays have potential to be used as an adjunctive test to develop individualized management plan by identifying the patients who develop immune reconstitution; however, further prospective interventional studies are needed. Maribavir and adoptive T cell therapy are promising new therapies for treatment of CMV infections. CMV vaccine trials for prevention are also under way.
Collapse
Affiliation(s)
- Niyati Jakharia
- Department of Internal Medicine, Section of Infectious Diseases, Stanford University Hospital, 300 Pasteur Dr., Lane L 134, Stanford, CA 94305 USA
| | - Dianna Howard
- Department of Internal Medicine, Section of Hematology-Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC USA
| | - David J Riedel
- Department of Internal Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
82
|
Higdon LE, Gustafson CE, Ji X, Sahoo MK, Pinsky BA, Margulies KB, Maecker HT, Goronzy J, Maltzman JS. Association of Premature Immune Aging and Cytomegalovirus After Solid Organ Transplant. Front Immunol 2021; 12:661551. [PMID: 34122420 PMCID: PMC8190404 DOI: 10.3389/fimmu.2021.661551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Immune function is altered with increasing age. Infection with cytomegalovirus (CMV) accelerates age-related immunological changes resulting in expanded oligoclonal memory CD8 T cell populations with impaired proliferation, signaling, and cytokine production. As a consequence, elderly CMV seropositive (CMV+) individuals have increased mortality and impaired responses to other infections in comparison to seronegative (CMV–) individuals of the same age. CMV is also a significant complication after organ transplantation, and recent studies have shown that CMV-associated expansion of memory T cells is accelerated after transplantation. Thus, we investigated whether immune aging is accelerated post-transplant, using a combination of telomere length, flow cytometry phenotyping, and single cell RNA sequencing. Telomere length decreased slightly in the first year after transplantation in a subset of both CMV+ and CMV– recipients with a strong concordance between CD57+ cells and short telomeres. Phenotypically aged cells increased post-transplant specifically in CMV+ recipients, and clonally expanded T cells were enriched for terminally differentiated cells post-transplant. Overall, these findings demonstrate a pattern of accelerated aging of the CD8 T cell compartment in CMV+ transplant recipients.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States
| | - Claire E Gustafson
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Palo Alto, CA, United States
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Palo Alto, CA, United States.,Department of Medicine/Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, United States
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Holden T Maecker
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States.,Department of Microbiology & Immunology, Stanford University, Palo Alto, CA, United States
| | - Jorg Goronzy
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
83
|
Garrido-Rodríguez V, Herrero-Fernández I, Castro MJ, Castillo A, Rosado-Sánchez I, Galvá MI, Ramos R, Olivas-Martínez I, Bulnes-Ramos Á, Cañizares J, Leal M, Pacheco YM. Immunological features beyond CD4/CD8 ratio values in older individuals. Aging (Albany NY) 2021; 13:13443-13459. [PMID: 34038386 PMCID: PMC8202849 DOI: 10.18632/aging.203109] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
The CD4/CD8 T-cell ratio is emerging as a relevant marker of evolution for many pathologies and therapies. We aimed to explore immunological features beyond CD4/CD8 ratio values in older subjects (>65 years old) who were classified as having lower (<1.4), intermediate (1.4-2), or higher (>2) ratio values. The lower group showed a lower thymic output (sj/β-TREC ratio) and frequency of naïve T-cells, concomitant with increased mature T-cells. In these subjects, the CD4 T-cell subset was enriched in CD95+ but depleted of CD98+ cells. The regulatory T-cell (Treg) compartment was enriched in CTLA-4+ cells. The CD8 T-cell pool exhibited increased frequencies of CD95+ cells but decreased frequencies of integrin-β7+ cells. Interestingly, in the intermediate group, the CD4 pool showed greater differences than the CD8 pool, mostly for cellular senescence. Regarding inflammation, only hsCRP was elevated in the lower group; however, negative correlations between the CD4/CD8 ratio and β2-microglobulin and sCD163 were detected. These subjects displayed trends of more comorbidities and less independence in daily activities. Altogether, our data reveal different thymic output and immune profiles for T-cells across CD4/CD8 ratio values that can define immune capabilities, affecting health status in older individuals. Thus, the CD4/CD8 ratio may be used as an integrative marker of biological age.
Collapse
Affiliation(s)
- Vanesa Garrido-Rodríguez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Inés Herrero-Fernández
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - María José Castro
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Ana Castillo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | | | | | - Israel Olivas-Martínez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Ángel Bulnes-Ramos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | | | - Manuel Leal
- Immunovirology Unit, Internal Medicine Service, Viamed Hospital, Santa Ángela de la Cruz, Seville, Spain
| | - Yolanda María Pacheco
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
84
|
Prakash K, Chandorkar A, Saharia KK. Utility of CMV-Specific Immune Monitoring for the Management of CMV in Solid Organ Transplant Recipients: A Clinical Update. Diagnostics (Basel) 2021; 11:875. [PMID: 34068377 PMCID: PMC8153332 DOI: 10.3390/diagnostics11050875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus (CMV) is one of the most important opportunistic infections in solid organ transplant (SOT) recipients. However, current techniques used to predict risk for CMV infection fall short. CMV-specific cell mediated immunity (CMI) plays an important role in protecting against CMV infection. There is evidence that assays measuring CMV-CMI might better identify SOT recipients at risk of complications from CMV compared to anti-CMV IgG, which is our current standard of care. Here, we review recently published studies that utilize CMV-CMI, at various points before and after transplantation, to help predict risk and guide the management of CMV infection following organ transplantation. The evidence supports the use of these novel assays to help identify SOT recipients at increased risk and highlights the need for larger prospective trials evaluating these modalities in this high-risk population.
Collapse
Affiliation(s)
- Katya Prakash
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Aditya Chandorkar
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kapil K. Saharia
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
85
|
Jarque M, Crespo E, Melilli E, Gutiérrez A, Moreso F, Guirado L, Revuelta I, Montero N, Torras J, Riera L, Meneghini M, Taco O, Manonelles A, Paul J, Seron D, Facundo C, Cruzado JM, Gil Vernet S, Grinyó JM, Bestard O. Cellular Immunity to Predict the Risk of Cytomegalovirus Infection in Kidney Transplantation: A Prospective, Interventional, Multicenter Clinical Trial. Clin Infect Dis 2021; 71:2375-2385. [PMID: 32076718 DOI: 10.1093/cid/ciz1209] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Improving cytomegalovirus (CMV) immune-risk stratification in kidney transplantation is highly needed to establish guided preventive strategies. METHODS This prospective, interventional, multicenter clinical trial assessed the value of monitoring pretransplant CMV-specific cell-mediated immunity (CMI) using an interferon-γ release assay to predict CMV infection in kidney transplantation. One hundred sixty donor/recipient CMV-seropositive (D+/R+) patients, stratified by their baseline CMV (immediate-early protein 1)-specific CMI risk, were randomized to receive either preemptive or 3-month antiviral prophylaxis. Also, 15-day posttransplant CMI risk stratification and CMI specific to the 65 kDa phosphoprotein (pp65) CMV antigen were investigated. Immunosuppression consisted of basiliximab, tacrolimus, mycophenolate mofetil, and corticosteroids in 80% of patients, whereas 20% received thymoglobulin induction therapy. RESULTS Patients at high risk for CMV based on pretransplant CMI developed significantly higher CMV infection rates than those deemed to be at low risk with both preemptive (73.3% vs 44.4%; odds ratio [OR], 3.44 [95% confidence interval {CI}, 1.30-9.08]) and prophylaxis (33.3% vs 4.1%; OR, 11.75 [95% CI, 2.31-59.71]) approaches. The predictive capacity for CMV-specific CMI was only found in basiliximab-treated patients for both preemptive and prophylaxis therapy. Fifteen-day CMI risk stratification better predicted CMV infection (81.3% vs 9.1%; OR, 43.33 [95% CI, 7.89-237.96]). CONCLUSIONS Pretransplant CMV-specific CMI identifies D+/R+ kidney recipients at high risk of developing CMV infection if not receiving T-cell-depleting antibodies. Monitoring CMV-specific CMI soon after transplantation further defines the CMV infection prediction risk. Monitoring CMV-specific CMI may guide decision making regarding the type of CMV preventive strategy in kidney transplantation. CLINICAL TRIALS REGISTRATION NCT02550639.
Collapse
Affiliation(s)
- Marta Jarque
- Experimental Nephrology Laboratory, Bellvitge Biomedical Research Institute, IDIBELL, Hospitalet de Llobregat, Spain
| | - Elena Crespo
- Experimental Nephrology Laboratory, Bellvitge Biomedical Research Institute, IDIBELL, Hospitalet de Llobregat, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Alex Gutiérrez
- Kidney Transplant Unit, Nephrology Department, Hospital Miguel Servet, Zaragoza, Spain
| | - Francesc Moreso
- Kidney Transplant Unit, Nephrology Department, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Lluís Guirado
- Kidney Transplant Unit, Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Ignacio Revuelta
- Kidney Transplant Unit, Nephrology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nuria Montero
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Joan Torras
- Experimental Nephrology Laboratory, Bellvitge Biomedical Research Institute, IDIBELL, Hospitalet de Llobregat, Spain
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Lluís Riera
- Urology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Maria Meneghini
- Experimental Nephrology Laboratory, Bellvitge Biomedical Research Institute, IDIBELL, Hospitalet de Llobregat, Spain
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Omar Taco
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Anna Manonelles
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Javier Paul
- Kidney Transplant Unit, Nephrology Department, Hospital Miguel Servet, Zaragoza, Spain
| | - Daniel Seron
- Kidney Transplant Unit, Nephrology Department, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Carme Facundo
- Kidney Transplant Unit, Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Josep M Cruzado
- Experimental Nephrology Laboratory, Bellvitge Biomedical Research Institute, IDIBELL, Hospitalet de Llobregat, Spain
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Salvador Gil Vernet
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep M Grinyó
- Experimental Nephrology Laboratory, Bellvitge Biomedical Research Institute, IDIBELL, Hospitalet de Llobregat, Spain
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Oriol Bestard
- Experimental Nephrology Laboratory, Bellvitge Biomedical Research Institute, IDIBELL, Hospitalet de Llobregat, Spain
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| |
Collapse
|
86
|
García-Ríos E, Nuévalos M, Mancebo FJ, Pérez-Romero P. Is It Feasible to Use CMV-Specific T-Cell Adoptive Transfer as Treatment Against Infection in SOT Recipients? Front Immunol 2021; 12:657144. [PMID: 33968058 PMCID: PMC8104120 DOI: 10.3389/fimmu.2021.657144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, many studies have demonstrated the role of CMV specific T-cell immune response on controlling CMV replication and dissemination. In fact, it is well established that transplanted patients lacking CMV-specific T-cell immunity have an increased occurrence of CMV replication episodes and CMV-related complications. In this context, the use of adoptive transfer of CMV-specific T-cells has been widely investigated and applied to Hematopoietic Stem Cell Transplant patients and may be useful as a therapeutic alternative, to reconstitute the CMV specific T-cell response and to control CMV viremia in patients receiving a transplantation. However, only few authors have explored the use of T-cell adoptive transfer in SOT recipients. We propose a novel review in which we provide an overview of the impact of using CMV-specific T-cell adoptive transfer on the control of CMV infection in SOT recipients, the different approaches to stimulate, isolate and expand CMV-specific T-cells developed over the years and a discussion of the possible use of CMV adoptive cellular therapy in this SOT population. Given the timeliness and importance of this topic, we believe that such an analysis will provide important insights into CMV infection and its treatment/prevention.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
87
|
Screening and validation of differentially expressed microRNAs and target genes in hypertensive mice induced by cytomegalovirus infection. Biosci Rep 2021; 40:227064. [PMID: 33245094 PMCID: PMC7729292 DOI: 10.1042/bsr20202387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction: Multiple studies have suggested an association between cytomegalovirus (CMV) infection and essential hypertension (EH). MicroRNAs (miRNAs) play a critical role in the development of EH by regulating the expression of specific target genes. However, little is known about the role of miRNAs in CMV-induced EH. In the present study, we compared the miRNA expression profiles of samples from normal and murine cytomegalovirus (MCMV)-infected C57BL/6 mice using high-throughput sequencing analysis. Methods: We collected the thoracic aorta, heart tissues, and peripheral blood from 20 normal mice and 20 MCMV-infected mice. We identified differentially expressed miRNAs in the peripheral blood samples and predicted their target genes using bioinformatics tools. We then experimentally validated them using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the target genes with double luciferase reporter gene assay. Results: We found 118 differentially expressed miRNAs, among which 9 miRNAs were identified as potential MCMV infection-induced hypertension regulators. We then validated the expression of two candidate miRNAs, mmu-miR-1929-3p and mcmv-miR-m01-4-5p, using qRT-PCR. Furthermore, the dual-luciferase reporter gene assay revealed that the 3′-untranslated region (UTR) of endothelin A receptor (Ednra) messenger RNA (mRNA) contained a binding site for mmu-miR-1929-3p. Collectively, our data suggest that MCMV infection can raise the blood pressure and reduce mmu-miR-1929-3p expression in C57BL/6 mice. Moreover, we found that mmu-miR-1929-3p targets the 3′-UTR of the Ednra mRNA. Conclusion: This novel regulatory axis could aid the development of new approaches for the clinical prevention and control of EH.
Collapse
|
88
|
Jackson SE, Chen KC, Groves IJ, Sedikides GX, Gandhi A, Houldcroft CJ, Poole EL, Montanuy I, Mason GM, Okecha G, Reeves MB, Sinclair JH, Wills MR. Latent Cytomegalovirus-Driven Recruitment of Activated CD4+ T Cells Promotes Virus Reactivation. Front Immunol 2021; 12:657945. [PMID: 33912186 PMCID: PMC8072157 DOI: 10.3389/fimmu.2021.657945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is not cleared by the initial immune response but persists for the lifetime of the host, in part due to its ability to establish a latent infection in cells of the myeloid lineage. HCMV has been shown to manipulate the secretion of cellular proteins during both lytic and latent infection; with changes caused by latent infection mainly investigated in CD34+ progenitor cells. Whilst CD34+ cells are generally bone marrow resident, their derivative CD14+ monocytes migrate to the periphery where they briefly circulate until extravasation into tissue sites. We have analyzed the effect of HCMV latent infection on the secretome of CD14+ monocytes, identifying an upregulation of both CCL8 and CXCL10 chemokines in the CD14+ latency-associated secretome. Unlike CD34+ cells, the CD14+ latency-associated secretome did not induce migration of resting immune cell subsets but did induce migration of activated NK and T cells expressing CXCR3 in a CXCL10 dependent manner. As reported in CD34+ latent infection, the CD14+ latency-associated secretome also suppressed the anti-viral activity of stimulated CD4+ T cells. Surprisingly, however, co-culture of activated autologous CD4+ T cells with latently infected monocytes resulted in reactivation of HCMV at levels comparable to those observed using M-CSF and IL-1β cytokines. We propose that these events represent a potential strategy to enable HCMV reactivation and local dissemination of the virus at peripheral tissue sites.
Collapse
Affiliation(s)
- Sarah E Jackson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Kevin C Chen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Ian J Groves
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - George X Sedikides
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Amar Gandhi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Charlotte J Houldcroft
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Emma L Poole
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Inmaculada Montanuy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Gavin M Mason
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Georgina Okecha
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Matthew B Reeves
- Institute of Immunity & Transplantation, University College London (UCL), London, United Kingdom
| | - John H Sinclair
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
89
|
Abstract
The cellular surfaceome and its residing extracellularly exposed proteins are involved in a multitude of molecular signaling processes across the viral infection cycle. Successful viral propagation, including viral entry, immune evasion, virion release and viral spread rely on dynamic molecular interactions with the surfaceome. Decoding of these viral-host surfaceome interactions using advanced technologies enabled the discovery of fundamental new functional insights into cellular and viral biology. In this review, we highlight recently developed experimental strategies, with a focus on spatial proteotyping technologies, aiding in the rational design of theranostic strategies to combat viral infections.
Collapse
|
90
|
Lee JS, Kim S, Kim S, Ahn K, Min DH. Fluorometric Viral miRNA Nanosensor for Diagnosis of Productive (Lytic) Human Cytomegalovirus Infection in Living Cells. ACS Sens 2021; 6:815-822. [PMID: 33529521 DOI: 10.1021/acssensors.0c01843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A human cytomegalovirus (HCMV) causes a persistent asymptomatic infection in healthy individuals and possesses unexpected dangers to newborn babies, immunocompromised people, and organ transplant recipients because of stealth transmission. Thus, an early and accurate diagnosis of HCMV infection is crucial for prevention of unexpected transmission and progression of the severe diseases. The standard method of HCMV diagnosis depends on serology, antigen test, and polymerase chain reaction-based nucleic acid detection, which have advantages for each target molecule. However, the serological test for an antibody is an indirect method assuming the past virus infection, and antigen and viral nucleic acid testing demand laborious, complex multistep procedures for direct virus detection. Herein, we present an alternative simple and facile fluorometric biosensor composed of a graphene oxide nanocolloid and fluorescent peptide nucleic acid (PNA) probe to detect the HCMV infection by simply monitoring the virally encoded microRNA as a new biomarker of lytic virus infection. We verify the sensing of HCMV-derived microRNA accumulated within 72 h after HCMV infection and examine the diagnosis of HCMV in living cells. We proceed with the time course and concentration-dependent investigation of hcmv-miRNA sensing in living cells as a direct method of HCMV detection at the molecular level on the basis of an intracellular hcmv-miRNA expression profile and graphene oxide nanocolloid-based simple diagnostic platform. The fluorometric biosensor enables the sequence-specific binding to the target HCMV miRNAs in HCMV-infected fibroblasts and shows the quantitative detection capability of HCMV infection to be as low as 4.15 × 105 immunofluorescence focus unit (IFU)/mL of the virus titer at 48 h post-infection with picomolar sensitivity for HCMV miRNA.
Collapse
Affiliation(s)
- Ji-Seon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongchan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
91
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
92
|
Potent Bispecific Neutralizing Antibody Targeting Glycoprotein B and the gH/gL/pUL128/130/131 Complex of Human Cytomegalovirus. Antimicrob Agents Chemother 2021; 65:AAC.02422-20. [PMID: 33361306 PMCID: PMC8092496 DOI: 10.1128/aac.02422-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause developmental disorders following congenital infection and life-threatening complications among transplant patients. Potent neutralizing monoclonal antibodies (MAbs) are promising drug candidates against HCMV infection. HCMV can infect a broad range of cell types. Therefore, single neutralizing antibodies targeting one HCMV glycoprotein often lack either potency or broad cell-type coverage. We previously characterized two human-derived HCMV neutralizing MAbs. One was the broadly neutralizing MAb 3-25, which targets the antigenic domain 2 of glycoprotein B (gB). The other was the highly potent MAb 2-18, which specifically recognizes the gH/gL/pUL128/130/131 complex (pentamer). To combine the strengths of gB- and pentamer-targeting MAbs, we developed an IgG-single-chain variable fragment (scFv) bispecific antibody by fusing the 2-18 scFv to the heavy-chain C terminus of MAb 3-25. The resulting bispecific antibody showed high-affinity binding to both gB and pentamer. Functionally, the bispecific antibody demonstrated a combined neutralization breadth and potency of the parental MAbs in multiple cell lines and inhibited postinfection viral spreading. Furthermore, the bispecific antibody was easily produced in CHO cells at a yield above 1 g/liter and showed a single-dose pharmacokinetic profile comparable to that of parental MAb 3-25 in rhesus macaques. Importantly, the bispecific antibody retained broadly and potent neutralizing activity after 21 days in circulation. Taken together, our research provides a proof-of-concept study for developing bispecific neutralizing antibody therapies against HCMV infection.
Collapse
|
93
|
Ozbalak M, Mastanzade MG, Gurel E, Kalayoglu Besisik S. Cytomegalovirus reactivation during adult acute lymphoblastic leukemia maintenance: do we underestimate (un)expected guest of pediatric approach? AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:118-122. [PMID: 33796399 PMCID: PMC8010603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Among acute lymphoblastic leukemia (ALL), 40% of affected patients are diagnosed after the age of 20. Compared to pediatricians, adult hemato-oncologists are less familiar with complex pediatric ALL regimens and have perceived that pediatric ALL regimens are too toxic in the adult population. Meanwhile, multiple retrospective analyzes showed the superiority of pediatric regimens among the older adults and young adolescents (AYAs) group over adult regimens. A series of prospective studies have made it apparent that pediatric-inspired ALL regimens are feasible in AYAs, with manageable toxicities and potentially more encouraging results. However, the complications in the adult population are still to be explored. Although cytomegalovirus (CMV) viremia and infections are increasingly recognized in pediatric ALL cases, we generally do not experience it frequently in adult cases with conventional strategies. Herein we represent a 38-year-old man diagnosed with ALL and treated with pediatric inspired GRAALL-2003 protocol. Following a successful induction phase, he had pancytopenia, deep lymphopenia, fever and diarrhea in the 9th month of maintenance therapy. With increased serum ferritin and triglyceride levels, he had features of macrophage activation syndrome. The bone marrow biopsy did not reveal any relapse or hemophagocytosis. We detected highly increased levels of CMV DNA (657.262 copies/mL) in blood analysis.
Collapse
Affiliation(s)
- Murat Ozbalak
- Department of Internal Medicine, Division of Hematology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| | - Metban Guzel Mastanzade
- Department of Internal Medicine, Division of Hematology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| | - Erdem Gurel
- Department of Internal Medicine, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| | - Sevgi Kalayoglu Besisik
- Department of Internal Medicine, Division of Hematology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| |
Collapse
|
94
|
Jones IK, Orloff S, Burg JM, Haese NN, Andoh TF, Chambers A, Fei SS, Gao L, Kreklywich CN, Streblow ZJ, Enesthvedt K, Wanderer A, Baker J, Streblow DN. Blocking the IL-1 receptor reduces cardiac transplant ischemia and reperfusion injury and mitigates CMV-accelerated chronic rejection. Am J Transplant 2021; 21:44-59. [PMID: 33405337 PMCID: PMC11330275 DOI: 10.1111/ajt.16149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) is an important risk factor for accelerated cardiac allograft rejection and graft dysfunction . Utilizing a rat heart isogeneic transplant model, we identified inflammatory pathways involved in IRI in order to identify therapeutic targets involved in disease. Pathway analyses identified several relevant targets, including cytokine signaling by the IL-1 receptor (IL-1R) pathway and inflammasome activation. To investigate the role of IL-1R signaling pathways during IRI, we treated syngeneic cardiac transplant recipients at 1-hour posttransplant with Anakinra, a US Food and Drug Administration (FDA)-approved IL-1R antagonist; or parthenolide, a caspase-1 and nuclear factor kappa-light-chain-enhancer of activated B cells inhibitor that blocks IL-1β maturation. Both Anakinra and parthenolide significantly reduced graft inflammation and cellular recruitment in the treated recipients relative to nontreated controls. Anakinra treatment administered at 1-hour posttransplant to recipients of cardiac allografts from CMV-infected donors significantly increased the time to rejection and reduced viral loads at rejection. Our results indicate that reducing IRI by blocking IL-1Rsignaling pathways with Anakinra or inflammasome activity with parthenolide provides a promising approach for extending survival of cardiac allografts from CMV-infected donors.
Collapse
Affiliation(s)
- Iris K.A. Jones
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Susan Orloff
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon
| | - Jennifer M. Burg
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Ashley Chambers
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Suzanne S. Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | | | - Alan Wanderer
- University of Colorado Medical Center, Aurora, Colorado
| | - James Baker
- Baker Allergy Asthma and Dermatology, Portland, Oregon
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
95
|
Buus-Gehrig C, Bochennek K, Hennies MT, Klingebiel T, Groll AH, Lehrnbecher T. Systemic viral infection in children receiving chemotherapy for acute leukemia. Pediatr Blood Cancer 2020; 67:e28673. [PMID: 32918533 DOI: 10.1002/pbc.28673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Systemic viral diseases frequently occur in allogeneic hematopoietic stem cell transplantation, but data in children receiving chemotherapy for acute leukemia are scarce. We therefore collected and analyzed the published data on symptomatic infection from cytomegalovirus, herpes simplex virus, varicella zoster virus, parvovirus B19, or adenovirus in pediatric acute leukemia. Reports on 68 children were identified, of whom 16 patients have died from the infection. Further studies have to (1) evaluate the true incidence of these infections in pediatric acute leukemia, (2) their impact on outcome, and (3) whether a subpopulation of patients could benefit from screening and prophylactic strategies.
Collapse
Affiliation(s)
- Constanze Buus-Gehrig
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Konrad Bochennek
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Marc T Hennies
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Thomas Klingebiel
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| |
Collapse
|
96
|
Deliège PG, Bastien J, Mokri L, Guyot-Colosio C, Arndt C, Rieu P. Belatacept associated - cytomegalovirus retinitis in a kidney transplant recipient: a case report and review of the literature. BMC Ophthalmol 2020; 20:468. [PMID: 33256663 PMCID: PMC7708192 DOI: 10.1186/s12886-020-01741-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Background To report the first case of belatacept-associated multidrug-resistant Cytomegalovirus retinitis in a kidney transplant recipient. Case presentation A 76-year-old African male renal allograft recipient was admitted for acute visual loss of the right eye. Ophthalmological examination of the right eye showed anterior uveitis and vitritis associated with large paravascular haemorrhages and yellow necrotic borders, involving the posterior pole but not the fovea. Both Cytomegalovirus DNA in plasma and aqueous humor were positive. The patient had had several episodes of Cytomegalovirus reactivation subsequent to the introduction of belatacept. His cytomegalovirus was multi-drug resistant, and was treated with maribarir, intravitreal and systemic injections of foscarnet, and anti-Cytomegalovirus human immunoglobulin. In parallel, belatacept was stopped and switched to tacrolimus. Cytomegalovirus DNA became undetectable and there was partial improvement of visual acuity at the last ophthalmologic examination, 18 months after the initial diagnosis of Cytomegalovirus retinitis. Conclusion Cytomegalovirus retinitis is an uncommon opportunistic infection in kidney transplant recipients. Cytomegalovirus retinitis is a serious infection because of the risk of blindness and the occurrence of associated life-threatening opportunistic infections. In view of the recent literature, kidney transplant recipients treated by belatacept immunosuppression may be at increased risk for Cytomegalovirus disease, notably Cytomegalovirus retinitis. The occurrence of Cytomegalovirus retinitis may help improve the selection of patients converted to belatacept.
Collapse
Affiliation(s)
| | - Justine Bastien
- Division of Ophtalmology, University Hospital of Reims, Reims, France
| | - Laetitia Mokri
- Division of Nephrology, University Hospital of Reims, Reims, France
| | | | - Carl Arndt
- Division of Ophtalmology, University Hospital of Reims, Reims, France
| | - Philippe Rieu
- Division of Nephrology, University Hospital of Reims, Reims, France.,Laboratory of Nephrology, UMR CNRS URCA 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| |
Collapse
|
97
|
Imam H, Kim GW, Siddiqui A. Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Front Cell Infect Microbiol 2020; 10:584283. [PMID: 33330128 PMCID: PMC7732492 DOI: 10.3389/fcimb.2020.584283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and internal modification of eukaryotic mRNA. Multiple m6A methylation sites have been identified in the viral RNA genome and transcripts of DNA viruses in recent years. m6A modification is involved in all the phases of RNA metabolism, including RNA stability, splicing, nuclear exporting, RNA folding, translational modulation, and RNA degradation. Three protein groups, methyltransferases (m6A-writers), demethylases (m6A-erasers), and m6A-binding proteins (m6A-readers) regulate this dynamic reversible process. Here, we have reviewed the role of m6A modification dictating viral replication, morphogenesis, life cycle, and its contribution to disease progression. A better understanding of the m6A methylation process during viral pathogenesis is required to reveal novel approaches to combat the virus-associated diseases.
Collapse
Affiliation(s)
- Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
98
|
Wesley E, Uppendahl LD, Felices M, Dahl C, Messelt A, Boylan KLM, Skubitz APN, Vogel RI, Nelson HH, Geller MA. Cytomegalovirus and systemic inflammation at time of surgery is associated with worse outcomes in serous ovarian cancer. Gynecol Oncol 2020; 160:193-198. [PMID: 33168306 DOI: 10.1016/j.ygyno.2020.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Cytomegalovirus (CMV) is a common infection that establishes latency in healthy people. CMV has been associated with alterations of the immune compartment leading to improved responses, while inflammation has been shown to adversely impact outcomes. We investigated whether CMV serostatus predicts outcomes in ovarian cancer in the presence or absence of inflammation. METHODS A total of 106 patients with serous ovarian cancer from 2006 to 2009 were analyzed. CMV and systemic inflammation was measured using CMV immunoglobulin G (IgG) and C-reactive protein (CRP), respectively, in serum collected prior to cytoreduction. Patients were stratified by CMV IgG (non-reactive, reactive/borderline) and CRP (≤10, >10 mg/L) status. Overall survival (OS) and recurrence-free survival (RFS) were compared by group using log-rank tests and Cox proportional hazards regression models adjusting for age at surgery. RESULTS Of 106 eligible patients, 40 (37.7%) were CMV+/CRP+, 24 (22.6%) CMV+/CRP-, 19 (17.9%) CMV-/CRP+, and 23 (21.7%) CMV-/CRP-. CRP+ had higher CA-125 levels (P = 0.05) and higher rates of suboptimal debulking (P = 0.03). There were no other significant differences in demographic, surgical, or pathologic factors between groups. CMV+/CRP+ patients median RFS and OS were 16.9 months (95% CI: 9.0-21.1) and 31.7 months (95% CI: 25.0-48.7), respectively, with a significantly worse RFS (aHR: 1.85, 95% CI: 1.05-3.24, P = 0.03) and OS (aHR: 2.12, 95% CI: 1.17-3.82, P = 0.01) compared to CMV-/CRP- (RFS = 31.2 months (95% CI: 16.0-56.4) and OS = 63.8 months (95% CI: 50.7-87.0)). CMV+/CRP- group displayed the longest OS (89.3 months). CONCLUSIONS Previous exposure to CMV and high CRP at surgery portended worse RFS and OS compared to women who tested negative. The CMV+/CRP- group had the longest OS, indicating that CMV status alone, in the absence of inflammation, may be protective.
Collapse
Affiliation(s)
- Erin Wesley
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Locke D Uppendahl
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Carly Dahl
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Audrey Messelt
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Kristin L M Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Amy P N Skubitz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
99
|
Kaminski H, Marsères G, Cosentino A, Guerville F, Pitard V, Fournié JJ, Merville P, Déchanet-Merville J, Couzi L. Understanding human γδ T cell biology toward a better management of cytomegalovirus infection. Immunol Rev 2020; 298:264-288. [PMID: 33091199 DOI: 10.1111/imr.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Cytomegalovirus (CMV) infection is responsible for significant morbidity and mortality in immunocompromised patients, namely solid organ and hematopoietic cell transplant recipients, and can induce congenital infection in neonates. There is currently an unmet need for new management and treatment strategies. Establishment of an anti-CMV immune response is critical in order to control CMV infection. The two main human T cells involved in HCMV-specific response are αβ and non-Vγ9Vδ2 T cells that belong to γδ T cell compartment. CMV-induced non-Vγ9Vδ2 T cells harbor a specific clonal expansion and a phenotypic signature, and display effector functions against CMV. So far, only two main molecular mechanisms underlying CMV sensing have been identified. Non-Vγ9Vδ2 T cells can be activated either by stress-induced surface expression of the γδT cell receptor (TCR) ligand annexin A2, or by a multimolecular stress signature composed of the γδTCR ligand endothelial protein C receptor and co-stimulatory signals such as the ICAM-1-LFA-1 axis. All this basic knowledge can be harnessed to improve the clinical management of CMV infection in at-risk patients. In particular, non-Vγ9Vδ2 T cell monitoring could help better stratify the risk of infection and move forward a personalized medicine. Moreover, recent advances in cell therapy protocols open the way for a non-Vγ9Vδ2 T cell therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel Marsères
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Anaïs Cosentino
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Florent Guerville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,CHU Bordeaux, Pôle de gérontologie, Bordeaux, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Merville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Lionel Couzi
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
100
|
Cytomegalovirus Laryngitis in Primary Combined Immunodeficiency Diseases. J Clin Immunol 2020; 41:243-247. [PMID: 33033934 DOI: 10.1007/s10875-020-00873-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
|