51
|
Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A. Identification of trkH, encoding a potassium uptake protein required for Francisella tularensis systemic dissemination in mice. PLoS One 2010; 5:e8966. [PMID: 20126460 PMCID: PMC2813290 DOI: 10.1371/journal.pone.0008966] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/08/2010] [Indexed: 01/09/2023] Open
Abstract
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularaemia. During its infectious cycle, F. tularensis is not only exposed to the intracellular environment of macrophages but also resides transiently in extracellular compartments, in particular during its systemic dissemination. The screening of a bank of F. tularensis LVS transposon insertion mutants on chemically defined medium (CDM) led us to identify a gene, designated trkH, encoding a homolog of the potassium uptake permease TrkH. Inactivation of trkH impaired bacterial growth in CDM. Normal growth of the mutant was only restored when CDM was supplemented with potassium at high concentration. Strikingly, although not required for intracellular survival in cell culture models, TrkH appeared to be essential for bacterial virulence in the mouse. In vivo kinetics of bacterial dissemination revealed a severe defect of multiplication of the trkH mutant in the blood of infected animals. The trkH mutant also showed impaired growth in blood ex vivo. Genome sequence analyses suggest that the Trk system constitutes the unique functional active potassium transporter in both tularensis and holarctica subspecies. Hence, the impaired survival of the trkH mutant in vivo is likely to be due to its inability to survive in the low potassium environment (1-5 mM range) of the blood. This work unravels thus the importance of potassium acquisition in the extracellular phase of the F. tularensis infectious cycle. More generally, potassium could constitute an important mineral nutrient involved in other diseases linked to systemic dissemination of bacterial pathogens.
Collapse
Affiliation(s)
- Khaled Alkhuder
- Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Karin L. Meibom
- Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Iharilalao Dubail
- Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Alain Charbit
- Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
- * E-mail:
| |
Collapse
|
52
|
The unraveling panoply of Francisella tularensis virulence attributes. Curr Opin Microbiol 2009; 13:11-7. [PMID: 20034843 DOI: 10.1016/j.mib.2009.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/24/2009] [Accepted: 11/28/2009] [Indexed: 01/02/2023]
Abstract
Francisella tularensis is a highly infectious Gram-negative bacterium causing the zoonotic disease tularemia. This facultative intracellular pathogen multiplies in vivo mainly inside macrophages, but has the capacity to infect and survive in many other cell types, including other phagocytic and nonphagocytic cells. In vitro, F. tularensis escapes rapidly from the phagosomal compartment and replicates in the cytoplasm of infected cells. An impressive number of novel genes related to F. tularensis pathogenesis have been identified recently. However, the information on biological functions still remains limited to a few of them. In this review, we will try to provide a comprehensive overview of the bacterial attributes, currently known-or suspected-to participate in F. tularensis virulence and will highlight the future challenges in F. tularensis research.
Collapse
|
53
|
Conlan JW, Shen H, Golovliov I, Zingmark C, Oyston PCF, Chen W, House RV, Sjöstedt A. Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization. Vaccine 2009; 28:1824-31. [PMID: 20018266 DOI: 10.1016/j.vaccine.2009.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/19/2009] [Accepted: 12/01/2009] [Indexed: 12/25/2022]
Abstract
Francisella tularensis subspecies tularensis is a highly virulent facultative intracellular pathogen of humans and a potential biological weapon. A live vaccine strain, F. tularensis LVS, was developed more than 50 years ago by pragmatic attenuation of a strain of the less virulent holarctica subspecies. LVS was demonstrated to be highly effective in human volunteers who were exposed to intradermal challenge with fully virulent subsp. tularensis, but was less effective against aerosol exposure. LVS faces regulatory hurdles that to date have prevented its licensure for general use. Therefore, a better defined and more effective vaccine is being sought. To this end we have created gene deletion mutants in the virulent subsp. tularensis strain and tested them for their ability to elicit a protective immune response against systemic or aerosol challenge with the highly virulent wild-type subsp. tularensis strain, SCHU S4. Both oral and intradermal (ID) primary vaccination routes were assessed in BALB/c and C3H/HeN mice as was oral boosting. One SCHU S4 mutant missing the heat shock gene, clpB, was significantly more attenuated than LVS whereas a double deletion mutant missing genes FTT0918 and capB was as attenuated as LVS. In general mice immunized with SCHU S4DeltaclpB were significantly better protected against aerosol challenge than mice immunized with LVS. A single ID immunization of BALB/c mice with SCHU S4DeltaclpB was at least as effective as any other regimen examined. Mice immunized with SCHU S4Delta0918DeltacapB were generally protected to a similar degree as mice immunized with LVS. A preliminary examination of immune responses to vaccination with LVS, SCHU S4DeltaclpB, or SCHU S4Delta0918DeltacapB provided no obvious correlate to their relative efficacies.
Collapse
Affiliation(s)
- J Wayne Conlan
- National Research Council Canada, Institute for Biological Sciences, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Francisella tularensis is a Category A select agent for which vaccine and countermeasure development are a priority. In the past eight years, renewed interest in this pathogen has led to the generation of an enormous amount of new data on both the pathogen itself and its interaction with host cells. This information has fostered the development of various vaccine candidates including acellular subunit, killed whole cell and live attenuated. This review summarizes the progress and promise of these various candidates.
Collapse
Affiliation(s)
- Eileen M Barry
- University of Maryland School of Medicine, Center for Vaccine Development, Baltimore, MD, USA.
| | | | | |
Collapse
|
55
|
Pechous RD, McCarthy TR, Zahrt TC. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 2009; 73:684-711. [PMID: 19946137 PMCID: PMC2786580 DOI: 10.1128/mmbr.00028-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a facultative intracellular gram-negative pathogen and the etiological agent of the zoonotic disease tularemia. Recent advances in the field of Francisella genetics have led to a rapid increase in both the generation and subsequent characterization of mutant strains exhibiting altered growth and/or virulence characteristics within various model systems of infection. In this review, we summarize the major properties of several Francisella species, including F. tularensis and F. novicida, and provide an up-to-date synopsis of the genes necessary for pathogenesis by these organisms and the determinants that are currently being targeted for vaccine development.
Collapse
Affiliation(s)
- Roger D. Pechous
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Travis R. McCarthy
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Thomas C. Zahrt
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
56
|
Meibom KL, Barel M, Charbit A. Loops and networks in control of Francisella tularensis virulence. Future Microbiol 2009; 4:713-29. [PMID: 19659427 DOI: 10.2217/fmb.09.37] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is a highly infectious, Gram-negative bacterium responsible for the disease tularemia in a broad variety of animals, including humans. F. tularensis intracellular multiplication occurs mainly in macrophages. However, F. tularensis is able to infect many other cell types, including other phagocytic (dendritic cells, polymorphonuclear leukocytes) and nonphagocytic (alveolar epithelial cells, hepatocytes, endothelial cells and fibroblasts) cells. The ability of professional phagocytic cells to engulf and kill microbes is an essential component of innate defense. The ability of F. tularensis to impair phagocyte function and survive in the cytosol of infected cells thus constitutes a central aspect of its virulence. The F. tularensis intracellular lifecycle relies on the tightly regulated expression of a series of genes. The unraveling secrets of the regulatory cascades governing the regulation of virulence of F. tularensis will be discussed along with future challenges yet to be solved.
Collapse
Affiliation(s)
- Karin L Meibom
- INSERM U570, Université Paris Descartes, Faculté de Médecine Necker Enfants-Malades, 75730, Paris Cedex 15, France.
| | | | | |
Collapse
|
57
|
Abstract
Tularemia, caused by the Gram-negative bacterium Francisella tularensis, can be contracted by the bite of an arthropod vector or by inhalation. This disease occurs relatively infrequently but can be severe and even life-threatening if untreated. Until recently, there were few laboratories studying this organism; however, concerns over its potential use as a biological weapon have led to renewed attention to F. tularensis research, particularly in the area of vaccine development. Advances in the ability to genetically manipulate F. tularensis, along with knowledge gained from the creation and refinement of attenuated bacterial vaccines for other diseases, continue to foster significant progress in the development of live-attenuated bacterial vaccines, as well as defined antigen and subunit vaccines.
Collapse
Affiliation(s)
- Barbara J Mann
- Departments of Medicine & Microbiology, University of Virginia Health Systems, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
58
|
Grall N, Livny J, Waldor M, Barel M, Charbit A, Meibom KL. Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH. MICROBIOLOGY-SGM 2009; 155:2560-2572. [PMID: 19443547 DOI: 10.1099/mic.0.029058-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Francisella tularensis is a highly infectious pathogen that infects animals and humans to cause the disease tularemia. The primary targets of this bacterium are macrophages, in which it replicates in the cytoplasm after escaping the initial phagosomal compartment. The ability to replicate within macrophages relies on the tightly regulated expression of a series of genes. One of the most commonly used means of coordinating the regulation of multiple genes in bacteria consists of the association of dedicated alternative sigma factors with the core of the RNA polymerase (RNAP). In silico analysis of the F. tularensis LVS genome led us to identify, in addition to the genes encoding the RNAP core (comprising the alpha1, alpha2, beta, beta' and omega subunits), one gene (designated rpoD) encoding the major sigma factor sigma(70), and a unique gene (FTL_0851) encoding a putative alternative sigma factor homologue of the sigma(32) heat-shock family (designated rpoH). Hence, F. tularensis represents one of the minority of bacterial species that possess only one or no alternative sigma factor in addition to the main factor sigma(70). In the present work, we show that FTL_0851 encodes a genuine sigma(32) factor. Transcriptomic analyses of the F. tularensis LVS heat-stress response allowed the identification of a series of orthologues of known heat-shock genes (including those for Hsp40, GroEL, GroES, DnaK, DnaJ, GrpE, ClpB and ClpP) and a number of genes implicated in Francisella virulence. A bioinformatic analysis was used to identify genes preceded by a putative sigma(32)-binding site, revealing both similarities to and differences from RpoH-mediated gene expression in Escherichia coli. Our results suggest that RpoH is an essential protein of F. tularensis, and positively regulates a subset of genes involved in the heat-shock response.
Collapse
Affiliation(s)
- Nathalie Grall
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| | - Jonathan Livny
- Channing Laboratories, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Matthew Waldor
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.,Channing Laboratories, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Monique Barel
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| | - Alain Charbit
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| | - Karin L Meibom
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
59
|
Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. PLoS One 2009; 4:e5463. [PMID: 19424499 PMCID: PMC2675058 DOI: 10.1371/journal.pone.0005463] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/15/2009] [Indexed: 12/14/2022] Open
Abstract
Background Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD50 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably ΔpyrB and ΔrecA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD50 of >103 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD50 of ≥107 CFU. Conclusions/Significance The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.
Collapse
|
60
|
Lenco J, Link M, Tambor V, Zaková J, Cerveny L, Stulik AJ. iTRAQ quantitative analysis of Francisella tularensis
ssp. holarctica
live vaccine strain and Francisella tularensis
ssp. tularensis
SCHU S4 response to different temperatures and stationary phases of growth. Proteomics 2009; 9:2875-82. [DOI: 10.1002/pmic.200700820] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
61
|
Schmerk CL, Duplantis BN, Wang D, Burke RD, Chou AY, Elkins KL, Ludu JS, Nano FE. Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. MICROBIOLOGY-SGM 2009; 155:1489-1497. [PMID: 19372153 DOI: 10.1099/mic.0.025379-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Francisella tularensis is a highly virulent, intracellular pathogen that causes the disease tularaemia. A research surrogate for F. tularensis is Francisella novicida, which causes a tularaemia-like disease in mice, grows similarly in macrophages, and yet is unable to cause disease in humans. Both Francisella species contain a cluster of genes referred to as the Francisella pathogenicity island (FPI). Pathogenicity determinant protein A (PdpA), encoded by the pdpA gene, is located within the FPI and has been associated with the virulence of Francisella species. In this work we examined the properties of PdpA protein expression and localization as well as the phenotype of a F. novicida pdpA deletion mutant. Monoclonal antibody detection of PdpA showed that it is a soluble protein that is upregulated in iron-limiting conditions and undetectable in an mglA or mglB mutant background. Deletion of pdpA resulted in a strain that was highly attenuated for virulence in chicken embryos and mice.
Collapse
Affiliation(s)
- Crystal L Schmerk
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Barry N Duplantis
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Diana Wang
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alicia Y Chou
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| | - Karen L Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| | - Jagjit S Ludu
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
62
|
Wehrly TD, Chong A, Virtaneva K, Sturdevant DE, Child R, Edwards JA, Brouwer D, Nair V, Fischer ER, Wicke L, Curda AJ, Kupko JJ, Martens C, Crane DD, Bosio CM, Porcella SF, Celli J. Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol 2009; 11:1128-50. [PMID: 19388904 DOI: 10.1111/j.1462-5822.2009.01316.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Summary The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen, whose virulence requires proliferation inside host cells, including macrophages. Here we have performed a global transcriptional profiling of the highly virulent F. tularensis ssp. tularensis Schu S4 strain during its intracellular cycle within primary murine macrophages, to characterize its intracellular biology and identify pathogenic determinants based on their intracellular expression profiles. Phagocytosed bacteria rapidly responded to their intracellular environment and subsequently altered their transcriptional profile. Differential gene expression profiles were revealed that correlated with specific intracellular locale of the bacteria. Upregulation of general and oxidative stress response genes was a hallmark of the early phagosomal and late endosomal stages, while induction of transport and metabolic genes characterized the cytosolic replication stage. Expression of the Francisella Pathogenicity Island (FPI) genes, which are required for intracellular proliferation, increased during the intracellular cycle. Similarly, 27 chromosomal loci encoding putative hypothetical, secreted, outer membrane proteins or transcriptional regulators were identified as upregulated. Among these, deletion of FTT0383, FTT0369c or FTT1676 abolished the ability of Schu S4 to survive or proliferate intracellularly and cause lethality in mice, therefore identifying novel determinants of Francisella virulence from their intracellular expression profile.
Collapse
Affiliation(s)
- Tara D Wehrly
- Tularemia Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 2009; 77:1866-80. [PMID: 19223477 DOI: 10.1128/iai.01496-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis is a highly infectious pathogen that infects animals and humans, causing tularemia. The ability to replicate within macrophages is central for virulence and relies on expression of genes located in the Francisella pathogenicity island (FPI), as well as expression of other genes. Regulation of FPI-encoded virulence gene expression in F. tularensis involves at least four regulatory proteins and is not fully understood. Here we studied the RNA-binding protein Hfq in F. tularensis and particularly the role that it plays as a global regulator of gene expression in stress tolerance and pathogenesis. We demonstrate that Hfq promotes resistance to several cellular stresses (including osmotic and membrane stresses). Furthermore, we show that Hfq is important for the ability of the F. tularensis vaccine strain LVS to induce disease and persist in organs of infected mice. We also demonstrate that Hfq is important for stress tolerance and full virulence in a virulent clinical isolate of F. tularensis, FSC200. Finally, microarray analyses revealed that Hfq regulates expression of numerous genes, including genes located in the FPI. Strikingly, Hfq negatively regulates only one of two divergently expressed putative operons in the FPI, in contrast to the other known regulators, which regulate the entire FPI. Hfq thus appears to be a new pleiotropic regulator of virulence in F. tularensis, acting mostly as a repressor, in contrast to the other regulators identified so far. Moreover, the results obtained suggest a novel regulatory mechanism for a subset of FPI genes.
Collapse
|
64
|
Francisella tularensis genes required for inhibition of the neutrophil respiratory burst and intramacrophage growth identified by random transposon mutagenesis of strain LVS. Infect Immun 2009; 77:1324-36. [PMID: 19204089 DOI: 10.1128/iai.01318-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen and the causative agent of tularemia. We have shown that F. tularensis subspecies holarctica strain LVS prevents NADPH oxidase assembly and activation in human neutrophils, but how this is achieved is unclear. Herein, we used random transposon mutagenesis to identify LVS genes that affect neutrophil activation. Our initial screen identified carA, carB, and pyrB, which encode the small and large subunits of carbamoylphosphate synthase and aspartate carbamoyl transferase, respectively. These strains are uracil auxotrophs, and their growth was attenuated on cysteine heart agar augmented with sheep blood (CHAB) or in modified Mueller-Hinton broth. Phagocytosis of the uracil auxotrophic mutants triggered a respiratory burst in neutrophils, and ingested bacteria were killed and fragmented in phagosomes that contained superoxide. Conversely, phagocytosis did not trigger a respiratory burst in blood monocytes or monocyte-derived macrophages (MDM), and phagosomes containing wild-type or mutant bacteria lacked NADPH oxidase subunits. Nevertheless, the viability of mutant bacteria declined in MDM, and ultrastructural analysis revealed that phagosome egress was significantly inhibited despite synthesis of the virulence factor IglC. Other aspects of infection, such as interleukin-1beta (IL-1beta) and IL-8 secretion, were unaffected. The cultivation of carA, carB, or pyrB on uracil-supplemented CHAB was sufficient to prevent neutrophil activation and intramacrophage killing and supported escape from MDM phagosomes, but intracellular growth was not restored unless uracil was added to the tissue culture medium. Finally, all mutants tested grew normally in both HepG2 and J774A.1 cells. Collectively, our data demonstrate that uracil auxotrophy has cell type-specific effects on the fate of Francisella bacteria.
Collapse
|
65
|
Richards MI, Michell SL, Oyston PCF. An intracellularly inducible gene involved in virulence and polyphosphate production in Francisella. J Med Microbiol 2008; 57:1183-1192. [PMID: 18809544 DOI: 10.1099/jmm.0.2008/001826-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis is an intracellular pathogen capable of multiplying to high levels in macrophages. By protein analysis, only a few proteins have been shown previously to be expressed at high levels in macrophages relative to bacteria grown in culture media. To identify additional genes that show increased expression during intracellular growth, we developed a plasmid for use in Francisella based on the induction of expression of green fluorescent protein. Clones of F. tularensis subsp. novicida were identified that were fluorescent only intracellularly and not when grown in vitro. Sequencing identified a range of genes comprising some such as dnaK that are already known to be expressed intracellularly and some novel targets. One of these newly identified regulated genes, FTN1472/FTT1564, was selected for further study. Isogenic mutants were generated in F. tularensis subsp. novicida and subsp. tularensis by allelic replacement. Inactivation of the gene resulted in abolition of polyphosphate production by F. novicida, strongly supporting the bioinformatic analysis, which had suggested that the gene may encode a polyphosphate kinase. The mutants exhibited defects for intracellular growth in macrophages and were attenuated in mice, indicating a key role for the putative polyphosphate kinase in the virulence of Francisella.
Collapse
Affiliation(s)
- Mark I Richards
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | | - Petra C F Oyston
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
66
|
Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect Immun 2008; 77:152-61. [PMID: 18981253 DOI: 10.1128/iai.01113-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Francisella tularensis, the highly virulent etiologic agent of tularemia, is a low-dose intracellular pathogen that is able to escape from the phagosome and replicate in the cytosol. Although there has been progress in identifying loci involved in the pathogenicity of this organism, analysis of the genome sequence has revealed few obvious virulence factors. We previously reported isolation of an F. tularensis subsp. tularensis strain Schu S4 transposon insertion mutant with a mutation in a predicted hypothetical lipoprotein, FTT1103, that was deficient in intracellular replication in HepG2 cells. In this study, a mutant with a defined nonpolar deletion in FTT1103 was created, and its phenotype, virulence, and vaccine potential were characterized. A phagosomal integrity assay and lysosome-associated membrane protein 1 colocalization revealed that DeltaFTT1103 mutant bacteria were defective in phagosomal escape. FTT1103 mutant bacteria were maximally attenuated in the mouse model; mice survived, without visible signs of illness, challenge by more than 10(10) CFU when the intranasal route was used and challenge by 10(6) CFU when the intraperitoneal, subcutaneous, or intravenous route was used. The FTT1103 mutant bacteria exhibited dissemination defects. Mice that were infected by the intranasal route had low levels of bacteria in their livers and spleens, and these bacteria were cleared by 3 days postinfection. Mutant bacteria inoculated by the subcutaneous route failed to disseminate to the lungs. BALB/c or C57BL/6 mice that were intranasally vaccinated with 10(8) CFU of FTT1103 mutant bacteria were protected against subsequent challenge with wild-type strain Schu S4. These experiments identified the FTT1103 protein as an essential virulence factor and also demonstrated the feasibility of creating defined attenuated vaccines based on a type A strain.
Collapse
|
67
|
Read A, Vogl SJ, Hueffer K, Gallagher LA, Happ GM. Francisella genes required for replication in mosquito cells. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1108-1116. [PMID: 19058636 DOI: 10.1603/0022-2585(2008)45[1108:fgrfri]2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Francisella tularensis, a potential bioterrorism agent, is transmitted by arthropod vectors and causes tularemia in many mammals, including humans. Francisella novicida causes disease with similar pathology in mice. We show that F. novicida invades hemocyte-like cells of the SualB cell line derived from Anopheles gambiae and replicates vigorously within these cells. We used transposon knockouts of single genes of F. novicida to show that bacterial growth within these insect cells is dependent on virulence factors encoded in a bacterial pathogenicity island that has been linked to replication in mammalian macrophages. The virulence factors MglA, IglA, IglB, IglC, and IglD as well as PdpA and PdpB were necessary for efficient growth in insect cells, but PdpC and PdpD were not required. The SualB cell line presents a valuable model to study the interactions between this important pathogen and insect vectors.
Collapse
Affiliation(s)
- Amanda Read
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | | | | | | | | |
Collapse
|
68
|
Horzempa J, Carlson PE, O'Dee DM, Shanks RMQ, Nau GJ. Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol 2008; 8:172. [PMID: 18842136 PMCID: PMC2576331 DOI: 10.1186/1471-2180-8-172] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 10/08/2008] [Indexed: 01/06/2023] Open
Abstract
Background After infecting a mammalian host, the facultative intracellular bacterium, Francisella tularensis, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection. Results Microarray analysis of F. tularensis LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of Francisella in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel Francisella virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (deoB)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming temperature-induced, virulence-associated locus A, tivA. Interestingly, the deoB mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a Francisella gene that contributes to uptake into both phagocytic and non-phagocytic host cells. Conclusion Our results provide new insight into mechanisms of Francisella virulence regulation and pathogenesis. F. tularensis LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of Francisella. Importantly, the compilation of temperature-regulated genes also defines a rich collection of novel candidate virulence determinants, including tivA (FTL_1581). An analysis of tivA and deoB (FTL_1664) revealed that these genes contribute to intracellular survival and entry into mammalian cells, respectively.
Collapse
Affiliation(s)
- Joseph Horzempa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
69
|
Oyston PCF. Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 2008; 57:921-930. [PMID: 18628490 DOI: 10.1099/jmm.0.2008/000653-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis has been recognized as the causative agent of tularaemia for almost a century. Since its discovery in 1911, it has been shown to infect a wide range of hosts, including humans. As early as the 1920s it was suggested to be an intracellular pathogen, but it has proven to be an enigmatic organism, whose interaction with the host has been difficult to elucidate, and we still have a very limited understanding of the molecular mechanisms of virulence. However, the recent availability of genome sequence data and molecular tools has allowed us to start to understand the molecular basis of F. tularensis pathogenicity, and will facilitate the development of a vaccine to protect against infection.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, DSTL Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
70
|
Bakshi CS, Malik M, Mahawar M, Kirimanjeswara GS, Hazlett KRO, Palmer LE, Furie MB, Singh R, Melendez JA, Sellati TJ, Metzger DW. An improved vaccine for prevention of respiratory tularemia caused by Francisella tularensis SchuS4 strain. Vaccine 2008; 26:5276-88. [PMID: 18692537 DOI: 10.1016/j.vaccine.2008.07.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 11/29/2022]
Abstract
Vaccination of mice with Francisella tularensis live vaccine strain (LVS) mutants described so far have failed to induce protection in C57BL/6 mice against challenge with the virulent strain F. tularensis SchuS4. We have previously reported that a mutant of F. tularensis LVS deficient in iron superoxide dismutase (sodB(Ft)) is hypersensitive to oxidative stress and attenuated for virulence in mice. Herein, we evaluated the efficacy of this mutant as a vaccine candidate against respiratory tularemia caused by F. tularensis SchuS4. C57BL/6 mice were vaccinated intranasally (i.n.) with the sodB(Ft) mutant and challenged i.n. with lethal doses of F. tularensis SchuS4. The level of protection against SchuS4 challenge was higher in sodB(Ft) vaccinated group as compared to the LVS vaccinated mice. sodB(Ft) vaccinated mice following SchuS4 challenge exhibited significantly reduced bacterial burden in lungs, liver and spleen, regulated production of pro-inflammatory cytokines and less severe histopathological lesions compared to the LVS vaccinated mice. The sodB(Ft) vaccination induced a potent humoral immune response and protection against SchuS4 required both CD4 and CD8 T cells in the vaccinated mice. sodB(Ft) mutants revealed upregulated levels of chaperonine proteins DnaK, GroEL and Bfr that have been shown to be important for generation of a potent immune response against Francisella infection. Collectively, this study describes an improved live vaccine candidate against respiratory tularemia that has an attenuated virulence and enhanced protective efficacy than the LVS.
Collapse
Affiliation(s)
- Chandra Shekhar Bakshi
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Zogaj X, Chakraborty S, Liu J, Thanassi DG, Klose KE. Characterization of the Francisella tularensis subsp. novicida type IV pilus. Microbiology (Reading) 2008; 154:2139-2150. [DOI: 10.1099/mic.0.2008/018077-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Xhavit Zogaj
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Subhra Chakraborty
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jirong Liu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - David G. Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
72
|
Combined deletion of four Francisella novicida acid phosphatases attenuates virulence and macrophage vacuolar escape. Infect Immun 2008; 76:3690-9. [PMID: 18490464 DOI: 10.1128/iai.00262-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen and the etiologic agent of tularemia. It is capable of escape from macrophage phagosomes and replicates in the host cell cytosol. Bacterial acid phosphatases are thought to play a major role in the virulence and intracellular survival of a number of intracellular pathogens. The goal of this study was to delete the four primary acid phosphatases (Acps) from Francisella novicida and examine the interactions of mutant strains with macrophages, as well as the virulence of these strains in mice. We constructed F. novicida mutants with various combinations of acp deletions and showed that loss of the four Acps (AcpA, AcpB, AcpC, and histidine acid phosphatase [Hap]) in an F. novicida strain (DeltaABCH) resulted in a 90% reduction in acid phosphatase activity. The DeltaABCH mutant was defective for survival/growth within human and murine macrophage cell lines and was unable to escape from phagosome vacuoles. With accumulation of Acp deletions, a progressive loss of virulence in the mouse model was observed. The DeltaABCH strain was dramatically attenuated and was an effective single-dose vaccine against homologous challenge. Furthermore, both acpA and hap were induced when the bacteria were within host macrophages. Thus, the Francisella acid phosphatases cumulatively play an important role in intracellular trafficking and virulence.
Collapse
|
73
|
The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 2008; 190:4584-95. [PMID: 18469101 DOI: 10.1128/jb.00198-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Francisella tularensis is a highly infectious, facultative intracellular bacterial pathogen that is the causative agent of tularemia. Nearly a century ago, researchers observed that tularemia was often fatal in North America but almost never fatal in Europe and Asia. The chromosomes of F. tularensis strains carry two identical copies of the Francisella pathogenicity island (FPI), and the FPIs of North America-specific biotypes contain two genes, anmK and pdpD, that are not found in biotypes that are distributed over the entire Northern Hemisphere. In this work, we studied the contribution of anmK and pdpD to virulence by using F. novicida, which is very closely related to F. tularensis but which carries only one copy of the FPI. We showed that anmK and pdpD are necessary for full virulence but not for intracellular growth. This is in sharp contrast to most other FPI genes that have been studied to date, which are required for intracellular growth. We also showed that PdpD is localized to the outer membrane. Further, overexpression of PdpD affects the cellular distribution of FPI-encoded proteins IglA, IglB, and IglC. Finally, deletions of FPI genes encoding proteins that are homologues of known components of type VI secretion systems abolished the altered distribution of IglC and the outer membrane localization of PdpD.
Collapse
|
74
|
Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect Immun 2008; 76:3086-92. [PMID: 18458069 DOI: 10.1128/iai.00363-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a highly virulent bacterium that is a CDC select agent. Despite advancements in the understanding of its biology, details pertaining to virulence are poorly understood. In previous work, we identified a transposon insertion mutant in the FTT0107c locus that was defective in intracellular survival in HepG2 and J77A.1 cells. Here, we report that this mutant was also highly attenuated in vivo. The FTT0107c locus is predicted to encode an ortholog of the disulfide bond formation B protein (DsbB). This designation was confirmed by complementation of an Escherichia coli dsbB mutant. This dsbB mutant of Schu S4 was highly attenuated in mice, but unlike what has been reported for Francisella novicida, intranasal immunization with a sublethal dose did not induce protection against wild-type challenge. dsbB was found to be transcribed in an operon with acrA and acrB, which encode an RND-type efflux pump. However, this pump did not make a significant contribution to virulence because strains with nonpolar deletions in acrA and acrB behaved like wild-type strain Schu S4 with respect to intracellular growth and in vivo virulence. This result is in contrast to a report that an acrB mutant of a live vaccine strain of F. tularensis has decreased virulence in mice. Overall, these results demonstrate key differences between the virulence requirements of Schu S4 and less virulent subspecies of Francisella. We have shown that DsbB is a key participant in intracellular growth and virulence, and our results suggest that there are critical virulence factors that contain disulfide bonds.
Collapse
|
75
|
Meibom KL, Dubail I, Dupuis M, Barel M, Lenco J, Stulik J, Golovliov I, Sjöstedt A, Charbit A. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol 2008; 67:1384-401. [PMID: 18284578 DOI: 10.1111/j.1365-2958.2008.06139.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Intracellular bacterial pathogens generally express chaperones such as Hsp100s during multiplication in host cells, allowing them to survive potentially hostile conditions. Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularaemia. The ability of F. tularensis to multiply and survive in macrophages is considered essential for its virulence. Although previous mutant screens in Francisella have identified the Hsp100 chaperone ClpB as important for intracellular survival, no detailed study has been performed. We demonstrate here that ClpB of F. tularensis live vaccine strain (LVS) is important for resistance to cellular stress. Promoter analysis shows that the transcriptional start is preceded by a sigma32-like promoter sequence and we demonstrate that expression of clpB is induced by heat shock. This indicates that expression of clpB is dependent on the heat-shock response mediated by sigma32, the only alternative sigma-factor present in Francisella. Our studies demonstrate that ClpB contributes to intracellular multiplication in vitro, but is not essential. However, ClpB is absolutely required for Francisella to replicate in target organs and induce disease in mice. Proteomic analysis of membrane-enriched fractions shows that five proteins are recovered at lower levels in the mutant strain. The crucial role of ClpB for in vivo persistence of Francisella may be linked to its assumed function in reactivation of aggregated proteins under in vivo stress conditions.
Collapse
Affiliation(s)
- Karin L Meibom
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Vonkavaara M, Telepnev MV, Rydén P, Sjöstedt A, Stöven S. Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis. Cell Microbiol 2008; 10:1327-38. [PMID: 18248629 DOI: 10.1111/j.1462-5822.2008.01129.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drosophila melanogaster is a widely used model organism for research on innate immunity and serves as an experimental model for infectious diseases. The aetiological agent of the zoonotic disease tularaemia, Francisella tularensis, can be transmitted by ticks and mosquitoes and Drosophila might be a useful, genetically amenable model host to elucidate the interactions between the bacterium and its arthropod vectors. We found that the live vaccine strain of F. tularensis was phagocytosed by Drosophila and multiplied in fly haemocytes in vitro and in vivo. Bacteria injected into flies resided both inside haemocytes and extracellularly in the open circulatory system. A continuous activation of the humoral immune response, i.e. production of antimicrobial peptides under control of the imd/Relish signalling pathway, was observed and it may have contributed to the relative resistance to F. tularensis as flies defective in the imd/Relish pathway died rapidly. Importantly, bacterial strains deficient for genes of the F. tularensis intracellular growth locus or the macrophage growth locus were attenuated in D. melanogaster. Our results demonstrate that D. melanogaster is a suitable model for the analysis of interactions between F. tularensis and its arthropod hosts and that it can also be used to identify F. tularensis virulence factors relevant for mammalian hosts.
Collapse
Affiliation(s)
- Malin Vonkavaara
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
| | | | | | | | | |
Collapse
|
77
|
Bina XR, Lavine CL, Miller MA, Bina JE. The AcrAB RND efflux system from the live vaccine strain ofFrancisella tularensisis a multiple drug efflux system that is required for virulence in mice. FEMS Microbiol Lett 2008; 279:226-33. [DOI: 10.1111/j.1574-6968.2007.01033.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
78
|
Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog 2008; 5:e1000284. [PMID: 19158962 PMCID: PMC2629122 DOI: 10.1371/journal.ppat.1000284] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 12/31/2008] [Indexed: 12/14/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation. The role of nutrient acquisition systems in survival and multiplication of intracellular bacterial pathogens within infected cells is yet poorly understood. The data presented here suggest that Francisella tularensis, a highly infectious facultative intracellular bacterium, is capable of utilizing glutathione (GSH) and γ–glutamyl-cysteine peptides present in the cytosol of infected host cells. An in vitro negative selection method, based on the use of a bacteriostatic antibiotic, to recover intracellular growth mutants directly from a pool of mutants, allowed us to select one mutant in a gene encoding a γ-glutamyl transpeptidase (GGT). The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. The cleavage of these cysteine-containing peptides by GGT activity provides thus the essential source of cysteine required for intracellular multiplication. The capacity F. tularensis has evolved to utilize GSH, the most abundant source of cysteine in the host cytosol, constitutes a model of bacterial adaptation to intracellular lifestyle.
Collapse
|
79
|
Maier TM, Casey MS, Becker RH, Dorsey CW, Glass EM, Maltsev N, Zahrt TC, Frank DW. Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 2007; 75:5376-89. [PMID: 17682043 PMCID: PMC2168294 DOI: 10.1128/iai.00238-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis, the etiologic agent of tularemia in humans, is a potential biological threat due to its low infectious dose and multiple routes of entry. F. tularensis replicates within several cell types, eventually causing cell death by inducing apoptosis. In this study, a modified Himar1 transposon (HimarFT) was used to mutagenize F. tularensis LVS. Approximately 7,000 Km(r) clones were screened using J774A.1 macrophages for reduction in cytopathogenicity based on retention of the cell monolayer. A total of 441 candidates with significant host cell retention compared to the parent were identified following screening in a high-throughput format. Retesting at a defined multiplicity of infection followed by in vitro growth analyses resulted in identification of approximately 70 candidates representing 26 unique loci involved in macrophage replication and/or cytotoxicity. Mutants carrying insertions in seven hypothetical genes were screened in a mouse model of infection, and all strains tested appeared to be attenuated, which validated the initial in vitro results obtained with cultured macrophages. Complementation and reverse transcription-PCR experiments suggested that the expression of genes adjacent to the HimarFT insertion may be affected depending on the orientation of the constitutive groEL promoter region used to ensure transcription of the selective marker in the transposon. A hypothetical gene, FTL_0706, postulated to be important for lipopolysaccharide biosynthesis, was confirmed to be a gene involved in O-antigen expression in F. tularensis LVS and Schu S4. These and other studies demonstrate that therapeutic targets, vaccine candidates, or virulence-related genes may be discovered utilizing classical genetic approaches in Francisella.
Collapse
Affiliation(s)
- Tamara M Maier
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Su J, Yang J, Zhao D, Kawula TH, Banas JA, Zhang JR. Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 2007; 75:3089-101. [PMID: 17420240 PMCID: PMC1932872 DOI: 10.1128/iai.01865-06] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a gram-negative pathogen that causes life-threatening infections in humans and has potential for use as a biological weapon. The genetic basis of the F. tularensis virulence is poorly understood. This study screened a total of 3,936 transposon mutants of the live vaccine strain for infection in a mouse model of respiratory tularemia by signature-tagged mutagenesis. We identified 341 mutants attenuated for infection in the lungs. The transposon disruptions were mapped to 95 different genes, virtually all of which are also present in the genomes of other F. tularensis strains, including human pathogenic F. tularensis strain Schu S4. A small subset of these attenuated mutants carried insertions in the genes encoding previously known virulence factors, but the majority of the identified genes have not been previously linked to F. tularensis virulence. Among these are genes encoding putative membrane proteins, proteins associated with stress responses, metabolic proteins, transporter proteins, and proteins with unknown functions. Several attenuated mutants contained disruptions in a putative capsule locus which partially resembles the poly-gamma-glutamate capsule biosynthesis locus of Bacillus anthracis, the anthrax agent. Deletional mutation analysis confirmed that this locus is essential for F. tularensis virulence.
Collapse
Affiliation(s)
- Jingliang Su
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
81
|
Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM. In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 2007; 104:6037-42. [PMID: 17389372 PMCID: PMC1832217 DOI: 10.1073/pnas.0609675104] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis subverts the immune system to rapidly grow within mammalian hosts, often causing tularemia, a fatal disease. This pathogen targets the cytosol of macrophages where it replicates by using the genes encoded in the Francisella pathogenicity island. However, the bacteria are recognized in the cytosol by the host's ASC/caspase-1 pathway, which is essential for host defense, and leads to macrophage cell death and proinflammatory cytokine production. We used a microarray-based negative selection screen to identify Francisella genes that contribute to growth and/or survival in mice. The screen identified many known virulence factors including all of the Francisella pathogenicity island genes, LPS O-antigen synthetic genes, and capsule synthetic genes. We also identified 44 previously unidentified genes that were required for Francisella virulence in vivo, indicating that this pathogen may use uncharacterized mechanisms to cause disease. Among these, we discovered a class of Francisella virulence genes that are essential for growth and survival in vivo but do not play a role in intracellular replication within macrophages. Instead, these genes modulate the host ASC/caspase-1 pathway, a previously unidentified mechanism of Francisella pathogenesis. This finding indicates that the elucidation of the molecular mechanisms used by other uncharacterized genes identified in our screen will increase our understanding of the ways in which bacterial pathogens subvert the immune system.
Collapse
Affiliation(s)
- David S. Weiss
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Anna Brotcke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas Henry
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jeffrey J. Margolis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kaman Chan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
82
|
Abstract
Francisella tularensis is the causative agent of tularaemia, a disease which occurs naturally in some countries in the northern hemisphere. Recently, there has been a high level of interest in devising vaccines against the bacterium because of the potential for it to be used as a bioterrorism agent. Previous human volunteer studies have shown that a strain of F. tularensis [the live vaccine strain (LVS)] that has been attenuated by laboratory passage is effective in humans as a vaccine against airborne disease. However, for a variety of reasons it seems unlikely that the LVS strain will be licensed for use in humans. Against this background there is an effort to devise a licensable vaccine against tularaemia. The prospects for a killed whole-cell subunit of live attenuated vaccine are reviewed. A rationally attenuated mutant seems the most likely route to a new tularaemia vaccine.
Collapse
Affiliation(s)
- Kate F Griffin
- Defence Science and Technology Laboratory, Wiltshire, UK.
| | | | | |
Collapse
|
83
|
Gallagher LA, Ramage E, Jacobs MA, Kaul R, Brittnacher M, Manoil C. A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proc Natl Acad Sci U S A 2007; 104:1009-14. [PMID: 17215359 PMCID: PMC1783355 DOI: 10.1073/pnas.0606713104] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is a category A select agent. We created a sequence-defined, near-saturation transposon mutant library of F. tularensis novicida, a subspecies that causes a tularemia-like disease in rodents. The library consists of 16,508 unique insertions, an average of >9 insertions per gene, which is a coverage nearly twice that of the greatest previously achieved for any bacterial species. Insertions were recovered in 84% (1,490) of the predicted genes. To achieve high coverage, it was necessary to construct transposons carrying an endogenous Francisella promoter to drive expression of antibiotic resistance. An analysis of genes lacking (or with few) insertions identified nearly 400 candidate essential genes, most of which are likely to be required for growth on rich medium and which represent potential therapeutic targets. To facilitate genome-scale screening using the mutant collection, we assembled a sublibrary made up of two purified mutants per gene. The library provides a resource for virtually complete identification of genes involved in virulence and other nonessential processes.
Collapse
Affiliation(s)
- Larry A. Gallagher
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
| | - Elizabeth Ramage
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
| | - Michael A. Jacobs
- Department of Medicine, University of Washington, Campus Box 352145, 1705 NE Pacific Street, Seattle, WA 98195
| | - Rajinder Kaul
- Department of Medicine, University of Washington, Campus Box 352145, 1705 NE Pacific Street, Seattle, WA 98195
| | - Mitchell Brittnacher
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
| | - Colin Manoil
- *Department of Genome Sciences, University of Washington, Campus Box 355065, 1705 NE Pacific Street, Seattle, WA 98195; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|