51
|
Hofmeister BT, Schmitz RJ. Enhanced JBrowse plugins for epigenomics data visualization. BMC Bioinformatics 2018; 19:159. [PMID: 29699480 PMCID: PMC5921565 DOI: 10.1186/s12859-018-2160-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/19/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND New sequencing techniques require new visualization strategies, as is the case for epigenomics data such as DNA base modifications, small non-coding RNAs, and histone modifications. RESULTS We present a set of plugins for the genome browser JBrowse that are targeted for epigenomics visualizations. Specifically, we have focused on visualizing DNA base modifications, small non-coding RNAs, stranded read coverage, and sequence motif density. Additionally, we present several plugins for improved user experience such as configurable, high-quality screenshots. CONCLUSIONS In visualizing epigenomics with traditional genomics data, we see these plugins improving scientific communication and leading to discoveries within the field of epigenomics.
Collapse
Affiliation(s)
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
52
|
Hasegawa S, Jojima T, Inui M. Efficient construction of xenogeneic genomic libraries by circumventing restriction-modification systems that restrict methylated DNA. J Microbiol Methods 2018; 146:13-15. [PMID: 29355574 DOI: 10.1016/j.mimet.2018.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
An efficient method to construct xenogeneic genomic libraries with low errors and bias by circumventing restriction-modification systems that restrict methylated DNA was developed. Un-methylated genomic DNA of Escherichia coli prepared by ϕ29 DNA polymerase was introduced to Corynebacterium glutamicum R after ligation with un-methylated vector plasmids.
Collapse
Affiliation(s)
- Satoshi Hasegawa
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan.
| |
Collapse
|
53
|
Du W, Burbano PC, Hellingwerf KJ, Branco Dos Santos F. Challenges in the Application of Synthetic Biology Toward Synthesis of Commodity Products by Cyanobacteria via "Direct Conversion". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:3-26. [PMID: 30091089 DOI: 10.1007/978-981-13-0854-3_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyanobacterial direct conversion of CO2 to several commodity chemicals has been recognized as a potential contributor to support the much-needed sustainable development of human societies. However, the feasibility of this "green conversion" hinders on our ability to overcome the hurdles presented by the natural evolvability of microbes. The latter may result in the genetic instability of engineered cyanobacterial strains leading to impaired productivity. This challenge is general to any "cell factory" approach in which the cells grow for multiple generations, and based on several studies carried out in different microbial hosts, we could identify that three distinct strategies have been proposed to tackle it. These are (1) to reduce microbial evolvability by decreasing the native mutation rate, (2) to align product formation with cell growth/fitness, and, paradoxically, (3) to efficiently reallocate cellular resources to product formation by uncoupling it from growth. The implementation of either of these strategies requires an advanced synthetic biology toolkit. Here, we review the existing methods available for cyanobacteria and identify areas of focus in which specific developments are still needed. Furthermore, we discuss how potentially stabilizing strategies may be used in combination leading to further increases of productivity while ensuring the stability of the cyanobacterial-based direct conversion process.
Collapse
Affiliation(s)
- Wei Du
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Patricia Caicedo Burbano
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Hudaiberdiev S, Shmakov S, Wolf YI, Terns MP, Makarova KS, Koonin EV. Phylogenomics of Cas4 family nucleases. BMC Evol Biol 2017; 17:232. [PMID: 29179671 PMCID: PMC5704561 DOI: 10.1186/s12862-017-1081-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Background The Cas4 family endonuclease is a component of the adaptation module in many variants of CRISPR-Cas adaptive immunity systems. Unlike most of the other Cas proteins, Cas4 is often encoded outside CRISPR-cas loci (solo-Cas4) and is also found in mobile genetic elements (MGE-Cas4). Results As part of our ongoing investigation of CRISPR-Cas evolution, we explored the phylogenomics of the Cas4 family. About 90% of the archaeal genomes encode Cas4 compared to only about 20% of the bacterial genomes. Many archaea encode both the CRISPR-associated form (CAS-Cas4) and solo-Cas4, whereas in bacteria, this combination is extremely rare. The solo-cas4 genes are over-represented in environmental bacteria and archaea with small genomes that typically lack CRISPR-Cas, suggesting that Cas4 could perform uncharacterized defense or repair functions in these microbes. Phylogenomic analysis indicates that both the CRISPR-associated cas4 genes are often transferred horizontally but almost exclusively, as part of the adaptation module. The evolutionary integrity of the adaptation module sharply contrasts the rampant shuffling of CRISPR-cas modules whereby a given variant of the adaptation module can combine with virtually any effector module. The solo-cas4 genes evolve primarily via vertical inheritance and are subject only to occasional horizontal transfer. The selection pressure on cas4 genes does not substantially differ between CAS-Cas4 and solo-cas4, and is close to the genomic median. Thus, cas4 genes, similarly to cas1 and cas2, evolve similarly to ‘regular’ microbial genes involved in various cellular functions, showing no evidence of direct involvement in virus-host arms races. A notable feature of the Cas4 family evolution is the frequent recruitment of cas4 genes by various mobile genetic elements (MGE), particularly, archaeal viruses. The functions of Cas4 in these elements are unknown and potentially might involve anti-defense roles. Conclusions Unlike most of the other Cas proteins, Cas4 family members are as often encoded by stand-alone genes as they are incorporated in CRISPR-Cas systems. In addition, cas4 genes were repeatedly recruited by MGE, perhaps, for anti-defense functions. Experimental characterization of the solo and MGE-encoded Cas4 nucleases is expected to reveal currently uncharacterized defense and anti-defense systems and their interactions with CRISPR-Cas systems. Electronic supplementary material The online version of this article (10.1186/s12862-017-1081-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanjarbek Hudaiberdiev
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Shmakov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.,Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Michael P Terns
- Departments of Biochemistry and Molecular Biology, Genetics, and Microbiology, University of Georgia, Athens, GA, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
55
|
Langie SAS, Moisse M, Declerck K, Koppen G, Godderis L, Vanden Berghe W, Drury S, De Boever P. Salivary DNA Methylation Profiling: Aspects to Consider for Biomarker Identification. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:93-101. [PMID: 27901320 PMCID: PMC5644718 DOI: 10.1111/bcpt.12721] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Is it not more comfortable to spit saliva in a tube than to be pricked with a needle to draw blood to analyse your health and disease risk? Many patients, study participants and (parents of) young children undoubtedly prefer non-invasive and convenient procedures. Such procedures increase compliance rates especially for longitudinal prospective studies. Saliva is an attractive biofluid providing good quality DNA to study epigenetic mechanisms underlying disease across development. In this MiniReview, we will describe the different applications of saliva in the field of epigenetics, focusing on genomewide methylation analysis. Advantages of the use of saliva and its comparability with blood will be discussed, as will the challenges in data processing and interpretation. Knowledge gaps will be identified and suggestions given on how to improve the analysis, making saliva 'the' biofluid of choice for future biomarker initiatives in many different epidemiological and public health studies.
Collapse
Affiliation(s)
- Sabine A. S. Langie
- Environmental Risk and Health UnitFlemish Institute for Technological Research (VITO)MolBelgium
- Faculty of SciencesHasselt UniversityDiepenbeekBelgium
| | | | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic SignalingDepartment of Biomedical SciencesUniversity of AntwerpWilrijkBelgium
| | - Gudrun Koppen
- Environmental Risk and Health UnitFlemish Institute for Technological Research (VITO)MolBelgium
| | - Lode Godderis
- Centre Environment & HealthDepartment of Public Health and Primary CareKU LeuvenLeuvenBelgium
- IDEWEExternal Service for Prevention and Protection at WorkHeverleeBelgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic SignalingDepartment of Biomedical SciencesUniversity of AntwerpWilrijkBelgium
| | - Stacy Drury
- The Brain InstituteTulane UniversityNew OrleansLAUSA
- Department of Psychiatry and Behavioral ScienceTulane University School of MedicineNew OrleansLAUSA
| | - Patrick De Boever
- Environmental Risk and Health UnitFlemish Institute for Technological Research (VITO)MolBelgium
- Faculty of SciencesHasselt UniversityDiepenbeekBelgium
| |
Collapse
|
56
|
Payelleville A, Lanois A, Gislard M, Dubois E, Roche D, Cruveiller S, Givaudan A, Brillard J. DNA Adenine Methyltransferase (Dam) Overexpression Impairs Photorhabdus luminescens Motility and Virulence. Front Microbiol 2017; 8:1671. [PMID: 28919886 PMCID: PMC5585154 DOI: 10.3389/fmicb.2017.01671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Dam, the most described bacterial DNA-methyltransferase, is widespread in gamma-proteobacteria. Dam DNA methylation can play a role in various genes expression and is involved in pathogenicity of several bacterial species. The purpose of this study was to determine the role played by the dam ortholog identified in the entomopathogenic bacterium Photorhabdus luminescens. Complementation assays of an Escherichia coli dam mutant showed the restoration of the DNA methylation state of the parental strain. Overexpression of dam in P. luminescens did not impair growth ability in vitro. In contrast, compared to a control strain harboring an empty plasmid, a significant decrease in motility was observed in the dam-overexpressing strain. A transcriptome analysis revealed the differential expression of 208 genes between the two strains. In particular, the downregulation of flagellar genes was observed in the dam-overexpressing strain. In the closely related bacterium Xenorhabdus nematophila, dam overexpression also impaired motility. In addition, the dam-overexpressing P. luminescens strain showed a delayed virulence compared to that of the control strain after injection in larvae of the lepidopteran Spodoptera littoralis. These results reveal that Dam plays a major role during P. luminescens insect infection.
Collapse
Affiliation(s)
- Amaury Payelleville
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Anne Lanois
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Marie Gislard
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - David Roche
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Stéphane Cruveiller
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Alain Givaudan
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Julien Brillard
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| |
Collapse
|
57
|
Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc Natl Acad Sci U S A 2017; 114:4501-4506. [PMID: 28400512 DOI: 10.1073/pnas.1702450114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explosive growth in the study of microbial epigenetics has revealed a diversity of chemical structures and biological functions of DNA modifications in restriction-modification (R-M) and basic genetic processes. Here, we describe the discovery of shared consensus sequences for two seemingly unrelated DNA modification systems, 6mA methylation and phosphorothioation (PT), in which sulfur replaces a nonbridging oxygen in the DNA backbone. Mass spectrometric analysis of DNA from Escherichia coli B7A and Salmonella enterica serovar Cerro 87, strains possessing PT-based R-M genes, revealed d(GPS6mA) dinucleotides in the GPS6mAAC consensus representing ∼5% of the 1,100 to 1,300 PT-modified d(GPSA) motifs per genome, with 6mA arising from a yet-to-be-identified methyltransferase. To further explore PT and 6mA in another consensus sequence, GPS6mATC, we engineered a strain of E. coli HST04 to express Dnd genes from Hahella chejuensis KCTC2396 (PT in GPSATC) and Dam methyltransferase from E. coli DH10B (6mA in G6mATC). Based on this model, in vitro studies revealed reduced Dam activity in GPSATC-containing oligonucleotides whereas single-molecule real-time sequencing of HST04 DNA revealed 6mA in all 2,058 GPSATC sites (5% of 37,698 total GATC sites). This model system also revealed temperature-sensitive restriction by DndFGH in KCTC2396 and B7A, which was exploited to discover that 6mA can substitute for PT to confer resistance to restriction by the DndFGH system. These results point to complex but unappreciated interactions between DNA modification systems and raise the possibility of coevolution of interacting systems to facilitate the function of each.
Collapse
|
58
|
Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 2017; 14:411-413. [PMID: 28218897 PMCID: PMC5704956 DOI: 10.1038/nmeth.4189] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022]
Abstract
DNA chemical modifications regulate genomic function. We present a framework for mapping cytosine and adenosine methylation with the Oxford Nanopore Technologies MinION using this nanopore sequencer's ionic current signal. We map three cytosine variants and two adenine variants. The results show that our model is sensitive enough to detect changes in genomic DNA methylation levels as a function of growth phase in Escherichia coli.
Collapse
Affiliation(s)
- Arthur C Rand
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Miten Jain
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Jordan M Eizenga
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Audrey Musselman-Brown
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Hugh E Olsen
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Mark Akeson
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Benedict Paten
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
59
|
Genomewide Dam Methylation in Escherichia coli during Long-Term Stationary Phase. mSystems 2016; 1:mSystems00130-16. [PMID: 27981240 PMCID: PMC5155068 DOI: 10.1128/msystems.00130-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
DNA methylation in prokaryotes is widespread. The most common modification of the genome is the methylation of adenine at the N-6 position. In Escherichia coli K-12 and many gammaproteobacteria, this modification is catalyzed by DNA adenine methyltransferase (Dam) at the GATC consensus sequence and is known to modulate cellular processes including transcriptional regulation of gene expression, initiation of chromosomal replication, and DNA mismatch repair. While studies thus far have focused on the motifs associated with methylated adenine (meA), the frequency of meA across the genome, and temporal dynamics during early periods of incubation, here we conduct the first study on the temporal dynamics of adenine methylation in E. coli by Dam throughout all five phases of the bacterial life cycle in the laboratory. Using single-molecule real-time sequencing, we show that virtually all GATC sites are significantly methylated over time; nearly complete methylation of the chromosome was confirmed by mass spectroscopy analysis. However, we also detect 66 sites whose methylation patterns change significantly over time within a population, including three sites associated with sialic acid transport and catabolism, suggesting a potential role for Dam regulation of these genes; differential expression of this subset of genes was confirmed by quantitative real-time PCR. Further, we show significant growth defects of the dam mutant during long-term stationary phase (LTSP). Together these data suggest that the cell places a high premium on fully methylating the chromosome and that alterations in methylation patterns may have significant impact on patterns of transcription, maintenance of genetic fidelity, and cell survival. IMPORTANCE While it has been shown that methylation remains relatively constant into early stationary phase of E. coli, this study goes further through death phase and long-term stationary phase, a unique time in the bacterial life cycle due to nutrient limitation and strong selection for mutants with increased fitness. The absence of methylation at GATC sites can influence the mutation frequency within a population due to aberrant mismatch repair. Therefore, it is important to investigate the methylation status of GATC sites in an environment where cells may not prioritize methylation of the chromosome. This study demonstrates that chromosome methylation remains a priority even under conditions of nutrient limitation, indicating that continuous methylation at GATC sites could be under positive selection.
Collapse
|
60
|
Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in Streptococcus pneumoniae. PLoS Pathog 2016; 12:e1005762. [PMID: 27427949 PMCID: PMC4948785 DOI: 10.1371/journal.ppat.1005762] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
DNA methylation is an important epigenetic mechanism for phenotypic diversification in all forms of life. We previously described remarkable cell-to-cell heterogeneity in epigenetic pattern within a clonal population of Streptococcus pneumoniae, a leading human pathogen. We here report that the epigenetic diversity is caused by extensive DNA inversions among hsdSA,hsdSB, and hsdSC, three methyltransferase hsdS genes in the Spn556II type-I restriction modification (R-M) locus. Because hsdSA encodes the sequence recognition subunit of this type-I R-M DNA methyltransferase, these site-specific recombinations generate pneumococcal cells with variable HsdSA alleles and thereby diverse genome methylation patterns. Most importantly, the DNA methylation pattern specified by the HsdSA1 allele leads to the formation of opaque colonies, whereas the pneumococci lacking HsdSA1 produce transparent colonies. Furthermore, this HsdSA1-dependent phase variation requires intact DNA methylase activity encoded by hsdM in the Spn556II (renamed colony opacity determinant or cod) locus. Thus, the DNA inversion-driven ON/OFF switch of the hsdSA1 allele in the cod locus and resulting epigenetic switch dictate the phase variation between the opaque and transparent phenotypes. Phase variation has been well documented for its importance in pneumococcal carriage and invasive infection, but its molecular basis remains unclear. Our work has discovered a novel epigenetic cause for this significant pathobiology phenomenon in S. pneumoniae. Lastly, our findings broadly represents a significant advancement in our understanding of bacterial R-M systems and their potential in shaping epigenetic and phenotypic diversity of the prokaryotic organisms because similar site-specific recombination systems widely exist in many archaeal and bacterial species. DNA methylation is a well-known epigenetic mechanism for phenotypic diversification in all forms of life. This study reports our discovery that the Spn556II type-I RM locus in human pathogen Streptococcus pneumoniae undergoes extensive DNA inversions among three homologous DNA methyltransferase genes. These site-specific recombinations generate subpopulations of progeny cells with dramatic epigenetic and phenotypic differences. This is exemplified by the striking differences in colony morphology among the pneumococcal variants that carried different allelic variants of the methyltransferase genes. Phase variation has been well documented for its importance in pneumococcal pathogenesis, but it is currently unknown how this phenotypic switch occurs at the molecular level. This work has thus discovered an epigenetic cause for pneumococcal phase variation. Our findings have a broad implication on the epigenetic and phenotypic diversification in prokaryotic organisms because similar DNA rearrangement systems also exist in many archaeal and bacterial species.
Collapse
|
61
|
Stephenson SAM, Brown PD. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli. Front Public Health 2016; 4:131. [PMID: 27446897 PMCID: PMC4921776 DOI: 10.3389/fpubh.2016.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of Dam inhibitors against UPEC or dam-deficient UPEC strains as attenuated live vaccines. However, further investigations are necessary to determine the post-transcriptional influence of dam on the regulatory network of virulence genes central to pathogenesis.
Collapse
Affiliation(s)
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of West Indies , Jamaica
| |
Collapse
|
62
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
63
|
Sobetzko P, Jelonek L, Strickert M, Han W, Goesmann A, Waldminghaus T. DistAMo: A Web-Based Tool to Characterize DNA-Motif Distribution on Bacterial Chromosomes. Front Microbiol 2016; 7:283. [PMID: 27014208 PMCID: PMC4786541 DOI: 10.3389/fmicb.2016.00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 01/10/2023] Open
Abstract
Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs). The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i) genes beside the replication origin are enriched in GATCs, (ii) genome-wide GATC distribution follows a distinct pattern, and (iii) genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo.
Collapse
Affiliation(s)
- Patrick Sobetzko
- Chromosome Biology Group, LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-University Marburg Marburg, Germany
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Germany
| | - Marc Strickert
- Chromosome Biology Group, LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-University Marburg Marburg, Germany
| | - Wenxia Han
- Chromosome Biology Group, LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-University Marburg Marburg, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Germany
| | - Torsten Waldminghaus
- Chromosome Biology Group, LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-University Marburg Marburg, Germany
| |
Collapse
|
64
|
Ershova A, Rusinov I, Vasiliev M, Spirin S, Karyagina A. Restriction-Modification systems interplay causes avoidance of GATC site in prokaryotic genomes. J Bioinform Comput Biol 2016; 14:1641003. [PMID: 26972562 DOI: 10.1142/s0219720016410031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Palindromes are frequently underrepresented in prokaryotic genomes. Palindromic 5[Formula: see text]-GATC-3[Formula: see text] site is a recognition site of different Restriction-Modification (R-M) systems, as well as solitary methyltransferase Dam. Classical GATC-specific R-M systems methylate GATC and cleave unmethylated GATC. On the contrary, methyl-directed Type II restriction endonucleases cleave methylated GATC. Methylation of GATC by Dam methyltransferase is involved in the regulation of different cellular processes. The diversity of functions of GATC-recognizing proteins makes GATC sequence a good model for studying the reasons of palindrome avoidance in prokaryotic genomes. In this work, the influence of R-M systems and solitary proteins on the GATC site avoidance is described by a mathematical model. GATC avoidance is strongly associated with the presence of alternate (methyl-directed or classical Type II R-M system) genes in different strains of the same species, as we have shown for Streptococcus pneumoniae, Neisseria meningitidis, Eubacterium rectale, and Moraxella catarrhalis. We hypothesize that GATC avoidance can result from a DNA exchange between strains with different methylation status of GATC site within the process of natural transformation. If this hypothesis is correct, the GATC avoidance is a sign of a DNA exchange between bacteria with different methylation status in a mixed population.
Collapse
Affiliation(s)
- Anna Ershova
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,† Gamaleya Center for Epidemiology and Microbiology, the Ministry of Health of the Russian Federation, Moscow 123098, Russia.,‡ Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow 127550, Russia
| | - Ivan Rusinov
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,§ Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow 119992, Russia
| | - Mikhail Vasiliev
- ¶ Moscow Institute of Physics and Technology, the Ministry of Education and Science of the Russian Federation, Dolgoprudny, Moscow Region, 141700, Russia
| | - Sergey Spirin
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,§ Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow 119992, Russia.,∥ Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow 117218, Russia
| | - Anna Karyagina
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,† Gamaleya Center for Epidemiology and Microbiology, the Ministry of Health of the Russian Federation, Moscow 123098, Russia.,‡ Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow 127550, Russia
| |
Collapse
|
65
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|