51
|
Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev Vaccines 2007; 4:867-80. [PMID: 16372882 DOI: 10.1586/14760584.4.6.867] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinically relevant pathognomonic consequences of human infection by Trypanosoma cruzi are dilation and hypertrophy of the left ventricle walls and thinning of the apex. The major complications and debilitating evolutionary outcomes of chronic infection include ventricular fibrillation, thromboembolism and congestive heart failure. American trypanosomiasis (Chagas disease) poses serious public healthcare and budgetary concerns. The currently available drugs, although effective against acute infection, are highly toxic and ineffective in arresting or attenuating clinical disease symptoms in chronic patients. The development of an efficacious prophylactic vaccine faces many challenges, and progress is slow, despite several years of effort. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested in animal models, and some efforts have been successful in controlling infection and disease. This review will summarize the accumulated knowledge about the parasite and disease, as well as pathogenesis and protective immunity. The authors will discuss the efforts to date, and the challenges faced in achieving an efficient prophylactic vaccine against human American trypanosomiasis, and present the future perspectives.
Collapse
Affiliation(s)
- Nisha Garg
- Sealy Center for Vaccine Development, Department of Microbiology, Immunology and Pathology, University of Texas Medical Branch, Galveston TX 77555, USA.
| | | |
Collapse
|
52
|
Duthie MS, Kahn M, Zakayan A, White M, Kahn SJ. Parasite-induced chronic inflammation is not exacerbated by immunotherapy before or during Trypanosoma cruzi Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1005-12. [PMID: 17538117 PMCID: PMC2044490 DOI: 10.1128/cvi.00087-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi infection causes Chagas' disease, a chronic inflammatory disease. The specific inflammatory responses that cause Chagas' disease remain unclear, but data argue that parasites that persist in the host stimulate chronic self-damaging immune responses. Because T. cruzi appears to stimulate self-damaging responses, the enthusiasm to develop vaccines that boost antiparasite responses that might increase self-damaging responses has been limited. We previously demonstrated that immunization with a T. cruzi trans-sialidase protein or adoptive transfer of trans-sialidase-specific T-cell clones decreased parasitemia, morbidity, and mortality. Here we report that immunization or adoptive transfer with the protein or clones, before or during T. cruzi infection, boosts the anti-T. cruzi immune response without exacerbating acute or chronic tissue inflammation. These results argue that prophylactic and therapeutic immunotherapy for Chagas' disease can be developed safely.
Collapse
Affiliation(s)
- Malcolm S Duthie
- Infectious Disease Research Institute, 1124 Columbia St., Suite 400, Seattle, WA 98104, USA
| | | | | | | | | |
Collapse
|
53
|
Kumar A, Kumar K, Korde R, Puri SK, Malhotra P, Singh Chauhan V. Falcipain-1, a Plasmodium falciparum cysteine protease with vaccine potential. Infect Immun 2007; 75:2026-34. [PMID: 17242063 PMCID: PMC1865716 DOI: 10.1128/iai.01533-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/24/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022] Open
Abstract
Cysteine proteases (falcipains) of Plasmodium falciparum are potential targets for antimalarial chemotherapy, since they have been shown to be involved in important cellular functions such as hemoglobin degradation and invasion/rupture of red blood cells during parasite life cycle. The role of falcipain-1 at the asexual blood stages of the parasite still remains uncertain. This is mainly due to a lack of methods to prepare this protein in an active form. In order to obtain biologically active falcipain-1, a number of falcipain-1 constructs were designed and a systematic assessment of the refolding conditions was done. We describe here the expression, purification, and characterization of a falcipain-1 construct encoding mature falcipain-1 and 35 amino acids from the C-terminal of the pro domain. Recombinant falcipain-1 was overexpressed in the form of inclusion bodies, solubilized, and purified by Ni(2+)-nitrilotriacetic acid affinity chromatography under denaturing conditions. A systemic approach was then followed to optimize refolding parameters. An optimum refolding condition was obtained, and the yield of the purified refolded falcipain-1 was approximately 1 mg/liter. Activity of the protein was analyzed by fluorometric and gelatin degradation assays. Immunolocalization studies using anti-falcipain-1 sera revealed a distinct staining at the apical end of the P. falciparum merozoites. Previous studies using falcipain-1-specific inhibitors have suggested a role of falcipain-1 in merozoite invasion. Based on its localization and its role in invasion, we analyzed the immunogenicity of falcipain-1 in mice, followed by heterologous challenge with Plasmodium yoelii sporozoites. Our results suggest a possible role of falcipain-1 in merozoite invasion.
Collapse
Affiliation(s)
- Amit Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
54
|
Giddings OK, Eickhoff CS, Smith TJ, Bryant LA, Hoft DF. Anatomical route of invasion and protective mucosal immunity in Trypanosoma cruzi conjunctival infection. Infect Immun 2006; 74:5549-60. [PMID: 16988230 PMCID: PMC1594886 DOI: 10.1128/iai.00319-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that can initiate mucosal infection after conjunctival exposure. The anatomical route of T. cruzi invasion and spread after conjunctival parasite contamination remains poorly characterized. In the present work we have identified the sites of initial invasion and replication after contaminative conjunctival challenges with T. cruzi metacyclic trypomastigotes using a combination of immunohistochemical and real-time PCR confirmatory techniques in 56 mice between 3 and 14 days after challenge. Our results demonstrate that the predominant route of infection involves drainage of parasites through the nasolacrimal duct into the nasal cavity. Initial parasite invasion occurs within the ductal and respiratory epithelia. After successive waves of intracellular replication and cell-to-cell spread, parasites drain via local lymphatic channels to lymph nodes and then disseminate through the blood to distant tissues. This model of conjunctival challenge was used to identify immune responses associated with protection against mucosal infection. Preceding mucosal infection induces mucosal immunity, resulting in at least 50-fold reductions in recoverable tissue parasite DNA in immune mice compared to controls 10 days after conjunctival challenge (P < 0.05). Antigen-specific gamma interferon production by T cells was increased at least 100-fold in cells harvested from immune mice (P < 0.05). Mucosal secretions containing T. cruzi-specific secretory immunoglobulin A harvested from immune mice were shown to protect against mucosal parasite infection (P < 0.05), demonstrating that mucosal antibodies can play a role in T. cruzi immunity. This model provides an important tool for detailed studies of mucosal immunity necessary for the development of mucosal vaccines.
Collapse
Affiliation(s)
- O K Giddings
- Department of Molecular Microbiology and Immunology, St. Louis University Health Science Center, 3635 Vista Ave., FDT-8N, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
55
|
Araújo AFS, de Alencar BCG, Vasconcelos JRC, Hiyane MI, Marinho CRF, Penido MLO, Boscardin SB, Hoft DF, Gazzinelli RT, Rodrigues MM. CD8+-T-cell-dependent control of Trypanosoma cruzi infection in a highly susceptible mouse strain after immunization with recombinant proteins based on amastigote surface protein 2. Infect Immun 2005; 73:6017-25. [PMID: 16113322 PMCID: PMC1231112 DOI: 10.1128/iai.73.9.6017-6025.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously described that DNA vaccination with the gene encoding amastigote surface protein 2 (ASP-2) protects approximately 65% of highly susceptible A/Sn mice against the lethal Trypanosoma cruzi infection. Here, we explored the possibility that bacterial recombinant proteins of ASP-2 could be used to improve the efficacy of vaccinations. Initially, we compared the protective efficacy of vaccination regimens using either a plasmid DNA, a recombinant protein, or both sequentially (DNA priming and protein boosting). Survival after the challenge was not statistically different among the three mouse groups and ranged from 53.5 to 75%. The fact that immunization with a recombinant protein alone induced protective immunity revealed the possibility that this strategy could be pursued for vaccination. We investigated this possibility by using six different recombinant proteins representing distinct portions of ASP-2. The vaccination of mice with glutathione S-transferase fusion proteins representing amino acids 261 to 500 or 261 to 380 of ASP-2 in the presence of the adjuvants alum and CpG oligodeoxynucleotide 1826 provided remarkable immunity, consistently protecting 100% of the A/Sn mice. Immunity was completely reversed by the in vivo depletion of CD8(+) T cells, but not CD4(+) T cells, and was associated with the presence of CD8(+) T cells specific for an epitope located between amino acids 320 and 327 of ASP-2. We concluded that a relatively simple formulation consisting of a recombinant protein with a selected portion of ASP-2, alum, and CpG oligodeoxynucleotide 1826 might be used to cross-prime strong CD8(+)-T-cell-dependent protective immunity against T. cruzi infection.
Collapse
Affiliation(s)
- Adriano F S Araújo
- CINTERGEN, UNIFESP-Escola Paulista de Medicina, Rua Mirassol, 207, São Paulo-SP 04044-010, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Hernández HM, Figueredo M, Garrido N, Sánchez L, Sarracent J. Intranasal immunisation with a 62 kDa proteinase combined with cholera toxin or CpG adjuvant protects against Trichomonas vaginalis genital tract infections in mice. Int J Parasitol 2005; 35:1333-7. [PMID: 16202417 DOI: 10.1016/j.ijpara.2005.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/21/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Trichomonosis, caused by the protozoan parasite Trichomonas vaginalis, is one of the most frequent sexually transmitted diseases and is widely spread in all continents. Trichomonas vaginalis as well as other protozoan organisms have high levels of proteolitic activity mainly of the cysteine-proteinase type. This activity is necessary for recognition and adhesion of the parasite to the superficial epithelial cells of the host. In the present study, we show that intranasal immunisation with a 62 kDa cysteine-proteinase purified from T. vaginalis excretion-secretion products in combination with cholera toxin or with synthetic oligodeoxynucleotides (ODN) that contain unmethylated CpG motifs (CpG-ODN) elicits 62kDa specific IgG and IgA in vaginal lavage fluid and specific IgG in serum. This immunisation protocol resulted in enhanced elimination of parasites following intravaginal challenge of BALB/c mice.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, Pedro Kourí Tropical Medicine Institute, Havana, Cuba.
| | | | | | | | | |
Collapse
|
57
|
Hoft DF, Eickhoff CS. Type 1 immunity provides both optimal mucosal and systemic protection against a mucosally invasive, intracellular pathogen. Infect Immun 2005; 73:4934-40. [PMID: 16041007 PMCID: PMC1201214 DOI: 10.1128/iai.73.8.4934-4940.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been hypothesized that optimal vaccine immunity against mucosally invasive, intracellular pathogens may require the induction of different types of immune responses in mucosal and systemic lymphoid tissues. Mucosal type 2/3 responses (producing interleukin-4 [IL-4], IL-6 and/or transforming growth factor beta) could be necessary for optimal induction of protective secretory immunoglobulin A responses. On the other hand, systemic type 1 responses (including gamma interferon [IFN-gamma], tumor necrosis factor alpha, and optimal cytotoxic T-cell responses) are likely to be critical for protection against the disseminated intracellular replication that occurs after mucosal invasion. Despite these predictions, we recently found that vaccines inducing highly polarized type 1 immunity in both mucosal and systemic tissues provided optimal mucosal and systemic protection against the protozoan pathogen Trypanosoma cruzi. To further address this important question in a second model system, we now have studied the capacity of knockout mice to develop protective immune memory. T. cruzi infection followed by nifurtimox treatment rescue was used to immunize CD4, CD8, beta2-microglobulin, inducible nitric oxide synthase (iNOS), IL-12, IFN-gamma, and IL-4 knockout mice. Despite the previously demonstrated importance of CD4(+) T cells, CD8(+) T cells, and nitric oxide for T. cruzi immunity, CD4, CD8, and iNOS knockout mice developed mucosal and systemic protective immunity. However, IL-12, IFN-gamma, and beta2-microglobulin-deficient mice failed to develop mucosal or systemic protection. In contrast, IL-4 knockout mice developed maximal levels of both mucosal and systemic immune protection. These results strongly confirm our earlier conclusion from studies with polarizing vaccination protocols that type 1 immunity provides optimal mucosal and systemic protection against a mucosally invasive, intracellular pathogen.
Collapse
Affiliation(s)
- Daniel F Hoft
- Division of Infectious Diseases and Immunology, Saint Louis University Health Sciences Center, 3635 Vista Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
58
|
Pereira VRA, Lorena VMB, Da Silva APG, Coutinho EM, Silvas ED, Ferreira AGP, Miranda P, Krieger MA, Goldenberg S, Soares MBP, Correa-Oliveira R, Gomes YM. Immunization with cytoplasmic repetitive antigen and flagellar repetitive antigen of Trypanosoma cruzi stimulates a cellular immune response in mice. Parasitology 2005; 129:563-70. [PMID: 15552401 DOI: 10.1017/s0031182004006043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In previous studies, we demonstrated that CRA and FRA recombinant proteins, used for diagnosis of Chagas' disease, elicited a humoral immune response in susceptible and resistant mice. To understand better the immune response to these proteins, we have evaluated, the cellular immune response in CRA- and in FRA-immunized BALB/c and C57BL/6 mice. A specific cellular lymphoproliferative response was observed in both strains of mice. Spleen cell cultures mainly from CRA-immunized C57BL/6 and FRA-immunized BALB/c mice produced high levels of IFN-y, indicating the induction of a Type 1 immune response. Regarding the T cell subsets, CD4+ T cells were the major source of IFN-y in CRA- and FRA-immunized mice. These results suggest that CRA and FRA are important immunogens in inducing a Type 1 immune response and that they may be considered as potential vaccine antigens.
Collapse
Affiliation(s)
- V R A Pereira
- Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Pereira VRA, Lorena VMB, Nakazawa M, Luna CF, Silva ED, Ferreira AGP, Krieger MA, Goldenberg S, Soares MBP, Coutinho EM, Correa-Oliveira R, Gomes YM. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection. Parasitol Res 2005; 96:154-61. [PMID: 15856302 DOI: 10.1007/s00436-005-1336-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 02/24/2005] [Indexed: 01/23/2023]
Abstract
In previous studies, cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins induced specific humoral and cellular immune responses in susceptible and resistant mice in the absence of Trypanosoma cruzi infection with a significant induction of the Interferon-gamma (IFN-gamma) production in those animals. In this follow-up paper, the immunostimulatory and protective effects of these proteins were evaluated by immunizing with CRA or FRA antigens, BALB/c and C57BL/6 mice and challenging with a T. cruzi (Y strain). Both proteins induced humoral response with high levels of IgG isotypes as well as cellular immunity with high levels of IFN-gamma when compared to controls. However, the lymphocyte proliferative response was minimal. The survival rate at 30 days post-infection was significant in CRA (60%) or FRA (50%)--immunized BALB/c mice and CRA (83.3%)--immunized C57BL/6 mice. Taken as a whole these findings indicate that CRA and FRA are immunogenic and potentially important for protective immunity.
Collapse
|
60
|
Fernandes LC, Bastos IMD, Lauria-Pires L, Rosa ACO, Teixeira ARL, Grellier P, Schrével J, Santana JM. Specific human antibodies do not inhibit Trypanosoma cruzi oligopeptidase B and cathepsin B, and immunoglobulin G enhances the activity of trypomastigote-secreted oligopeptidase B. Microbes Infect 2005; 7:375-84. [PMID: 15784182 DOI: 10.1016/j.micinf.2004.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/26/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Trypanosoma cruzi expresses oligopeptidase B and cathepsin B that have important functions in the interaction with mammalian host cells. In this study, we demonstrated that sera from both chagasic rabbits and humans have specific antibodies to highly purified native oligopeptidase B and cathepsin B. Levels of antibodies to cathepsin B were higher than those observed to oligopeptidase B by absorbance values recorded upon ELISA. We next showed that 90% and 30% of sera from individuals with mucocutaneous leishmaniasis have antibodies that recognize oligopeptidase B and cathepsin B as antigens, respectively. In addition, 55% and 40% of sera from kala-azar patients have antibodies to oligopeptidase B and cathepsin B, respectively. Sera from malaria patients did not recognize the proteases as antigens. Despite high levels of specific antibodies, sera from T. cruzi-infected patients did not inhibit the activities of either oligopeptidase B or cathepsin B. Furthermore, sera or IgG purified from either infected or non-infected individuals enhanced the enzymatic activity of the secreted oligopeptidase B. Oligopeptidase B secreted by trypomastigotes and cathepsin B released upon parasite lysis retain their enzymatic activities and may be associated with Chagas' disease pathogenesis by hydrolyzing host proteins and inducing host immune responses.
Collapse
Affiliation(s)
- Luciana C Fernandes
- Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970 Brasília, DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Dost CK, Saraiva J, Monesi N, Zentgraf U, Engels W, Albuquerque S. Six Trypanosoma cruzi strains characterized by specific gene expression patterns. Parasitol Res 2005; 94:134-40. [PMID: 15322923 DOI: 10.1007/s00436-004-1188-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intracellular parasite Trypanosoma cruzi, the causative agent of Chagas disease, is known to comprise heterogeneous populations. One possibility to explain the obviously distinct phenotypes of different T. cruzi strains is differential expression of particular genes. This could result in environmental adaptations of the parasite within host organs, leading to distinct clinical symptoms. With the aim of identifying differentially expressed genes, we examined different T. cruzi strains by suppression subtractive hybridization analysis. The isolated clones were sequenced and Blasted for sequence-homology with known T. cruzi genes. A stage-specific glycoprotein (82gp), an 85-kDa protein with homology to heat-shock proteins, a beta-tubulin gene, a hexosetransporter, a dehydrogenase/ prostaglandin F2alpha-synthase and a cathepsin B-like protease were identified. The expression of these genes was analyzed by RT-PCR. Diverse expression patterns were detected for different T. cruzi strains, but no specific correlation between the gene expression and the classification of groups could be found. We discuss the presumed importance of these T. cruzi gene expression patterns for future strategies of molecular therapy of Chagas disease. For pathological studies, other parameters such as distinct gene/antigen expression could also be of interest, because they probably likewise correlate with distinct phenotypes.
Collapse
Affiliation(s)
- C K Dost
- Departamento de Análises Clinicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas, Ribeirão Preto-USP, Ribeirão Preto, Brazil.
| | | | | | | | | | | |
Collapse
|
62
|
Bhatia V, Sinha M, Luxon B, Garg N. Utility of the Trypanosoma cruzi sequence database for identification of potential vaccine candidates by in silico and in vitro screening. Infect Immun 2004; 72:6245-54. [PMID: 15501750 PMCID: PMC523045 DOI: 10.1128/iai.72.11.6245-6254.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are abundantly expressed in the infective and intracellular stages of Trypanosoma cruzi and are recognized as antigenic targets by both the humoral and cellular arms of the immune system. Previously, we demonstrated the efficacy of genes encoding GPI-anchored proteins in eliciting partially protective immunity to T. cruzi infection and disease, suggesting their utility as vaccine candidates. For the identification of additional vaccine targets, in this study we screened the T. cruzi expressed sequence tag (EST) and genomic sequence survey (GSS) databases. By applying a variety of web-based genome-mining tools to the analysis of approximately 2,500 sequences, we identified 348 (37.6%) EST and 260 (17.4%) GSS sequences encoding novel parasite-specific proteins. Of these, 19 sequences exhibited the characteristics of secreted and/or membrane-associated GPI proteins. Eight of the selected sequences were amplified to obtain genes TcG1, TcG2, TcG3, TcG4, TcG5, TcG6, TcG7, and TcG8 (TcG1-TcG8) which are expressed in different developmental stages of the parasite and conserved in the genome of a variety of T. cruzi strains. Flow cytometry confirmed the expression of the antigens encoded by the cloned genes as surface proteins in trypomastigote and/or amastigote stages of T. cruzi. When delivered as a DNA vaccine, genes TcG1-TcG6 elicited a parasite-specific antibody response in mice. Except for TcG5, antisera to genes TcG1-TcG6 exhibited trypanolytic activity against the trypomastigote forms of T. cruzi, a property known to correlate with the immune control of T. cruzi. Taken together, our results validate the applicability of bioinformatics in genome mining, resulting in the identification of T. cruzi membrane-associated proteins that are potential vaccine candidates.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston 77555, USA
| | | | | | | |
Collapse
|
63
|
Frank FM, Petray PB, Cazorla SI, Muñoz MC, Corral RS, Malchiodi EL. Use of a purified Trypanosoma cruzi antigen and CpG oligodeoxynucleotides for immunoprotection against a lethal challenge with trypomastigotes. Vaccine 2004; 22:77-86. [PMID: 14604574 DOI: 10.1016/s0264-410x(03)00541-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The crucial role played by Ag163B6/cruzipain, the major cystein proteinase of Trypanosoma cruzi, in the process of parasite internalization into mammalian cells and IgG hydrolysis, signals this antigen as a potential target for raising a protective immune response against Chagas' disease. On the other hand, synthetic oligodeoxynucleotides containing CpG-motifs (CpG-ODN) are capable of driving immunity toward a Th1 bias. Considering the importance of Th1 mechanisms in resistance against this intracellular parasite, we analyzed the ability of Ag163B6/cruzipain plus CpG-ODN to induce immunoprotection against a lethal challenge with trypomastigotes. Mice were immunized with Ag163B6+CpG-ODN showing high specific antibody titers, mostly IgG2a. Spleen cells from these mice strongly proliferated and presented significant increase of IL-2 and IFN-gamma concentrations in their supernatant upon antigen stimulation. Trypomastigote challenge rendered elevated parasitemia and mortality in all control groups, meanwhile Ag163B6+CpG-ODN mice displayed the lowest level of blood parasites and 100% survival to acute infection. Besides, we demonstrated that other parasite antigens introduced into mice when challenged, and consequently never seen before by the immune system, also elicited a Th1 immune response. Taken together, these results plus others provide the basis for the design of a multicomponent anti-T. cruzi vaccine which may ultimately be used not only to protect humans at risk of infection, but also may alleviate or prevent the pathogenic responses characteristic of chronic Chagas' disease by reducing or perhaps eliminating tissue parasites from infected patients.
Collapse
Affiliation(s)
- Fernanda M Frank
- Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
64
|
Aoki MP, Guiñazú NL, Pellegrini AV, Gotoh T, Masih DT, Gea S. Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes. Am J Physiol Cell Physiol 2004; 286:C206-12. [PMID: 13679306 DOI: 10.1152/ajpcell.00282.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An intense myocarditis is frequently found in the acute phase of Trypanosoma cruzi infection. Despite the cardiac damage, infected individuals may remain asymptomatic for decades. Thus T. cruzi may directly prevent cardiomyocyte death to keep heart destruction in check. Recently, it has been shown that Schwann cell invasion by T. cruzi, their prime target in the peripheral nervous system, suppressed host cell apoptosis caused by growth factor deprivation. Likewise, the trans-sialidase of T. cruzi reproduced this antiapoptotic activity of the parasite. In this study, we have investigated the effect of cruzipain, another important T. cruzi antigen, on survival and cell death of neonatal BALB/c mouse cardiomyocyte cultures. We have found that cruzipain, as well as T. cruzi infection, promoted survival of cardiomyocytes cultured under serum deprivation. The antiapoptotic effect was mediated by Bcl-2 expression but not by Bcl-xL expression. Because arginase activity is involved in cell differentiation and wound healing in most cell types and it favors parasite growth within the cell, we have further investigated the effect of cruzipain on the regulation of l-arginine metabolic pathways. Our results have revealed that cruzipain enhanced arginase activity and the expression of arginase-2 isoform but failed to induce nitric oxide synthase activity. In addition, the inhibition of arginase activity by NG-hydroxy-l-arginine, abrogated the antiapoptotic action of cruzipain. The results demonstrate that cruzipain may act as a survival factor for cardiomyocytes because it rescued them from apoptosis and stimulated arginase-2.
Collapse
Affiliation(s)
- Maria P Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Univ. Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad universitaria, CP 5000, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
65
|
Breganó JW, Picão RC, Graça VK, Menolli RA, Itow Jankevicius S, Pinge Filho P, Jankevicius JV. Phytomonas serpens, a tomato parasite, shares antigens withTrypanosoma cruzithat are recognized by human sera and induce protective immunity in mice. ACTA ACUST UNITED AC 2003; 39:257-64. [PMID: 14642311 DOI: 10.1016/s0928-8244(03)00256-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The immune cross-reactivity between Trypanosoma cruzi, the protozoan that causes Chagas' disease, and Phytomonas serpens, a trypanosomatid that infects tomatoes, was studied. Sera from patients with Chagas' disease presented a strong reactivity with P. serpens antigens by conventional serological assays such as indirect immunofluorescence (IIF) and direct agglutination test (DAT), confirmed after cross-absorption experiments. The results show that this protozoan is highly immunogenic and that rabbit and mouse hyperimmune serum raised against T. cruzi or P. serpens was able to recognize both T. cruzi and P. serpens antigens in immunofluorescence and agglutination assays. The antigenic cross-reactivity between T. cruzi and P. serpens was also demonstrated in vivo. BALB/c mice immunized by the intraperitoneal or oral route with P. serpens and later challenged with a lethal inoculum of T. cruzi blood forms showed a significant decrease in parasitemia and increase in survival compared to controls. A practical implication of these findings is that the ingestion by humans or animals of living plant trypanosomatids present in naturally infected edible fruits could potentially prime the immune response to T. cruzi antigens and interfere with the development of T. cruzi infection.
Collapse
Affiliation(s)
- José Wander Breganó
- Laboratório de Tripanosomatídeos, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil.
| | | | | | | | | | | | | |
Collapse
|
66
|
Eickhoff CS, Eckmann L, Hoft DF. Differential interleukin-8 and nitric oxide production in epithelial cells induced by mucosally invasive and noninvasive Trypanosoma cruzi trypomastigotes. Infect Immun 2003; 71:5394-7. [PMID: 12933891 PMCID: PMC187333 DOI: 10.1128/iai.71.9.5394-5397.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi metacyclic trypomastigotes (MT), but not blood form trypomastigotes (BFT), are highly mucosally infective. We investigated the abilities of MT and BFT to induce inflammation and/or intracellular killing activity within mucosal epithelia. BFT, but not MT, induced marked increases in interleukin-8, GRO-alpha, MCP-1, and nitric oxide production in HeLa and AGS cells, despite similar infectivities. MT may avoid induction of inflammation as an important biological mechanism facilitating mucosal invasion.
Collapse
Affiliation(s)
- C S Eickhoff
- Department of Internal Medicine, Saint Louis University Health Sciences Center, St. Louis, Missouri, USA
| | | | | |
Collapse
|
67
|
Berasain P, Carmona C, Frangione B, Cazzulo JJ, Goñi F. Specific cleavage sites on human IgG subclasses by cruzipain, the major cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol 2003; 130:23-9. [PMID: 14550893 DOI: 10.1016/s0166-6851(03)00139-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cruzipain, the major cysteine proteinase of Trypanosoma cruzi, might have other biological roles than its metabolic functions. In this report, we have explored the interaction of cruzipain with molecules of the immune system. The enzyme was used to digest all human IgG subclasses at different pH values and lengths of time. At pH 7.3, all subclasses were readily split at the hinge region. Immunoblot and amino acid sequence analysis showed fragments of IgG1 and IgG3 to be compatible with Fab and Fc, whereas IgG2 and IgG4 rendered Fab2 and Fc. In all cases the fragments produced might impair the binding capacities and the effector functions of specific IgG. At these cleavage sites cruzipain displays cathepsin L and/or cathepsin B activities and shows a clear preference for Pro at the P'2 position and polar residues at P1. Despite the activity of cruzipain within the hinge, the enzyme also cleaved all heavy chains between the CH2 and CH3 domains; producing Fc'-like-fragments of 14 kDa. These fragments are potential candidates to block or saturate Fc receptors on immunocompetent cells. At mild acidic pH cruzipain produced further degradation of the Fc of all subclasses, the Fd of IgG4 and partially the Fd of IgG1, with the consistent loss of any antibody activity. The L chains apparently were not affected. Thus, cruzipain should be able to modulate, depending on the subclass selected and the pH of the environment, the production and the length of different biologically active/inactive IgG fragments.
Collapse
Affiliation(s)
- Patricia Berasain
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
68
|
Soares MBP, Gonçalves R, Pyrrho AS, Costa DA, Paiva CN, Gattass CR. Balanced cytokine-producing pattern in mice immunized with an avirulent Trypanosoma cruzi. AN ACAD BRAS CIENC 2003; 75:167-72. [PMID: 12894302 DOI: 10.1590/s0001-37652003000200005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that inoculation of BALB/c mice with trypomastigotes of CL-14, an avirulent Trypanosoma cruzi clone, prevents the development of parasitemia and mortality after challenge with virulent CL strain. In this report, we investigated the cytokine and antibody profiles induced by inoculation with CL-14 clone. Groups of mice were inoculated with trypomastigotes of CL-14 clone and challenged with infective CL strain. Challenged CL-14-inoculated mice had lower levels of IFN-gamma and higher production of IgG1 antibodies as compared to CL strain-infected mice. Previous inoculation with CL-14 clone partially prevented the suppression of IL-2 production caused by CL strain infection. No significant differences were found regarding IL-4 production by splenocytes from CL-14-inoculated or control groups after challenge with CL-strain. Our results show that protection against acute T. cruzi infection induced by CL-14 inoculation correlates with a balanced T1/T2 cytokine production, a profile likely to be beneficial for the host.
Collapse
Affiliation(s)
- Milena B P Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | |
Collapse
|
69
|
Michailowsky V, Luhrs K, Rocha MOC, Fouts D, Gazzinelli RT, Manning JE. Humoral and cellular immune responses to Trypanosoma cruzi-derived paraflagellar rod proteins in patients with Chagas' disease. Infect Immun 2003; 71:3165-71. [PMID: 12761095 PMCID: PMC155720 DOI: 10.1128/iai.71.6.3165-3171.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sera and peripheral blood mononuclear cells (PBMC) from patients displaying different clinical symptoms as well as from normal uninfected individuals (NI) were used to evaluate the humoral and cellular responses of Chagas' disease patients to Trypanosoma cruzi-derived paraflagellar rod proteins (PFR). Our results show that sera from both asymptomatic Chagas' disease patients (ACP) and cardiac Chagas' disease patients (CCP) have higher levels of antibodies to PFR than sera from NI. Immunoglobulin G1 (IgG1) and IgG3 were the main Ig isotypes that recognized PFR. We also tested three recombinant forms of PFR, named rPAR-1, rPAR-2, and rPAR-3, by Western blot analysis. Sera from seven out of eight patients with Chagas' disease recognized one of the three rPAR forms. Sera from 75, 50, and 37.5% of Chagas' disease patients tested recognized rPAR-3, rPAR-2, and rPAR-1, respectively. PFR induced proliferation of 100 and 70% of PBMC from ACP and CCP, respectively. Further, stimulation of cells from Chagas' disease patients with PFR enhanced the frequencies of both small and large CD4(+) CD25(+) and CD4(+) CD69(+) lymphocytes, as well as that of small CD8(+) CD25(+) lymphocytes. Finally, we evaluated the ability of PFR to elicit the production of gamma interferon (IFN-gamma) by PBMC from patients with Chagas' disease. Fifty percent of the PBMC from ACP as well as CCP produced IFN-gamma upon stimulation with PFR. PFR enhanced the percentages of IFN-gamma-producing cells in both CD3(+) and CD3(-) populations. Within the T-cell population, large CD4(+) T lymphocytes were the main source of IFN-gamma.
Collapse
Affiliation(s)
- Vladimir Michailowsky
- Laboratory of Immunopathology, René Rachou Research Center-Oswaldo Cruz Foundation, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
70
|
Boscardin SB, Kinoshita SS, Fujimura AE, Rodrigues MM. Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection. Infect Immun 2003; 71:2744-57. [PMID: 12704149 PMCID: PMC153249 DOI: 10.1128/iai.71.5.2744-2757.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunization of mice with plasmids containing Trypanosoma cruzi genes induced specific antibodies, CD4(+) Th1 and CD8(+) Tc1 cells, and protective immunity against infection. In most cases, plasmids used for DNA vaccination contained genes encoding antigens expressed by trypomastigotes, the nonreplicative forms of the parasite. In this study, we explored the possibility of using genes expressed by amastigotes, the form of the parasite which replicates inside host cells, for experimental DNA vaccination. For that purpose, we selected a gene related to the amastigote surface protein 2 (ASP-2), an antigen recognized by antibodies and T cells from infected mice and humans, for our study. Using primers specific for the asp-2 gene, four distinct groups of genes were amplified from cDNA from amastigotes of the Y strain of T. cruzi. At the nucleotide level, they shared 82.3 to 89.9% identity with the previously described asp-2 gene. A gene named clone 9 presented the highest degree of identity with the asp-2 gene and was selected for immunological studies. Polyclonal antisera raised against the C terminus of the recombinant protein expressed by the clone 9 gene reacted with an antigen of approximately 83 kDa expressed in amastigotes of T. cruzi. Immunization of BALB/c mice with eukaryotic expression plasmids containing the clone 9 gene elicited specific antibodies and CD4(+) T-cell-dependent gamma interferon secretion. Upon challenge with trypomastigotes, mice immunized with plasmids harboring the clone 9 gene displayed reduced parasitemia and survived lethal infection. We concluded that amastigote cDNA is an interesting source of antigens that can be used for immunological studies, as well as for vaccine development.
Collapse
Affiliation(s)
- Silvia B Boscardin
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil 04023-062
| | | | | | | |
Collapse
|