51
|
Abstract
This review covers the recent literature on the release mechanisms for polyketides and nonribosomal peptides produced by microorganisms. The emphasis is on the novel enzymology and mechanistic insights revealed by the biosynthetic studies of new natural products.
Collapse
Affiliation(s)
- Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588, USA.
| | | |
Collapse
|
52
|
Gbetagamma-mediated growth and developmental control in Aspergillus fumigatus. Curr Genet 2009; 55:631-41. [PMID: 19915845 DOI: 10.1007/s00294-009-0276-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
The roles of the Gbetagamma subunits of the opportunistic human pathogen Aspergillus fumigatus were investigated. The predicted AfuSfaD (Gbeta) protein consists of 353 amino acids and shows 94-98% similarity with other Aspergillus Gbeta subunits. AfuGpgA consists of 90 amino acids showing 95-98% identity with other fungal G-protein gamma subunits. The deletion (Delta) of AfusfaD or AfugpgA resulted in severe impairment in vegetative growth, conidial germination and conidial trehalose breakdown. While the total number of conidia produced by DeltaAfusfaD and DeltaAfugpgA strains on solid medium was only about 1% of wild type, the growth-adjusted conidiation levels were twofold higher than those of wild type. Enhanced formation of conidiophores and elevated AfubrlA mRNA levels were observable in DeltaAfusfaD or DeltaAfugpgA strains in liquid submerged culture. Moreover, overexpression of AfusfaD or AfugpgA caused reduced levels of submerged culture conidiation, indicating that Gbetagamma is involved in negative regulation of conidiation. Gliotoxin and other metabolites were not detected in the chloroform extracts of DeltaAfusfaD and DeltaAfugpgA culture filtrates. Northern blot analyses revealed that, while AfulaeA mRNA levels unchanged, accumulation of gliZ mRNA was delayed by DeltaAfusfaD or DeltaAfugpgA. A model summarizing the roles of AfusfaD and AfugpgA in A. fumigatus is presented.
Collapse
|
53
|
Peña-Montes C, Lange S, Flores I, Castro-Ochoa D, Schmid R, Cruz-García F, Farrés A. Molecular characterization of StcI esterase from Aspergillus nidulans. Appl Microbiol Biotechnol 2009; 84:917-26. [PMID: 19440704 DOI: 10.1007/s00253-009-2005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/01/2009] [Accepted: 04/07/2009] [Indexed: 11/24/2022]
Abstract
Aspergillus nidulans produces StcI esterase, which is involved in the biosynthesis of sterigmatocystin, a precursor of aflatoxins. Previous reports of this esterase in A. nidulans suggest that it is composed of 286 amino acid residues with a theoretical molecular mass of 31 kDa. Various conditions were evaluated to determine the optimal expression conditions for StcI; the highest level was observed when A. nidulans was cultured in solid oat media. Various esterases were expressed differentially according to the culture media used. However, specific antibodies designed to detect StcI reacted with a protein with an unexpected molecular mass of 35 kDa in cell extracts from all expression conditions. Analysis of the gene sequence and already reported expressed sequence tags indicated the presence of an additional 29-amino-acid N-terminal region of StcI, which is not a signal peptide and which has not been previously reported. We also detected the presence of this additional N-terminal region using reverse-transcriptase polymerase chain reaction. The complete protein (NStcI) was cloned and successfully expressed in Pichia pastoris.
Collapse
Affiliation(s)
- Carolina Peña-Montes
- Food and Biotechnology Department, Chemistry Faculty, National Autonomous University of Mexico , Ciudad Universitaria, Mexico City, DF 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
54
|
Yadav G, Gokhale RS, Mohanty D. Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLoS Comput Biol 2009; 5:e1000351. [PMID: 19360130 PMCID: PMC2661021 DOI: 10.1371/journal.pcbi.1000351] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 03/09/2009] [Indexed: 12/18/2022] Open
Abstract
Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the polyketide synthase (PKS) family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative ketosynthase (KS) domains have revealed novel correlations between the size of the polyketide products and volume of the active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for discovery of novel natural products by genome mining and rational design of novel natural products.
Collapse
|
55
|
Valarmathi R, Hariharan GN, Venkataraman G, Parida A. Characterization of a non-reducing polyketide synthase gene from lichen Dirinaria applanata. PHYTOCHEMISTRY 2009; 70:721-729. [PMID: 19427006 DOI: 10.1016/j.phytochem.2009.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 05/27/2023]
Abstract
Lichens are known to produce a variety of secondary metabolites including polyketides that have diverse biological role(s). The biosynthesis of fungal polyketides is governed by type I polyketide synthases (PKS), enzymes with a multidomain structure, including the beta-ketoacyl synthase (KS), acyl transferase (AT), ketoreductase (KR), dehydratase (DH), enoyl reductase (ER) and acyl carrier protein (ACP) domains. Established soredial cultures of Dirinaria applanata (Fée) producing atranorin and divaricatic acid were used to characterize a polyketide synthase gene (DnPKS). A 743bp fragment corresponding to the ketosynthase domain (KS) was isolated using degenerate primers. Complete sequence information for DnPKS (8162bp) was obtained by walking in the 5'and 3' directions of the isolated KS domain using TAIL PCR. A translation of the DnPKS sequence identified the presence of KS, AT, two ACP and TE domains with eight intervening introns. TBLASTX analysis and comparison with other PKS sequences suggest that the coding region of DnPKS sequence is complete with the identification of putative start and stop codons and a stretch of 1226 upstream of the start codon corresponding to the putative promoter. This sequence shows the presence of putative binding sites for fungal transcription factors such as AflR, AreA and PacC. Southern blot analysis suggests that additional DnPKS-like genes may be present in the D. applanata genome. Additionally, expression of a DnPKS-like transcript was examined under different culture conditions and found to be down-regulated by sucrose and up-regulated by mannitol, UV and neutral pH.
Collapse
Affiliation(s)
- R Valarmathi
- Lichen Ecology and Bioprospecting Laboratory, M.S. Swaminathan Research Foundation, Taramani, Chennai, India
| | | | | | | |
Collapse
|
56
|
Gagunashvili AN, Davídsson SP, Jónsson ZO, Andrésson OS. Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. ACTA ACUST UNITED AC 2008; 113:354-63. [PMID: 19100326 DOI: 10.1016/j.mycres.2008.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/17/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
Lichens and most ascomycete fungi produce polyketide secondary metabolites often with valuable biological activities. Their biosynthesis is primarily governed by large iterative multifunctional type I polyketide synthases. Although there has been good progress studying filamentous non-lichenized fungi, there is limited information on polyketide biosynthesis in lichens and their mycobionts, due to their slow growth, difficulties in establishing pure cultures, and the absence of methods for direct genetic manipulation. However, heterologous expression in a surrogate host offers an alternative approach for exploring lichen polyketide biosynthesis. Here, we report cloning of a type I polyketide synthase gene from the foliose lichen Solorina crocea and its heterologous transcription in the filamentous fungus Aspergillus oryzae, including processing of the transcript. No new polyketide product was detected. The lichen polyketide synthase showed greatest homology with uncharacterized genes from filamentous fungi and lower homology with proteins catalysing biosynthesis of the decaketide alternapyrone and the tetraketide side-chain of squalestatin. The technology platform utilized here presents a useful tool for functional characterization of fungal biosynthetic genes and provides a means for novel production of valuable compounds.
Collapse
Affiliation(s)
- Andrey N Gagunashvili
- Institute of Biology, University of Iceland, Sturlugata 7, IS-101 Reykjavik, Iceland
| | | | | | | |
Collapse
|
57
|
A ketoreductase domain in the PksJ protein of the bacillaene assembly line carries out both alpha- and beta-ketone reduction during chain growth. Proc Natl Acad Sci U S A 2008; 105:12809-14. [PMID: 18723688 DOI: 10.1073/pnas.0806305105] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polyketide signaling metabolites bacillaene and dihydrobacillaene are biosynthesized in Bacillus subtilis on an enzymatic assembly line with both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules acting along with catalytic domains servicing the assembly line in trans. These signaling metabolites possess the unusual starter unit alpha-hydroxyisocaproate (alpha-HIC). We show here that it arises from initial activation of alpha-ketoisocaproate (alpha-KIC) by the first adenylation domain of PksJ (a hybrid PKS/NRPS) and installation on the pantetheinyl arm of the adjacent thiolation (T) domain. The alpha-KIC unit is elongated to alpha-KIC-Gly by the second NRPS module in PksJ as demonstrated by mass spectrometric analysis. The third module of PksJ uses PKS logic and contains an embedded ketoreductase (KR) domain along with two adjacent T domains. We show that this KR domain reduces canonical 3-ketobutyryl chains but also the alpha-keto group of alpha-KIC-containing intermediates on the PksJ T-domain doublet. This KR activity accounts for the alpha-HIC moiety found in the dihydrobacillaene/bacillaene pair and represents an example of an assembly-line dual-function alpha- and beta-KR acting on disparate positions of a growing chain intermediate.
Collapse
|
58
|
Analysis of modular-iterative mixed biosynthesis of lankacidin by heterologous expression and gene fusion. J Antibiot (Tokyo) 2008; 60:700-8. [PMID: 18057700 DOI: 10.1038/ja.2007.90] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lankacidin is a unique 17-membered macrocyclic antibiotic different from usual even-membered macrolides. Based on the gene organization of the lankacidin biosynthetic cluster coded on the linear plasmid pSLA2-L in Streptomyces rochei, we previously proposed a hypothesis of modular-iterative mixed polyketide biosynthesis for lankacidin. Two experimental evidences in this paper further strengthened this hypothesis. Heterologous expression of the lankacidin cluster (lkcA-lkcO) in Streptomyces lividans resulted in lankacidinol A production, indicating that the gene cluster is sufficient for the synthesis of the lankacidin skeleton. In addition, a gene fusant of lkcF and lkcG produced lankacidin at a similar level to the parent strain, suggesting that an iterative function of the LkcF protein is unlikely. These results are consistent with the hypothesis that LkcC is used four times and LkcA, LkcF and LkcG are used modularly to accomplish eight condensation reactions leading to the lankacidin skeleton.
Collapse
|
59
|
|
60
|
Cary JW, OBrian GR, Nielsen DM, Nierman W, Harris-Coward P, Yu J, Bhatnagar D, Cleveland TE, Payne GA, Calvo AM. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl Microbiol Biotechnol 2007; 76:1107-18. [PMID: 17646985 DOI: 10.1007/s00253-007-1081-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/06/2007] [Accepted: 06/10/2007] [Indexed: 02/07/2023]
Abstract
The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin as well as sclerotial formation. We used microarray technology to identify genes differentially expressed in wild-type veA and veA mutant strains that could be involved in aflatoxin production and sclerotial development in A. flavus. The DNA microarray analysis revealed 684 genes whose expression changed significantly over time; 136 of these were differentially expressed between the two strains including 27 genes that demonstrated a significant difference in expression both between strains and over time. A group of 115 genes showed greater expression in the wild-type than in the veA mutant strain. We identified a subgroup of veA-dependent genes that exhibited time-dependent expression profiles similar to those of known aflatoxin biosynthetic genes or that were candidates for involvement in sclerotial production in the wild type.
Collapse
Affiliation(s)
- J W Cary
- Southern Regional Research Center,Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cox RJ. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 2007; 5:2010-26. [PMID: 17581644 DOI: 10.1039/b704420h] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fungi produce a wide variety of biologically active compounds. Among these, the polyketides form a large and structurally diverse group. These compounds are synthesised by highly programmed and very large iterative multifunctional proteins, the polyketide synthases, with nm dimensions. This review outlines the current state of knowledge regarding the links between gene sequence, protein architecture and biosynthetic programming for fungal polyketide synthases.
Collapse
Affiliation(s)
- Russell J Cox
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS.
| |
Collapse
|
62
|
Mah JH, Yu JH. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. EUKARYOTIC CELL 2006; 5:1585-95. [PMID: 17030990 PMCID: PMC1595350 DOI: 10.1128/ec.00192-06] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The opportunistic human pathogen Aspergillus fumigatus produces a large quantity of asexual spores (conidia), which are the primary agent causing invasive aspergillosis in immunocompromised patients. We investigated the mechanisms controlling asexual sporulation (conidiation) in A. fumigatus via examining functions of four key regulators, GpaA (Galpha), AfFlbA (RGS), AfFluG, and AfBrlA, previously studied in Aspergillus nidulans. Expression analyses of gpaA, AfflbA, AffluG, AfbrlA, and AfwetA throughout the life cycle of A. fumigatus revealed that, while transcripts of AfflbA and AffluG accumulate constantly, the latter two downstream developmental regulators are specifically expressed during conidiation. Both loss-of-function AfflbA and dominant activating GpaA(Q204L) mutations resulted in reduced conidiation with increased hyphal proliferation, indicating that GpaA signaling activates vegetative growth while inhibiting conidiation. As GpaA is the primary target of AfFlbA, the dominant interfering GpaA(G203R) mutation suppressed reduced conidiation caused by loss of AfflbA function. These results corroborate the hypothesis that functions of G proteins and RGSs are conserved in aspergilli. We then examined functions of the two major developmental activators AfFluG and AfBrlA. While deletion of AfbrlA eliminated conidiation completely, null mutation of AffluG did not cause severe alterations in A. fumigatus sporulation in air-exposed culture, implying that, whereas the two aspergilli may have a common key downstream developmental activator, upstream mechanisms activating brlA may be distinct. Finally, both AffluG and AfflbA mutants showed reduced conidiation and delayed expression of AfbrlA in synchronized developmental induction, indicating that these upstream regulators contribute to the proper progression of conidiation.
Collapse
Affiliation(s)
- Jae-Hyung Mah
- Department of Food Microbiology and Toxicology and Food Research Institute, University of Wisconsin, Madison, Madison, WI 53706, USA
| | | |
Collapse
|
63
|
Bok JW, Noordermeer D, Kale SP, Keller NP. Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 2006; 61:1636-45. [PMID: 16968230 DOI: 10.1111/j.1365-2958.2006.05330.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In contrast to most primary metabolism genes, the genes involved in secondary metabolism and certain nutrient utilization pathways are clustered in fungi. Recently a nuclear protein, LaeA, was found to be required for the transcription of several secondary metabolite gene clusters in Aspergillus nidulans. Here we show that LaeA regulation does not extend to nutrient utilization or the spoC1 sporulation clusters. One of the secondary metabolite clusters regulated by LaeA contains the positive regulatory (i.e. aflR) and biosynthetic genes required for biosynthesis of sterigmatocystin (ST), a carcinogenic toxin. Analysis of ST gene cluster expression indicates LaeA regulation of the cluster is location specific as transcription of genes bordering the ST cluster are unaffected in a DeltalaeA mutant and placement of a primary metabolic gene, argB, in the ST cluster resulted in argB silencing in the DeltalaeA background. ST cluster gene expression was remediated when an additional copy of aflR was placed outside of the cluster but not when placed in the cluster. Site-specific mutation of an s-adenosyl methionine (AdoMet) binding site in LaeA generated a DeltalaeA phenotype suggesting the protein to be a methyltransferase.
Collapse
Affiliation(s)
- Jin Woo Bok
- Department of Plant Pathology, University of Wisconsin--Madison, 1630 Linden Drive, WI 53706, USA
| | | | | | | |
Collapse
|
64
|
Crawford JM, Dancy BCR, Hill EA, Udwary DW, Townsend CA. Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci U S A 2006; 103:16728-33. [PMID: 17071746 PMCID: PMC1636523 DOI: 10.1073/pnas.0604112103] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyketides are a class of natural products that exhibit a wide range of functional and structural diversity. They include antibiotics, immunosuppressants, antifungals, antihypercholesterolemics, and cytotoxins. Polyketide synthases (PKSs) use chemistry similar to fatty acid synthases (FASs), although building block variation and differing extents of reduction of the growing polyketide chain underlie their biosynthetic versatility. In contrast to the well studied sequential modular type I PKSs, less is known about how the iterative type I PKSs carry out and control chain initiation, elongation, folding, and cyclization during polyketide processing. Domain structure analysis of a group of related fungal, nonreducing PKSs has revealed well defined N-terminal domains longer than commonly seen for FASs and modular PKSs. Predicted structure of this domain disclosed a region similar to malonyl-CoA:acyl-carrier protein (ACP) transacylases (MATs). MATs play a key role transferring precursor CoA thioesters from solution onto FASs and PKSs for chain elongation. On the basis of site-directed mutagenesis, radiolabeling, and kinetics experiments carried out with individual domains of the norsolorinic acid PKS, we propose that the N-terminal domain is a starter unit:ACP transacylase (SAT domain) that selects a C(6) fatty acid from a dedicated yeast-like FAS and transfers this unit onto the PKS ACP, leading to the production of the aflatoxin precursor, norsolorinic acid. These findings could indicate a much broader role for SAT domains in starter unit selection among nonreducing iterative, fungal PKSs, and they provide a biochemical rationale for the classical acetyl "starter unit effect."
Collapse
Affiliation(s)
- Jason M. Crawford
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Blair C. R. Dancy
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Eric A. Hill
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Daniel W. Udwary
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
65
|
Wang L, Ma L, Leng W, Liu T, Yu L, Yang J, Yang L, Zhang W, Zhang Q, Dong J, Xue Y, Zhu Y, Xu X, Wan Z, Ding G, Yu F, Tu K, Li Y, Li R, Shen Y, Jin Q. Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics 2006; 7:255. [PMID: 17032460 PMCID: PMC1621083 DOI: 10.1186/1471-2164-7-255] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Accepted: 10/11/2006] [Indexed: 11/20/2022] Open
Abstract
Background Dermatophytes are the primary causative agent of dermatophytoses, a disease that affects billions of individuals worldwide. Trichophyton rubrum is the most common of the superficial fungi. Although T. rubrum is a recognized pathogen for humans, little is known about how its transcriptional pattern is related to development of the fungus and establishment of disease. It is therefore necessary to identify genes whose expression is relevant to growth, metabolism and virulence of T. rubrum. Results We generated 10 cDNA libraries covering nearly the entire growth phase and used them to isolate 11,085 unique expressed sequence tags (ESTs), including 3,816 contigs and 7,269 singletons. Comparisons with the GenBank non-redundant (NR) protein database revealed putative functions or matched homologs from other organisms for 7,764 (70%) of the ESTs. The remaining 3,321 (30%) of ESTs were only weakly similar or not similar to known sequences, suggesting that these ESTs represent novel genes. Conclusion The present data provide a comprehensive view of fungal physiological processes including metabolism, sexual and asexual growth cycles, signal transduction and pathogenic mechanisms.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Li Ma
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Wenchuan Leng
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Tao Liu
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Lu Yu
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Jian Yang
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Li Yang
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Wenliang Zhang
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Qian Zhang
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Jie Dong
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Ying Xue
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Yafang Zhu
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Xingye Xu
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
| | - Zhe Wan
- Research Centre for Medical Mycology, Beijing 100034, China
| | - Guohui Ding
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fudong Yu
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kang Tu
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruoyu Li
- Research Centre for Medical Mycology, Beijing 100034, China
| | - Yan Shen
- Chinese National Human Genome Center, Beijing, Beijing 100176, China
| | - Qi Jin
- State Key Lab for Molecular Virology and Genetic Engineering, Beijing 100176, China
- The Institute of Pathogen Microbiology, Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
66
|
Seo JA, Yu JH. The phosducin-like protein PhnA is required for Gbetagamma-mediated signaling for vegetative growth, developmental control, and toxin biosynthesis in Aspergillus nidulans. EUKARYOTIC CELL 2006; 5:400-10. [PMID: 16467480 PMCID: PMC1405901 DOI: 10.1128/ec.5.2.400-410.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosducin or phosducin-like protein (PhLP) is a positive regulator of Gbetagamma activity. The Gbeta (SfaD) and Ggamma (GpgA) subunits function in vegetative growth and developmental control in the model filamentous fungus Aspergillus nidulans. To better understand the nature of Gbetagamma-mediated signaling, phnA, encoding an A. nidulans PhLP, has been studied. Deletion of phnA resulted in phenotypes almost identical to those caused by deletion of sfaD, i.e., reduced biomass, asexual sporulation in liquid submerged culture, and defective fruiting body formation, suggesting that PhnA is necessary for Gbeta function. The requirement for the RGS protein FlbA in asexual sporulation could be bypassed by the DeltaphnA mutation, indicating that PhnA functions in FlbA-controlled vegetative growth signaling, primarily mediated by the heterotrimeric G protein composed of FadA (Galpha), SfaD, and GpgA. However, whereas deletion of fadA restored both asexual sporulation and the production of sterigmatocystin (ST), deletion of sfaD, gpgA, or phnA failed to restore ST production in the DeltaflbA mutant. Further studies revealed that SfaD, GpgA, and PhnA are necessary for the expression of aflR, encoding the transcriptional activator for the ST biosynthetic genes, and subsequent ST biosynthesis. Overexpression of aflR bypassed the need for SfaD in ST production, indicating that the results of SfaD-mediated signaling may include transcriptional activation of aflR. Potential differential roles of FadA, Gbetagamma, and FlbA in controlling ST biosynthesis are further discussed.
Collapse
Affiliation(s)
- Jeong-Ah Seo
- Department of Food Microbiology and Toxicology, Food Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
67
|
Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 2006; 58:1102-13. [PMID: 16262793 DOI: 10.1111/j.1365-2958.2005.04884.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Zearalenone (ZEA) is a polyketide mycotoxin produced by some species of Gibberella/Fusarium and causes hyperestrogenic syndrome in animals. ZEA occurs naturally in cereals infected by Gibberella zeae in temperate regions and threatens animal health. In this study, we report on a set of genes that participate in the biosynthesis of ZEA in G. zeae. Focusing on the non-reducing polyketide synthase (PKS) genes of the G. zeae genome, we demonstrated that PKS13 is required for ZEA production. Subsequent analyses revealed that a continuous, 50 kb segment of DNA carrying PKS13 consisted of three additional open reading frames that were coexpressed as a cluster during the condition for ZEA biosynthesis. These genes, in addition to PKS13, were essential for the ZEA biosynthesis. They include another PKS gene (PKS4) encoding a fungal reducing PKS; zearalenone biosynthesis gene 1 (ZEB1), which shows a high similarity to putative isoamyl alcohol oxidase genes; and ZEB2 whose deduced product carries a conserved, basic-region leucine zipper domain. ZEB1 is responsible for the chemical conversion of beta-zearalenonol (beta-ZOL) to ZEA in the biosynthetic pathway, and ZEB2 controls transcription of the cluster members. Transcription of these genes was strongly influenced by different culture conditions such as nutrient starvations and ambient pH. Furthermore, the same set of genes regulated by ZEB2 was dramatically repressed in the transgenic G. zeae strain with the deletion of PKS13 or PKS4 but not in the ZEB1 deletion strain, suggesting that ZEA or beta-ZOL may be involved in transcriptional activation of the gene cluster required for ZEA biosynthesis in G. zeae. This is the first published report on the molecular characterization of genes required for ZEA biosynthesis.
Collapse
Affiliation(s)
- Yong-Tae Kim
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Seo JA, Guan Y, Yu JH. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 2006; 172:1535-44. [PMID: 16387865 PMCID: PMC1456305 DOI: 10.1534/genetics.105.052258] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022] Open
Abstract
The asexual spore is one of the most crucial factors contributing to the fecundity and fitness of filamentous fungi. Although the developmental activator FluG was shown to be necessary for activation of asexual sporulation (conidiation) and production of the carcinogenic mycotoxin sterigmatocystin (ST) in the model filamentous fungus Aspergillus nidulans, the molecular mechanisms underlying the developmental switch have remained elusive. In this study, we report that the FluG-mediated conidiation in A. nidulans occurs via derepression. Suppressor analyses of fluG led to the identification of the sfgA gene encoding a novel protein with the Gal4-type Zn(II)2Cys6 binuclear cluster DNA-binding motif at the N terminus. Deletion (delta) and 31 other loss-of-function sfgA mutations bypassed the need for fluG in conidiation and production of ST. Moreover, both delta sfgA and delta sfgA delta fluG mutations resulted in identical phenotypes in growth, conidiation, and ST production, indicating that the primary role of FluG is to remove repressive effects imposed by SfgA. In accordance with the proposed regulatory role of SfgA, overexpression of sfgA inhibited conidiation and delayed/reduced expression of conidiation- and ST-specific genes. Genetic analyses demonstrated that SfgA functions downstream of FluG but upstream of transcriptional activators (FlbD, FlbC, FlbB, and BrlA) necessary for normal conidiation.
Collapse
Affiliation(s)
- Jeong-Ah Seo
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
69
|
Zhang YQ, Brock M, Keller NP. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genetics 2005; 168:785-94. [PMID: 15514053 PMCID: PMC1448837 DOI: 10.1534/genetics.104.027540] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Propionyl-CoA is an intermediate metabolite produced through a variety of pathways including thioesterification of propionate and catabolism of odd chain fatty acids and select amino acids. Previously, we found that disruption of the methylcitrate synthase gene, mcsA, which blocks propionyl-CoA utilization, as well as growth on propionate impaired production of several polyketides-molecules typically derived from acetyl-CoA and malonyl-CoA-including sterigmatocystin (ST), a potent carcinogen, and the conidiospore pigment. Here we describe three lines of evidence that demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis. First, inactivation of a putative propionyl-CoA synthase, PcsA, which converts propionate to propionyl-CoA, restored polyketide production and reduced cellular propionyl-CoA content in a DeltamcsA background. Second, inactivation of the acetyl-CoA synthase, FacA, which is also involved in propionate utilization, restored polyketide production in the DeltamcsA background. Third, fungal growth on several compounds (e.g., heptadecanoic acid, isoleucine, and methionine) whose catabolism includes the formation of propionyl-CoA, were found to inhibit ST and conidiospore pigment production. These results demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
70
|
Rahman AS, Hothersall J, Crosby J, Simpson TJ, Thomas CM. Tandemly Duplicated Acyl Carrier Proteins, Which Increase Polyketide Antibiotic Production, Can Apparently Function Either in Parallel or in Series. J Biol Chem 2005; 280:6399-408. [PMID: 15583005 DOI: 10.1074/jbc.m409814200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyketide biosynthesis involves the addition of subunits commonly derived from malonate or methylmalonate to a starter unit such as acetate. Type I polyketide synthases are multifunctional polypeptides that contain one or more modules, each of which normally contains all the enzymatic domains for a single round of extension and modification of the polyketide backbone. Acyl carrier proteins (ACP(s)) hold the extender unit to which the starter or growing chain is added. Normally there is one ACP for each ketosynthase module. However, there are an increasing number of known examples of tandemly repeated ACP domains, whose function is as yet unknown. For the doublet and triplet ACP domains in the biosynthetic pathway for the antibiotic mupirocin from Pseudomonas fluorescens NCIMB10586 we have inactivated ACP domains by inframe deletion and amino acid substitution of the active site serine. By deletion analysis each individual ACP from a cluster can provide a basic but reduced activity for the pathway. In the doublet cluster, substitution analysis indicates that the pathway may follow two parallel routes, one via each of the ACPs, thus increasing overall pathway flow. In the triplet cluster, substitution in ACP5 blocked the pathway. Thus ACP5 appears to be arranged "in series" to ACP6 and ACP7. Thus although both the doublet and triplet clusters increase antibiotic production, the mechanisms by which they do this appear to be different and depend specifically on the biosynthetic stage involved. The function of some ACPs may be determined by their location in the protein rather than absolute enzymic activity.
Collapse
Affiliation(s)
- Ayesha S Rahman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
71
|
Cheng Q, Kinney KA, Whitman CP, Szaniszlo PJ. Characterization of two polyketide synthase genes in Exophiala lecanii-corni, a melanized fungus with bioremediation potential. Bioorg Chem 2004; 32:92-108. [PMID: 14990308 DOI: 10.1016/j.bioorg.2003.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Indexed: 11/29/2022]
Abstract
Exophiala lecanii-corni has significant bioremediation potential because it can degrade a wide range of volatile organic compounds. In order to identify sites for the insertion of genes that might enhance this potential, a genetic analysis of E. lecanii-corni was undertaken. Two polyketide synthase genes, ElPKS1 and ElPKS2, have now been discovered by a PCR-based strategy. ElPKS1 was isolated by a marker rescue technique. The nucleotide sequence of ElPKS1 consists of a 6576-bp open reading frame encoding a protein with 2192 amino acids, which was interrupted by a 60-bp intron near the 5' end and a 54-bp intron near the 3' end. Sequence analysis, results from disruption experiments, and physiological tests showed that ElPKS1 encoded a polyketide synthase required for melanin biosynthesis. Since ElPKS1 is non-essential, it is a desirable bioengineering target site for the insertion of native and foreign genes. The successful expression of these genes could enhance the bioremediation capability of the organism. ElPKS2 was cloned by colony hybridization screening of a partial genomic library with an ElPKS2 PCR product. ElPKS2 had a 6465-bp open reading frame that encoded 2155 amino acids and had introns of 56, 67, 54, and 71 bp. Although sequence analysis of the derived protein of ElPKS2 confirmed the polyketide synthase nature of its protein product, the function of that product remains unclear.
Collapse
Affiliation(s)
- Qiang Cheng
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
72
|
Calvo AM, Bok J, Brooks W, Keller NP. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 2004; 70:4733-9. [PMID: 15294809 PMCID: PMC492383 DOI: 10.1128/aem.70.8.4733-4739.2004] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was long been noted that secondary metabolism is associated with fungal development. In Aspergillus nidulans, conidiation and mycotoxin production are linked by a G protein signaling pathway. Also in A. nidulans, cleistothecial development and mycotoxin production are controlled by a gene called veA. Here we report the characterization of a veA ortholog in the aflatoxin-producing fungus A. parasiticus. Cleistothecia are not produced by Aspergillus parasiticus; instead, this fungus produces spherical structures called sclerotia that allow for survival under adverse conditions. Deletion of veA from A. parasiticus resulted in the blockage of sclerotial formation as well as a blockage in the production of aflatoxin intermediates. Our results indicate that A. parasiticus veA is required for the expression of aflR and aflJ, which regulate the activation of the aflatoxin gene cluster. In addition to these findings, we observed that deletion of veA reduced conidiation both on the culture medium and on peanut seed. The fact that veA is necessary for conidiation, production of resistant structures, and aflatoxin biosynthesis makes veA a good candidate gene to control aflatoxin biosynthesis or fungal development and in this way to greatly decrease its devastating impact on health and the economy.
Collapse
Affiliation(s)
- Ana M Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | | | | |
Collapse
|
73
|
Han KH, Seo JA, Yu JH. Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Gα) signalling. Mol Microbiol 2004; 53:529-40. [PMID: 15228532 DOI: 10.1111/j.1365-2958.2004.04163.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulators of G-protein signalling play a crucial role in controlling the degree of heterotrimeric G-protein signalling. In addition to the previously studied flbA, we have identified three genes (rgsA, rgsB and rgsC) encoding putative RGS proteins in the genome of Aspergillus nidulans. Characterization of the rgsA gene revealed that RgsA downregulates pigment production and conidial germination, but stimulates asexual sporulation (conidiation). Deletion of rgsA (DeltargsA) resulted in reduced colony size with increased aerial hyphae, elevated accumulation of brown pigments as well as enhanced tolerance of conidia and vegetative hyphae against oxidative and thermal stress. Moreover, DeltargsA resulted in conidial germination in the absence of a carbon source. Deletion of both flbA and rgsA resulted in an additive phenotype, suggesting that the G-protein pathways controlled by FlbA and RgsA are different. Morphological and metabolic alterations caused by DeltargsA were suppressed by deletion of ganB encoding a Galpha subunit, indicating that the primary role of RgsA is to control negatively GanB-mediated signalling. Overexpression of rgsA caused inappropriate conidiation in liquid submerged culture, supporting the idea that GanB signalling represses conidiation. Our findings define a second and specific RGS-Galpha pair in A. nidulans, which may govern upstream regulation of fungal cellular responses to environmental changes.
Collapse
Affiliation(s)
- Kap-Hoon Han
- Department of Food Microbiology and Toxicology and Food Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
74
|
Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 2004; 70:1253-62. [PMID: 15006741 PMCID: PMC368384 DOI: 10.1128/aem.70.3.1253-1262.2004] [Citation(s) in RCA: 553] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jiujiang Yu
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana 70124, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: beta-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.
Collapse
Affiliation(s)
- Stephane Graziani
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
76
|
Royer M, Costet L, Vivien E, Bes M, Cousin A, Damais A, Pieretti I, Savin A, Megessier S, Viard M, Frutos R, Gabriel DW, Rott PC. Albicidin pathotoxin produced by Xanthomonas albilineans is encoded by three large PKS and NRPS genes present in a gene cluster also containing several putative modifying, regulatory, and resistance genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:414-427. [PMID: 15077674 DOI: 10.1094/mpmi.2004.17.4.414] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xanthomonas albilineans, which causes leaf scald disease of sugarcane, produces a highly potent pathotoxin called albicidin. We report here sequencing and homology analysis of the major gene cluster, XALB1 (55,839 bp), and a second, smaller region, XALB2 (2,986 bp), involved in albicidin biosynthesis. XALB1 contains 20 open reading frames, including i) three large genes with a modular architecture characteristic of polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and ii) several putative modifying, regulatory, and resistance genes. Sequencing and complementation studies of six albicidin-defective mutants enabled us to confirm the involvement of the three PKS and NRPS genes encoded by XALB1 in albicidin production. XALB2 contains only one gene that is required for post-translational activation of PKS and NRPS enzymes, confirming the involvement of these enzymes in albicidin biosynthesis. In silico analysis of these three PKS or NRPS enzymes allowed us to propose a model for the albicidin backbone assembly and to gain insight into the structural features of this pathotoxin. This is the first description of a complete mixed PKS-NRPS gene cluster for toxin production in the genus Xanthomonas.
Collapse
Affiliation(s)
- Monique Royer
- UMR 385 CIRAD/ENSAM/INRA Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, TA 41/K, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zhang YQ, Keller NP. Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans. Mol Microbiol 2004; 52:541-50. [PMID: 15066039 DOI: 10.1111/j.1365-2958.2004.03994.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspergillus nidulans produces the polyketide toxin sterigmatocystin (ST) of which the biosynthetic and pathway specific regulatory genes compose a stc gene cluster. A previous mutagenesis screen identified 23 mutants defective in production of ST. Five mutants constitute a single locus. Genetic complementation and sequencing analysis revealed the mutant locus to be mcsA encoding methylcitrate synthase that converts propionyl-CoA to methylcitrate. Feeding downstream products of methylcitrate synthase, methylcitrate and pyruvate, did not restore ST production in mcsA mutants, indicating that loss of methylcitrate cycle products is not the cause of the ST defect. However, propionate, a precursor for propionyl-CoA, inhibited ST production and induced transcription of mcsA in the wild type. Furthermore, propionate impaired formation of two polyketide spore pigments whereas overexpression of mcsA relieved inhibition of ST production by propionate. Transcription analyses revealed that disruption of mcsA did not affect expression of the specialized fatty acid synthase genes (stcJ and stcK) or polyketide synthase gene (stcA) required for formation of norsolorinic acid (NOR), the first stable intermediate in the ST biosynthetic pathway. Feeding studies showed that NOR but not hexanoic acid (the fatty acid produced by StcJ/StcK and primer unit of StcA) or malonate (source of the extender unit of StcA) restored ST production in the mcsA mutant. We hypothesize that excess buildup of propionyl-CoA in mcsA mutants interferes with polyketide synthase activity.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
78
|
Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 2003; 100:15670-5. [PMID: 14676319 PMCID: PMC307626 DOI: 10.1073/pnas.2532165100] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fungal type I polyketides (PKs) are synthesized by PK synthases (PKSs) and include well known secondary metabolites such as the anticholesterol drug lovastatin and the potent natural carcinogen aflatoxin. Other type I PKs are known to be virulence factors for some plant pathogens and pigments such as melanin. In this study, a phylogenomic approach was used to investigate the origin and diversity of fungal genes encoding putative PKSs that are predicted to synthesize type I PKs. The resulting genealogy, constructed by using the highly conserved PKS ketosynthase (KS) domain, indicated that: (i). Species within subphylum Pezizomycotina (phylum Ascomycota) but not early diverging ascomycetes, like Saccharomyces cerevisiae (Saccharomycotina) or Schizosaccharomyces pombe (Taphrinomycotina), had large numbers (7-25) of PKS genes. (ii). Bacteria and fungi had separate groups of PKS genes; the few exceptions are the likely result of horizontal gene transfer from bacteria to various sublineages of fungi. (iii). The bulk of genes encoding fungal PKSs fell into eight groups. Four groups were predicted to synthesize variously reduced PKs, and four groups were predicted to make unreduced PKs. (iv). Species within different classes of Pezizomycotina shared the same groups of PKS genes. (v). Different fungal genomes shared few putative orthologous PKS genes, even between closely related genomes in the same class or genus. (vi) The discontinuous distributions of orthologous PKSs among fungal species can be explained by gene duplication, divergence, and gene loss; horizontal gene transfer among fungi does not need to be invoked.
Collapse
Affiliation(s)
- Scott Kroken
- Torrey Mesa Research Institute, Syngenta, 3115 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
79
|
Seo JA, Guan Y, Yu JH. Suppressor Mutations Bypass the Requirement of fluG for Asexual Sporulation and Sterigmatocystin Production in Aspergillus nidulans. Genetics 2003; 165:1083-93. [PMID: 14668366 PMCID: PMC1462808 DOI: 10.1093/genetics/165.3.1083] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Asexual sporulation (conidiation) in the filamentous fungus Aspergillus nidulans requires the early developmental activator fluG. Loss of fluG results in the blockage of both conidiation and production of the mycotoxin sterigmatocystin (ST). To investigate molecular mechanisms of fluG-dependent developmental activation, 40 suppressors of fluG (SFGs) that conidiate without fluG have been isolated and characterized. Genetic analyses showed that an individual suppression is caused by a single second-site mutation, and that all sfg mutations but one are recessive. Pairwise meiotic crosses grouped mutations to four loci, 31 of them to sfgA, 6 of them to sfgB, and 1 each to sfgC and sfgD, respectively. The only dominant mutation, sfgA38, also mapped to the sfgA locus, suggesting a dominant negative mutation. Thirteen sfgA and 1 sfgC mutants elaborated conidiophores in liquid submerged culture, indicating that loss of either of these gene functions not only bypasses fluG function but also results in hyperactive conidiation. While sfg mutants show varying levels of restored conidiation, all recovered the ability to produce ST at near wild-type levels. The fact that at least four loci are defined by recessive sfg mutations indicates that multiple genes negatively regulate conidiation downstream of fluG and that the activity of fluG is required to remove such repressive effects.
Collapse
Affiliation(s)
- Jeong-Ah Seo
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin 53706-1187, USA
| | | | | |
Collapse
|
80
|
Varga J, Rigó K, Kocsubé S, Farkas B, Pál K. Diversity of polyketide synthase gene sequences in Aspergillus species. Res Microbiol 2003; 154:593-600. [PMID: 14527661 DOI: 10.1016/s0923-2508(03)00169-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fungal polyketide synthases are responsible for the biosynthesis of several mycotoxins and other secondary metabolites. The aim of our work was to investigate the diversity of polyketide synthases in Aspergillus species using two approaches: PCR amplification using oligonucleotide primers, and bioinformatics. Ketosynthase domain probes amplified DNA fragments of about 700 bp in each examined isolate. Sequences of these domains were aligned and analyzed by phylogenetic methods. The ketosynthase domain sequences were highly diverse indicating that they most probably represent polyketide synthases responsible for different functions. A. albertensis and A. niger ketosynthase domain sequences clustered together with sequences of genes required for pigment biosynthesis (wA) in A. nidulans and P. patulum, while the ketosynthase domain sequence of A. muricatus was most closely related to an A. parasiticus wA type domain sequence, and those of the A. ochraceus isolates formed a distinct clade on the tree. These sequences were highly homologous to an A. terreus naphthopyrone synthase gene. An Aspergillus fumigatus genomic database was also searched for ketosynthase domain sequences, which have been included in the phylogenetic analysis. Altogether 14 putative ketosynthase domain sequences were identified. Clustering of the ketosynthase domain sequences correlated well with the type of metabolites produced by the corresponding polyketide synthases. At least 8 clusters with putative ketosynthase domain sequences of unknown function have been identified. Further studies are in progress to clarify the role of some of the identified polyketide synthase genes.
Collapse
Affiliation(s)
- János Varga
- Department of Microbiology, Faculty of Sciences, University of Szeged, PO Box 533, 6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
81
|
Linnemannstöns P, Schulte J, del Mar Prado M, Proctor RH, Avalos J, Tudzynski B. The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 2002; 37:134-48. [PMID: 12409099 DOI: 10.1016/s1087-1845(02)00501-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ascomycete Gibberella fujikuroi mating population C (MP-C) is well known for the production of gibberellins, but also produces many other secondary metabolites, including the red polyketide pigment bikaverin. Here, we used a differential display method to clone a polyketide synthase gene pks4 responsible for the first step of bikaverin biosynthesis. Sequence analysis indicated that pks4 encoded a 2009-amino acid polypeptide consisting of four functional domains: beta-ketoacyl synthase (KS), acyltransferase (AT), acyl carrier (ACP), and thioesterase (TE). Disruption of pks4 resulted in the loss of both pks4 transcripts and bikaverin biosynthesis in G. fujikuroi cultures. Expression of pks4 is strongly repressed by high amounts of ammonium and basic pH. Unexpectedly, pks4 was overexpressed in mutants of the regulatory gene, areA, which is responsible for the activation of nitrogen assimilation genes. Three additional polyketide synthase genes have been cloned from G. fujikuroi MP-C by heterologous hybridization. The presence of these four PKS genes demonstrates the diversity of polyketide biosynthetic pathways in this fungus.
Collapse
Affiliation(s)
- Pia Linnemannstöns
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149, Münster, Germany
| | | | | | | | | | | |
Collapse
|
82
|
Estimating polyketide metabolic potential among nonsporulating fungal endophytes of Vaccinium macrocarpon. ACTA ACUST UNITED AC 2002. [DOI: 10.1017/s095375620200566x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
83
|
Tsai HF, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y, Ebizuka Y, Kwon-Chung KJ. Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J Biol Chem 2001; 276:29292-8. [PMID: 11350964 DOI: 10.1074/jbc.m101998200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chain lengths and cyclization patterns of microbial polyketides are generally determined by polyketide synthases alone. Fungal polyketide melanins are often derived from a pentaketide 1,8-dihydroxynaphthalene, and pentaketide synthases are used for synthesis of the upstream pentaketide precursor, 1,3,6,8-tetrahydroxynaphthalene (1,3,6,8-THN). However, Aspergillus fumigatus, a human fungal pathogen, uses a heptaketide synthase (Alb1p) to synthesize its conidial pigment through a pentaketide pathway similar to that which produces 1,8-dihydroxynaphthalene-melanin. In this study we demonstrate that a novel protein, Ayg1p, is involved in the formation of 1,3,6,8-THN by chain-length shortening of a heptaketide precursor in A. fumigatus. Deletion of the ayg1 gene prevented the accumulation of 1,3,6,8-THN suggesting the involvement of ayg1 in 1,3,6,8-THN production. Genetic analyses of double-gene deletants suggested that Ayg1p catalyzes a novel biosynthetic step downstream of Alb1p and upstream of Arp2p (1,3,6,8-THN reductase). Further genetic and biochemical analyses of the reconstituted strains carrying alb1, ayg1, or alb1 + ayg1 indicated that Ayg1p is essential for synthesis of 1,3,6,8-THN in addition to Alb1p. Cell-free enzyme assays, using the crude Ayg1p protein extract, revealed that Ayg1p enzymatically shortened the heptaketide product of Alb1p to 1,3,6,8-THN. Thus, the protein Ayg1p facilitates the participation of a heptaketide synthase in a pentaketide pathway via a novel polyketide-shortening mechanism in A. fumigatus.
Collapse
Affiliation(s)
- H F Tsai
- Laboratory of Clinical Investigation, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1882, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Huang G, Zhang L, Birch RG. A multifunctional polyketide-peptide synthetase essential for albicidin biosynthesis in Xanthomonas albilineans. MICROBIOLOGY (READING, ENGLAND) 2001; 147:631-642. [PMID: 11238970 DOI: 10.1099/00221287-147-3-631] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Albicidins, a family of potent antibiotics and phytotoxins produced by the sugarcane leaf scald pathogen Xanthomonas albilineans, inhibit DNA replication in bacteria and plastids. A gene located by Tn5-tagging was confirmed by complementation to participate in albicidin biosynthesis. The gene (xabB) encodes a large protein (predicted M:(r) 525695), with a modular architecture indicative of a multifunctional polyketide synthase (PKS) linked to a non-ribosomal peptide synthetase (NRPS). At 4801 amino acids in length, XabB is the largest reported PKS-NRPS. Twelve catalytic domains in this multifunctional enzyme are arranged in the order N terminus-acyl-CoA ligase (AL)-acyl carrier protein (ACP)-beta-ketoacyl synthase (KS)-beta-ketoacyl reductase (KR)-ACP-ACP-KS-peptidyl carrier protein (PCP)-condensation (C)-adenylation-PCP-C. The modular architecture of XabB indicates likely steps in albicidin biosynthesis and approaches to enhance antibiotic yield. The novel pattern of domains, in comparison with known PKS-NRPS enzymes for antibiotic production, also contributes to the knowledge base for rational design of enzymes producing novel antibiotics.
Collapse
Affiliation(s)
- Guozhong Huang
- Department of Botany, The University of Queensland, Brisbane 4072, Australia1
| | - Lianhui Zhang
- Institute of Molecular Agrobiology, The National University of Singapore, Singapore1176042
- Department of Botany, The University of Queensland, Brisbane 4072, Australia1
| | - Robert G Birch
- Department of Botany, The University of Queensland, Brisbane 4072, Australia1
| |
Collapse
|
85
|
Feng B, Wang X, Hauser M, Kaufmann S, Jentsch S, Haase G, Becker JM, Szaniszlo PJ. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect Immun 2001; 69:1781-94. [PMID: 11179356 PMCID: PMC98085 DOI: 10.1128/iai.69.3.1781-1794.2001] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,8-Dihydroxynaphthalene (1,8-DHN) is a fungal polyketide that contributes to virulence when polymerized to 1,8-DHN melanin in the cell walls of Wangiella dermatitidis, an agent of phaeohyphomycosis in humans. To begin a genetic analysis of the initial synthetic steps leading to 1,8-DHN melanin biosynthesis, a 772-bp PCR product was amplified from genomic DNA using primers based on conserved regions of fungal polyketide synthases (Pks) known to produce the first cyclized 1,8-DHN-melanin pathway intermediate, 1,3,6,8-tetrahydroxynaphthalene. The cloned PCR product was then used as a targeting sequence to disrupt the putative polyketide synthase gene, WdPKS1, in W. dermatitidis. The resulting wdpks1Delta disruptants showed no morphological defects other than an albino phenotype and grew at the same rate as their black wild-type parent. Using a marker rescue approach, the intact WdPKS1 gene was then successfully recovered from two plasmids. The WdPKS1 gene was also isolated independently by complementation of the mel3 mutation in an albino mutant of W. dermatitidis using a cosmid library. Sequence analysis substantiated that WdPKS1 encoded a putative polyketide synthase (WdPks1p) in a single open reading frame consisting of three exons separated by two short introns. This conclusion was supported by the identification of highly conserved Pks domains for a beta-ketoacyl synthase, an acetyl-malonyl transferase, two acyl carrier proteins, and a thioesterase in the deduced amino acid sequence. Studies using a neutrophil killing assay and a mouse acute-infection model confirmed that all wdpks1Delta strains were less resistant to killing and less virulent, respectively, than their wild-type parent. Reconstitution of 1,8-DHN melanin biosynthesis in a wdpks1Delta strain reestablished its resistance to killing by neutrophils and its ability to cause fatal mouse infections.
Collapse
Affiliation(s)
- B Feng
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, Keller N. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Mol Microbiol 2001; 39:1482-93. [PMID: 11260466 DOI: 10.1046/j.1365-2958.2001.02332.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus nidulans rcoA encodes a member of the WD repeat family of proteins. The RcoA protein shares sequence similarity with other members of this protein family, including the Saccharomyces cerevisiae Tup1p and Neurospora crassa RCO1. Tup1p is involved in negative regulation of an array of functions including carbon catabolite repression. RCO1 functions in regulating pleiotropic developmental processes, but not carbon catabolite repression. In A. nidulans, deletion of rcoA (DeltarcoA), a recessive mutation, resulted in gross defects in vegetative growth, asexual spore production and sterigmatocystin (ST) biosynthesis. Expression of the asexual and ST pathway-specific regulatory genes, brlA and aflR, respectively, but not the signal transduction genes (i.e. flbA, fluG or fadA) regulating brlA and aflR expression was delayed (brlA) or eliminated (aflR) in a DeltarcoA strain. Overexpression of aflR in a DeltarcoA strain could not rescue normal expression of downstream targets of AflR. CreA-dependent carbon catabolite repression of starch and ethanol utilization was only weakly affected in a DeltarcoA strain. The strong role of RcoA in development, vegetative growth and ST production, compared with a relatively weak role in carbon catabolite repression, is similar to the role of RCO1 in N. crassa.
Collapse
Affiliation(s)
- J Hicks
- Department of Plant Pathology and Microbiology, TAMUS 2132, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Nicholson TP, Rudd BA, Dawson M, Lazarus CM, Simpson TJ, Cox RJ. Design and utility of oligonucleotide gene probes for fungal polyketide synthases. CHEMISTRY & BIOLOGY 2001; 8:157-78. [PMID: 11251290 DOI: 10.1016/s1074-5521(00)90064-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Recent advances in the molecular biology of polyketide biosynthesis have allowed the engineering of polyketide synthases and the biological ('combinatorial') synthesis of novel polyketides. Additional structural diversity in these compounds could be expected if more diverse polyketide synthases (PKS) could be utilised. Fungal polyketides are highly variable in structure, reflecting a potentially wide range of differences in the structure and function of fungal PKS complexes. Relatively few fungal synthases have been investigated, perhaps because of a lack of suitable genetic techniques available for the isolation and manipulation of gene clusters from diverse hosts. We set out to devise a general method for the detection of specific PKS genes from fungi. RESULTS We examined sequence data from known fungal and bacterial polyketide synthases as well as sequence data from bacterial, fungal and vertebrate fatty acid synthases in order to determine regions of high sequence conservation. Using individual domains such as beta-ketoacylsynthases (KS), beta-ketoreductases (KR) and methyltransferases (MeT) we determined specific short (ca 7 amino acid) sequences showing high conservation for particular functional domains (e.g. fungal KR domains involved in producing partially reduced metabolites; fungal KS domains involved in the production of highly reduced metabolites etc.). Degenerate PCR primers were designed matching these regions of specific homology and the primers were used in PCR reactions with fungal genomic DNA from a number of known polyketide producing species. Products obtained from these reactions were sequenced and shown to be fragments from as-yet undiscovered PKS gene clusters. The fragments could be used in blotting experiments with either homologous or heterologous fungal genomic DNA. CONCLUSIONS A number of sequences are presented which have high utility for the discovery of novel fungal PKS gene clusters. The sequences appear to be specific for particular types of fungal polyketide (i.e. non-reduced, partially reduced or highly reduced KS domains). We have also developed primers suitable for amplifying segments of fungal genes encoding polyketide C-methyltransferase domains. Genomic fragments amplified using these specific primer sequences can be used in blotting experiments and have high potential as aids for the eventual cloning of new fungal PKS gene clusters.
Collapse
Affiliation(s)
- T P Nicholson
- School of Chemistry, University of Bristol, Cantock's Close, UK
| | | | | | | | | | | |
Collapse
|
88
|
Fujii I, Watanabe A, Sankawa U, Ebizuka Y. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. CHEMISTRY & BIOLOGY 2001; 8:189-97. [PMID: 11251292 DOI: 10.1016/s1074-5521(00)90068-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Based on the homology with fatty acid synthases and bacterial polyketide synthases (PKSs), thioesterase domains have been assigned at the C-terminus regions of fungal iterative type I PKSs. We previously overexpressed Aspergillus nidulans wA PKS gene in a heterologous fungal host and identified it to encode a heptaketide naphthopyrone synthase. In addition, expression of C-terminus-modified WA PKS gave heptaketide isocoumarins suggesting that the C-terminus region of WA PKS is involved in the cyclization of the second aromatic ring of naphthopyrone. To unravel the actual function of the C-terminus region, we carried out functional analysis of WA PKS mutants by C-terminus deletion and site-directed mutagenesis. RESULTS Only the 32 amino acid deletion from the C-terminus of WA PKS caused product change to heptaketide isocoumarins from heptaketide naphthopyrone, YWA1 1, a product of intact WA PKS. Further C-terminus deletion mutant of WA PKS up to Ser(1967), an active site residue of so far called thioesterase, still produced isocoumarins. Site-directed mutagenesis of amino acid residues in this C-terminus region showed that even a single mutation of S1967A or H2129Q caused production of isocoumarin instead of naphthopyrone. Furthermore, the role of tandem acyl carrier proteins (ACPs), a typical feature of fungal aromatic PKSs, was examined by site-directed mutagenesis and the results indicated that both ACPs can function as ACP independently. CONCLUSIONS Claisen-type cyclization is assumed to be involved in formation of aromatic compounds by some fungal type I PKSs. These PKSs have a quite identical architecture of active site domain organization, beta-ketoacyl synthase, acyltransferase, tandem ACPs and thioesterase (TE) domains. Since the C-terminus region of WA PKS of this type was determined to be involved in Claisen-type cyclization of the second ring of naphthopyrone, we propose that the so far called TE of these PKSs work not just as TE but as Claisen cyclase.
Collapse
Affiliation(s)
- I Fujii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
89
|
Bioactive Fungal Natural Products Through Classic and Biocombinatorial Approaches. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1572-5995(00)80027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
90
|
Keller NP, Watanabe CM, Kelkar HS, Adams TH, Townsend CA. Requirement of monooxygenase-mediated steps for sterigmatocystin biosynthesis by Aspergillus nidulans. Appl Environ Microbiol 2000; 66:359-62. [PMID: 10618248 PMCID: PMC91830 DOI: 10.1128/aem.66.1.359-362.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterigmatocystin (ST) and aflatoxin B(1) (AFB(1)) are two polyketide-derived Aspergillus mycotoxins synthesized by functionally identical sets of enzymes. ST, the compound produced by Aspergillus nidulans, is a late intermediate in the AFB(1) pathway of A. parasiticus and A. flavus. Previous biochemical studies predicted that five oxygenase steps are required for the formation of ST. A 60-kb ST gene cluster in A. nidulans contains five genes, stcB, stcF, stcL, stcS, and stcW, encoding putative monooxygenase activities. Prior research showed that stcL and stcS mutants accumulated versicolorins B and A, respectively. We now show that strains disrupted at stcF, encoding a P-450 monooxygenase similar to A. parasiticus avnA, accumulate averantin. Disruption of either StcB (a putative P-450 monooxygenase) or StcW (a putative flavin-requiring monooxygenase) led to the accumulation of averufin as determined by radiolabeled feeding and extraction studies.
Collapse
Affiliation(s)
- N P Keller
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
91
|
|
92
|
Butchko RA, Adams TH, Keller NP. Aspergillus nidulans mutants defective in stc gene cluster regulation. Genetics 1999; 153:715-20. [PMID: 10511551 PMCID: PMC1460771 DOI: 10.1093/genetics/153.2.715] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genes involved in the biosynthesis of sterigmatocystin (ST), a toxic secondary metabolite produced by Aspergillus nidulans and an aflatoxin (AF) precursor in other Aspergillus spp., are clustered on chromosome IV of A. nidulans. The sterigmatocystin gene cluster (stc gene cluster) is regulated by the pathway-specific transcription factor aflR. The function of aflR appears to be conserved between ST- and AF-producing aspergilli, as are most of the other genes in the cluster. We describe a novel screen for detecting mutants defective in stc gene cluster activity by use of a genetic block early in the ST biosynthetic pathway that results in the accumulation of the first stable intermediate, norsolorinic acid (NOR), an orange-colored compound visible with the unaided eye. We have mutagenized this NOR-accumulating strain and have isolated 176 Nor(-) mutants, 83 of which appear to be wild type in growth and development. Sixty of these 83 mutations are linked to the stc gene cluster and are likely defects in aflR or known stc biosynthetic genes. Of the 23 mutations not linked to the stc gene cluster, 3 prevent accumulation of NOR due to the loss of aflR expression.
Collapse
Affiliation(s)
- R A Butchko
- Department of Plant Pathology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | | | |
Collapse
|
93
|
Hendrickson L, Davis CR, Roach C, Nguyen DK, Aldrich T, McAda PC, Reeves CD. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. CHEMISTRY & BIOLOGY 1999; 6:429-39. [PMID: 10381407 DOI: 10.1016/s1074-5521(99)80061-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lovastatin, an HMG-CoA reductase inhibitor produced by the fungus Aspergillus terreus, is composed of two polyketide chains. One is a nonaketide that undergoes cyclization to a hexahydronaphthalene ring system and the other is a simple diketide, 2-methylbutyrate. Fungal polyketide synthase (PKS) systems are of great interest and their genetic manipulation should lead to novel compounds. RESULTS An A. terreus mutant (BX102) was isolated that could not synthesize the nonaketide portion of lovastatin and was missing a approximately 250 kDa polypeptide normally present under conditions of lovastatin production. Other mutants produced lovastatin intermediates without the methylbutyryl sidechain and were missing a polypeptide of approximately 220 kDa. The PKS inhibitor cerulenin reacted covalently with both polypeptides. Antiserum raised against the approximately 250 kDa polypeptide was used to isolate the corresponding gene, which complemented the BX102 mutation. The gene encodes a polypeptide of 269 kDa containing catalytic domains typical of vertebrate fatty acid and fungal PKSs, plus two additional domains not previously seen in PKSs: a centrally located methyltransferase domain and a peptide synthetase elongation domain at the carboxyl terminus. CONCLUSIONS The results show that the nonaketide and diketide portions of lovastatin are synthesized by separate large multifunctional PKSs. Elucidation of the primary structure of the PKS that forms the lovastatin nonaketide, as well as characterization of blocked mutants, provides new details of lovastatin biosynthesis.
Collapse
Affiliation(s)
- L Hendrickson
- ICOS Corporation, 22021 20th Ave SE, Bothell, WA 98021, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Mycotoxins are secondary metabolites produced by many important phytopathogenic and food spoilage fungi including Aspergillus, Fusarium and Penicillium species. The toxicity of four of the most agriculturally important mycotoxins (the trichothecenes, and the polyketide-derived mycotoxins; aflatoxins, fumonisins and sterigmatocystin) are discussed and their chemical structure described. The steps involved in the biosynthesis of aflatoxin and sterigmatocystin and the experimental techniques used in the cloning and molecular characterisation of the genes involved in the pathway are described in detail. The biosynthetic genes involved in the fumonisin and trichothecene biosynthetic pathways are also outlined. The potential benefits gained from an increased knowledge of the molecular organisation of these pathways together with the mechanisms involved in their regulation are also discussed.
Collapse
Affiliation(s)
- M J Sweeney
- Microbiology Department, University College Cork, Ireland
| | | |
Collapse
|
95
|
Bingle LE, Simpson TJ, Lazarus CM. Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 1999; 26:209-23. [PMID: 10361035 DOI: 10.1006/fgbi.1999.1115] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analysis of fungal polyketide synthase gene sequences suggested that these might be divided into two subclasses, designated WA-type and MSAS-type. Two pairs of degenerate PCR primers (LC1 and LC2c, LC3 and LC5c) were designed for the amplification of ketosynthase domain fragments from fungal PKS genes in each of these subclasses. Both primer pairs were shown to amplify one or more PCR products from the genomes of a range of ascomycetous Deuteromycetes and Southern blot analysis confirmed that the products obtained with each pair of primers emanated from distinct genomic loci. PCR products obtained from Penicillium patulum and Aspergillus parasiticus with the LC1/2c primer pair and from Phoma sp. C2932 with both primer pairs were cloned and sequenced; the deduced protein sequences were highly homologous to the ketosynthase domains of other fungal PKS genes. Genes from which LC1/2c fragments were amplified (WA-type) were shown by a phylogenetic analysis to be closely related to fungal PKS genes involved in pigment and aflatoxin biosynthetic pathways, whereas the gene from which the LC3/5c fragment was amplified (MSAS-type) was shown to be closely related to genes encoding 6-methylsalicylic acid synthase (MSAS). The phylogenetic tree strongly supported the division of fungal PKS genes into two subclasses. The LC-series primers may be useful molecular tools to facilitate the cloning of novel fungal polyketide synthase genes.
Collapse
Affiliation(s)
- L E Bingle
- University of Bristol, Woodland Road, Bristol, BS8 1UG, United Kingdom
| | | | | |
Collapse
|
96
|
Brown MP, Brown-Jenco CS, Payne GA. Genetic and molecular analysis of aflatoxin biosynthesis. Fungal Genet Biol 1999; 26:81-98. [PMID: 10328980 DOI: 10.1006/fgbi.1998.1114] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M P Brown
- InterLink Associates, 11930 Heritage Oak Place, Suite 4, Auburn, California 95603, USA
| | | | | |
Collapse
|
97
|
Yu JH, Rosén S, Adams TH. Extragenic suppressors of loss-of-function mutations in the aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 1999; 151:97-105. [PMID: 9872951 PMCID: PMC1460443 DOI: 10.1093/genetics/151.1.97] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We showed previously that two genes, fl bA and fadA, have a major role in determining the balance between growth, sporulation, and mycotoxin (sterigmatocystin; ST) production by the filamentous fungus Aspergillus nidulans. fadA encodes the alpha subunit for a heterotrimeric G-protein, and continuous activation of FadA blocks sporulation and ST production while stimulating growth. fl bA encodes an A. nidulans regulator of G-protein signaling (RGS) domain protein that antagonizes FadA-mediated signaling to allow development. To better understand FlbA function and other aspects of FadA-mediated growth control, we have isolated and characterized mutations in four previously undefined genes designated as sfaA, sfaC, sfaD, and sfaE (suppressors of flbA), and a new allele of fadA (fadAR205H), all of which suppress a fl bA loss-of-function mutation ( fl bA98). These suppressors overcome fl bA losses of function in both sporulation and ST biosynthesis. fadAR205H, sfaC67, sfaD82, and sfaE83 mutations are dominant to wild type whereas sfaA1 is semidominant. sfaA1 also differs from other suppressor mutations in that it cannot suppress a fl bA deletion mutation (and is therefore allele specific) whereas all the dominant suppressors can bypass complete loss of fl bA. Only sfaE83 suppressed dominant activating mutations in fadA, indicating that sfaE may have a unique role in fadA- fl bA interactions. Finally, none of these suppressor mutations bypassed fl uG loss-of-function mutations in development-specific activation.
Collapse
Affiliation(s)
- J H Yu
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
98
|
Feng GH, Leonard TJ. Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl Environ Microbiol 1998; 64:2275-7. [PMID: 9603849 PMCID: PMC106313 DOI: 10.1128/aem.64.6.2275-2277.1998] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High temperature and nitrate supported gene expression for sterigmatocystin biosynthesis in Aspergillus nidulans; ammonium did not. Homologous genes for aflatoxin biosynthesis in A. parasiticus showed the opposite transcript expression pattern, suggesting that the two mycotoxins are regulated differently. The aflR gene is postulated to require additional genetic elements to effect its own activation by the different culture conditions. A patulin polyketide synthase (PKS) gene was found to be regulated differently than the aflatoxin PKS. Thus, the biosyntheses of structurally similar compounds in these two fungi appear to be regulated very differently.
Collapse
Affiliation(s)
- G H Feng
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
99
|
Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 1998; 180:3031-8. [PMID: 9620950 PMCID: PMC107801 DOI: 10.1128/jb.180.12.3031-3038.1998] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus, an important opportunistic pathogen which commonly affects neutropenic patients, produces conidia with a bluish-green color. We identified a gene, alb1, which is required for conidial pigmentation. The alb1 gene encodes a putative polyketide synthase, and disruption of alb1 resulted in an albino conidial phenotype. Expression of alb1 is developmentally regulated, and the 7-kb transcript is detected only during the conidiation stage. The alb1 mutation was found to block 1,3,6,8-tetrahydroxynaphthalene production, indicating that alb1 is involved in dihydroxynaphthalene-melanin biosynthesis. Scanning electron microscopy studies showed that the alb1 disruptant exhibited a smooth conidial surface, whereas complementation of the alb1 deletion restored the echinulate wild-type surface. Disruption of alb1 resulted in a significant increase in C3 binding on conidial surfaces, and the conidia of the alb1 disruptant were ingested by human neutrophils at a higher rate than were those of the wild type. The alb1-complemented strain producing bluish-green conidia exhibited inefficient C3 binding and neutrophil-mediated phagocytosis quantitatively similar to those of the wild type. Importantly, the alb1 disruptant had a statistically significant loss of virulence compared to the wild-type and alb1-complemented strains in a murine model. These results suggest that disruption of alb1 causes pleiotropic effects on conidial morphology and fungal virulence.
Collapse
Affiliation(s)
- H F Tsai
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
100
|
Pazoutová S, Linka M, Storková S, Schwab H. Polyketide synthase gene pksM from Aspergillus terreus expressed during growth phase. Folia Microbiol (Praha) 1998; 42:419-30. [PMID: 9438344 DOI: 10.1007/bf02826548] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The polyketide synthase gene pksM was detected in the genomic DNA library of Aspergillus terreus by hybridization with the 6-methylsalicylic acid synthase (6-MSAS) gene of Penicillium patulum as a probe. 9524 bp of the cloned DNA were sequenced and a 5.5 kb open reading frame was revealed. A single intron (62 bp) was identified in the conserved position. Two transcription start points were determined within the 5'-flanking region at 50 and 72 (major) bp upstream from the putative translation initiation codon ATG. The conserved active site motifs for ketosynthase, acyltransferase, dehydratase, ketoreductase and acyl carrier protein were found within the predicted polypeptide consisting of 1803 amino acids. Unlike the P. patulum 6-MSAS gene, the transcription of pksM from A. terreus was observed in the middle of the vegetative growth phase.
Collapse
MESH Headings
- 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase
- 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics
- Acyl Carrier Protein/genetics
- Acyltransferases/genetics
- Alcohol Oxidoreductases/genetics
- Amino Acid Sequence
- Aspergillus/genetics
- Aspergillus/growth & development
- Aspergillus/metabolism
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Codon, Initiator
- DNA Probes
- DNA, Fungal/analysis
- DNA, Fungal/genetics
- Gene Expression
- Gene Library
- Genes, Fungal
- Hydro-Lyases/genetics
- Introns
- Ligases/genetics
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Nucleic Acid Hybridization
- Open Reading Frames
- Oxidoreductases/genetics
- Penicillium/genetics
- Plasmids
- Polymerase Chain Reaction
- RNA, Fungal/isolation & purification
- Restriction Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- S Pazoutová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|