51
|
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 2009; 33:430-49. [PMID: 19207745 DOI: 10.1111/j.1574-6976.2008.00157.x] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.
Collapse
Affiliation(s)
- Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
52
|
Fluman N, Bibi E. Bacterial multidrug transport through the lens of the major facilitator superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:738-47. [PMID: 19103310 DOI: 10.1016/j.bbapap.2008.11.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Multidrug transporters are membrane proteins that expel a wide spectrum of cytotoxic compounds from the cell. Through this function, they render cells resistant to multiple drugs. These transporters are found in many different families of transport proteins, of which the largest is the major facilitator superfamily. Multidrug transporters from this family are highly represented in bacteria and studies of them have provided important insight into the mechanism underlying multidrug transport. This review summarizes the work carried out on these interesting proteins and underscores the differences and similarities to other transport systems.
Collapse
Affiliation(s)
- Nir Fluman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
53
|
Beaulac C, Sachetelli S, Lagace J. In Vitro Bactericidal Evaluation of a Low Phase Transition Temperature Liposomal Tobramycin Formulation as a Dry Powder Preparation Against Gram Negative and Gram Positive Bacteria. J Liposome Res 2008. [DOI: 10.3109/08982109909018652] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
54
|
Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71:463-76. [PMID: 17804667 PMCID: PMC2168643 DOI: 10.1128/mmbr.00001-07] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria.
Collapse
Affiliation(s)
- Jacek Lubelski
- Department of Molecular Microbiology, University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
55
|
Dillon JA, Pagotto F. Importance of drug resistance in gonococci: from mechanisms to monitoring. Curr Opin Infect Dis 2007; 12:35-40. [PMID: 17035758 DOI: 10.1097/00001432-199902000-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neisseria gonorrhoeae isolates continue to develop an impressive arsenal of resistance mechanisms to antimicrobial agents, including resistance to some of the antibiotics presently recommended for the treatment of gonococcal infections.
Collapse
Affiliation(s)
- J A Dillon
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | | |
Collapse
|
56
|
Abstract
The acquisition of multidrug resistance is a serious impediment to improved healthcare. Multidrug resistance is most frequently due to active transporters that pump a broad spectrum of chemically distinct, cytotoxic molecules out of cells, including antibiotics, antimalarials, herbicides and cancer chemotherapeutics in humans. The paradigm multidrug transporter, mammalian P-glycoprotein, was identified 30 years ago. Nonetheless, success in overcoming or circumventing multidrug resistance in a clinical setting has been modest. Recent structural and biochemical data for several multidrug transporters now provide mechanistic insights into how they work. Organisms have evolved several elegant solutions to ridding the cell of such cytotoxic compounds. Answers are emerging to questions such as how multispecificity for different drugs is achieved, why multidrug resistance arises so readily, and what chance there is of devising a clinical solution.
Collapse
Affiliation(s)
- Christopher F Higgins
- MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
57
|
Fournier Dit Chabert J, Marquez B, Neville L, Joucla L, Broussous S, Bouhours P, David E, Pellet-Rostaing S, Marquet B, Moreau N, Lemaire M. Synthesis and evaluation of new arylbenzo[b]thiophene and diarylthiophene derivatives as inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Bioorg Med Chem 2007; 15:4482-97. [PMID: 17498961 DOI: 10.1016/j.bmc.2007.04.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/07/2007] [Accepted: 04/13/2007] [Indexed: 11/30/2022]
Abstract
The synthesis based on palladium catalytic coupling of 38 new-arylated benzo[b]thiophenes or thiophenes is described in a few steps. We also report the direct arylation of the position 3 of the benzo[b]thiophenic structure, a 'one pot' 2,5-heterodiarylation of thiophenes as well as the synthesis of precursors of amino-acids with a 2-arylated benzo[b]thiophene core. These compounds were evaluated on bacteria strains: most of them did not exhibit any antibiotic activity but were found to selectively inhibit the NorA multidrug transporter of Staphylococcus aureus. As such, they restored the activity of the NorA substrates ciprofloxacin against a resistant S. aureus strain in which this efflux pump is over-expressed.
Collapse
Affiliation(s)
- Jérémie Fournier Dit Chabert
- ICBMS, Institut de chimie et BiochimieMoléculaire et Supramoléculaire, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Thomaides HB, Davison EJ, Burston L, Johnson H, Brown DR, Hunt AC, Errington J, Czaplewski L. Essential bacterial functions encoded by gene pairs. J Bacteriol 2006; 189:591-602. [PMID: 17114254 PMCID: PMC1797375 DOI: 10.1128/jb.01381-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To address the need for new antibacterials, a number of bacterial genomes have been systematically disrupted to identify essential genes. Such programs have focused on the disruption of single genes and may have missed functions encoded by gene pairs or multiple genes. In this work, we hypothesized that we could predict the identity of pairs of proteins within one organism that have the same function. We identified 135 putative protein pairs in Bacillus subtilis and attempted to disrupt the genes forming these, singly and then in pairs. The single gene disruptions revealed new genes that could not be disrupted individually and other genes required for growth in minimal medium or for sporulation. The pairwise disruptions revealed seven pairs of proteins that are likely to have the same function, as the presence of one protein can compensate for the absence of the other. Six of these pairs are essential for bacterial viability and in four cases show a pattern of species conservation appropriate for potential antibacterial development. This work highlights the importance of combinatorial studies in understanding gene duplication and identifying functional redundancy.
Collapse
Affiliation(s)
- Helena B Thomaides
- Prolysis Ltd., Begbroke Science Park, Sandy Lane, Yarnton OX5 1PF, Oxfordshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Lewinson O, Adler J, Sigal N, Bibi E. Promiscuity in multidrug recognition and transport: the bacterial MFS Mdr transporters. Mol Microbiol 2006; 61:277-84. [PMID: 16856936 DOI: 10.1111/j.1365-2958.2006.05254.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug (Mdr) transport is an obstacle to the successful treatment of cancer and infectious diseases, and it is mediated by Mdr transporters that recognize and export an unusually broad spectrum of chemically dissimilar toxic compounds. Therefore, in addition to its clinical significance, the Mdr transport phenomenon presents intriguing and challenging mechanistic queries. Recent studies of secondary Mdr transporters of the major facilitator superfamily (MFS) have revealed that they are promiscuous not only regarding their substrate recognition profile, but also with respect to matters of energy utilization, electrical and chemical flexibility in the Mdr recognition pocket, and surprisingly, also in their physiological functions.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
60
|
Marrer E, Schad K, Satoh AT, Page MGP, Johnson MM, Piddock LJV. Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 2006; 50:685-93. [PMID: 16436727 PMCID: PMC1366865 DOI: 10.1128/aac.50.2.685-693.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multidrug-resistant mutant Streptococcus pneumoniae M22 constitutively overexpresses two genes (patA and patB) that encode proteins homologous to known efflux proteins belonging to the ABC transporter family. It is shown here that PatA and PatB were strongly induced by quinolone antibiotics and distamycin in fluoroquinolone-sensitive strains. PatA was very important for growth of S. pneumoniae, and it could not be disrupted in strain M22. PatB appeared to control metabolic activity, particularly in amino acid biosynthesis, and it may have a pivotal role in coordination of the response to quinolone antibiotics. The induction of PatA and PatB by antibiotics showed a pattern similar to that exhibited by SP1861, a homologue of ABC-type transporters of choline and other osmoprotectants. A second group of quinolone-induced transporter genes comprising SP1587 and SP0287, which are homologues of, respectively, oxalate/formate antiporters and xanthine or uracil permeases belonging to the major facilitator family, showed a different pattern of induction by other antibiotics. There was no evidence for the involvement of PmrA, the putative proton-dependent multidrug transporter that has been implicated in norfloxacin resistance, in the response to quinolone antibiotics in either the resistant mutant or the fluoroquinolone-sensitive strains.
Collapse
Affiliation(s)
- Estelle Marrer
- Basilea Pharmaceutica Ltd., P.O. Box 3255, CH-4005 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
61
|
|
62
|
Cappa F, Cattivelli D, Cocconcelli PS. The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Res Microbiol 2005; 156:1039-47. [PMID: 16125908 DOI: 10.1016/j.resmic.2005.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 06/01/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
The uvrA gene of Lactobacillus helveticus CNBL1156 coding for subunit A of the excinuclease ABC complex involved in the nucleotide excision repair mechanism was identified. Analysis of the uvrA locus revealed the presence of three open reading frames, merR, sat and uvrA, which coded respectively for a MerR-like regulatory protein, a putative protein with homology to streptothricin acetyl transferase and for a UvrA protein. RNA analysis by northern blotting and RT-PCR showed that sat and uvrA were transcriptionally coupled. UvrA from L. helveticus contained the conserved domains of bacterial excinuclease A, as well as the two ATP binding sites and the zinc binding domains. The transcriptional activity of uvrA indicated that this gene was activated by exposure to UV radiation and oxidative stress. In addition, we observed that the expression of uvrA was inducible by pH; moreover, the role of UvrA in protection against stress was confirmed by acid adaptation experiments. Pretreatment of cells at pH 5 conferred resistance to H2O2, suggesting a specific adaptive response to pH-induced DNA damage. The results from this study indicate that UvrA contributes to acid and oxidative tolerance in L. helveticus, and suggest that it plays a role in survival at low pH under normal conditions.
Collapse
Affiliation(s)
- Fabrizio Cappa
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29100 Piacenza, Italy
| | | | | |
Collapse
|
63
|
Lawrence LE, Barrett JF. Efflux pumps in bacteria: overview, clinical relevance, and potential pharmaceutical target. Expert Opin Investig Drugs 2005; 7:199-217. [PMID: 15991952 DOI: 10.1517/13543784.7.2.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Trends in microbial resistance suggest a dramatic increase in the frequency of reports of multi-drug efflux pumps in bacteria and fungi. Although it is difficult to determine whether this increase is due to the increased attention given to this resistance mechanism, or an increase in frequency, efflux pumps are becoming an important consideration in resistance emergence. These efflux pumps comprise at least four different classes in Gram-positive and Gram-negative bacteria, as well as in Streptomyces and fungi. As more efflux pumps are characterised and studied, both biochemically and structurally, the opportunity for intervention may arise.
Collapse
Affiliation(s)
- L E Lawrence
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA
| | | |
Collapse
|
64
|
Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 2005; 187:2395-405. [PMID: 15774883 PMCID: PMC1065235 DOI: 10.1128/jb.187.7.2395-2405.2005] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an analysis of the resistance mechanisms of an mgrA mutant, we identified two genes encoding previously undescribed transporters, NorB and Tet38. norB was 1,392 bp and encoded a predicted 49-kDa protein. When overexpressed, NorB led to an increase in resistance to hydrophilic quinolones, ethidium bromide, and cetrimide and also to sparfloxacin, moxifloxacin, and tetracycline, a resistance phenotype of the mgrA mutant. NorA and NorB shared 30% similarity, and NorB shared 30 and 41% similarities with the Bmr and Blt transporters of Bacillus subtilis, respectively. The second efflux pump was a more selective transporter that we have called Tet38, which had 46% similarity with the plasmid-encoded TetK efflux transporter of S. aureus. tet38 was 1,353 bp and encoded a predicted 49-kDa protein. Overexpression of tet38 produced resistance to tetracycline but not to minocycline and other drugs. norB and tet38 transcription was negatively regulated by MgrA. Limited binding of MgrA to the promoter regions of norB and tet38 was demonstrated by gel shift assays, suggesting that MgrA was an indirect regulator of norB and tet38 expression. The mgrA norB double mutant was reproducibly twofold more susceptible to the tested quinolones than the mgrA mutant. The mgrA tet38 double mutant became more susceptible to tetracycline than the wild-type parent strain. These data demonstrate that overexpression of NorB and Tet38 contribute, respectively, to the hydrophobic quinolone resistance and the tetracycline resistance of the mgrA mutant and that MgrA regulates expression of norB and tet38 in addition to its role in regulation of norA expression.
Collapse
Affiliation(s)
- Q C Truong-Bolduc
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114-2696, USA
| | | | | | | | | |
Collapse
|
65
|
Kaatz GW, Thyagarajan RV, Seo SM. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob Agents Chemother 2005; 49:161-9. [PMID: 15616291 PMCID: PMC538897 DOI: 10.1128/aac.49.1.161-169.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NorA is a Staphylococcus aureus multidrug transporter that confers resistance to structurally distinct compounds. The MgrA global regulatory protein is reported to augment norA expression when mgrA is overexpressed from an undefined plasmid-based promoter. Further details about norA regulatory mechanisms are scant. A chromosomal norA::lacZ transcriptional fusion was constructed in different S. aureus strains, and allele replacement was used to define the relevance of promoter region sequences to norA expression. The effect of mgrA overexpression in wild-type and mutant backgrounds was also determined. Contrary to existing data, overexpression of mgrA repressed norA transcription in all parent and selected norA promoter mutant strains in a dose-dependent fashion. Disruption of a near-perfect inverted repeat or other putative regulatory protein binding sites did not affect norA transcription, but the repressive effect of mgrA overexpression was blunted in these mutants. This result, and the conservation of all of these motifs in S. aureus, suggests that their presence is required for the full effect of MgrA, or other regulatory proteins, on norA expression. Mutations at the +5 nucleotide of norA mRNA (flqB mutations) had a major impact; all resulted in markedly increased norA expression that was significantly reversed by mgrA overexpression. The flqB position of norA mRNA is part of a conserved imperfect inverted repeat; it is feasible that this motif could be a binding site for a norA regulatory protein.
Collapse
Affiliation(s)
- Glenn W Kaatz
- Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, B4333 John D. Dingell VA Medical Center, 4646 John R, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
66
|
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2005; 28:519-42. [PMID: 15539072 DOI: 10.1016/j.femsre.2004.04.001] [Citation(s) in RCA: 458] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/05/2004] [Accepted: 04/17/2004] [Indexed: 11/21/2022] Open
Abstract
Chloramphenicol (Cm) and its fluorinated derivative florfenicol (Ff) represent highly potent inhibitors of bacterial protein biosynthesis. As a consequence of the use of Cm in human and veterinary medicine, bacterial pathogens of various species and genera have developed and/or acquired Cm resistance. Ff is solely used in veterinary medicine and has been introduced into clinical use in the mid-1990s. Of the Cm resistance genes known to date, only a small number also mediates resistance to Ff. In this review, we present an overview of the different mechanisms responsible for resistance to Cm and Ff with particular focus on the two different types of chloramphenicol acetyltransferases (CATs), specific exporters and multidrug transporters. Phylogenetic trees of the different CAT proteins and exporter proteins were constructed on the basis of a multisequence alignment. Moreover, information is provided on the mobile genetic elements carrying Cm or Cm/Ff resistance genes to provide a basis for the understanding of the distribution and the spread of Cm resistance--even in the absence of a selective pressure imposed by the use of Cm or Ff.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystrasse 10, 31535 Neustadt-Mariensee, Germany.
| | | | | | | |
Collapse
|
67
|
Langton KP, Henderson PJF, Herbert RB. Antibiotic resistance: multidrug efflux proteins, a common transport mechanism? Nat Prod Rep 2005; 22:439-51. [PMID: 16047044 DOI: 10.1039/b413734p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kate P Langton
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Microbiology, University of Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|
68
|
Ohki R, Tateno K. Increased stability of bmr3 mRNA results in a multidrug-resistant phenotype in Bacillus subtilis. J Bacteriol 2004; 186:7450-5. [PMID: 15489457 PMCID: PMC523217 DOI: 10.1128/jb.186.21.7450-7455.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A spontaneous mutant isolated in the presence of a high concentration of puromycin acquired a multidrug-resistant phenotype. Expression of the bmr3 gene was dramatically increased. A base substitution, T to A at the +4 position, detected in the mutant resulted in the stabilization of bmr3 mRNA.
Collapse
Affiliation(s)
- Reiko Ohki
- Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachioji, Tokyo 192-0005, Japan.
| | | |
Collapse
|
69
|
Yoshida KI, Ohki YH, Murata M, Kinehara M, Matsuoka H, Satomura T, Ohki R, Kumano M, Yamane K, Fujita Y. Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH. J Bacteriol 2004; 186:5640-8. [PMID: 15317768 PMCID: PMC516806 DOI: 10.1128/jb.186.17.5640-5648.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis lmrAB operon is involved in multidrug resistance. LmrA is a repressor of its own operon, while LmrB acts as a multidrug efflux transporter. LmrA was produced in Escherichia coli cells and was shown to bind to the lmr promoter region, in which an LmrA-binding site was identified. Genome-wide screening involving DNA microarray analysis allowed us to conclude that LmrA also repressed yxaGH, which was not likely to contribute to the multidrug resistance. LmrA bound to a putative yxaGH promoter region, in which two tandem LmrA-binding sites were identified. The LmrA regulon was thus determined to comprise lmrAB and yxaGH. All three LmrA-binding sites contained an 18-bp consensus sequence, TAGACCRKTCWMTATAWT, which could play an important role in LmrA binding.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Department of Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abbas A, McGuire JE, Crowley D, Baysse C, Dow M, O'Gara F. The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. MICROBIOLOGY-SGM 2004; 150:2443-2450. [PMID: 15256586 DOI: 10.1099/mic.0.27033-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
2,4-Diacetylphloroglucinol (PHL) is the primary determinant of the biological control activity of Pseudomonas fluorescens F113. The operon phlACBD encodes enzymes responsible for PHL biosynthesis from intermediate metabolites. The phlE gene, which is located downstream of the phlACBD operon, encodes a putative permease suggested to be a member of the major facilitator superfamily with 12 transmembrane segments. PhlE has been suggested to function in PHL export. Here the sequencing of the phlE gene from P. fluorescens F113 and the construction of a phlE null mutant, F113-D3, is reported. It is shown that F113-D3 produced less PHL than F113. The ratio of cell-associated to free PHL was not significantly different between the strains, suggesting the existence of alternative transporters for PHL. The phlE mutant was, however, significantly more sensitive to high concentrations of added PHL, implicating PhlE in PHL resistance. Furthermore, the phlE mutant was more susceptible to osmotic, oxidative and heat-shock stresses. Osmotic stress induced rapid degradation of free PHL by the bacteria. Based on these results, we propose that the role of phlE in general stress tolerance is to export toxic intermediates of PHL degradation from the cells.
Collapse
Affiliation(s)
- Abdelhamid Abbas
- BIOMERIT Research Centre, Microbiology Department, National University of Ireland, Cork, Ireland
| | - John E McGuire
- BIOMERIT Research Centre, Microbiology Department, National University of Ireland, Cork, Ireland
| | - Delores Crowley
- BIOMERIT Research Centre, Microbiology Department, National University of Ireland, Cork, Ireland
| | - Christine Baysse
- BIOMERIT Research Centre, Microbiology Department, National University of Ireland, Cork, Ireland
| | - Max Dow
- BIOMERIT Research Centre, Microbiology Department, National University of Ireland, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, Microbiology Department, National University of Ireland, Cork, Ireland
| |
Collapse
|
71
|
Steinfels E, Orelle C, Fantino JR, Dalmas O, Rigaud JL, Denizot F, Di Pietro A, Jault JM. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 2004; 43:7491-502. [PMID: 15182191 DOI: 10.1021/bi0362018] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The involvement of transporters in multidrug resistance of bacteria is an increasingly challenging problem, and most of the pumps identified so far use the protonmotive gradient as the energy source. A new member of the ATP-binding cassette (ABC) family, known in Bacillus subtilis as YvcC and homologous to each half of mammalian P-glycoprotein and to LmrA of Lactococcus lactis, has been studied here. The yvcC gene was constitutively expressed in B. subtilis throughout its growth, and a knockout mutant showed a lower rate of ethidium efflux than the wild-type strain. Overexpression of yvcC in Escherichia coli allowed the preparation of highly enriched inverted-membrane vesicles that exhibited high transport activities of three fluorescent drugs, namely, Hoechst 33342, doxorubicin, and 7-aminoactinomycin D. After solubilization with n-dodecyl beta-D-maltoside, the hexahistidine-tagged YvcC was purified by a one-step affinity chromatography, and its ability to bind many P-glycoprotein effectors was evidenced by fluorescence spectroscopy experiments. Collectively, these results showed that YvcC is a multidrug ABC transporter functionally active in wild-type B. subtilis, and YvcC was therefore renamed BmrA for Bacillus multidrug resistance ATP. Besides, reconstitution of YvcC into liposomes led to the highest, vanadate-sensitive, ATPase activity reported so far for an ABC transporter. Interestingly, such a high ATP hydrolysis proceeds with a positive cooperativity mechanism, a property only found so far with ABC importers.
Collapse
Affiliation(s)
- Emmanuelle Steinfels
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-UCBL et IFR 128, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
73
|
Brocklehurst KR, Megit SJ, Morby AP. Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem Biophys Res Commun 2003; 308:234-9. [PMID: 12901859 DOI: 10.1016/s0006-291x(03)01366-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
cadR from Pseudomonas aeruginosa encodes a transcriptional regulatory protein which responds to Cd(II)>>Zn(II)>Hg(II) at its cognate promoter PcadA. CadR will also act to induce transcription at the Escherichia coli ZntR cognate promoter, PzntA, however, the induction profile is altered to Hg(II)>Cd(II)>Zn(II). Two separate single base pair deletions within PzntA result in further alteration of relative specificity in metal-ion induction profile for CadR. This demonstrates that the operator/promoter sequence can play a role in defining optimal ligand response and that for these regulators specificity is not solely a function of the regulatory protein.
Collapse
Affiliation(s)
- K R Brocklehurst
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | | | | |
Collapse
|
74
|
Price LB, Vogler A, Pearson T, Busch JD, Schupp JM, Keim P. In vitro selection and characterization of Bacillus anthracis mutants with high-level resistance to ciprofloxacin. Antimicrob Agents Chemother 2003; 47:2362-5. [PMID: 12821500 PMCID: PMC161847 DOI: 10.1128/aac.47.7.2362-2365.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Revised: 10/28/2002] [Accepted: 03/26/2003] [Indexed: 11/20/2022] Open
Abstract
Mutants of attenuated Bacillus anthracis with high-level ciprofloxacin resistance were isolated using a three-step in vitro selection. Ciprofloxacin MICs were 0.5 micro g/ml for first-step mutants, which had one of two gyrA quinolone resistance-determining region (QRDR) mutations. Ciprofloxacin MICs were 8 and 16 microg/ml for second-step mutants, which had one of three parC QRDR mutations. Ciprofloxacin MICs for third-step mutants were 32 and 64 microg/ml. Mutants for which MICs were 64 microg/ml had one of two additional mutations within the gyrA QRDR or one of two mutations within the gyrB QRDR. Mutants for which MICs were 32 microg/ml had no additional target modifications but showed evidence of enhanced ciprofloxacin efflux.
Collapse
Affiliation(s)
- Lance B Price
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011-5640, USA
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
The MerR family is a group of transcriptional activators with similar N-terminal helix-turn-helix DNA binding regions and C-terminal effector binding regions that are specific to the effector recognised. The signature of the family is amino acid similarity in the first 100 amino acids, including a helix-turn-helix motif followed by a coiled-coil region. With increasing recognition of members of this class over the last decade, particularly with the advent of rapid bacterial genome sequencing, MerR-like regulators have been found in a wide range of bacterial genera, but not yet in archaea or eukaryotes. The few MerR-like regulators that have been studied experimentally have been shown to activate suboptimal sigma(70)-dependent promoters, in which the spacing between the -35 and -10 elements recognised by the sigma factor is greater than the optimal 17+/-1 bp. Activation of transcription is through protein-dependent DNA distortion. The majority of regulators in the family respond to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. A subgroup of the family activates transcription in response to metal ions. This subgroup shows sequence similarity in the C-terminal effector binding region as well as in the N-terminal region, but it is not yet clear how metal discrimination occurs. This subgroup of MerR family regulators includes MerR itself and may have evolved to generate a variety of specific metal-responsive regulators by fine-tuning the sites of metal recognition.
Collapse
Affiliation(s)
- Nigel L Brown
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
76
|
Kahmann JD, Sass HJ, Allan MG, Seto H, Thompson CJ, Grzesiek S. Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators. EMBO J 2003; 22:1824-34. [PMID: 12682015 PMCID: PMC154473 DOI: 10.1093/emboj/cdg181] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 02/21/2003] [Accepted: 02/24/2003] [Indexed: 11/15/2022] Open
Abstract
The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C-terminal drug-binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in Bacillus subtilis. The structure of apo TipAS, solved by solution NMR [Brookhaven Protein Data Bank entry 1NY9], is composed of a globin-like alpha-helical fold with a deep surface cleft and an unfolded N-terminal region. Antibiotics bind within the cleft at a position that is close to the corresponding heme pocket in myo- and hemoglobin, and induce folding of the N-terminus. Thus the classical globin fold is well adapted not only for accommodating its canonical cofactors, heme and other tetrapyrroles, but also for the recognition of a variety of antibiotics where ligand binding leads to transcriptional activation and drug resistance.
Collapse
Affiliation(s)
- Jan D Kahmann
- Division of Structural Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
77
|
Murata M, Ohno S, Kumano M, Yamane K, Ohki R. Multidrug resistant phenotype of Bacillus subtilis spontaneous mutants isolated in the presence of puromycin and lincomycin. Can J Microbiol 2003; 49:71-7. [PMID: 12718394 DOI: 10.1139/w03-014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneous mutants were isolated by growing Bacillus subtilis 168 in the presence of high concentrations of puromycin and lincomycin. These mutants showed increased resistance to several drugs other than these two drugs. The ImrAB genes, which encode a transcriptional repressor and a drug efflux protein of the major facilitator superfamily, were involved in this phenotype. Northern hybridization analysis showed that the expression of ImrAB gene increased more than 30-fold. The following two types of mutations were found to be responsible for the multidrug resistant phenotype: (i) a nucleotide replacement in the region between the promoter and initiation codon of ImrA and (ii) nucleotide replacements that resulted in amino acid replacements in the LmrA protein. The results indicate that LmrB is a multidrug resistant protein and that LmrA is a repressor, which autogenously represses the transcription of the ImrAB operon.
Collapse
Affiliation(s)
- Makiko Murata
- Department of Molecular Biology, School of Health Sciences, Kyorin University, Hachioji-shi, Tokyo 192-8508, Japan
| | | | | | | | | |
Collapse
|
78
|
Lee EW, Chen J, Huda MN, Kuroda T, Mizushima T, Tsuchiya T. Functional cloning and expression of emeA, and characterization of EmeA, a multidrug efflux pump from Enterococcus faecalis. Biol Pharm Bull 2003; 26:266-70. [PMID: 12576692 DOI: 10.1248/bpb.26.266] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A fragment of chromosomal DNA from Enterococcus faecalis ATCC 29212 was cloned using Escherichia coli KAM32 host cells lacking major multidrug efflux pumps. E. coli KAM32 cells were sensitive to many antimicrobial agents, and the transformed cells harboring a recombinant plasmid became resistant to several structurally unrelated antimicrobial agents such as tetraphenylphosphonium chloride, 4',6-diamidino-2-phenylindole (DAPI), Hoechst 33342, acriflavine, benzalkonium chloride, norfloxacin and ethidium bromide. This suggests that the cloned DNA fragment carries a gene(s) encoding a multidrug efflux pump. Determination of the nucleotide sequence of the cloned DNA revealed a gene designated as emeA. The transformed E. coli cells showed efflux activity of several antimicrobial agents such as DAPI, Hoechst 33342 and acriflavine. Efflux of DAPI via EmeA was strongly inhibited by reserpine.
Collapse
Affiliation(s)
- Eun-Woo Lee
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama , Japan
| | | | | | | | | | | |
Collapse
|
79
|
Brenwald NP, Appelbaum P, Davies T, Gill MJ. Evidence for efflux pumps, other than PmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Clin Microbiol Infect 2003; 9:140-3. [PMID: 12588335 DOI: 10.1046/j.1469-0691.2003.00482.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluoroquinolone resistance in pneumococci is known to be associated with the efflux pump, PmrA. However, there may be other efflux systems that also cause drug resistance. Two types of mutants were studied. The efflux phenotype from mutants selected by sub-MIC levofloxacin or gemifloxacin was transformed into R6. These transformants did not show increased pmrA transcripts in Northern blots; insertional inactivation of pmrA in the transformants did not abolish the efflux phenotype. A second set of efflux phenotype mutants was selected in R6:cat by ethidium bromide but not by norfloxacin; accumulation of ethidium bromide in the one among these mutants studied was reduced in comparison to its parent. This evidence suggests that systems other than PmrA can contribute to efflux-mediated resistance in pneumococci.
Collapse
Affiliation(s)
- N P Brenwald
- Division of Immunity and Infection, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
80
|
Khan S, Brocklehurst KR, Jones GW, Morby AP. The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli. Biochem Biophys Res Commun 2002; 299:438-45. [PMID: 12445820 DOI: 10.1016/s0006-291x(02)02660-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ZntR protein from Escherichia coli is a member of the MerR-family of transcriptional regulatory proteins and acts as a hyper-sensitive transcriptional switch primarily in response to Zn(II) and Cd(II). The binding of metal-ions to ZntR initiates a mechanism that remodels the cognate promoter, increasing its affinity for RNA polymerase. We have introduced site-directed mutations into zntR and shown that cysteine and histidine residues are important for transcriptional control and have an effect on metal-ion preference, sensitivity and magnitude of induction. We propose a three-dimensional model of the N-terminal region of ZntR based upon the coordinates of the MerR-family regulator BmrR.
Collapse
Affiliation(s)
- Saira Khan
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF, UK
| | | | | | | |
Collapse
|
81
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
82
|
Huang CC, Narita M, Yamagata T, Phung LT, Endo G, Silver S. Characterization of two regulatory genes of the mercury resistance determinants from TnMERI1 by luciferase-based examination. Gene 2002; 301:13-20. [PMID: 12490319 DOI: 10.1016/s0378-1119(02)01086-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The broad-spectrum mercury resistance transposon, TnMERI1, of Bacillus megaterium strain MB1, contains three proposed operator/promoter (O/P) transcriptional start sites and two regulatory genes (merR1 and merR2). A series of luciferase (lux)-based transcriptional fusion plasmids were studied in Escherichia coli to show that both merR1 and merR2 gene products repressed transcription from O/PmerB3, O/PmerR1, and O/PmerR2 under uninduced conditions. Derepression occurred when the merR1 gene was present and Hg(2+) functioned as an inducer. In the presence of organomercurial compounds, basal transcription of merB3 was needed to produce inorganic Hg(2+) as the inducer of expression regulated by MerR1 at O/PmerB3. The presence of merR2 repressed transcription from all three O/Pmer sites under both non-induced conditions and when inorganic Hg(2+) or organomercurials were added. These results show that MerR1 functions as a repressor in the absence of Hg(2+) and as an activator in the presence of Hg(2+), while MerR2 functions as a repressor.
Collapse
Affiliation(s)
- Chieh Chen Huang
- Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo-shi, 985-8537, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Matsumoto M, de Bont JA, Isken S. Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80115-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
84
|
Summers AO. Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 2002; 34 Suppl 3:S85-92. [PMID: 11988878 DOI: 10.1086/340245] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Several important aspects of the antimicrobial resistance problem have not been treated extensively in previous monographs on this subject. This section very briefly updates information on these topics and suggests how this information is of value in assessing the contributions of human and agricultural use of antimicrobial agents on the problem of increasing antimicrobial resistance. The overall themes are (1) that propagation of resistance is an ecological problem, and thus (2) that ameliorating this problem requires recognition of long-established information on the commensal microbiota of mammals, as well as that of recent molecular understanding of the genetic agents involved in the movement of resistance genes.
Collapse
Affiliation(s)
- Anne O Summers
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
85
|
Abstract
Multidrug efflux transporters, found in all living cells and protecting them from multiple structurally dissimilar hydrophobic toxins, have fascinated researchers for decades and presented a number of puzzling questions. These transporters demonstrate a remarkably broad substrate specificity, which seemingly contradicts established dogmas of biochemistry. Although sharing highly unusual properties, in some unexplained way, they have arisen multiple times in the evolution of several families of membrane proteins. Furthermore, the number of multidrug transporters encoded in each genome is so large that their role in cellular physiology has remained un-certain. Recent advances in the structural analysis of a number of soluble multidrug-recognizing proteins show that these proteins possess large hydrophobic binding sites and bind their substrates through a combination of a hydrophobic effect and electrostatic attraction, rather than by establishing a precise network of hydrogen bonds and other specific interactions characteristic of traditionally studied enzymes and receptors. Low-resolution structural studies of multidrug transporters suggest that they possess similar large binding sites and may use similar simple principles of substrate recognition. This would explain not only their broad substrate specificity, but also their unusual evolutionary relationships and the apparent multiplicity in genomes of organisms of all evolutionary kingdoms. Although further structural studies will be needed to prove this hypothesis, it is already clear that the explanation of the puzzling phenomenon of multidrug efflux may not necessarily require any substantially new biochemical or biological principles.
Collapse
Affiliation(s)
- Alex A Neyfakh
- Center for Pharmaceutical Biotechnology (M/C 870), University of Illinois, 900 S Ashland Street, Chicago, IL 60607, USA.
| |
Collapse
|
86
|
Raherison S, Gonzalez P, Renaudin H, Charron A, Bébéar C, Bébéar CM. Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by Mycoplasma hominis. Antimicrob Agents Chemother 2002; 46:672-9. [PMID: 11850247 PMCID: PMC127495 DOI: 10.1128/aac.46.3.672-679.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uptake of fluoroquinolones was characterized for the fluoroquinolone-susceptible strain PG21 of Mycoplasma hominis. Accumulation of fluoroquinolones appeared to occur by passive diffusion. Addition of arginine as the energizer significantly reduced the uptake of fluoroquinolones, suggesting the presence of an energy-dependent efflux process. Reserpine and orthovanadate, two multidrug pump inhibitors, increased significantly the ciprofloxacin (CIP) uptake. In contrast, such a strong effect was not observed for moxifloxacin and pefloxacin uptakes. Two ethidium bromide (EtBr)-resistant strains, selected in vitro, showed a resistance profile compatible with a multidrug-resistant phenotype, with increased MICs for the hydrophilic fluoroquinolones, CIP and norfloxacin, EtBr, and acriflavine. Taking the EtBr-resistant strain RB1La as a model, a significant decrease of the CIP and EtBr uptakes was observed compared to the reference strain PG21. In the presence of reserpine and orthovanadate, both inhibitors of ATP-dependent efflux pumps, the CIP uptake increased significantly, reaching approximately the same level as that of the susceptible strain. Similar results were obtained with EtBr uptake and efflux experiments. Our data suggest the presence of an active efflux system, possibly an ABC-type efflux pump, implicated in the resistance to CIP and unrelated compounds like EtBr in the human mycoplasma M. hominis.
Collapse
Affiliation(s)
- S Raherison
- Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Godsey MH, Baranova NN, Neyfakh AA, Brennan RG. Crystal structure of MtaN, a global multidrug transporter gene activator. J Biol Chem 2001; 276:47178-84. [PMID: 11581256 DOI: 10.1074/jbc.m105819200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MtaN (Multidrug Transporter Activation, N terminus) is a constitutive, transcriptionally active 109-residue truncation mutant, which contains only the N-terminal DNA-binding and dimerization domains of MerR family member Mta. The 2.75 A resolution crystal structure of apo-MtaN reveals a winged helix-turn-helix protein with a protruding 8-turn helix (alpha5) that is involved in dimerization by the formation of an antiparallel coiled-coil. The hydrophobic core and helices alpha1 through alpha4 are structurally homologous to MerR family member BmrR bound to DNA, whereas one wing (Wing 1) is shifted. Differences between the orientation of alpha5 with respect to the core and the revolution of the antiparallel coiled-coil lead to significantly altered conformations of MtaN and BmrR dimers. These shifts result in a conformation of MtaN that appears to be incompatible with the transcription activation mechanism of BmrR and suggest that additional DNA-induced structural changes are necessary.
Collapse
Affiliation(s)
- M H Godsey
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
89
|
Grkovic S, Brown MH, Schumacher MA, Brennan RG, Skurray RA. The staphylococcal QacR multidrug regulator binds a correctly spaced operator as a pair of dimers. J Bacteriol 2001; 183:7102-9. [PMID: 11717268 PMCID: PMC95558 DOI: 10.1128/jb.183.24.7102-7109.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2001] [Accepted: 09/20/2001] [Indexed: 11/20/2022] Open
Abstract
Expression of the Staphylococcus aureus plasmid-encoded QacA multidrug transporter is regulated by the divergently encoded QacR repressor protein. To circumvent the formation of disulfide-bonded degradation products, site-directed mutagenesis to replace the two cysteine residues in wild-type QacR was undertaken. Analysis of a resultant cysteineless QacR derivative indicated that it retained full DNA-binding activities in vivo and in vitro and continued to be fully proficient for the mediation of induction of qacA expression in response to a range of structurally dissimilar multidrug transporter substrates. The cysteineless QacR protein was used in cross-linking and dynamic light-scattering experiments to show that its native form was a dimer, whereas gel filtration indicated that four QacR molecules bound per DNA operator site. The addition of inducing compounds led to the dissociation of the four operator-bound QacR molecules from the DNA as dimers. Binding of QacR dimers to DNA was found to be dependent on the correct spacing of the operator half-sites. A revised model proposed for the regulation of qacA expression by QacR features the unusual characteristic of one dimer of the regulatory protein binding to each operator half-site by a process that does not appear to require the prior self-assembly of QacR into tetramers.
Collapse
Affiliation(s)
- S Grkovic
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
90
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
91
|
Grkovic S, Brown MH, Skurray RA. Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 2001; 12:225-37. [PMID: 11428915 DOI: 10.1006/scdb.2000.0248] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As integral membrane proteins demonstrating an extraordinarily wide substrate range, some degree of regulatory control over the expression of bacterial multidrug-resistance (MDR) transporters is to be expected. Excessive expression could be deleterious, due to direct, physical disruption of membrane integrity, or the unwanted export of essential metabolites, a potential side-effect of their broad substrate specificity. There are limited clues as to the physiological functions of most MDR transporters, but their expression is likely to be up-regulated in response to the presence of natural substrates of these pumps. Thus, it is no surprise that MDR genes are subject to regulation at the local level, consisting of examples of both transcriptional repression and activation by proteins encoded adjacent to that for the transporter. Furthermore, an increasing number of MDR genes have also been found to be controlled by global transcriptional activator proteins.
Collapse
Affiliation(s)
- S Grkovic
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
92
|
Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ, Miller GH, Hare R, Shimer G. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 2001; 45:1126-36. [PMID: 11257026 PMCID: PMC90435 DOI: 10.1128/aac.45.4.1126-1136.2001] [Citation(s) in RCA: 386] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contribution of seven known and nine predicted genes or operons associated with multidrug resistance to the susceptibility of Escherichia coli W3110 was assessed for 20 different classes of antimicrobial compounds that include antibiotics, antiseptics, detergents, and dyes. Strains were constructed with deletions for genes in the major facilitator superfamily, the resistance nodulation-cell division family, the small multidrug resistance family, the ATP-binding cassette family, and outer membrane factors. The agar dilution MICs of 35 compounds were determined for strains with deletions for multidrug resistance (MDR) pumps. Deletions in acrAB or tolC resulted in increased susceptibilities to the majority of compounds tested. The remaining MDR pump gene deletions resulted in increased susceptibilities to far fewer compounds. The results identify which MDR pumps contribute to intrinsic resistance under the conditions tested and supply practical information useful for designing sensitive assay strains for cell-based screening of antibacterial compounds.
Collapse
Affiliation(s)
- M C Sulavik
- Genome Therapeutics Corporation, Waltham, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Walberg M, Steen HB. Flow cytometric monitoring of bacterial susceptibility to antibiotics. Methods Cell Biol 2001; 64:553-66. [PMID: 11070855 DOI: 10.1016/s0091-679x(01)64029-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M Walberg
- Institute of Medical Microbiology, National Hospital, University of Oslo, Norway
| | | |
Collapse
|
94
|
Russell WM, Klaenhammer TR. Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Appl Environ Microbiol 2001; 67:1253-61. [PMID: 11229918 PMCID: PMC92721 DOI: 10.1128/aem.67.3.1253-1261.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gusA gene, encoding a new beta-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a beta-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored beta-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to beta-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a beta-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified beta-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested.
Collapse
Affiliation(s)
- W M Russell
- Department of Microbiology, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
95
|
Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 2000; 64:672-93. [PMID: 11104814 PMCID: PMC99009 DOI: 10.1128/mmbr.64.4.672-693.2000] [Citation(s) in RCA: 541] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.
Collapse
Affiliation(s)
- M Putman
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
96
|
Poole K. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother 2000; 44:2595-9. [PMID: 10991829 PMCID: PMC90120 DOI: 10.1128/aac.44.10.2595-2599.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- K Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
97
|
Turner MS, Helmann JD. Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the sigma(X) and sigma(W) factors in Bacillus subtilis. J Bacteriol 2000; 182:5202-10. [PMID: 10960106 PMCID: PMC94670 DOI: 10.1128/jb.182.18.5202-5210.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(X) and sigma(W) extracytoplasmic function sigma factors regulate more than 40 genes in Bacillus subtilis. sigma(W) activates genes which function in detoxification and the production of antimicrobial compounds, while sigma(X) activates functions that modify the cell envelope. Transposon mutagenesis was used to identify loci which negatively regulate sigma(W) or sigma(X) as judged by up-regulation from the autoregulatory promoter site P(W) or P(X). Fourteen insertions that activate P(W) were identified. The largest class of insertions are likely to affect transport. These include insertions in genes encoding two multidrug efflux protein homologs (yqgE and yulE), a component of the oligopeptide uptake system (oppA), and two transmembrane proteins with weak similarity to transporters (yhdP and yueF). Expression from P(W) is also elevated as a result of inactivation of at least one member of the sigma(W) regulon (ysdB), an ArsR homolog (yvbA), a predicted rhamnose isomerase (yulE), and a gene (pksR) implicated in synthesis of difficidin, a polyketide antibiotic. In a parallel screen, we identified seven insertions that up-regulate P(X). Remarkably, these insertions were in functionally similar genes, including a multidrug efflux homolog (yitG), a mannose-6-phosphate isomerase gene (yjdE), and loci involved in antibiotic synthesis (srfAB and possibly yogA and yngK). Significantly, most insertions that activate P(W) have little or no effect on P(X), and conversely, insertions that activate P(X) have no effect on P(W). This suggests that these two regulons respond to distinct sets of molecular signals which may include toxic molecules which are exported, cell density signals, and antimicrobial compounds.
Collapse
Affiliation(s)
- M S Turner
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
98
|
Wray LV, Zalieckas JM, Fisher SH. Purification and in vitro activities of the Bacillus subtilis TnrA transcription factor. J Mol Biol 2000; 300:29-40. [PMID: 10864496 DOI: 10.1006/jmbi.2000.3846] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bacillus subtilis nitrogen regulatory protein TnrA was purified and its interaction with the nrgAB regulatory region examined. The TnrA protein activates transcription from the nrgAB promoter in vitro. DNase I footprinting and methylation protection experiments demonstrated that TnrA binds to an inverted repeat, upstream of the -35 region of the nrgAB promoter. Gel mobility retardation assays were used to determine the affinity of TnrA for its DNA-binding site. The equilibrium dissociation binding constant for the interaction of TnrA with the nrgAB promoter fragment was 7.7 nM under the conditions used here. Mutations in the TnrA consensus sequence that reduce nrgAB expression in vivo were found to reduce significantly the in vitro affinity for TnrA. An A+T rich region located upstream of the TnrA-binding site was found to be necessary for optimal transcriptional activation. A mutant protein, TnrA(HTH), was constructed in which the putative helix-turn-helix DNA-binding motif was altered by exchanging two arginine residues for alanine residues. The TnrA(HTH) protein was unable to activate the in vivo expression of nrgAB and had an in vitro affinity for the nrgAB promoter that was significantly lower than that of the wild-type protein.
Collapse
Affiliation(s)
- L V Wray
- Department of Microbiology, Boston University School of Medicine, 715 Albany Street, Boston, MA, 02118, USA
| | | | | |
Collapse
|
99
|
Zhang YL, Ong CT, Leung KY. Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):999-1009. [PMID: 10784058 DOI: 10.1099/00221287-146-4-999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aeromonas hydrophila, a normal inhabitant of aquatic environments, is an opportunistic pathogen of a variety of aquatic and terrestrial animals, including humans. A. hydrophila PPD134/91 is defined as virulent whereas PPD35/85 is defined as avirulent on the basis of their different LD50 values in fish. Suppression subtractive hybridization (SSH) was used to identify genetic differences between these two strains. Sixty-nine genomic regions of differences were absent in PPD35/85, and the DNA sequences of these regions were determined. Sixteen ORFs encoded by 23 fragments showed high homology to known proteins of other bacteria. ORFs encoded by the remaining 46 fragments were identified as new proteins of A. hydrophila, showing no significant homology to any known proteins. Among these PPD134/91-specific genes, 22 DNA fragments (21 ORFs) were present in most of the eight virulent strains studied but mostly absent in the seven avirulent strains, suggesting that they are universal virulence genes in A. hydrophila. The PPD134/91-specific genes included five known virulence factors of A. hydrophila: haemolysin (hlyA), protease (oligopeptidase A), outer-membrane protein (Omp), multidrug-resistance protein and histone-like protein (HU-2). Another 47 DNA fragments (44 ORFs) were mainly present in PPD134/91, indicating the heterogeneity among motile aeromonads. Some of these fragments encoded virulence determinants. These included genes for the synthesis of O-antigen and type II restriction/modification system. The results indicated that SSH is successful in identifying genetic differences and virulence genes among different strains of A. hydrophila.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 1192601
| | - C T Ong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 1192601
| | - K Y Leung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 1192601
| |
Collapse
|
100
|
Miyauchi S, Tanabu S, Abe A, Okumura R, Kamo N. Culture in the presence of sugars increases activity of multi-drug efflux transporter on Haloferax volcanii. Microb Drug Resist 2000; 3:359-63. [PMID: 9442488 DOI: 10.1089/mdr.1997.3.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We found that when a growth medium contained glucose, wild-type cells of Haloferax volcanii were able to grow even in the presence of doxorubicin (DOX), an anti-cancer reagent, whereas they usually cannot grow in its presence. The reason was that cells grown in the presence of glucose (glucose-grown cells) showed high multi-drug efflux activity even though the growth medium contained no DOX or substrates of the transporter. This transporter was ATP-driven and the elevation of efflux activity was not due to an increase in intracellular ATP contents. The activity was increased not only by glucose but also by sugars that could be metabolized.
Collapse
Affiliation(s)
- S Miyauchi
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|