51
|
Baldassarri L, Creti R, Montanaro L, Orefici G, Arciola CR. Pathogenesis of implant infections by enterococci. Int J Artif Organs 2006; 28:1101-9. [PMID: 16353116 DOI: 10.1177/039139880502801107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterococci are commensals of human and animal intestinal tract that have emerged in the last decades as a major cause of nosocomial infections of bloodstream, urinary tract and in infected surgical sites. Enterococcus faecalis is responsible for ca. 80% of all enterococcal infections while Enterococcus faecium accounts for most of the others; among the most relevant risk factors for development of enterococcal infections is the presence of implanted devices. The pathogenesis of such infections is poorly understood, but several virulence factors have been proposed. Among them, the ability to form biofilm has recently been shown to be one of the most prominent features of this microorganism, allowing colonization of inert and biological surfaces, while protecting against antimicrobial substances, and mediating adhesion and invasion of host cells and survival within professional phagocytes. Biofilm formation has been shown to be particularly important in the development of prosthetic valve enterococcal endocarditis and stent occlusion. Enterococci are also able to express other surface factors that may support colonization of both inert and biological surfaces, and that may be involved in the invasion of, and survival within, the host cell.
Collapse
Affiliation(s)
- L Baldassarri
- Division of Bacterial, Respiratory and Systemic Disease, Department of Infectious, Parasitic and Immune-mediated Diseases, Institute of Health, Rome, Italy.
| | | | | | | | | |
Collapse
|
52
|
Abstract
An important facet in the interaction between Staphylococcus aureus and its host is the ability of the bacterium to adhere to human extracellular matrix components and serum proteins. In order to colonise the host and disseminate, it uses a wide range of strategies, the molecular and genetic basis of which are multifactorial, with extensive functional overlap between adhesins. Here, we describe the current knowledge of the molecular features of the adhesive components of S. aureus, mechanisms of adhesion and the impact that these have on host-pathogen interaction.
Collapse
Affiliation(s)
- Simon R Clarke
- Department of Molecular Biology & Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
53
|
Klingenberg C, Aarag E, Rønnestad A, Sollid JE, Abrahamsen TG, Kjeldsen G, Flaegstad T. Coagulase-negative staphylococcal sepsis in neonates. Association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr Infect Dis J 2005; 24:817-22. [PMID: 16148849 DOI: 10.1097/01.inf.0000176735.20008.cd] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Coagulase-negative staphylococci (CoNS) are the most prevalent pathogens causing late onset sepsis in neonates. They are often multiresistant to antibiotics, and the ability to form biofilm is considered their main virulence determinant. METHODS During a 12-year period, we identified 150 neonates having 164 suspected septic episodes with growth of CoNS in blood culture. We examined the relationship between antibiotic resistance, phenotypic biofilm production and genetic determinants for biofilm formation in different CoNS species and their correlation with neonatal inflammatory response. RESULTS Eighty-five episodes were classified as true sepsis, and 79 episodes of CoNS growth in blood culture were considered contaminations. Sixty-one percent of Staphylococcus epidermidis isolates produced biofilm compared with 26% of CoNS non-epidermidis (P < 0.001). We observed no difference in phenotypic biofilm production or genetic determinants for biofilm formation between invasive isolates and contaminants. C-reactive protein levels as a marker of inflammatory response were higher in CoNS sepsis caused by methicillin and aminoglycoside resistant versus susceptible isolates (P = 0.031). In contrast, there was a significant association between a lower C-reactive protein response and biofilm-positive isolates (P = 0.018). Antibiotic resistance was significantly correlated with biofilm production in S. epidermidis, but not in other CoNS species. CONCLUSIONS CoNS sepsis with biofilm-forming strains was associated with a decreased host inflammatory response, potentially limiting the immune system to counteract the infection. The impact of antibiotic resistance and virulence determinants on clinical outcome of neonatal CoNS sepsis warrants additional clinical studies.
Collapse
|
54
|
Dhalluin A, Bourgeois I, Pestel-Caron M, Camiade E, Raux G, Courtin P, Chapot-Chartier MP, Pons JL. Acd, a peptidoglycan hydrolase of Clostridium difficile with N-acetylglucosaminidase activity. Microbiology (Reading) 2005; 151:2343-2351. [PMID: 16000724 DOI: 10.1099/mic.0.27878-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A gene encoding a putative peptidoglycan hydrolase was identified by sequence similarity searching in the Clostridium difficile 630 genome sequence, and the corresponding protein, named Acd (autolysin of C. difficile) was expressed in Escherichia coli. The deduced amino acid sequence of Acd shows a modular structure with two main domains: an N-terminal domain exhibiting repeated sequences and a C-terminal catalytic domain. The C-terminal domain exhibits sequence similarity with the glucosaminidase domains of Staphylococcus aureus Atl and Bacillus subtilis LytD autolysins. Purified recombinant Acd produced in E. coli was confirmed to be a cell-wall hydrolase with lytic activity on the peptidoglycan of several Gram-positive bacteria, including C. difficile. The hydrolytic specificity of Acd was studied by RP-HPLC analysis and MALDI-TOF MS using B. subtilis cell-wall extracts. Muropeptides generated by Acd hydrolysis demonstrated that Acd hydrolyses peptidoglycan bonds between N-acetylglucosamine and N-acetylmuramic acid, confirming that Acd is an N-acetylglucosaminidase. The transcription of the acd gene increased during vegetative cellular growth of C. difficile 630. The sequence of the acd gene appears highly conserved in C. difficile strains. Regarding deduced amino acid sequences, the C-terminal domain with enzymic function appears to be the most conserved of the two main domains. Acd is the first known autolysin involved in peptidoglycan hydrolysis of C. difficile.
Collapse
Affiliation(s)
- Anne Dhalluin
- Groupe de Recherche sur les Antimicrobiens et les Micro-organismes (UPRES EA 2656, IFR 23), Université de Rouen, UFR Médecine-Pharmacie, 22 Boulevard Gambetta, F-76183 Rouen Cedex, France
| | - Ingrid Bourgeois
- Groupe de Recherche sur les Antimicrobiens et les Micro-organismes (UPRES EA 2656, IFR 23), Université de Rouen, UFR Médecine-Pharmacie, 22 Boulevard Gambetta, F-76183 Rouen Cedex, France
| | - Martine Pestel-Caron
- Groupe de Recherche sur les Antimicrobiens et les Micro-organismes (UPRES EA 2656, IFR 23), Université de Rouen, UFR Médecine-Pharmacie, 22 Boulevard Gambetta, F-76183 Rouen Cedex, France
| | - Emilie Camiade
- Groupe de Recherche sur les Antimicrobiens et les Micro-organismes (UPRES EA 2656, IFR 23), Université de Rouen, UFR Médecine-Pharmacie, 22 Boulevard Gambetta, F-76183 Rouen Cedex, France
| | - Gregory Raux
- INSERM U 614 (IFR 23), Université de Rouen, UFR Médecine-Pharmacie, 76183 Rouen Cedex, France
| | - Pascal Courtin
- Unité de Biochimie et Structure des Protéines, INRA, 78352 Jouy-en-Josas Cedex, France
| | | | - Jean-Louis Pons
- Groupe de Recherche sur les Antimicrobiens et les Micro-organismes (UPRES EA 2656, IFR 23), Université de Rouen, UFR Médecine-Pharmacie, 22 Boulevard Gambetta, F-76183 Rouen Cedex, France
| |
Collapse
|
55
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 864] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Yokoi KJ, Kawahigashi N, Uchida M, Sugahara K, Shinohara M, Kawasaki KI, Nakamura S, Taketo A, Kodaira KI. The two-component cell lysis genes holWMY and lysWMY of the Staphylococcus warneri M phage varphiWMY: cloning, sequencing, expression, and mutational analysis in Escherichia coli. Gene 2005; 351:97-108. [PMID: 15848115 DOI: 10.1016/j.gene.2005.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 01/21/2005] [Accepted: 03/01/2005] [Indexed: 11/25/2022]
Abstract
From the genome library of Staphylococcus warneri M, the two successive cell-lysis genes (holWMY and lytWMY) were cloned and characterized. The lytWMY gene encoded a protein (LysWMY), whose calculated molecular mass and pI were 54 kDa and 8.95, respectively. When overproduced in Escherichia coli, lysWMY directed a protein of 45 kDa (smaller than the predicted molecular mass), having N-terminal 13 residues identical with those predicted from DNA. Comparative analysis revealed that LysWMY significantly resembles the putative N-acetylmuramoyl-L-alanine amidases encoded by the staphylococcal phages phi11, 80 alpha, and Twort. Examination of modular organization of LysWMY identified three putative domains CHAP (for D-alanyl-glycyl endopeptidase), amidase (L-muramoyl-L-alanine amidase), and SH3 (cell wall recognition). Gene knockout analysis revealed that each of the two domains of CHAP and amidase was responsible for cell-lytic activity on a zymogram gel. Site-directed mutation of Cys29Ala, His92Ala, or Asn114Ala in the CHAP domain substantially reduced cell-lytic activity, suggesting that this Cys-His-Asn triad is crucial for the enzymatic function. On the other hand, the holWMY gene encoded a protein (HolWMY) with molecular mass and pI of 16 kDa and 4.36; this protein contained two potential transmembrane helices, resembling other predicted holins (a cytoplasmic membrane-disrupting protein) encoded by the S. aureus phage, phi11, 80 alpha, and Twort. Upon mitomycin C exposure of S. warneri M, a prophage (phiWMY) was induced and the virion was examined under electron microscopy. PCR amplification and sequencing revealed the presence of the holWMY-lysWMY genes in the phage genome.
Collapse
Affiliation(s)
- Ken-Ji Yokoi
- Molecular Biology Group, Faculty of Engineering, Toyama University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ross TL, Fuss EP, Harrington SM, Cai M, Perl TM, Merz WG. Methicillin-resistant Staphylococcus caprae in a neonatal intensive care unit. J Clin Microbiol 2005; 43:363-7. [PMID: 15634995 PMCID: PMC540108 DOI: 10.1128/jcm.43.1.363-367.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus caprae, a hemolytic coagulase-negative staphylococcus that is infrequently associated with humans, was initially detected in specimens from six infants in our neonatal intensive care unit due to phenotypic characteristics common to methicillin-resistant Staphylococcus aureus. These isolates were subsequently identified as S. caprae by the Automated RiboPrinter microbial characterization system. This prompted an 8-month retrospective investigation in our neonatal intensive care unit. S. caprae was the cause of 6 of 18 episodes of coagulase-negative staphylococcal bacteremia, was the most common coagulase-negative staphylococcus recovered from the nares of 6 of 32 infants surveyed in a methicillin-resistant S. aureus surveillance program, and was isolated from 1 of 37 health care providers' hands. Of 13 neonatal intensive care unit isolates tested, all were methicillin resistant and positive for the mecA gene. All 21 isolates were found to be a single strain by Automated RiboPrinter and pulsed-field gel electrophoresis with ApaI or SmaI digestion; ApaI was more discriminating in analyzing epidemiologically unrelated strains than Automated RiboPrinter or electrophoresis with SmaI. These findings extend the importance of S. caprae, emphasize its similarities to methicillin-resistant S. aureus, and demonstrate its ability to persist in an intensive care unit setting.
Collapse
Affiliation(s)
- T L Ross
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD 21287-7093, USA
| | | | | | | | | | | |
Collapse
|
58
|
Deng LL, Humphries DE, Arbeit RD, Carlton LE, Smole SC, Carroll JD. Identification of a novel peptidoglycan hydrolase CwlM in Mycobacterium tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:57-66. [PMID: 15680239 DOI: 10.1016/j.bbapap.2004.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 09/03/2004] [Accepted: 09/28/2004] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis is a major global pathogen whose threat has increased with the emergence of multidrug-resistant strains. The cell wall of M. tuberculosis is thick, rigid, and hydrophobic, which serves to protect the organism from the environment and makes it highly impermeable to conventional antimicrobial agents. There is little known about cell wall autolysins (also referred to as peptidoglycan hydrolases) of mycobacteria. We identified an open reading frame (Rv3915) in the M. tuberculosis genome designated cwlM that appeared consistent with a peptidoglycan hydrolase. The 1218-bp gene was amplified by PCR, cloned and expressed in E. coli strain HMS174(DE-3), and its gene product, a 47-kDa recombinant protein, was purified and partially characterized. Purified CwlM was able to lyse whole mycobacteria, release peptidoglycan from the cell wall of Micrococcus luteus and Mycobacterium smegmatis, and cleave N-acetylmuramoyl-L-alanyl-D-isoglutamine, releasing free N-acetylmuramic acid. These results indicate that CwlM is a novel autolysin and identify cwlM as the first, to our knowledge, autolysin gene identified and cloned from M. tuberculosis. CwlM offers a new target for a unique class of drugs that could alter the permeability of the mycobacterial cell wall and enhance the effectiveness of treatments for tuberculosis.
Collapse
Affiliation(s)
- Lingyi Lynn Deng
- Department of Medicine, Boston University School of Medicine, Research Service, VA Boston Healthcare System, 150 S. Huntington Ave., Boston, MA 02130, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Frank KL, Hanssen AD, Patel R. icaA is not a useful diagnostic marker for prosthetic joint infection. J Clin Microbiol 2004; 42:4846-9. [PMID: 15472359 PMCID: PMC522308 DOI: 10.1128/jcm.42.10.4846-4849.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of 99 staphylococcal isolates associated with prosthetic joint infection and 23 coagulase-negative staphylococci isolated from noninfected arthroplasty-associated specimens were screened in order to determine whether the presence of icaA could be used to distinguish between pathogens and nonpathogens. All Staphylococcus aureus prosthetic joint infection isolates (n = 55) were icaA positive. A total of 46% (20 out of 44) of coagulase-negative staphylococcal prosthetic joint infection isolates were icaA positive, and 30% (7 out of 23) of arthroplasty-associated non-prosthetic joint infection-associated coagulase-negative staphylococcal isolates were icaA positive (P = 0.23). Certain coagulase-negative Staphylococcus species appeared more likely to be isolated as either arthroplasty-associated non-prosthetic joint infection-associated isolates (e.g., Staphylococcus warneri and Staphylococcus hominis) or pathogens (e.g., Staphylococcus lugdunensis). The presence of icaA in a coagulase-negative staphylococcal isolate associated with an arthroplasty is not a useful diagnostic indicator of pathogenicity.
Collapse
Affiliation(s)
- Kristi L Frank
- Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
60
|
Liu Y, Ames B, Gorovits E, Prater BD, Syribeys P, Vernachio JH, Patti JM. SdrX, a serine-aspartate repeat protein expressed by Staphylococcus capitis with collagen VI binding activity. Infect Immun 2004; 72:6237-44. [PMID: 15501749 PMCID: PMC523036 DOI: 10.1128/iai.72.11.6237-6244.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus capitis (S. capitis) has been implicated in a large proportion of coagulase-negative staphylococcal infections in very-low-birth-weight infants. To identify potential therapeutic targets, the S. capitis genome was probed for the presence of genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMM). By using Southern blot analysis, an S. capitis gene, designated sdrX, that contained sequence motifs consistent with the Sdr family of MSCRAMM proteins was identified. By using monospecific antisera in Western blot and flow cytometry, SdrX was demonstrated to be expressed on the surface of S. capitis. Human collagen type VI was found to bind both the recombinant A domain of SdrX and viable S. capitis expressing SdrX. SdrX is the first collagen-binding Sdr protein described and is the first MSCRAMM protein identified in S. capitis.
Collapse
Affiliation(s)
- Yule Liu
- Inhibitex Inc, 8995 Westside Pkwy, Alpharetta, GA 30004, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 2004; 279:54881-6. [PMID: 15501828 DOI: 10.1074/jbc.m411374200] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biofilms play an important role in many chronic bacterial infections. Production of an extracellular mixture of sugar polymers called exopolysaccharide is characteristic and critical for biofilm formation. However, there is limited information about the mechanisms involved in the biosynthesis and modification of exopolysaccharide components and how these processes influence bacterial pathogenesis. Staphylococcus epidermidis is an important human pathogen that frequently causes persistent infections by biofilm formation on indwelling medical devices. It produces a poly-N-acetylglucosamine molecule that emerges as an exopolysaccharide component of many bacterial pathogens. Using a novel method based on size exclusion chromatography-mass spectrometry, we demonstrate that the surface-attached protein IcaB is responsible for deacetylation of the poly-N-acetylglucosamine molecule. Most likely due to the loss of its cationic character, non-deacetylated poly-acetylglucosamine in an isogenic icaB mutant strain was devoid of the ability to attach to the bacterial cell surface. Importantly, deacetylation of the polymer was essential for key virulence mechanisms of S. epidermidis, namely biofilm formation, colonization, and resistance to neutrophil phagocytosis and human antibacterial peptides. Furthermore, persistence of the icaB mutant strain was significantly impaired in a murine model of device-related infection. This is the first study to describe a mechanism of exopolysaccharide modification that is indispensable for the development of biofilm-associated human disease. Notably, this general virulence mechanism is likely similar for other pathogenic bacteria and constitutes an excellent target for therapeutic maneuvers aimed at combating biofilm-associated infection.
Collapse
Affiliation(s)
- Cuong Vuong
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 2004; 6:269-75. [PMID: 14764110 DOI: 10.1046/j.1462-5822.2004.00367.x] [Citation(s) in RCA: 428] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The skin commensal and opportunistic pathogen Staphylococcus epidermidis is the leading cause of nosocomial and biofilm-associated infections. Little is known about the mechanisms by which S. epidermidis protects itself against the innate human immune system during colonization and infection. We used scanning electron microscopy to demonstrate that the exopolysaccharide intercellular adhesin (PIA) resides in fibrous strands on the bacterial cell surface, and that lack of PIA production results in complete loss of the extracellular matrix material that has been suggested to mediate immune evasion. Phagocytosis and killing by human polymorphonuclear leucocytes was significantly increased in a mutant strain lacking PIA production compared with the wild-type strain. The mutant strain was also significantly more susceptible to killing by major antibacterial peptides of human skin, cationic human beta-defensin 3 and LL-37, and anionic dermcidin. PIA represents the first defined factor of the staphylococcal biofilm matrix that protects against major components of human innate host defence.
Collapse
Affiliation(s)
- Cuong Vuong
- Laboratories of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Leavis H, Top J, Shankar N, Borgen K, Bonten M, van Embden J, Willems RJL. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol 2004; 186:672-82. [PMID: 14729692 PMCID: PMC321477 DOI: 10.1128/jb.186.3.672-682.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N- and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G+C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.
Collapse
Affiliation(s)
- Helen Leavis
- Diagnostic Laboratory for Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
64
|
Cabanes D, Dussurget O, Dehoux P, Cossart P. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 2004; 51:1601-14. [PMID: 15009888 DOI: 10.1111/j.1365-2958.2003.03945.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Listeria monocytogenes is an opportunistic food-borne human and animal pathogen. Several surface proteins expressed by this intracellular pathogen are critical for the infectious process. By in silico analysis we compared the surface protein repertories of L. monocytogenes and of the non-pathogenic species Listeria innocua and identified a gene encoding a surface protein of L. monocytogenes absent in L. innocua. This gene that we named aut encodes a protein (Auto) of 572 amino acids containing a signal sequence, a N-terminal autolysin domain and a C-terminal cell wall-anchoring domain made up of four GW modules. We show here that the aut gene is expressed independently of the virulence gene regulator PrfA and encodes a surface protein with an autolytic activity. We provide evidence that Auto is required for entry of L. monocytogenes into cultured non-phagocytic eukaryotic cells. The low invasiveness of an aut deletion mutant correlates with its reduced virulence following intravenous inoculation of mice and oral infection of guinea pigs. During infection, the autolytic activity of Auto may also be critical. Auto appears thus as a novel type of L. monocytogenes virulence factor.
Collapse
Affiliation(s)
- Didier Cabanes
- Unité des Interactions Bactéries Cellules, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
65
|
Hell W, Reichl S, Anders A, Gatermann S. The autolytic activity of the recombinant amidase ofStaphylococcus saprophyticusis inhibited by its own recombinant GW repeats. FEMS Microbiol Lett 2003; 227:47-51. [PMID: 14568147 DOI: 10.1016/s0378-1097(03)00647-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Aas (autolysin/adhesin of Staphylococcus saprophyticus) is a multifunctional surface protein containing two enzymatic domains an N-acetyl-muramyl-L-alanine amidase, an endo-beta-N-acetyl-D-glucosaminidase, and two different regions of repetitive sequences, an N-terminal and a C-terminal repetitive domain. The C-terminal repetitive domain is built up by the repeats R1, R2 and R3, which interconnect the putative active centers of the amidase and glucosaminidase. To investigate the influence of the C-terminal repeats and the N-terminal repeats on the amidase activity, the repetitive domains and fragments of them were cloned and expressed in Escherichia coli. The influence of the different fragments on the activity of the recombinant amidase of the Aas, consisting of the active center of the enzyme and repeat R1, was investigated in a turbidimetric microassay. The different fragments derived from the C-terminal repeats inhibited the amidase activity, while the N-terminal repeats did not influence the activity of the enzyme. The inhibiting activity increased with the number of GW repeats the recombinant fragment contained. Thus we conclude, that the C-terminal GW repeats and not the N-terminal repeats are necessary for the cell wall targeting and the autolytic function of the amidase.
Collapse
Affiliation(s)
- Wolfgang Hell
- Institute of Medical Microbiology, Ruhr Universität Bochum, D-44780, Bochum, Germany.
| | | | | | | |
Collapse
|
66
|
Møretrø T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langsrud S. Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Appl Environ Microbiol 2003; 69:5648-55. [PMID: 12957956 PMCID: PMC194930 DOI: 10.1128/aem.69.9.5648-5655.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.
Collapse
Affiliation(s)
- Trond Møretrø
- MATFORSK, Norwegian Food Research Institute, N-1430 As, Norway.
| | | | | | | | | | | |
Collapse
|
67
|
Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JKM, Horstkotte MA, Mack D. Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 2003; 185:2879-86. [PMID: 12700267 PMCID: PMC154395 DOI: 10.1128/jb.185.9.2879-2886.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 01/21/2003] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation in Staphylococcus epidermidis depends, in the majority of the strains, on the activity of the icaADBC locus. The expression of the operon that encodes the synthetic enzymes of the intercellular polysaccharide adhesin (PIA) depends on a variety of exogenic environmental conditions and is, at least in part, regulated by the alternative sigma factor sigma(B). We investigated the transcriptional regulation of the ica operon and the respective phenotypes expressed under growth conditions differing in the content of glucose in the growth medium. In the presence of glucose, S. epidermidis exhibited a PIA- and biofilm-positive phenotype whereas ica transcription was down-regulated in the postexponential and stationary phases of growth. Surprisingly, maximum transcription of ica was detectable in the stationary phase of growth in the absence of glucose despite the expression of a PIA- and biofilm-negative phenotype. In vitro enzymatic assays and phenotypic characterization showed that the abundant amount of ica mRNA was functionally active because induction of stationary-phase cells with glucose led to immediate PIA synthesis. Induction of biofilm formation could be completely inhibited by chloramphenicol, which, given at a later stage of biofilm accumulation, also inhibited further development of preformed biofilm, indicating that continuous translation of an additional, icaADBC-independent factor is required for the expression of a biofilm-positive phenotype.
Collapse
Affiliation(s)
- Sabine Dobinsky
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
68
|
Clarke SR, Harris LG, Richards RG, Foster SJ. Analysis of Ebh, a 1.1-megadalton cell wall-associated fibronectin-binding protein of Staphylococcus aureus. Infect Immun 2002; 70:6680-7. [PMID: 12438342 PMCID: PMC133066 DOI: 10.1128/iai.70.12.6680-6687.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 07/29/2002] [Accepted: 08/27/2002] [Indexed: 01/17/2023] Open
Abstract
In order for Staphylococcus aureus to adhere to host extracellular matrix (ECM) substrates, it elicits a wide range of surface proteins. We have characterized a novel approximately 1.1-MDa protein in S. aureus, termed Ebh (for ECM-binding protein homologue), which has homology to other ECM-binding proteins. Ebh consists of several domains, including a large central region with 44 imperfect repeats of 126 amino acids. Expression analysis revealed ebh to be growth phase regulated and repressed by agr. A fragment of the central repeat region of Ebh was cloned, overexpressed, and used in ligand-binding studies to determine Ebh function. The recombinant protein was found to specifically bind human fibronectin. Ebh is produced during human infection since serum samples taken from patients with confirmed S. aureus infections were found to contain anti-Ebh antibodies. Localization studies revealed Ebh to be cell envelope associated and is proposed to form a specialized surface structure involved in cellular adhesion.
Collapse
Affiliation(s)
- Simon R Clarke
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, United Kingdom
| | | | | | | |
Collapse
|
69
|
Marino M, Banerjee M, Jonquières R, Cossart P, Ghosh P. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J 2002; 21:5623-34. [PMID: 12411480 PMCID: PMC131055 DOI: 10.1093/emboj/cdf558] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion.
Collapse
Affiliation(s)
| | | | - Renaud Jonquières
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA and
Institut Pasteur, Unité des Interactions Bactéries–Cellules, 28 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| | - Pascale Cossart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA and
Institut Pasteur, Unité des Interactions Bactéries–Cellules, 28 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA and
Institut Pasteur, Unité des Interactions Bactéries–Cellules, 28 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| |
Collapse
|
70
|
Allignet J, England P, Old I, El Solh N. Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett 2002; 213:193-7. [PMID: 12167537 DOI: 10.1111/j.1574-6968.2002.tb11305.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The autolysin AtlC is the only known fibronectin-binding protein in Staphylococcus caprae strain 96007. The fibronectin-binding domain of AtlC consists of three repeats (AtlCR(1)R(2)R(3)), which are located between the two enzymatic domains. The AtlCR(1)R(2)R(3) domain and the AtlCR(1)R(2) and AtlCR(3) subdomains were expressed separately as His(6)-tagged proteins. In Western affinity blots, only AtlCR(1)R(2)R(3) and AtlCR(3) but not AtlCR(1)R(2) appeared to recognise fibronectin; however, in ELISA and Biacore experiments, all three bound fibronectin. The interaction between AtlCR(1)R(2)R(3) and fibronectin is multivalent and involves high- and low-affinity sites that are present in a 2:1 ratio. These distinct classes of binding sites may be situated on either or on both ligands.
Collapse
Affiliation(s)
- Jeanine Allignet
- Staphylococci Unit, National Reference Center for Staphylococci, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
71
|
Cho SH, Naber K, Hacker J, Ziebuhr W. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int J Antimicrob Agents 2002; 19:570-5. [PMID: 12135850 DOI: 10.1016/s0924-8579(02)00101-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Biofilm production in Staphylococcus epidermidis is an important virulence factor that is mediated by the expression of the icaADBC operon. In this study 41 S. epidermidis isolates obtained from catheter-related urinary tract infections were analyzed for the presence of the icaADBC operon and biofilm formation. Eighteen of 41 isolates (44%) were shown to carry ica-specific DNA, but only 11 isolates (27%) produced biofilms spontaneously under normal growth conditions. Upon induction by external stress or antibiotics, biofilm formation could be stimulated in five of seven ica-positive, biofilm-negative isolates, indicating that the icaADBC expression was down-regulated in these strains. Genetic analyses of the ica gene clusters of the remaining two ica-positive, biofilm-negative strains revealed a spontaneous ICAC::IS256 insertion in one strain. Insertion of the element caused a target site duplication of seven base pairs and a biofilm-negative phenotype. After repeated passages the insertion mutant was able to revert to a biofilm-forming phenotype which was due to the precise excision of IS256 from the icaC gene. The data show that icaC::IS256 integrations occur during S. epidermidis polymer-related infections and the results highlight the biological relevance of the IS256-mediated phase variation of biofilm production in S. epidermidis during an infection.
Collapse
Affiliation(s)
- Seung-Hak Cho
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | |
Collapse
|
72
|
Morrissey JA, Cockayne A, Hammacott J, Bishop K, Denman-Johnson A, Hill PJ, Williams P. Conservation, surface exposure, and in vivo expression of the Frp family of iron-regulated cell wall proteins in Staphylococcus aureus. Infect Immun 2002; 70:2399-407. [PMID: 11953376 PMCID: PMC127940 DOI: 10.1128/iai.70.5.2399-2407.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis identified two conserved, immunogenic Staphylococcus aureus cell wall proteins, of 40 and 87 kDa, expressed under iron-restricted growth conditions in vitro and in vivo. N-terminal sequencing and subsequent genome analysis showed that these proteins are encoded by adjacent monocistronic open reading frames designated frpA and frpB, respectively. Studies with an S. aureus fur mutant confirmed that expression of FrpA and FrpB is regulated by Fur but that there also appears to be differential expression of these proteins in different iron-restricted media in vitro. FrpA and FrpB share some amino acid sequence homology with each other and with a putative S. aureus membrane protein, FrpC. frpC is the first gene of a Fur-regulated operon encoding four proteins of unknown function (FrpC, -D, -G, and -H) and the binding protein (FrpE) and permease (FrpF) of a putative iron transporter. Antisense mutagenesis and bioassays showed that FrpA and FrpB are not required for growth of S. aureus under iron-restricted conditions in vitro and do not appear to be involved in the transport of iron from siderophores or in binding of hemin. Further phenotypic analysis suggested that FrpA may be involved in adhesion of S. aureus to plastic in vitro. Binding of S. aureus to microtiter wells was found to be iron regulated, and iron-restricted S. aureus containing antisense frpA or frpAB but not frpB constructs showed reduced binding compared to vector construct controls.
Collapse
Affiliation(s)
- Julie A Morrissey
- Institute of Infections and Immunity, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
73
|
Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 2002; 10:238-45. [PMID: 11973158 DOI: 10.1016/s0966-842x(02)02342-9] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
On the basis of the recently determined genome sequence of Listeria monocytogenes, we performed a global analysis of the surface-protein-encoding genes. Only proteins displaying a signal peptide were taken into account. Forty-one genes encoding LPXTG proteins, including the previously known internalin gene family, were detected. Several genes encoding proteins that, like InlB and Ami, possess GW modules that attach them to lipoteichoic acids were also identified. Additionally, the completed genome sequence revealed genes encoding proteins potentially anchored in the cell membrane by a hydrophobic tail as well as genes encoding P60-like proteins and lipoproteins. We describe these families and discuss their putative implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Didier Cabanes
- Unité des Interactions Bactéries Cellules, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
74
|
Abstract
The opportunistic human pathogen Staphylococcus epidermidis has become the most important cause of nosocomial infections in recent years. Its pathogenicity is mainly due to the ability to form biofilms on indwelling medical devices. In a biofilm, S. epidermidis is protected against attacks from the immune system and against antibiotic treatment, making S. epidermidis infections difficult to eradicate.
Collapse
Affiliation(s)
- Cuong Vuong
- Rocky Mountain Laboratories, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 903 S 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
75
|
Eystathioy T, Chan EKL, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 2002; 13:1338-51. [PMID: 11950943 PMCID: PMC102273 DOI: 10.1091/mbc.01-11-0544] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A novel human cellular structure has been identified that contains a unique autoimmune antigen and multiple messenger RNAs. This complex was discovered using an autoimmune serum from a patient with motor and sensory neuropathy and contains a protein of 182 kDa. The gene and cDNA encoding the protein indicated an open reading frame with glycine-tryptophan (GW) repeats and a single RNA recognition motif. Both the patient's serum and a rabbit serum raised against the recombinant GW protein costained discrete cytoplasmic speckles designated as GW bodies (GWBs) that do not overlap with the Golgi complex, endosomes, lysosomes, or peroxisomes. The mRNAs associated with GW182 represent a clustered set of transcripts that are presumed to reside within the GW complexes. We propose that the GW ribonucleoprotein complex is involved in the posttranscriptional regulation of gene expression by sequestering a specific subset of gene transcripts involved in cell growth and homeostasis.
Collapse
|