51
|
A history of the development of Brucella vaccines. BIOMED RESEARCH INTERNATIONAL 2013; 2013:743509. [PMID: 23862154 PMCID: PMC3686056 DOI: 10.1155/2013/743509] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/09/2013] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.
Collapse
|
52
|
Vahedi F, Ghorbani E, Falsafi T. Construction of an expression plasmid (vector) encoding Brucella melitensis outer membrane protein, a candidate for DNA vaccine. Rep Biochem Mol Biol 2013; 1:82-86. [PMID: 26989713 PMCID: PMC4757060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/09/2012] [Indexed: 06/05/2023]
Abstract
BACKGROUND DNA vaccination with plasmid encoding bacterial, viral, and parasitic immunogens has been shown to be an attractive method to induce efficient immune responses. Bacteria of the genus Brucella are facultative intracellular pathogens for which new and efficient vaccines are needed. METHODS To evaluate the use of a DNA immunization strategy for protection against brucellosis, a plasmid containing the DNA encoding the Brucella melitensis (B. melitensis) 31 kDa outer membrane protein, as a potent immunogenic target, was constructed. RESULTS The constructed plasmid, pcDNA3.1+omp31, was injected intramuscularly into mice and the expression of omp31 RNA was assessed by RT-PCR. The integrity of the pcDNA3.1+omp31 construct was confirmed with restriction analysis and sequencing. Omp31 mRNA expression was verified by RT-PCR. CONCLUSION Our results indicate that the pcDNA3.1+omp31 eukaryotic expression vector expresses omp31 mRNA and could be useful as a vaccine candidate.
Collapse
Affiliation(s)
- Fatemeh Vahedi
- Razi Vaccine and Serum Research Institute, Mashhad, Iran
| | - Elnaz Ghorbani
- Microbiology Department, Al-Zahra University, Tehran, Iran
| | | |
Collapse
|
53
|
Ghasemi A, Salari MH, Zarnani AH, Pourmand MR, Ahmadi H, Mirshafiey A, Jeddi-Tehrani M. Immune reactivity of Brucella melitensis-vaccinated rabbit serum with recombinant Omp31 and DnaK proteins. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:19-23. [PMID: 23467315 PMCID: PMC3577567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Brucella melitensis infection is still a major health problem for human and cattle in developing countries and the Middle East. MATERIALS AND METHODS In this study, in order to screen immunogenic candidate antigens for the development of a Brucella subunit vaccine, a cytoplasmic protein (DnaK) and an outer membrane protein (Omp31) of B. melitensis were cloned, expressed in E.coli BL21 and then purified using Ni-NTA agarose. Immunized serum was prepared from a rabbit inoculated with attenuated B. melitensis. RESULTS AND CONCLUSION It was proved that immunized serum contains antibodies against recombinant Omp31 (rOmp31) and DnaK (rDnaK) by Western blot and ELISA assays. The results may suggest the importance of these proteins as subunit vaccines against B. melitensis as well as targets for immunotherapy.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran,Iran
| | - Mohammad Hossein Salari
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran,Iran
| | - Amir Hassan Zarnani
- Nanobiotechnology Research Center, Avecina Research Institue, ACECR, Tehran, Iran,Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran,Iran
| | - Hojat Ahmadi
- Department of Bacterial Vaccine and Antigen Production, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran,Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Corresponding author: Mahmood Jeddi-Tehrani, Address: Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, PO.Box 19615-1177, Tehran, Iran. Tel: +98-21-22432020. Fax: +98-21-22432021. E-mail:
| |
Collapse
|
54
|
|
55
|
Evaluation of protective effect of DNA vaccines encoding the BAB1_0263 and BAB1_0278 open reading frames of Brucella abortus in BALB/c mice. Vaccine 2012; 30:7286-91. [PMID: 23026687 DOI: 10.1016/j.vaccine.2012.09.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/25/2012] [Accepted: 09/17/2012] [Indexed: 11/24/2022]
Abstract
The immunogenicity of two DNA vaccines encoding open reading frames (ORFs) of genomic island 3 (GI-3), specific for Brucella abortus and Brucella melitensis, has been examined. Intramuscular injection of plasmid DNA carrying the BAB1_0263 and BAB1_0278 genes (pVF263 and pVF278, respectively) into BALB/c mice elicited both humoral and cellular immune responses. Mice injected with pVF263 or pVF278 had a dominant immunoglobulin G2a (IgG2a) response. In addition, both DNA vaccines elicited a T-cell-proliferative response, but only pVF263 induced significant levels of interferon gamma (INF-γ) upon restimulation with recombinant 263 protein. Neither DNA vaccine induced interleukin (IL)-10, nor IL-4, upon stimulation with an appropriate recombinant protein or crude Brucella protein, suggesting the induction of a typical T-helper 1 (Th1)-dominated immune response. Furthermore, the pVF278 DNA vaccines induced protection in BALB/c mice against challenge with the virulent strain B. abortus 2308. Taken together, these data suggest that DNA vaccination offers an improved delivery strategy for the BAB1_0278 antigen, and provide the first evidence of a protective effect of this antigen.
Collapse
|
56
|
Martins RDC, Irache JM, Gamazo C. Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease. Expert Rev Vaccines 2012; 11:87-95. [PMID: 22149711 DOI: 10.1586/erv.11.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovine brucellosis is a very contagious zoonotic disease distributed worldwide and constitutes a very important zoosanitary and economic problem. The control of the disease includes animal vaccination and slaughter of infected flocks. However, the commercially available vaccine in most countries is based on the attenuated strain Brucella melitensis Rev 1, which presents important safety drawbacks. This review is focused on the most recent and promising acellular vaccine proposals.
Collapse
Affiliation(s)
- Raquel Da Costa Martins
- Department of Pharmaceutics and Pharmaceutical Technology, University of Navarra, C/Irunlarrea, 1 31008-Pamplona, Spain
| | | | | |
Collapse
|
57
|
Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 2012; 30:4907-20. [PMID: 22658928 DOI: 10.1016/j.vaccine.2012.05.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/15/2022]
Abstract
Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine.
Collapse
|
58
|
Qiu J, Wang W, Wu J, Zhang H, Wang Y, Qiao J, Chen C, Gao GF, Allain JP, Li C. Characterization of periplasmic protein BP26 epitopes of Brucella melitensis reacting with murine monoclonal and sheep antibodies. PLoS One 2012; 7:e34246. [PMID: 22457830 PMCID: PMC3311636 DOI: 10.1371/journal.pone.0034246] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/24/2012] [Indexed: 11/22/2022] Open
Abstract
More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.
Collapse
Affiliation(s)
- Jinlang Qiu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Jingbo Wu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Yuanzhi Wang
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Jun Qiao
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Goege F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
59
|
|
60
|
A DNA vaccine strategy for effective antibody induction to pathogen-derived antigens. Methods Mol Biol 2011. [PMID: 21993657 DOI: 10.1007/978-1-61779-346-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA-based vaccines are currently being developed for treating a diversity of human diseases including cancers, autoimmune conditions, allergies, and microbial infections. In this chapter, we present a general protocol that can be used as a starting point for developing DNA vaccines to pathogen-derived antigens, using Neisseria meningitidis as an example. In addition, we describe a fusion gene-based vaccine protocol for increasing the potency of DNA vaccines that are based on poorly immunogenic antigens such as short pathogen-derived polypeptides. Finally, we provide a safe and effective protocol for delivery of DNA vaccines, based on intramuscular injection followed by electroporation.
Collapse
|
61
|
Abstract
Brucella abortus remains a threat to the health and well-being of livestock in states bordering the Greater Yellowstone Area. During the past several years, cohabitation of infected wildlife with cattle has jeopardized the brucellosis-free status of Idaho, USA; Wyoming, USA; and Montana, USA. Current livestock B. abortus vaccines have not proven to be efficacious in bison (Bison bison) or elk (Cervus elaphus nelsoni). One problem with the lack of vaccine efficacy may stem from the failure to understand wildlife immune responses to vaccines. In an attempt to understand their immune responses, bison were vaccinated with eukaryotic DNA expression vectors encoding the Brucella periplasmic protein, bp26, and the chaperone protein, trigger factor (TF). These DNA vaccines have previously been shown to be protective against Brucella infection in mice. Bison were immunized intramuscularly at weeks 0, 2, and 4 with bp26 and TF DNA vaccines plus CpG adjuvant or empty vector (control) plus CpG. Blood samples were collected before vaccination and at 8, 10, and 12 wk after primary vaccination. The results showed that bison immunized with bp26 and TF DNA vaccines developed enhanced antibody, proliferative T cell, and interferon-gamma (IFN-γ) responses upon in vitro restimulation with purified recombinant bp26 or TF antigens, unlike bison immunized with empty vector. Flow cytometric analysis revealed that the percentages of CD4(+) and CD8(+) T lymphocytes from the DNA-vaccinated groups were significantly greater than they were for those bison given empty vector. These data suggest that DNA vaccination of bison may elicit strong cellular immune responses and serve as an alternative for vaccination of bison for brucellosis.
Collapse
|
62
|
Protective efficacy and safety of Brucella melitensis 16MΔmucR against intraperitoneal and aerosol challenge in BALB/c mice. Infect Immun 2011; 79:3653-8. [PMID: 21708998 DOI: 10.1128/iai.05330-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonosis of nearly worldwide distribution. Vaccination against this pathogen is an important control strategy to prevent the disease. Currently licensed vaccine strains used in animals are unacceptable for human use due to undesirable side effects and modest protection. Substantial progress has been made during the past 10 years toward the development of improved vaccines for brucellosis. In part, this has been achieved by the identification and characterization of live attenuated mutants that are safer in the host but still can stimulate an adequate immune response. In the present study, the identification and characterization of the mucR mutant (BMEI 1364) as a vaccine candidate for brucellosis was conducted. BALB/c mice were vaccinated intraperitoneally at a dose of 10(5) CFU with the mutant to evaluate safety and protective efficacy against intraperitoneal and aerosol challenge. All animals vaccinated with the vaccine candidate demonstrated a statistically significant degree of protection against both intraperitoneal and aerosol challenge. Safety was revealed by the absence of Brucella associated pathological changes, including splenomegaly, hepatomegaly, or granulomatous disease. These results suggest that the 16MΔmucR vaccine is safe, elicits a strong protective immunity, and should be considered as a promising vaccine candidate for human use.
Collapse
|
63
|
Singha H, Mallick AI, Jana C, Fatima N, Owais M, Chaudhuri P. Co-immunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu-Zn superoxide dismutase protein against Brucella abortus. Vaccine 2011; 29:4720-7. [PMID: 21565241 DOI: 10.1016/j.vaccine.2011.04.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella abortus and a number of closely related species. Brucellosis has severe impact on the health and economic prosperity of the developing countries due to the persistent nature of infection and unavailability of effective control measures. The Cu-Zn superoxide dismuatse (SOD) protein of Brucella have been extensively studied as a major antigen involved in bacterial evading mechanism of host defence. Being a critical pro-inflammatory cytokine interleukin-18 (IL-18) plays key role in induction of immune mediated protection against intracellular pathogens. In the present study, we aimed to investigate the immunogenic potential of fusogenic liposomes (escheriosomes) encapsulated recombinant Cu-Zn SOD (rSOD) protein alone or in combination with recombinant IL-18 (rIL-18). Escheriosomes encapsulated rSOD mediated immune responses were further increased upon co-immunization with rIL-18. Furthermore, immunization with escheriosomes encapsulated rSOD alone or in combination with rIL-18, increased resistance in mice against challenge with B. abortus 544.
Collapse
Affiliation(s)
- Harisankar Singha
- Division of Biotechnology, Indian Veterinary Research Institute, Izatnagar 243122, India.
| | | | | | | | | | | |
Collapse
|
64
|
Pasquevich KA, Ibañez AE, Coria LM, García Samartino C, Estein SM, Zwerdling A, Barrionuevo P, Oliveira FS, Seither C, Warzecha H, Oliveira SC, Giambartolomei GH, Cassataro J. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS One 2011; 6:e16203. [PMID: 21264260 PMCID: PMC3021544 DOI: 10.1371/journal.pone.0016203] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/15/2010] [Indexed: 01/18/2023] Open
Abstract
As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.
Collapse
Affiliation(s)
- Karina A. Pasquevich
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andrés E. Ibañez
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Lorena M. Coria
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Clara García Samartino
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Silvia M. Estein
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Astrid Zwerdling
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fernanda S. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Christine Seither
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heribert Warzecha
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Guillermo H. Giambartolomei
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
65
|
Commander NJ, Brewer JM, Wren BW, Spencer SA, Macmillan AP, Stack JA. Liposomal delivery of p-ialB and p-omp25 DNA vaccines improves immunogenicity but fails to provide full protection against B. melitensis challenge. GENETIC VACCINES AND THERAPY 2010; 8:5. [PMID: 20637091 PMCID: PMC2918601 DOI: 10.1186/1479-0556-8-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/16/2010] [Indexed: 12/03/2022]
Abstract
Background We have previously demonstrated protective efficacy against B. melitensis using formulations of naked DNA vaccines encoding genes ialB and omp25. The present study was undertaken to further understand the immune response generated by the protective vaccination regimens and to evaluate cationic liposome adsorption as a delivery method to improve vaccine utility. Methods The protective efficacy and immunogenicity of vaccines delivered as four doses of naked DNA, a single dose of naked DNA or a single dose of DNA surface adsorbed to cationic liposomes were compared using the BALB/c murine infection model of B. melitensis. Antigen-specific T cells and antibody responses were compared between the various formulations. Results The four dose vaccination strategy was confirmed to be protective against B. melitensis challenge. The immune response elicited by the various vaccines was found to be dependent upon both the antigen and the delivery strategy, with the IalB antigen favouring CD4+ T cell priming and Omp25 antigen favouring CD8+. Delivery of the p-ialB construct as a lipoplex improved antibody generation in comparison to the equivalent quantity of naked DNA. Delivery of p-omp25 as a lipoplex altered the profile of responsive T cells from CD8+ to CD4+ dominated. Under these conditions neither candidate delivered by single dose naked DNA or lipoplex vaccination methods was able to produce a robust protective effect. Conclusions Delivery of the p-omp25 and p-ialB DNA vaccine candidates as a lipoplex was able to enhance antibody production and effect CD4+ T cell priming, but was insufficient to promote protection from a single dose of either vaccine. The enhancement of immunogenicity by lipoplex delivery is a promising step toward improving the practicality of these two candidate vaccines, and suggests that this lipoplex formulation may be of value in situations where improvements to CD4+ responses are required. However, in the case of Brucella vaccine development it is suggested that further modifications to the candidate vaccines and delivery strategies will be required in order to deliver sustained protection.
Collapse
Affiliation(s)
- Nicola J Commander
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | | | | | | | | | | |
Collapse
|
66
|
Hu XD, Chen ST, Li JY, Yu DH, Yi-zhang, Cai H. An IL-15 adjuvant enhances the efficacy of a combined DNA vaccine against Brucella by increasing the CD8+ cytotoxic T cell response. Vaccine 2010; 28:2408-15. [DOI: 10.1016/j.vaccine.2009.12.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/18/2009] [Accepted: 12/27/2009] [Indexed: 10/20/2022]
|
67
|
Abstract
There is currently no licensed vaccine for brucellosis in humans. Available animal vaccines may cause disease and are considered unsuitable for use in humans. However, the causative pathogen, Brucella, is among the most common causes of laboratory-acquired infections and is a Center for Disease Control category B select agent. Thus, human vaccines for brucellosis are required. This review highlights the considerations that are needed in the journey to develop a human vaccine, including animal models, and includes an assessment of the current status of novel vaccine candidates.
Collapse
Affiliation(s)
- Stuart D Perkins
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK
| | | | | |
Collapse
|
68
|
Kaushik P, Singh DK, Kumar SV, Tiwari AK, Shukla G, Dayal S, Chaudhuri P. Protection of mice against Brucella abortus 544 challenge by vaccination with recombinant OMP28 adjuvanted with CpG oligonucleotides. Vet Res Commun 2009; 34:119-32. [PMID: 20013309 DOI: 10.1007/s11259-009-9337-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2009] [Indexed: 11/24/2022]
Abstract
Brucella abortus, a gram negative, facultative intracellular pathogen causes brucellosis in many animal species and humans. Although live, attenuated vaccines are available against this infection, they suffer from certain limitations. Therefore, the development of an effective subunit vaccine against brucellosis is an area of intense research. The outer membrane proteins (OMPs) of Brucella species have been extensively studied for its immunogenicity and protective ability. We have investigated the potential of CpG ODN to enhance the immunogenicity and protective efficacy of recombinant 28 kDa outer membrane protein (rOMP28) of Brucella melitensis. The study demonstrated vigorous immunoglobulin G (IgG) response of OMP28. The administration of rOMP28 with CpG caused increased cell mediated immune response in terms of induced IgG2a, T-cell proliferation and up-regulation of type I cytokine expression. In contrast, the free antigen suppressed the interferon gamma (type I cytokine) production on in-vitro stimulation of spleenocytes. The result indicates the role of OMP28 in the down regulation of IFN-gamma production. Moreover, the B. abortus S-19 vaccinated mice showed highest production of IL-4 and IFN-gamma. The protective ability of the antigen was evaluated by systemic bacterial clearance after challenging the mouse with B. abortus 544 pathogen. The level of protection was significant in rOMP28+CpG treated mice but was lower than the required level. The results of the present study indicate that rOMP28 could be an immunogen capable of inducing both humoral and cellular immune response. The humoral response was biased towards Th1 type when it was co-administered with CpG.
Collapse
Affiliation(s)
- Purushottam Kaushik
- Division of Veterinary Public Health, Bihar Veterinary College, Patna, Bihar, India.
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Brucella spp. are intracellular bacteria that cause the most frequent zoonosis in the world. Although recent work has advanced the field of Brucella vaccine development, there remains no safe human vaccine. In order to produce a safe and effective human vaccine, the immune response to Brucella spp. requires greater understanding. Induction of Brucella-specific CD8+ T cells is considered an important aspect of the host response; however, the CD8+ T-cell response is not clearly defined. Discovering the epitope containing antigens recognized by Brucella-specific CD8+ T cells and correlating them with microarray data will aid in determining proteins critical for vaccine development that cover a kinetic continuum during infection. Developing tools to take advantage of the BALB/c mouse model of Brucella melitensis infection will help to clarify the correlates of immunity and improve the efficacy of this model. Two H-2(d) CD8+ T-cell epitopes have been characterized, and a group of immunogenic proteins have provoked gamma interferon production by CD8+ T cells. RYCINSASL and NGSSSMATV induced cognate CD8+ T cells after peptide immunization that showed specific killing in vivo. Importantly, we found by microarray analysis that the genes encoding these epitopes are differentially expressed following macrophage infection, further emphasizing that these discordant genes may play an important role in the pathogenesis of B. melitensis infection.
Collapse
|
70
|
Estein SM, Fiorentino MA, Paolicchi FA, Clausse M, Manazza J, Cassataro J, Giambartolomei GH, Coria LM, Zylberman V, Fossati CA, Kjeken R, Goldbaum FA. The polymeric antigen BLSOmp31 confers protection against Brucella ovis infection in rams. Vaccine 2009; 27:6704-11. [DOI: 10.1016/j.vaccine.2009.08.097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
|
71
|
Rodriguez-Galan MC, Reynolds D, Correa SG, Iribarren P, Watanabe M, Young HA. Coexpression of IL-18 strongly attenuates IL-12-induced systemic toxicity through a rapid induction of IL-10 without affecting its antitumor capacity. THE JOURNAL OF IMMUNOLOGY 2009; 183:740-8. [PMID: 19535628 DOI: 10.4049/jimmunol.0804166] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IL-12 is an excellent candidate for the treatment of cancer due to its ability to drive strong antitumor responses. Recombinant IL-12 protein is currently used in cancer patients; however, systemic expression of rIL-12 presents disadvantages including cost and dose limitation due to its toxicity. In this study, we used hydrodynamic shear of cDNA as a tool to achieve systemic expression of IL-12. We found that sustained but toxic levels of serum IL-12 could be generated in 6- to 7-wk-old B6 mice after a single injection of the cDNA. Unexpectedly, we observed that when IL-12 cDNA is coinjected with IL-18 cDNA, IL-12 antitumor activity was maintained, but there was a significant attenuation of IL-12 toxicity, as evidenced by a greater survival index and a diminution of liver enzymes (ALT and AST). Interestingly, after IL-12 plus IL-18 cDNA administration, more rapid and higher IL-10 levels were observed than after IL-12 cDNA treatment alone. To understand the mechanism of protection, we coinjected IL-12 plus IL-10 cDNAs and observed an increase in survival that correlated with diminished serum levels of the inflammatory cytokines TNF-alpha and IFN-gamma. Confirming the protective role of early IL-10 expression, we observed a significant decrease in survival in IL-10 knockout mice or IL-10R-blocked B6 mice after IL-12 plus IL-18 treatment. Thus, our data demonstrate that the high and early IL-10 expression induced after IL-12 plus IL-18 cDNA treatment is critical to rapidly attenuate IL-12 toxicity without affecting its antitumor capacity. These data could highly contribute to the design of more efficient/less toxic protocols for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Cecilia Rodriguez-Galan
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Harms JS, Durward MA, Magnani DM, Splitter GA. Evaluation of recombinant invasive, non-pathogenic Eschericia coli as a vaccine vector against the intracellular pathogen, Brucella. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2009; 7:1. [PMID: 19126207 PMCID: PMC2633335 DOI: 10.1186/1476-8518-7-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/06/2009] [Indexed: 01/18/2023]
Abstract
Background There is no safe, effective human vaccine against brucellosis. Live attenuated Brucella strains are widely used to vaccinate animals. However these live Brucella vaccines can cause disease and are unsafe for humans. Killed Brucella or subunit vaccines are not effective in eliciting long term protection. In this study, we evaluate an approach using a live, non-pathogenic bacteria (E. coli) genetically engineered to mimic the brucellae pathway of infection and present antigens for an appropriate cytolitic T cell response. Methods E. coli was modified to express invasin of Yersinia and listerialysin O (LLO) of Listeria to impart the necessary infectivity and antigen releasing traits of the intracellular pathogen, Brucella. This modified E. coli was considered our vaccine delivery system and was engineered to express Green Fluorescent Protein (GFP) or Brucella antigens for in vitro and in vivo immunological studies including cytokine profiling and cytotoxicity assays. Results The E. coli vaccine vector was able to infect all cells tested and efficiently deliver therapeutics to the host cell. Using GFP as antigen, we demonstrate that the E. coli vaccine vector elicits a Th1 cytokine profile in both primary and secondary immune responses. Additionally, using this vector to deliver a Brucella antigen, we demonstrate the ability of the E. coli vaccine vector to induce specific Cytotoxic T Lymphocytes (CTLs). Conclusion Protection against most intracellular bacterial pathogens can be obtained mostly through cell mediated immunity. Data presented here suggest modified E. coli can be used as a vaccine vector for delivery of antigens and therapeutics mimicking the infection of the pathogen and inducing cell mediated immunity to that pathogen.
Collapse
Affiliation(s)
- Jerome S Harms
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
73
|
Grilló MJ, Marín CM, Barberán M, de Miguel MJ, Laroucau K, Jacques I, Blasco JM. Efficacy of bp26 and bp26/omp31 B. melitensis Rev.1 deletion mutants against Brucella ovis in rams. Vaccine 2008; 27:187-91. [PMID: 19007836 DOI: 10.1016/j.vaccine.2008.10.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/16/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Brucella melitensis Rev.1 is the most effective vaccine against B. ovis infection in sheep but induces antibodies interfering with B. melitensis diagnosis. Brucella BP26 and Omp31 proteins are differential diagnostic antigens. Single or double bp26 and omp31 Rev.1 deletion mutants have been proven effective against B. melitensis in sheep. Here, the CGV26 (deleted in bp26 gene) and CGV2631 (deleted in both bp26 and omp31 genes) mutants have been tested for efficacy against B. ovis in rams. Either inoculated subcutaneously or conjunctivally, both mutants conferred significant protection against B. ovis. The protection induced by CGV26 was similar to that of Rev.1 but significantly higher than that conferred by CGV2631. In conclusion, the CGV26 mutant, in association with the adequate diagnostic strategy, could be a useful alternative to Rev.1 for sheep vaccination against B. ovis infections in those countries performing simultaneously B. melitensis and B. ovis eradication campaigns.
Collapse
Affiliation(s)
- M J Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Carretera de Mutilva, s/n. 31192, Mutilva Baja, Navarra, Spain.
| | | | | | | | | | | | | |
Collapse
|
74
|
Titball RW. Vaccines against intracellular bacterial pathogens. Drug Discov Today 2008; 13:596-600. [PMID: 18598915 DOI: 10.1016/j.drudis.2008.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 01/27/2023]
Abstract
There is a long history of remarkable success in developing vaccines against bacteria that are extracellular pathogens. In general, the development of vaccines against intracellular bacterial pathogens has proven to be more challenging. Typically, such vaccines need to induce a range of immune responses, including antibody, CD4(+) and CD8(+) T cell responses. These responses can be induced by live attenuated vaccines, but eliciting these responses with non-living vaccines has proven to be difficult. The difficulties appear to be related partly to the problems associated with the identification of protective antigens and partly with the difficulties associated with inducing CD8(+) T cell responses.
Collapse
Affiliation(s)
- Richard W Titball
- School of Biosciences, University of Exeter, Exeter, EX4 4QD Devon, UK.
| |
Collapse
|
75
|
|
76
|
Abstract
Brucella species are responsible for the global zoonotic disease brucellosis. These intracellular pathogens express a set of factors - including lipopolysaccharides, virulence regulator proteins and phosphatidylcholine - to ensure their full virulence. Some virulence factors are essential for invasion of the host cell, whereas others are crucial to avoid elimination by the host. They allow Brucella spp. to survive and proliferate within its replicative vacuole and enable the bacteria to escape detection by the host immune system. Several strategies have been used to develop animal vaccines against brucellosis, but no adequate vaccine yet exists to cure the disease in humans. This is probably due to the complicated pathophysiology of human Brucella spp. infection, which is different than in animal models. Here we review Brucella spp. virulence factors and how they control bacterial trafficking within the host cell.
Collapse
|
77
|
Delpino MV, Estein SM, Fossati CA, Baldi PC, Cassataro J. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine 2007; 25:6721-9. [PMID: 17686554 DOI: 10.1016/j.vaccine.2007.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 01/18/2023]
Abstract
The immunogenicity and protective efficacy of recombinant SurA (rSurA) and rDnaK from Brucella spp. were evaluated in BALB/c mice. Immunization with rSurA in adjuvant induced a vigorous immunoglobulin G (IgG) response, with higher IgG2a than IgG1 titers. In addition, after in vitro stimulation with rSurA, spleen cells from rSurA-immunized mice produced interleukin-2 (IL-2), interferon (IFN)-gamma, IL-4 and IL-5. Immunization with rDnaK plus adjuvant induced a strong humoral response resulting in similar anti-rDnaK IgG titers than immunization with rDnaK alone. IgG2a titers predominated over IgG1 in mice injected with rDnaK alone or rDnaK plus adjuvant. Spleen cells from mice immunized with rDnaK plus adjuvant secreted IFN-gamma and IL-2 upon stimulation with rDnaK and induced a specific cytotoxic response. On the contrary, mice immunized with rDnaK alone did not exhibit a specific T helper or cytotoxic response in vitro. Mice given rSurA or rDnaK with adjuvant exhibited a significant degree of protection whereas immunization with rDnaK alone induced a low but still statistically significant level of protection against B. abortus infection. All studied vaccines were less protected than mice immunized with H38 or B. abortus strain 19 control vaccines. Altogether these results suggest that rSurA or rDnaK induce partial protection against B. abortus infection and could be useful candidates for the development of subunit vaccines against brucellosis.
Collapse
Affiliation(s)
- Maria Victoria Delpino
- Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
78
|
Delpino MV, Estein SM, Fossati CA, Baldi PC. Partial protection against Brucella infection in mice by immunization with nonpathogenic alphaproteobacteria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1296-301. [PMID: 17715332 PMCID: PMC2168122 DOI: 10.1128/cvi.00459-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous findings indicate that Brucella antigens and those from nonpathogenic alphaproteobacteria (NPAP) are cross-recognized by the immune system. We hypothesized that immunization with NPAP would protect mice from Brucella infection. Mice were immunized subcutaneously with heat-killed Ochrobactrum anthropi, Sinorhizobium meliloti, Mesorhizobium loti, Agrobacterium tumefaciens, or Brucella melitensis H38 (standard positive control) before intravenous challenge with Brucella abortus 2308. Cross-reacting serum antibodies against Brucella antigens were detected at the moment of challenge in all NPAP-immunized mice. Thirty days after B. abortus challenge, splenic CFU counts were significantly lower in mice immunized with O. anthropi, M. loti, and B. melitensis H38 than in the phosphate-buffered saline controls (protection levels were 0.80, 0.66, and 1.99 log units, respectively). In mice immunized intraperitoneally with cytosoluble extracts from NPAP or Brucella abortus, protection levels were 1.58 for the latter, 0.63 for O. anthropi, and 0.40 for M. loti. To test whether the use of live NPAP would increase protection further, mice were both immunized and challenged by the oral route. Immunization with NPAP induced a significant increase in serum immunoglobulin G (IgG), but not serum or fecal IgA, against Brucella antigens. After challenge, anti-Brucella IgA increased significantly in the sera and feces of mice orally immunized with O. anthropi. For all NPAP, protection levels were higher than those obtained with systemic immunizations but were lower than those obtained by oral immunization with heat-killed B. abortus. These results show that immunization with NPAP, especially O. anthropi, confers partial protection against Brucella challenge. However, such protection is lower than that conferred by immunization with whole Brucella or its cytosoluble fraction.
Collapse
Affiliation(s)
- M Victoria Delpino
- Instituto de Estudios de la Immunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
79
|
Cassataro J, Pasquevich KA, Estein SM, Laplagne DA, Zwerdling A, de la Barrera S, Bowden R, Fossati CA, Giambartolomei GH, Goldbaum FA. A DNA vaccine coding for the chimera BLSOmp31 induced a better degree of protection against B. ovis and a similar degree of protection against B. melitensis than Rev.1 vaccination. Vaccine 2007; 25:5958-67. [PMID: 17600596 DOI: 10.1016/j.vaccine.2007.05.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/21/2007] [Accepted: 05/23/2007] [Indexed: 01/24/2023]
Abstract
In the present study, we reported an attempt to improve the immunogenicity and protective capacity of the chimera BLSOmp31 using a different antigen delivery: DNA vaccination. Vaccination of BALB/c mice with the DNA vaccine coding for the chimera BLSOmp31 (pCIBLSOmp31) provided the best protection level against Brucella ovis, which was significantly higher than the given by the co-delivery of both plasmids coding for the whole proteins (pcDNABLS+pCIOmp31) and even higher than the control vaccine Rev.1. Moreover, pCIBLSOmp31 induced higher protection against Brucella melitensis than pcDNABLS+pCIOmp31 but similar protection than Rev.1. The chimera induced a strong humoral response against the inserted peptide. It also induced peptide- and BLS-specific cytotoxic T responses. The insertion of this peptide on BLS induced stronger T helper 1 responses specific for the carrier (BLS), thus our results represent a case of synergic strengthening between two Brucella antigens. Hitherto, this is the first indication that a recombinant subunit vaccine elicits greater protection than whole Brucella.
Collapse
Affiliation(s)
- Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Yu DH, Li M, Hu XD, Cai H. A combined DNA vaccine enhances protective immunity against Mycobacterium tuberculosis and Brucella abortus in the presence of an IL-12 expression vector. Vaccine 2007; 25:6744-54. [PMID: 17681650 DOI: 10.1016/j.vaccine.2007.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 05/28/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
We examined the immunogenicity and protective efficacy of a combined DNA vaccine that included six genes encoding immunodominant antigens from Mycobacterium tuberculosis and Brucella abortus. The IL-12 adjuvant system was used for immunization in combination with the combined DNA vaccine (DNA-IL-12(+)). Mice immunized with DNA-IL-12(+) had significantly reduced CFU counts for M. tuberculosis and B. abortus in lung and spleen, respectively (P<0.001), and DNA-IL-12(+) elicited better protection than the combined DNA vaccine alone (DNA-IL-12(-)) or with the positive control groups after challenge with a virulent M. tuberculosis strain and B. abortus 2308 infection. The DNA-IL-12(+) group had stronger antigen-specific IFN-gamma ELISPOT activities and higher levels of antigen-specific CD4(+) and CD8(+) T cell responses than either the DNA-IL-12(-) or positive control groups. Likewise, antigen-specific IgG titers were also much higher than in other immunized groups. Moreover, DNA-IL-12(+) gave a stronger IgG2a-skewed response than did DNA-IL-12(-). In addition, its mean concentrations of IFN-gamma and IL-2 were about 2.5- to 4.5-fold higher than those observed in the DNA-IL-12(-)-treated mice, and were significantly higher than control groups (P<0.01 or P<0.001), whereas IL-4 and IL-10 secretion were lower. These results suggest that IL-12 acts as an adjuvant to enhance protective immunity against M. tuberculosis and B. abortus through the induction of stronger Th1-associated immune responses. This is the first report to show that a single combined DNA vaccine protects animals against two infectious diseases.
Collapse
Affiliation(s)
- Da-Hai Yu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
81
|
Yu DH, Hu XD, Cai H. A Combined DNA Vaccine Encoding BCSP31, SOD, and L7/L12 Confers High Protection Against Brucella abortus 2308 by Inducing Specific CTL Responses. DNA Cell Biol 2007; 26:435-43. [PMID: 17570767 DOI: 10.1089/dna.2006.0552] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We constructed a combined DNA vaccine comprising genes encoding the antigens BCSP31, superoxide dismutase (SOD), and L7/L12 and evaluated its immunogenicity and protective efficacy. Immunization of mice with the combined DNA vaccine offered high protection against Brucella abortus (B. abortus) infection. The vaccine induced a vigorous specific immunoglobulin G (IgG) response, with higher IgG2a than IgG1 titers. Cytokine profiling performed at the same time showed a biased Th1-type immune response with significantly increased interferon-gamma and tumor necrosis factor-alpha stimulation. CD8(+), but not CD4(+), T cells accumulated at significantly higher levels after administration of the vaccine. Granzyme B-producing CD8(+) T cells were significantly higher in number in samples prepared from combined DNA-vaccinated mice compared with S19-vaccinated mice, demonstrating that the cytotoxicity lysis pathway is involved in the response to Brucella infection. The success of our combined DNA vaccine in a mouse model suggests its potential efficacy against brucellosis infection in large animals.
Collapse
Affiliation(s)
- Da-Hai Yu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, China
| | | | | |
Collapse
|
82
|
Cassataro J, Pasquevich KA, Estein SM, Laplagne DA, Velikovsky CA, de la Barrera S, Bowden R, Fossati CA, Giambartolomei GH, Goldbaum FA. A recombinant subunit vaccine based on the insertion of 27 amino acids from Omp31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev.1 vaccination. Vaccine 2007; 25:4437-46. [PMID: 17442465 DOI: 10.1016/j.vaccine.2007.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/07/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The development of an effective subunit vaccine against brucellosis is a research area of intense interest. The enzyme lumazine synthase from Brucella spp. (BLS) is highly immunogenic, presumably due to its decameric arrangement and remarkable stability. In this work we decided to develop a chimera with the scaffold protein BLS decorated with 10 copies of a known protective epitope derived from an outer membrane protein of 31kDa (Omp31) from Brucella spp. Vaccination of BALB/c mice with the chimera as a recombinant protein (rBLSOmp31) provided the best protection level against Brucella ovis, which was higher than the given by the co-delivery of both recombinant proteins (rBLS + rOmp31) and similar than the control vaccine Brucella melitensis strain Rev.1. Moreover rBLSOmp31 induced protection against Brucella melitensis but to a lesser degree than Rev.1. The chimera induced a strong humoral response against the inserted peptide. It also induced peptide- and BLS-specific T helper 1 and cytotoxic T responses. In conclusion, our results indicate that BLSOmp31 could be a useful candidate for the development of subunit vaccines against brucellosis since it elicits humoral, T helper and cytotoxic immune responses and protection against smooth and rough species of Brucella.
Collapse
Affiliation(s)
- Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires UBA, Córdoba 2351, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Cassataro J, Velikovsky CA, Bruno L, Estein SM, de la Barrera S, Bowden R, Fossati CA, Giambartolomei GH. Improved immunogenicity of a vaccination regimen combining a DNA vaccine encoding Brucella melitensis outer membrane protein 31 (Omp31) and recombinant Omp31 boosting. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:869-74. [PMID: 17428946 PMCID: PMC1951060 DOI: 10.1128/cvi.00472-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we report an attempt to improve the immunogenicity of the Omp31 antigen by a DNA prime-protein boost immunization regimen. We immunized BALB/c mice with an Omp31 DNA vaccine (pCIOmp31) followed by boosting with recombinant Omp31 (rOmp31) in incomplete Freund's adjuvant and characterized the resulting immune responses and the protective efficacy against Brucella ovis and B. melitensis infection. Immunoglobulin G1 (IgG1) and IgG2a titers were higher in sera from pCIOmp31/rOmp31-immunized mice than in sera from mice immunized with pCIOmp31 or rOmp31 alone. Splenocytes from pCIOmp31/rOmp31-immunized mice produced significantly higher levels of gamma interferon than did those from mice given rOmp31 alone. In contrast, interleukin 2 (IL-2) production levels were comparable between the two groups of immunized mice. Cells from all immunized mice produced undetectable levels of IL-4. Notably, rOmp31 stimulated IL-10 production in the pCIOmp31/rOmp31-immunized group but not in the pCIOmp31- or rOmp31-immunized group. Although the prime-boost regimen induced specific cytotoxic responses, these responses could not reach the levels achieved by the pCIOmp31 immunization. In conclusion, pCIOmp31 priming followed by rOmp31 boosting led to moderately improved protection against a challenge with B. ovis or B. melitensis.
Collapse
Affiliation(s)
- Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, UBA, Córdoba 2351, 3er Piso Sala 4, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Yang X, Walters N, Robison A, Trunkle T, Pascual DW. Nasal immunization with recombinant Brucella melitensis bp26 and trigger factor with cholera toxin reduces B. melitensis colonization. Vaccine 2007; 25:2261-8. [PMID: 17239499 DOI: 10.1016/j.vaccine.2006.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/27/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
bp26 and trigger factor (Tf) DNA vaccines have previously been shown to protect against Brucella infection. In this study, purified bp26 and Tf proteins were tested in BALB/c mice for immunity and protection. The results showed that intranasal (i.n.) immunization with bp26 and Tf in conjunction with cholera toxin (CT) adjuvant elicit both elevated mucosal and systemic immune responses. While nasal immunization with either bp26 or Tf elicited elevated antibody responses, co-immunization with both enhanced anti-Tf immunity, suggesting bp26 adjuvant activity. Evaluation of serum IgG subclass responses showed elevated IgG1 titers. Further analysis to discern the source of immune B cells revealed effective immunization of respiratory tissues. However, Tf stimulated a significantly higher level of cytokine-forming cells (CFC) than bp26. These results imply that co-immunization of bp26 and Tf proteins elicits synergistic cooperation to stimulate the immune system. When immunized mice were challenged with B. melitensis 16M, bp26-plus Tf-immunized mice showed no difference in splenic weights but harbored three-fold less bacterial CFU when compared to sPBS-immunized control mice.
Collapse
Affiliation(s)
- Xinghong Yang
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | | | |
Collapse
|
85
|
Commander NJ, Spencer SA, Wren BW, MacMillan AP. The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes. Vaccine 2007; 25:43-54. [PMID: 17049676 DOI: 10.1016/j.vaccine.2006.07.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/30/2006] [Accepted: 07/14/2006] [Indexed: 11/26/2022]
Abstract
Five candidate genes from the Brucella melitensis 16M genome were selected. Eukaryotic expression plasmids encoding these antigens were constructed and expression was verified in vitro from transfected Cos7 cells. Each vaccine was assessed for protective efficacy in a BALB/c mouse brucellosis infection model. From these experiments two protective DNA vaccines were identified: p-omp25 and p-ialB. The Omp25 antigen (BMEI1249) has previously been studied in terms of Brucella virulence, serodiagnosis and as a protective antigen. However, this study represents the first report of a significant protective effect achieved against B. melitensis 16M challenge using the Omp25 antigen in a DNA vaccine approach. The other protective vaccine identified in this study was p-ialB. The ialB candidate (BMEI1584) was selected based upon its' putative function as an invasion protein which was assigned due to shared identity with the invasion protein B (ialB) of Bartonella bacilliformis. This candidate has not previously been investigated with regard to Brucella virulence or pathogenesis. This study is the first report to identify the Brucella invasion protein B (BMEI1584) as a novel protective antigen for brucellosis.
Collapse
Affiliation(s)
- Nicola J Commander
- Department of Statutory and Exotic Bacterial Diseases, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | | | | | |
Collapse
|
86
|
Jacques I, Verger JM, Laroucau K, Grayon M, Vizcaino N, Peix A, Cortade F, Carreras F, Guilloteau LA. Immunological responses and protective efficacy against Brucella melitensis induced by bp26 and omp31 B. melitensis Rev.1 deletion mutants in sheep. Vaccine 2006; 25:794-805. [PMID: 17070627 DOI: 10.1016/j.vaccine.2006.09.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 09/07/2006] [Accepted: 09/12/2006] [Indexed: 11/15/2022]
Abstract
The commonly used live attenuated vaccine in ovine brucellosis prophylaxis is Brucella melitensis Rev.1. This vaccine is known to induce antibody responses in vaccinated animals indistinguishable by the current conventional serological tests from those observed in challenged animals. Brucella BP26 and Omp31 proteins have shown an interesting potential as diagnostic antigens for ovine brucellosis. Accordingly, the bp26 gene and both bp26 and omp31 genes have been deleted from the vaccine strain Rev.1. Immunogenicity and vaccine efficacy of the parental Rev.1 strain and of both mutants in protecting sheep against B. melitensis strain H38 challenge was evaluated by clinical and bacteriological examination of ewes. They were conjunctivally or subcutaneously vaccinated when 4 months old and then challenged with B. melitensis H38 at the middle of the first pregnancy following vaccination. Deletion of bp26 and omp31 genes did not significantly affect the well recognised capacity of Rev.1 to protect sheep against B. melitensis challenge. However, the protection conferred by the CGV2631 mutant was significantly lower than that conferred by the CGV26 mutant or the Rev.1 strain. Vaccinated and challenged animals were detected positive in classical serological tests and in the IFN-gamma assay. A BP26-based ELISA was investigated to discriminate between ewes vaccinated by the mutants and ewes challenged with B. melitensis H38. The cut-off which was chosen in order to have 100% specificity resulted in a moderate sensitivity for the detection of challenged ewes. The use in the field of one of the mutants as vaccine against a B. melitensis infection, combined with classic diagnostic tests and a BP26 ELISA, could thus give an improvement in the differentiation between vaccinated and infected animals and contribute to the objective of eradication of brucellosis in small ruminants.
Collapse
Affiliation(s)
- Isabelle Jacques
- UR1282-Unité d'Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Cassataro J, Estein SM, Pasquevich KA, Velikovsky CA, de la Barrera S, Bowden R, Fossati CA, Giambartolomei GH. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect Immun 2006; 73:8079-88. [PMID: 16299302 PMCID: PMC1307072 DOI: 10.1128/iai.73.12.8079-8088.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity and protective efficacy of the recombinant 31-kDa outer membrane protein from Brucella melitensis (rOmp31), administered with incomplete Freund's adjuvant, were evaluated in mice. Immunization of BALB/c mice with rOmp31 conferred protection against B. ovis and B. melitensis infection. rOmp31 induced a vigorous immunoglobulin G (IgG) response, with higher IgG1 than IgG2 titers. In addition, spleen cells from rOmp31-immunized mice produced interleukin 2 (IL-2) and gamma interferon, but not IL-10 or IL-4, after in vitro stimulation with rOmp31, suggesting the induction of a T helper 1 (Th1) response. Splenocytes from rOmp31-vaccinated animals also induced a specific cytotoxic-T-lymphocyte activity, which led to the in vitro lysis of Brucella-infected macrophages. In vitro T-cell subset depletion indicated that rOmp31 immunization elicited specific CD4+ T cells that secrete IL-2 and gamma interferon, while CD8+ T cells induced cytotoxic-T-lymphocyte activity. In vivo depletion of T-cell subsets showed that the rOmp31-elicited protection against B. melitensis infection is mediated by CD4+ T cells while the contribution of CD8+ T cells may be limited. We then evaluated the immunogenicity and protective efficacy of a known exposed region from Omp31 on the Brucella membrane, a peptide that contains amino acids 48 to 74 of Omp31. Immunization with the synthetic peptide in adjuvant did not elicit a specific humoral response but elicited a Th1 response mediated by CD4+ T cells. The peptide in adjuvant induced levels of protection similar to those induced by rOmp31 against B. melitensis but less protection than was induced by rOmp31 against B. ovis. Our results indicate that rOmp31 could be a useful candidate for the development of subunit vaccines against B. melitensis and B. ovis.
Collapse
Affiliation(s)
- Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, UBA, Córdoba 2351 3 Piso Sala 4 (1120), Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|