51
|
Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 2004; 186:7186-95. [PMID: 15489429 PMCID: PMC523212 DOI: 10.1128/jb.186.21.7186-7195.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(S) subunit of RNA polymerase, the product of the rpoS gene, controls the expression of genes responding to starvation and cellular stresses. Using gene array technology, we investigated rpoS-dependent expression at the onset of stationary phase in Escherichia coli grown in rich medium. Forty-one genes were expressed at significantly lower levels in an rpoS mutant derived from the MG1655 strain; for 10 of these, we also confirmed rpoS and stationary-phase dependence by reverse transcription-PCR. Only seven genes (dps, osmE, osmY, sodC, rpsV, wrbA, and yahO) had previously been recognized as rpoS dependent. Several newly identified rpoS-dependent genes are involved in the uptake and metabolism of amino acids, sugars, and iron. Indeed, the rpoS mutant strain shows severely impaired growth on some sugars such as fructose and N-acetylglucosamine. The rpoS gene controls the production of indole, which acts as a signal molecule in stationary-phase cells, via regulation of the tnaA-encoded tryptophanase enzyme. Genes involved in protein biosynthesis, encoding the ribosome-associated protein RpsV (sra) and the initiation factor IF-1 (infA), were also induced in an rpoS-dependent fashion. Using primer extension, we determined the promoter sequences of a selection of rpoS-regulated genes representative of different functional classes. Significant fractions of these promoters carry sequence features specific for Esigma(S) recognition of the -10 region, such as cytosines at positions -13 (70%) and -12 (30%) as well as a TG motif located upstream of the -10 region (50%), thus supporting the TGN(0-2)C(C/T)ATA(C/A)T consensus sequence recently proposed for sigma(S).
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
52
|
Eggers CH, Caimano MJ, Radolf JD. Analysis of promoter elements involved in the transcriptional initiation of RpoS-dependent Borrelia burgdorferi genes. J Bacteriol 2004; 186:7390-402. [PMID: 15489451 PMCID: PMC523197 DOI: 10.1128/jb.186.21.7390-7402.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, encodes an RpoS ortholog (RpoS(Bb)) that controls the temperature-inducible differential expression of at least some of the spirochete's lipoprotein genes, including ospC and dbpBA. To begin to dissect the determinants of RpoS(Bb) recognition of, and selectivity for, its dependent promoters, we linked a green fluorescent protein reporter to the promoter regions of several B. burgdorferi genes with well-characterized expression patterns. Consistent with the expression patterns of the native genes/proteins in B. burgdorferi strain 297, we found that expression of the ospC, dbpBA, and ospF reporters in the spirochete was RpoS(Bb) dependent, while the ospE and flaB reporters were RpoS(Bb) independent. To compare promoter recognition by RpoS(Bb) with that of the prototype RpoS (RpoS(Ec)), we also introduced our panel of constructs into Escherichia coli. In this surrogate, maximal expression from the ospC, dbpBA, and ospF promoters clearly required RpoS, although in the absence of RpoS(Ec) the ospF promoter was weakly recognized by another E. coli sigma factor. Furthermore, RpoS(Bb) under the control of an inducible promoter was able to complement an E. coli rpoS mutant, although RpoS(Ec) and RpoS(Bb) each initiated greater activity from their own dependent promoters than they did from those of the heterologous sigma factor. Genetic analysis of the ospC promoter demonstrated that (i) the T(-14) in the presumptive -10 region plays an important role in sigma factor recognition in both organisms but is not as critical for transcriptional initiation by RpoS(Bb) as it is for RpoS(Ec); (ii) the nucleotide at the -15 position determines RpoS or sigma(70) selectivity in E. coli but does not serve the same function in B. burgdorferi; and (iii) the 110-bp region upstream of the core promoter is not required for RpoS(Ec)- or RpoS(Bb)-dependent activity in E. coli but is required for maximal expression from this promoter in B. burgdorferi. Taken together, the results of our studies suggest that the B. burgdorferi and E. coli RpoS proteins are able to catalyze transcription from RpoS-dependent promoters of either organism, but at least some of the nucleotide elements involved in transcriptional initiation and sigma factor selection in B. burgdorferi play a different role than has been described for E. coli.
Collapse
Affiliation(s)
- Christian H Eggers
- Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3710, USA.
| | | | | |
Collapse
|
53
|
Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 2004; 272:580-91. [PMID: 15558318 DOI: 10.1007/s00438-004-1089-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/28/2004] [Indexed: 12/01/2022]
Abstract
The alternative sigma factor RpoS controls the expression of many stationary-phase genes in Escherichia coli and other bacteria. Though the RpoS regulon is a large, conserved system that is critical for adaptation to nutrient deprivation and other stresses, it remains incompletely characterized. In this study, we have used oligonucleotide arrays to delineate the transcriptome that is controlled by RpoS during entry into stationary phase of cultures growing in rich medium. The expression of known RpoS-dependent genes was confirmed to be regulated by RpoS, thus validating the use of microarrays for expression analysis. The total number of positively regulated stationary-phase genes was found to be greater than 100. More than 45 new genes were identified as positively controlled by RpoS. Surprisingly, a similar number of genes were found to be negatively regulated by RpoS, and these included almost all genes required for flagellum biosynthesis, genes encoding enzymes of the TCA cycle, and a physically contiguous group of genes located in the Rac prophage region. Negative regulation by RpoS is thus much more extensive than has previously been recognized, and is likely to be an important contributing factor to the competitive growth advantage of rpoS mutants reported in previous studies.
Collapse
Affiliation(s)
- C L Patten
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
54
|
Chen G, Patten CL, Schellhorn HE. Positive selection for loss of RpoS function in Escherichia coli. Mutat Res 2004; 554:193-203. [PMID: 15450418 DOI: 10.1016/j.mrfmmm.2004.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 04/26/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
Though RpoS, an alternative sigma factor, is required for survival and adaptation of Escherichia coli under stress conditions, many strains have acquired independent mutations in the rpoS gene. The reasons for this apparent selective loss and the nature of the selective agent are not well understood. In this study, we found that some wild type strains grow poorly in succinate minimal media compared with isogenic strains carrying defined RpoS null mutations. Using an rpoS+ strain harboring an operon lacZ fusion to the highly-RpoS dependent osmY promoter as an indicator strain, we tested if this differential growth characteristic could be used to selectively isolate mutants that have lost RpoS function. All isolated (Suc+) mutants exhibited attenuated beta-galactosidase expression on indicator media suggesting a loss in either RpoS or osmY promoter function. Because all Suc+ mutants were also defective in catalase activity, an OsmY-independent, RpoS-regulated function, it was likely that RpoS activity was affected. To confirm this, we sequenced PCR-amplified products containing the rpoS gene from 20 independent mutants using chromosomal DNA as a template. Sequencing and alignment analyses confirmed that all isolated mutants possessed mutated alleles of the rpoS gene. Types of mutations detected included single or multiple base deletions, insertions, and transversions. No transition mutations were identified. All identified point mutations could, under selection for restoration of beta-galactosidase, revert to rpoS+. Revertible mutation of the rpoS gene can thus function as a genetic switch that controls expression of the regulon at the population level. These results may also help to explain why independent laboratory strains have acquired mutations in this important regulatory gene.
Collapse
Affiliation(s)
- Guozhu Chen
- Department of Biology, McMaster University, Hamilton, Ont., Canada L8S 4K1
| | | | | |
Collapse
|
55
|
Gomes AA, Asad LMBO, Felzenszwalb I, Leitão AC, Silva AB, Guillobel HCR, Asad NR. Does UVB radiation induce SoxS gene expression in Escherichia coli cells? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2004; 43:219-222. [PMID: 15372272 DOI: 10.1007/s00411-004-0253-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 07/22/2004] [Indexed: 05/24/2023]
Abstract
The SoxRS regulon is induced when bacterial cells are exposed to redox-cycling agents such as menadione or paraquat. In this paper it is shown that a physical agent, such as ultraviolet radiation with a wavelength of 312 nm (UVB) can induce soxS gene expression. The results indicate that this induction involves the RpoS protein. Moreover, an unexpected increase of soxS gene expression independent of a functional soxR gene in UVB-irradiated cells has been verified. This increase could be explained by transcription of soxS gene in a rpoS-dependent pathway.
Collapse
Affiliation(s)
- A A Gomes
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
56
|
Chen G, Schellhorn HE. Controlled induction of the RpoS regulon in Escherichia coli, using an RpoS-expressing plasmid. Can J Microbiol 2004; 49:733-40. [PMID: 15162198 DOI: 10.1139/w03-096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RpoS, an alternative sigma factor produced by many gram-negative bacteria, primarily controls genes that are expressed in stationary phase in response to nutrient deprivation. To test the idea that induction of RpoS in the exponential phase, when RpoS is not normally expressed, increases RpoS-dependent gene expression, we constructed a plasmid carrying the rpoS gene under the control of an IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible T7lac promoter. Northern and Western analyses revealed that levels of RpoS mRNA and protein, respectively, increased in response to the inducer IPTG. Assays of changes in RpoS-dependent functions (catalase activity and glycogen accumulation), confirmed that induced RpoS was functional in exponential phase and was sufficient for the expression of RpoS-dependent functions. Controlled expression of RpoS and RpoS-dependent genes by plasmid-encoded rpoS may thus offer a useful tool for the study of RpoS-dependent gene expression.
Collapse
Affiliation(s)
- Guozhu Chen
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | |
Collapse
|
57
|
Chen G, Patten CL, Schellhorn HE. Controlled expression of an rpoS antisense RNA can inhibit RpoS function in Escherichia coli. Antimicrob Agents Chemother 2004; 47:3485-93. [PMID: 14576106 PMCID: PMC253761 DOI: 10.1128/aac.47.11.3485-3493.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that an inducible rpoS antisense RNA complementary to the rpoS message can inhibit expression of RpoS in both exponential and stationary phases and can attenuate expression of the rpoS regulon in Escherichia coli. Plasmids containing rpoS antisense DNA expressed under the control of the T7lac promoter and T7 RNA polymerase were constructed, and expression of the rpoS antisense RNA was optimized in the pET expression system. rpoS antisense RNA levels could be manipulated to effectively control the expression of RpoS and RpoS-dependent genes. RpoS expression was inhibited by the expression of rpoS antisense RNA in both exponential and stationary phases in E. coli. RpoS-dependent catalase HPII was also downregulated, as determined by catalase activity assays and with native polyacrylamide gels stained for catalase. Induced RpoS antisense expression also reduced the level of RpoS-dependent glycogen synthesis. These results demonstrate that controlled expression of antisense RNA can be used to attenuate expression of a regulator required for the expression of host adaptation functions and may offer a basis for designing effective antimicrobial agents.
Collapse
Affiliation(s)
- Guozhu Chen
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | |
Collapse
|
58
|
Metzner M, Germer J, Hengge R. Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol 2004; 51:799-811. [PMID: 14731280 DOI: 10.1046/j.1365-2958.2003.03867.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The csiD-ygaF-gabDTP region in the Escherichia coli genome represents a cluster of sigma S-controlled genes. Here, we investigated promoter structures, sigma factor dependencies, potential co-regulation and environmental regulatory patterns for all of these genes. We find that this region constitutes a complex operon with expression being controlled by three differentially regulated promoters: (i) csiDp, which affects the expression of all five genes, is cAMP-CRP/sigma S-dependent and activated exclusively upon carbon starvation and stationary phase; (ii) gabDp1, which is sigma S-dependent and exhibits multiple stress induction like sigma S itself; and (iii) gabDp2[previously suggested by Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C., and Reitzer, L. (2002) J. Bacteriol. 184: 6976-6986], which appears to be Nac/sigma 70-controlled and to respond to poor nitrogen sources. In addition, we identify a novel repressor, CsiR, which modulates csiDp activity in a temporal manner during early stationary phase. Finally, we propose a physiological role for sigma S-controlled GabT/D-mediated gamma-aminobutyrate (GABA) catabolism and glutamate accumulation in general stress adaptation. This physiological role is reflected by the activation of the operon-internal gabDp1 promoter under the different conditions that also induce sigma S, which include shifts to acidic pH or high osmolarity as well as starvation or stationary phase.
Collapse
Affiliation(s)
- Martin Metzner
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
59
|
Nishino K, Yamaguchi A. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J Bacteriol 2004; 186:1423-9. [PMID: 14973023 PMCID: PMC344412 DOI: 10.1128/jb.186.5.1423-1429.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The histone-like protein H-NS is a major component of the bacterial nucleoid and plays a crucial role in global gene regulation of enteric bacteria. It is known that the expression of a variety of genes is repressed by H-NS, and mutations in hns result in various phenotypes, but the role of H-NS in the drug resistance of Escherichia coli has not been known. Here we present data showing that H-NS contributes to multidrug resistance by regulating the expression of multidrug exporter genes. Deletion of the hns gene from the DeltaacrAB mutant increased levels of resistance against antibiotics, antiseptics, dyes, and detergents. Decreased accumulation of ethidium bromide and rhodamine 6G in the hns mutant compared to that in the parental strain was observed, suggesting the increased expression of some drug exporter(s) in this mutant. The increased drug resistance and decreased drug accumulation caused by the hns deletion were completely suppressed by deletion of the multifunctional outer membrane channel gene tolC. At least eight drug exporter systems require TolC for their functions. Among these, increased expression of acrEF, mdtEF, and emrKY was observed in the Deltahns strain by quantitative real-time reverse transcription-PCR analysis. The Deltahns-mediated multidrug resistance pattern is quite similar to that caused by overproduction of the AcrEF exporter. Deletion of the acrEF gene greatly suppressed the level of Deltahns-mediated multidrug resistance. However, this strain still retained resistance to some compounds. The remainder of the multidrug resistance pattern was similar to that conferred by overproduction of the MdtEF exporter. Double deletion of the mdtEF and acrEF genes completely suppressed Deltahns-mediated multidrug resistance, indicating that Deltahns-mediated multidrug resistance is due to derepression of the acrEF and mdtEF drug exporter genes.
Collapse
Affiliation(s)
- Kunihiko Nishino
- Department of Bacterial Infections, Research Institute for Microbial Diseases. Faculty of Pharmaceutical Science, Osaka University, Suita, Osaka 565-0871, USA
| | | |
Collapse
|
60
|
Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P, Bartlett W, Miller S, Booth IR. A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc Natl Acad Sci U S A 2003; 100:15959-64. [PMID: 14671322 PMCID: PMC307675 DOI: 10.1073/pnas.2536607100] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Indexed: 11/18/2022] Open
Abstract
The mechanosensitive (MS) channels MscS and MscL are essential for the survival of hypoosmotic shock by Escherichia coli cells. We demonstrate that MscS and MscL are induced by osmotic stress and by entry into stationary phase. Reduced levels of MS proteins and reduced expression of mscL- and mscS-LacZ fusions in an rpoS mutant strain suggested that the RNA polymerase holoenzyme containing sigmaS is responsible, at least in part, for regulating production of MS channel proteins. Consistent with the model that the effect of sigmaS is direct, the MscS and MscL promoters both use RNA polymerase containing sigmaS in vitro. Conversely, clpP or rssB mutations, which cause enhanced levels of sigmaS, show increased MS channel protein synthesis. RpoS null mutants are sensitive to hypoosmotic shock upon entry into stationary phase. These data suggest that MscS and MscL are components of the RpoS regulon and play an important role in ensuring structural integrity in stationary phase bacteria.
Collapse
Affiliation(s)
- Neil R Stokes
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Martínez S, López M, Bernardo A. Thermal inactivation of Enterococcus faecium: effect of growth temperature and physiological state of microbial cells. Lett Appl Microbiol 2003; 37:475-81. [PMID: 14633102 DOI: 10.1046/j.1472-765x.2003.01431.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To provide data on the effects on culture temperature and physiological state of cells on heat resistance of Enterococcus faecium, which may be useful in establishing pasteurization procedures. METHODS AND RESULTS The heat resistance of this Ent. faecium (ATCC 49624 strain) grown at different temperatures was monitored at various stages of growth. In all cases, the bacterial cells in the logarithmic phase of growth were more heat sensitive. For cells which had entered in the stationary phase, D70 values of 0.53 min at 5 degrees C, 0.74 min at 10 degrees C, 0.83 min at 20 degrees C, 0.79 min at 30 degrees C, 0.63 min at 37 degrees C, 0.48 min at 40 degrees C and 0.41 min at 45 degrees C were found. By extending the incubation times cells were more heat resistant as stationary phase progressed, although a different pattern was observed for cells grown at different temperatures. At the lower temperatures heat resistance increased progressively, reaching D70 values of 1.73 min for cells incubated at 5 degrees C for 50 days and 1.04 min for those grown at 10 degrees C for 16 days. At other temperatures assayed heat resistance became stable for late stationary phase cells, reaching D70 values of 1.05, 1.08 and 1.01 min for cultures incubated at 20, 30 and 37 degrees C. Heat resistance of cells obtained at higher temperatures, 40 and 45 degrees C, was significantly lower, with D70 values of 0.76 and 0.67 min, respectively. Neither the growth temperature nor the growth phase modified the z-values significantly. CONCLUSIONS D70 values obtained for Ent. faecium (ATCC 49624) varies from 0.33 to 1.73 min as a function of culture temperature and physiological state of cells. However, z values calculated were not significantly influenced by these factors. A mean value of 4.50 +/- 0.39 degrees C was found. SIGNIFICANCE AND IMPACT OF THE STUDY Overall results strongly suggest that, to establish heat processing conditions of pasteurized foods ensuring elimination of Ent. faecium, it is advisable to take into account the complex interaction of growth temperature and growth phase of cells acting on bacterial thermal resistance.
Collapse
Affiliation(s)
- S Martínez
- Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Spain
| | | | | |
Collapse
|
62
|
Lee SJ, Gralla JD. Open complex formation in vitro by sigma38 (rpoS) RNA polymerase: roles for region 2 amino acids. J Mol Biol 2003; 329:941-8. [PMID: 12798684 DOI: 10.1016/s0022-2836(03)00369-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Non-functional mutants of sigma(38)(sigma(S)) were studied in vitro to identify the nature of their defects. Mutations in four amino acids led to severe defects in DNA binding and enzyme isomerization with promoter fork junction probes containing single-stranded non-template DNA. The same properties were previously seen with DNA mutations at the fork junction, implying that sigma:DNA interactions at the fork junction are used both for DNA binding and enzyme isomerization. An overlapping set of four mutants had defects that appear to be associated with DNA melting to create the fork junction. When mapped onto the sigma(70) structure, these groups of mutants suggest motifs used by sigma factors to melt DNA and isomerize RNA polymerase to form functional open promoter complexes.
Collapse
Affiliation(s)
- Shun Jin Lee
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California-Los Angeles, 405 Hilgard Avenue, Room 440, P.O. Box 951569, Los Angeles, CA 90024-1569, USA
| | | |
Collapse
|
63
|
Nishino K, Inazumi Y, Yamaguchi A. Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli. J Bacteriol 2003; 185:2667-72. [PMID: 12670992 PMCID: PMC152604 DOI: 10.1128/jb.185.8.2667-2672.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator EvgA controls expression of multiple genes conferring antibiotic resistance in Escherichia coli (K. Nishino and A. Yamaguchi, J. Bacteriol. 184:2319-2323, 2002). To understand the whole picture of EvgA regulation, DNA macroarray analysis of the effect of EvgA overproduction was performed. EvgA activated genes related to acid resistance, osmotic adaptation, and drug resistance.
Collapse
Affiliation(s)
- Kunihiko Nishino
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki-shi, Japan
| | | | | |
Collapse
|
64
|
Jung IL, Kim IG. Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem Biophys Res Commun 2003; 301:915-22. [PMID: 12589799 DOI: 10.1016/s0006-291x(03)00064-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyamines (putrescine and spermidine) are present in almost all living organisms and participate in numerous cellular processes. In this study, we report the protective roles of polyamines against hydrogen peroxide (H2O2)-induced oxidative stress. All of ahpC, katG, and katE genes, known to participate in the antioxidant defense mechanism against H2O2-induced stress in Escherichia coli, failed to induce in the absence of polyamines during normal aerobic growth. The induction of both oxyR and rpoS gene expression, whose products are essential to induce ahpC, katG, and katE genes, was also absolutely dependent on polyamines. Polyamine-deficient E. coli mutant has increased susceptibility to exogenous H2O2, and this cell cytotoxicity was relieved to a wild-type level by addition of putrescine or spermidine (1mM), which restored the transcriptional induction of ahpC, katG, and katE genes. H2O2-removing capacity was measured in the mutant, showing a significantly low H2O2-removing capacity compared to the wild type when polyamines were not present. We concluded that the increased susceptibility of the polyamine-deficient E. coli mutant to H2O2 treatment resulted from an intracellular low level of H2O2-removing capacity through the failure of their regulons, ahpC, katG, and katE induction, as well as the failure of oxyR and rpoS induction.
Collapse
Affiliation(s)
- Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, 305-600, Yusong Taejon, Republic of Korea
| | | |
Collapse
|
65
|
Taylor-Robinson JD, Child M, Pickup R, Strike P, Edwards C. Cell-cell interactions influence resistance and survival of Salmonella serotype Typhimurium to environmental stress. J Appl Microbiol 2003; 94:95-102. [PMID: 12492929 DOI: 10.1046/j.1365-2672.2003.01808.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this work was to study the effects of prolonged nutrient stress on survival, cell interactions and resistance to inimical processes in Salmonella serotype Typhimurium. METHODS AND RESULTS Salmonella Typhimurium cells were subjected to prolonged incubation in the stationary phase of growth and the properties of starved cells (old) were investigated with reference to those of exponentially-growing cells (young). Competition experiments between old and young cells revealed cell-cell interactions that influenced stationary phase survival and response of the bacterium to heat stress. During prolonged incubation of cells, cycles of resistance and sensitivity to heat stress were identified. Competition experiments between old and young cells revealed that the resistance of young cells to heat increased to levels more like those of stationary phase cells than growing cells. The presence of old cells influenced the phenotype of young cells, possibly by means of cell-cell interactions. There was no evidence for the involvement of any extracellularly-produced factors in this phenomenon, but a requirement that the old competitor cells be viable could be demonstrated. CONCLUSIONS It is proposed that the complex interactions within stationary phase cultures of Salm. Typhimurium may be due to cycles of mutation in concert with an as yet undefined interaction between old cells and growing ones. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides evidence for active and diverse responses to nutrient stress within populations of Salm. Typhimurium that promote survival and that may be important for the success of this bacterium as a pathogen.
Collapse
|
66
|
Lee SJ, Gralla JD. Promoter use by sigma 38 (rpoS) RNA polymerase. Amino acid clusters for DNA binding and isomerization. J Biol Chem 2002; 277:47420-7. [PMID: 12351645 DOI: 10.1074/jbc.m208363200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sigma(38) is a non-essential but highly homologous member of the sigma(70) family of transcription factors. In vitro mutagenesis and in vivo screening were used to identify 22 critical amino acids in the promoter interaction domain of Escherichia coli sigma(38). Electrophoretic mobility shift assay studies showed that residues involved in duplex DNA binding largely segregated into distinct regions that coincided with those of sigma(70). However, the majority of these amino acids were in non-conserved positions. Analysis indicates that this region of the two sigma(s) probably has a common overall organization but differs in how its amino acids are used to form functional open complexes. Placement of the mutations on the known sigma(70) holoenzyme structure shows two clusters; one appears to be used for duplex DNA recognition and the other for the subsequent isomerization events. Permanganate assays for DNA melting support this view.
Collapse
Affiliation(s)
- Shun Jin Lee
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
67
|
Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J Bacteriol 2002; 184:6976-86. [PMID: 12446648 PMCID: PMC135471 DOI: 10.1128/jb.184.24.6976-6986.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation induces the nitrogen-regulated (Ntr) response, which includes proteins that assimilate ammonia and scavenge nitrogen. Nitrogen limitation also induces catabolic pathways that degrade four metabolically related compounds: putrescine, arginine, ornithine, and gamma-aminobutyrate (GABA). We analyzed the structure, function, and regulation of the gab operon, whose products degrade GABA, a proposed intermediate in putrescine catabolism. We showed that the gabDTPC gene cluster constitutes an operon based partially on coregulation of GabT and GabD activities and the polarity of an insertion in gabT on gabC. A DeltagabDT mutant grew normally on all of the nitrogen sources tested except GABA. The unexpected growth with putrescine resulted from specific induction of gab-independent enzymes. Nac was required for gab transcription in vivo and in vitro. Ntr induction did not require GABA, but various nitrogen sources did not induce enzyme activity equally. A gabC (formerly ygaE) mutant grew faster with GABA and had elevated levels of gab operon products, which suggests that GabC is a repressor. GabC is proposed to reduce nitrogen source-specific modulation of expression. Unlike a wild-type strain, a gabC mutant utilized GABA as a carbon source and such growth required sigma(S). Previous studies showing sigma(S)-dependent gab expression in stationary phase involved gabC mutants, which suggests that such expression does not occur in wild-type strains. The seemingly narrow catabolic function of the gab operon is contrasted with the nonspecific (nitrogen source-independent) induction. We propose that the gab operon and the Ntr response itself contribute to putrescine and polyamine homeostasis.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
68
|
Child M, Strike P, Pickup R, Edwards C. Salmonella typhimurium displays cyclical patterns of sensitivity to UV-C killing during prolonged incubation in the stationary phase of growth. FEMS Microbiol Lett 2002; 213:81-5. [PMID: 12127492 DOI: 10.1111/j.1574-6968.2002.tb11289.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stationary phase cells of Salmonella typhimurium were more resistant to killing by UV-C irradiation than those from the exponential phase. Analysis of the tolerance of cells taken at different stages of prolonged incubation as batch cultures to 60 or 100 J m(2) doses of UV-C revealed cycles of resistance and tolerance. The possible involvement of rpoS-controlled functions in mediating these cycles could be discounted because they were also detected in an rpoS minus mutant of S. typhimurium. The results are discussed in the context of heterogeneity in cells of stationary phase cultures of S. typhimurium.
Collapse
Affiliation(s)
- Mathew Child
- School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
69
|
Patten CL, Glick BR. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 2002; 48:635-42. [PMID: 12224562 DOI: 10.1139/w02-053] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phytohormone indole-3-acetic acid (IAA) accumulates in the culture medium of the plant growth-promoting bacterium Pseudomonas putida GR12-2 only when grown in the presence of exogenous tryptophan, suggesting that expression of indolepyruvate decarboxylase, a key enzyme in the IAA biosynthesis pathway in this bacterium, may be regulated by tryptophan. To test this hypothesis, we isolated the promoter region for the ipdc gene encoding indolepyruvate decarboxylase by inverse polymerase chain reaction (PCR) and inserted it upstream of the bioluminescent reporter gene luxAB on a plasmid in P. putida GR12-2. Activity of the ipdc promoter, measured by quantifying light production, increased fivefold in the presence of L-tryptophan, confirming that ipdc expression is induced by tryptophan. In addition, transcription of ipdc is regulated by the stationary phase sigma factor RpoS: the ipdc promoter contains a sequence similar to the RpoS recognition sequence, and transformation of P. putida GR12-2 with a plasmid carrying rpoS under the control of a constitutive promoter induced promoter activity before the onset of stationary phase when RpoS is not normally produced and prolonged a higher level of transcription at the later stages of the cell cycle.
Collapse
|
70
|
Rojas G, Saldías S, Bittner M, Zaldívar M, Contreras I. The rfaH gene, which affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is differentially expressed during the bacterial growth phase. FEMS Microbiol Lett 2001; 204:123-8. [PMID: 11682190 DOI: 10.1111/j.1574-6968.2001.tb10874.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We have cloned and sequenced the rfaH gene from Salmonella enterica serovar Typhi strain Ty2. The gene showed a high degree of similarity to the rfaH genes from Escherichia coli K-12 and S. enterica serovar Typhimurium. A rfaH mutant was constructed by site-directed mutagenesis. This mutant produced a rough lipopolysaccharide (LPS), with an incomplete core region. The defect in LPS expression that results from the rfaH mutation was corrected by a plasmid carrying the intact gene. The plasmid-borne rfaH gene also restored normal LPS synthesis in a rfaH mutant of E. coli. Reverse transcription-polymerase chain reaction analyses were performed to determine the effects of various environmental conditions on the expression of rfaH. The transcription of rfaH showed a growth-phase-dependent regulation, with maximal expression at the late exponential phase. Other environmental conditions, such as temperature or medium osmolarity, did not affect transcription of rfaH.
Collapse
Affiliation(s)
- G Rojas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, P.O. Box 174, Correo 22, Santiago, Chile
| | | | | | | | | |
Collapse
|
71
|
Robey M, Benito A, Hutson RH, Pascual C, Park SF, Mackey BM. Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Appl Environ Microbiol 2001; 67:4901-7. [PMID: 11571200 PMCID: PMC93247 DOI: 10.1128/aem.67.10.4901-4907.2001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2001] [Accepted: 07/17/2001] [Indexed: 11/20/2022] Open
Abstract
Several natural isolates of Escherichia coli O157:H7 have previously been shown to exhibit stationary-phase-dependent variation in their resistance to inactivation by high hydrostatic pressure. In this report we demonstrate that loss of the stationary-phase-inducible sigma factor RpoS resulted in decreased resistance to pressure in E. coli O157:H7 and in a commensal strain. Furthermore, variation in the RpoS activity of the natural isolates of O157:H7 correlated with the pressure resistance of those strains. Heterogeneity was noted in the rpoS alleles of the natural isolates that may explain the differences in RpoS activity. These results are consistent with a role for rpoS in mediating resistance to high hydrostatic pressure in E. coli O157:H7.
Collapse
Affiliation(s)
- M Robey
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
72
|
Seshadri R, Samuel JE. Characterization of a stress-induced alternate sigma factor, RpoS, of Coxiella burnetii and its expression during the development cycle. Infect Immun 2001; 69:4874-83. [PMID: 11447163 PMCID: PMC98577 DOI: 10.1128/iai.69.8.4874-4883.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium that resides in an acidified phagolysosome and has a remarkable ability to persist in the extracellular environment. C. burnetii has evolved a developmental cycle that includes at least two morphologic forms, designated large cell variants (LCV) and small cell variants (SCV). Based on differential protein expression, distinct ultrastructures, and different metabolic activities, we speculated that LCV and SCV are similar to typical logarithmic- and stationary-phase growth stages. We hypothesized that the alternate sigma factor, RpoS, a global regulator of genes expressed under stationary-phase, starvation, and stress conditions in many bacteria, regulates differential expression in life cycle variants of C. burnetii. To test this hypothesis, we cloned and characterized the major sigma factor, encoded by an rpoD homologue, and the stress response sigma factor, encoded by an rpoS homologue. The rpoS gene was cloned by complementation of an Escherichia coli rpoS null mutant containing an RpoS-dependent lacZ fusion (osmY::lacZ). Expression of C. burnetii rpoS was regulated by growth phase in E. coli (induced upon entry into stationary phase). A glutathione S-transferase-RpoS fusion protein was used to develop polyclonal antiserum against C. burnetii RpoS. Western blot analysis detected abundant RpoS in LCV but not in SCV. These results suggest that LCV and SCV are not comparable to logarithmic and stationary phases of growth and may represent a novel adaptation for survival in both the phagolysosome and the extracellular environment.
Collapse
Affiliation(s)
- R Seshadri
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
73
|
Izutsu K, Wada A, Wada C. Expression of ribosome modulation factor (RMF) in Escherichia coli requires ppGpp. Genes Cells 2001; 6:665-76. [PMID: 11532026 DOI: 10.1046/j.1365-2443.2001.00457.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND During the transition from the logarithmic to the stationary phase, 70S ribosomes are dimerized into the 100S form, which has no translational activity. Ribosome Modulation Factor (RMF) is induced during the stationary phase and binds to the 50S ribosomal subunit, which directs the dimerization of 70S ribosomes. Unlike many other genes induced in the stationary phase, rmf transcription is independent of the sigma S. To identify the factors that regulate the growth phase-dependent induction of rmf, mutant strains deficient in global regulators were examined for lacZ expression directed by the rmf promoter. RESULTS Among mutants of defective global regulators, only ppGpp deficiency (relA-spoT double mutant) drastically reduced the level of rmf transcription to less than 10% of that seen in the wild-type. Neither RMF nor 100S ribosomes were detected in this mutant in the stationary phase. rmf transcription correlated well with cellular ppGpp levels during amino acid starvation, IPTG induction of Ptrc-relA455 and in other mutants with artificially increased ppGpp levels. Although the growth rate also correlated inversely with both ppGpp levels and rmf transcription, the observation that the growth rates of the ppGpp-deficient and wild-type strains varied equivalently when grown on different media indicates that the link between rmf transcription and ppGpp levels is not a function of the growth rate. CONCLUSIONS ppGpp appears to positively regulate rmf transcription, at least in vivo. Thus, RMF provides a novel negative translational control by facilitating the formation of inactive ribosome dimers (100S) under the stringent circumstances of the stationary phase.
Collapse
Affiliation(s)
- K Izutsu
- The Institute for Virus Research, Kyoto University, Shogoin-Kawaracho, Sakyo-Ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
74
|
Lee SJ, Gralla JD. Sigma38 (rpoS) RNA polymerase promoter engagement via -10 region nucleotides. J Biol Chem 2001; 276:30064-71. [PMID: 11375988 DOI: 10.1074/jbc.m102886200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Band shift assays using DNA probes that mimic closed and open complexes were used to explore the determinants of promoter recognition by sigma38 (rpoS) RNA polymerase. Duplex recognition was found to be much weaker than that observed in sigma70 promoter usage. However, binding to fork junction probes, which attempt to mimic melted DNA, was very strong. This binding occurs via the non-template strand with the identity of the two conserved junction nucleotides (-12T and -11A) being of paramount importance. A modified promoter consensus sequence identified these two nucleotides as among only four (underlined) that are highly conserved, and all four were in the -10 region (CTAcacT from -13 to -7). The remaining two nucleotides were shown to have different roles, -13C in preventing recognition by the heterologous sigma70 polymerase and -7T in directing enzyme isomerization. These -10 region nucleotides appear to have their primary function prior to full melting because probes that had a melted start site were relatively insensitive to substitution at these positions. These results suggest the sigma38 mechanism differs from the sigma70 mechanism, and this difference likely contributes to selective use of sigma38 under conditions that exist during stationery phase.
Collapse
Affiliation(s)
- S J Lee
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
75
|
Abstract
The promoter recognition specificity of Escherichia coli RNA polymerase is modulated by replacement of the sigma subunit in the first step and by interaction with transcription factors in the second step. The overall differentiated state of approximately 2000 molecules of the RNA polymerase in a single cell can be estimated after measurement of both the intracellular concentrations and the RNA polymerase-binding affinities for all seven species of the sigma subunit and 100-150 transcription factors. The anticipated impact from this line of systematic approach is that the prediction of the expression hierarchy of approximately 4000 genes on the E. coli genome can be estimated.
Collapse
Affiliation(s)
- A Ishihama
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
76
|
Conter A, Gangneux C, Suzanne M, Gutierrez C. Survival of Escherichia coli during long-term starvation: effects of aeration, NaCl, and the rpoS and osmC gene products. Res Microbiol 2001; 152:17-26. [PMID: 11281321 DOI: 10.1016/s0923-2508(00)01164-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The survival of Escherichia coli was investigated during long-term starvation in rich media. In aerated cultures, E. coli lost the ability to form colonies earlier in NaCl-free Luria broth than in LB medium containing NaCl. Improved survival at low aeration and the sensitivity to hydrogen peroxide in aging cultures indicated a major role for oxidative stress in cell mortality. Mutants in rpoS, lacking the sigmaS subunit of RNA polymerase, showed altered survival in salt-containing media. However, in the absence of NaCl, although these mutants exhibited a massive loss of viability during the first 2 days, this was followed by a stabilization of the number of survivors. The starved culture contained survivors until at least day 9, long after a wild-type strain had completely lost viability. This peculiar behavior suggests that, in rich media of low osmotic pressure, sigmaS helps in short-term survival but hampers long-term survival. Mutants in osmC, a member of the rpoS regulon, also exhibited reduced survival and increased sensitivity to oxidative stress. The biochemical function of the envelope protein OsmC remains unknown, but present data indicated that it participates, directly or indirectly, in the defense against oxidative compounds.
Collapse
Affiliation(s)
- A Conter
- Laboratoire de microbiologie et génétique moléculaire, UMR 5100 CNRS-université Toulouse III, France.
| | | | | | | |
Collapse
|
77
|
Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A 2000; 97:14674-9. [PMID: 11121068 PMCID: PMC18977 DOI: 10.1073/pnas.97.26.14674] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogen regulatory protein C (NtrC) of enteric bacteria activates transcription of genes/operons whose products minimize the slowing of growth under nitrogen-limiting conditions. To reveal the NtrC regulon of Escherichia coli we compared mRNA levels in a mutant strain that overexpresses NtrC-activated genes [glnL(Up)] to those in a strain with an ntrC (glnG) null allele by using DNA microarrays. Both strains could be grown under conditions of nitrogen excess. Thus, we could avoid differences in gene expression caused by slow growth or nitrogen limitation per se. Rearranging the spot images from microarrays in genome order allowed us to detect all of the operons known to be under NtrC control and facilitated detection of a number of new ones. Many of these operons encode transport systems for nitrogen-containing compounds, including compounds recycled during cell-wall synthesis, and hence scavenging appears to be a primary response to nitrogen limitation. In all, approximately 2% of the E. coli genome appears to be under NtrC control, although transcription of some operons depends on the nitrogen assimilation control protein, which serves as an adapter between NtrC and final sigma(70)-dependent promoters.
Collapse
Affiliation(s)
- D P Zimmer
- Departments of Plant and Microbial Biology and Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Microorganisms in natural environments have evolved to withstand fluctuations in physical and chemical conditions. This means that they often manifest very different biochemical and morphological features compared with those seen during laboratory culture. A major limitation in natural ecosystems is nutrient limitation under which microorganisms are exposed to starvation conditions and grow slowly or not at all. This review identifies the role of inimical processes on microbial properties such as the responses to starvation that may result in the adoption of viable but nonculturable (VBNC) states, discusses the problems that altered physiological states pose for detection and identification and highlights novel methods that have been developed to circumvent these difficulties. These factors dictate that to survive and respond to environmental stimuli, a cell must have evolved sophisticated programs of gene expression. These include the sigma factor rpoS that directs RNA polymerase to transcribe genes whose expression aids survival during severe nutrient limitation or cell-cell communication systems that promote a concerted population response termed quorum sensing.
Collapse
Affiliation(s)
- C Edwards
- School of Biological Sciences, University of Liverpool, UK.
| |
Collapse
|
79
|
Turner K, Porter J, Pickup R, Edwards C. Changes in viability and macromolecular content of long-term batch cultures of Salmonella typhimurium measured by flow cytometry. J Appl Microbiol 2000; 89:90-9. [PMID: 10945784 DOI: 10.1046/j.1365-2672.2000.01086.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of many Gram-negative bacteria to prolonged starvation induces alternative programmes of gene expression, along with a transition into a dormant condition sometimes referred to as a viable non-culturable (VBNC) state. Knowledge of how pathogenic species respond to nutrient limitation is therefore important for their detection and dissemination. This study used flow cytometry, coupled with fluorescent dyes for viability and macromolecular content, to study the responses of the pathogen Salmonella typhimurium to prolonged batch culture. Statistical analysis of the flow cytometric data, together with total and culturable cell counts, failed to demonstrate a VBNC state in this pathogen, contrary to reports from other workers. Analysis of rRNA and protein content identified a small proportion of cells in 110 day-old cultures that represented an active sub-population. This observation may provide an explanation for the long-term survival properties of this organism during prolonged exposure to nutrient limitation, as well as the high degree of heterogeneity observed in labelled cells.
Collapse
Affiliation(s)
- K Turner
- School of Biological Sciences, University of Liverpool, UK
| | | | | | | |
Collapse
|
80
|
Pedersen AG, Jensen LJ, Brunak S, Staerfeldt HH, Ussery DW. A DNA structural atlas for Escherichia coli. J Mol Biol 2000; 299:907-30. [PMID: 10843847 DOI: 10.1006/jmbi.2000.3787] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have performed a computational analysis of DNA structural features in 18 fully sequenced prokaryotic genomes using models for DNA curvature, DNA flexibility, and DNA stability. The structural values that are computed for the Escherichia coli chromosome are significantly different from (and generally more extreme than) that expected from the nucleotide composition. To aid this analysis, we have constructed tools that plot structural measures for all positions in a long DNA sequence (e.g. an entire chromosome) in the form of color-coded wheels (http://www.cbs.dtu. dk/services/GenomeAtlas/). We find that these "structural atlases" are useful for the discovery of interesting features that may then be investigated in more depth using statistical methods. From investigation of the E. coli structural atlas, we discovered a genome-wide trend, where an extended region encompassing the terminus displays a high of level curvature, a low level of flexibility, and a low degree of helix stability. The same situation is found in the distantly related Gram-positive bacterium Bacillus subtilis, suggesting that the phenomenon is biologically relevant. Based on a search for long DNA segments where all the independent structural measures agree, we have found a set of 20 regions with identical and very extreme structural properties. Due to their strong inherent curvature, we suggest that these may function as topological domain boundaries by efficiently organizing plectonemically supercoiled DNA. Interestingly, we find that in practically all the investigated eubacterial and archaeal genomes, there is a trend for promoter DNA being more curved, less flexible, and less stable than DNA in coding regions and in intergenic DNA without promoters. This trend is present regardless of the absolute levels of the structural parameters, and we suggest that this may be related to the requirement for helix unwinding during initiation of transcription, or perhaps to the previously observed location of promoters at the apex of plectonemically supercoiled DNA. We have also analyzed the structural similarities between groups of genes by clustering all RNA and protein-encoding genes in E. coli, based on the average structural parameters. We find that most ribosomal genes (protein-encoding as well as rRNA genes) cluster together, and we suggest that DNA structure may play a role in the transcription of these highly expressed genes.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Pairing/genetics
- Color
- Computational Biology
- Computer Simulation
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- Deoxyribonuclease I/metabolism
- Escherichia coli/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Models, Molecular
- Nucleic Acid Conformation
- Nucleosomes/chemistry
- Nucleosomes/genetics
- Pattern Recognition, Automated
- Phylogeny
- Pliability
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/genetics
- Software
- Statistics as Topic
- Thermodynamics
Collapse
Affiliation(s)
- A G Pedersen
- Center for Biological Sequence Analysis, Department of Biotechnology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
81
|
Giddens SR, Tormo A, Mahanty HK. Expression of the antifeeding gene anfA1 in Serratia entomophila requires rpoS. Appl Environ Microbiol 2000; 66:1711-4. [PMID: 10742266 PMCID: PMC92047 DOI: 10.1128/aem.66.4.1711-1714.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rpoS gene of Serratia entomophila BC4B was cloned and used to create rpoS-mutant strain BC4BRS. Larvae of the New Zealand grass grub Costelytra zealandica infected with BC4BRS became amber colored but continued to feed, albeit to a lesser extent than infected larvae. Subsequently, we found that expression of the antifeeding gene anfA1 in trans was substantially reduced in BC4BRS relative to that in the parental strain BC4B. Our data show that a functional rpoS gene is vital for full expression of anfA1 and for development of the antifeeding component of amber disease.
Collapse
Affiliation(s)
- S R Giddens
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | |
Collapse
|
82
|
Bordes P, Repoila F, Kolb A, Gutierrez C. Involvement of differential efficiency of transcription by esigmas and esigma70 RNA polymerase holoenzymes in growth phase regulation of the Escherichia coli osmE promoter. Mol Microbiol 2000; 35:845-53. [PMID: 10692161 DOI: 10.1046/j.1365-2958.2000.01758.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcription of the gene osmE of Escherichia coli is inducible by elevated osmotic pressure and during the decelerating phase of growth. osmE expression is directed by a single promoter, osmEp. Decelerating phase induction of osmEp is dependent on the sigmas (RpoS) factor, whereas its osmotic induction is independent of sigmas. Purified Esigmas and Esigma70 were both able to transcribe osmEp in vitro on supercoiled templates. In the presence of rpoD800, a mutation resulting in a thermosensitive sigma70 factor, a shift to non-permissive temperature abolished induction of osmEp after an osmotic shock during exponential phase, but did not affect the decelerating phase induction. Point mutations affecting osmEp activity were isolated. Down-promoter mutations decreased transcription in both the presence and the absence of sigmas, indicating that the two forms of RNA polymerase holoenzyme recognize very similar sequence determinants on the osmE promoter. Three up-promoter mutations brought osmEp closer to the consensus of Esigma70-dependent promoters. The two variant promoters exhibiting the highest efficiency became essentially independent of sigmas in vivo. Our data suggest that Esigmas transcribes wild-type osmEp with a higher efficiency than Esigma70. A model in which an intrinsic differential recognition contributes to growth phase-dependent regulation is proposed. Generalization of this model to other sigmas-dependent promoters is discussed.
Collapse
Affiliation(s)
- P Bordes
- Laboratoire de Microbiologie et Génétique Moléculaire, UPR 9007 CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
83
|
Wang Y, Kim KS. Effect of rpoS mutations on stress-resistance and invasion of brain microvascular endothelial cells in Escherichia coli K1. FEMS Microbiol Lett 2000; 182:241-7. [PMID: 10620673 DOI: 10.1111/j.1574-6968.2000.tb08902.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Escherichia coli K1 strains are predominant in causing neonatal meningitis. We have shown that invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for E. coli K1 crossing of the blood-brain barrier. BMEC invasion by E. coli K1 strain RS218, however, has been shown to be significantly greater with stationary-phase cultures than with exponential-phase cultures. Since RpoS participates in regulating stationary-phase gene expression, the present study examined a possible involvement of RpoS in E. coli K1 invasion of BMEC. We found that the cerebrospinal fluid isolates of E. coli K1 strains RS218 and IHE3034 have a nonsense mutation in their rpoS gene. Complementation with the E. coli K12 rpoS gene significantly increased the BMEC invasion of E. coli K1 strain IHE3034, but failed to significantly increase the invasion of another E. coli K1 strain RS218. Of interest, the recovery of E. coli K1 strains following environmental insults was 10-100-fold greater on Columbia blood agar than on LB agar, indicating that growing medium is important for viability of rpoS mutants after environmental insults. Taken together, our data suggest that the growth-phase-dependent E. coli K1 invasion of BMEC is affected by RpoS and other growth-phase-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Y Wang
- Division of Infectious Diseases, MS #51, Childrens Hospital Los Angeles, the University of Southern California School of Medicine, Los Angeles, CA 90027, USA
| | | |
Collapse
|
84
|
Chang L, Wei LI, Audia JP, Morton RA, Schellhorn HE. Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol Microbiol 1999; 34:756-66. [PMID: 10564515 DOI: 10.1046/j.1365-2958.1999.01637.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the absence of oxygen, many bacteria preferentially use nitrate as a terminal electron acceptor for anaerobic respiration. In Escherichia coli, there are two membrane-bound, differentially regulated nitrate reductases. While the physiological basis for this metabolic redundancy is not completely understood, during exponential growth, synthesis of NRA is greatly induced by anaerobiosis plus nitrate, whereas NRZ is expressed at a low level that is not influenced by anaerobiosis or nitrate. In the course of identifying genes controlled by the stationary phase regulatory factor RpoS (sigmas), we found that the expression of NRZ is induced during entry into stationary phase and highly dependent on this alternative sigma factor. Expression studies, using operon fusions and nitrate reductase assays, revealed that the NRZ operon is controlled mainly at the level of transcription and is induced 10-fold at the onset of stationary phase in rich media. Consistent with previous reports of RpoS expression, the RpoS dependency of NRZ in minimal media was very high (several hundredfold). We also observed a fivefold stationary phase induction of NRZ in an rpoS background, indicating that other regulatory factors, besides RpoS, are probably involved in transcriptional control of NRZ. The RpoS dependence of NRZ expression was confirmed by Northern analyses using RNA extracted from wild-type and rpoS- strains sampled in exponential and stationary phase. In toto, these data indicate that RpoS-mediated regulation of NRZ may be an important physiological adaptation that allows the cell to use nitrate under stress-associated conditions.
Collapse
Affiliation(s)
- L Chang
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
85
|
Rava PS, Somma L, Steinman HM. Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus. J Bacteriol 1999; 181:6152-9. [PMID: 10498730 PMCID: PMC103645 DOI: 10.1128/jb.181.19.6152-6159.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the catalase-peroxidase of Caulobacter crescentus, a gram-negative member of the alpha subdivision of the Proteobacteria, is 50-fold higher in stationary-phase cultures than in exponential cultures. To identify regulators of the starvation response, Tn5 insertion mutants were isolated with reduced expression of a katG::lacZ fusion on glucose starvation. One insertion interrupted an open reading frame encoding a protein with significant amino acid sequence identity to TipA, a helix-turn-helix transcriptional activator in the response of Streptomyces lividans to the peptide antibiotic thiostrepton, and lesser sequence similarity to other helix-turn-helix regulators in the MerR family. The C. crescentus orthologue of tipA was named skgA (stationary-phase regulation of katG). Stationary-phase expression of katG was reduced by 70% in the skgA::Tn5 mutant, and stationary-phase resistance to hydrogen peroxide decreased by a factor of 10. Like the wild type, the skgA mutant exhibited starvation-induced cross-resistance to heat and acid shock, entered into the helical morphology that occurs after 9 to 12 days in stationary phase, and during exponential growth induced katG in response to hydrogen peroxide challenge. Expression of skgA increased 5- to 10-fold in late exponential phase. skgA is the first regulator of a starvation-induced stress response identified in C. crescentus. SkgA is not a global regulator of the stationary-phase stress response; its action encompasses the oxidative stress-hydrogen peroxide response but not acid or heat responses. Moreover, SkgA is not an alternative sigma factor, like RpoS, which controls multiple aspects of starvation-induced cross-resistance to stress in enteric bacteria. These observations raise the possibility that regulation of stationary-phase gene expression in this member of the alpha subdivision of the Proteobacteria is different from that in Escherichia coli and other members of the gamma subdivision.
Collapse
Affiliation(s)
- P S Rava
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
86
|
Abstract
The presence of intricate global cell regulation mechanisms may be one reason for the exceptional environmental and evolutionary success of microbes. Promoters, the cis-acting signals, are responsive to several stimuli related to growth, stress and substrate specificity. Their response is mediated by a wide variety of trans-acting regulators that sense the environment and the physiological state of the cell and adjust the transcription of specific genes. One of the main transcriptional regulation webs operates in the transition from affluent to barren conditions, with sigmaS being the chief actor in a company of players that stage a competition for the sparsely available RNA polymerase molecules. In this role, sigmaS may be assisted by several factors, including nucleoid-related proteins and metabolites. In addition, the levels of sigmaS itself are regulated by mechanisms that include inactivation and degradation. Several transcription factors, belonging to different regulatory pathways, may operate in the same promoter. In such a case, the final transcriptional output depends both on the interplay of effectors and on the properties of the recruitment of the effector-RNA polymerase complex to the promoter. RNA polymerase itself is also capable of establishing selective interactions with activators and specific promoter regions through the carboxy-terminal domain of its alpha subunit (alphaCTD). Transcriptional regulation controls pervade such crucial events in the life of bacterial cells as Escherichia coli cell division, Bacillus subtilis sporulation and Caulobacter crescentus differentiation. These examples suggest that bacteria have been particularly inventive in adapting gene expression regulation to survive under a diversity of environments and have done so by exploiting the malleable molecular mechanisms involved in transcription, developing complexities that may match those found in eukaryotic cells.
Collapse
Affiliation(s)
- M Vicente
- Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|