51
|
Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW. Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 2014; 1:667-83. [PMID: 15482163 DOI: 10.1586/14787210.1.4.667] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacteria have traditionally been regarded as individual organisms growing in homogeneous planktonic populations. However, bacteria in natural environments usually form communities of surface-adherent organisms embedded in an extracellular matrix, called biofilms. Current antimicrobial strategies often fail to control bacteria in the biofilm mode of growth. Treatment failure is particularly frequent in association with intracorporeal or transcutaneous medical devices and compromised host immunity. The rising prevalence of these risk factors over the last decades has paralleled the increase in biofilm infections. This review discusses the shortcomings of current therapies against biofilms both in theory and with clinical examples. Biofilm characteristics are described with a focus on new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Christoph A Fux
- Center for Biofilm Engineering, Montana State University, USA.
| | | | | | | |
Collapse
|
52
|
Tribelli PM, Hay AG, López NI. The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One 2013; 8:e76685. [PMID: 24146909 PMCID: PMC3797731 DOI: 10.1371/journal.pone.0076685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas extremaustralis is a versatile Antarctic bacterium, able to grow under microaerobic and anaerobic conditions and is related to several non-pathogenic Pseudomonads. Here we report on the role of the global anaerobic regulator Anr, in the early steps of P. extremaustralis biofilm development. We found that the anr mutant was reduced in its ability to attach, to form aggregates and to display twitching motility but presented higher swimming motility than the wild type. In addition, microscopy revealed that the wild type biofilm contained more biomass and was thicker, but were less rough than that of the anr mutant. In silico analysis of the P. extremaustralis genome for Anr-like binding sites led to the identification of two biofilm-related genes as potential targets of this regulator. When measured using Quantitative Real Time PCR, we found that the anr mutant expressed lower levels of pilG, which encodes a component of Type IV pili and has been previously implicated in cellular adhesion. Levels of morA, involved in signal transduction and flagella development, were also lower in the mutant. Our data suggest that under low oxygen conditions, such as those encountered in biofilms, Anr differentially regulates aggregation and motility thus affecting the first stages of biofilm formation.
Collapse
Affiliation(s)
- Paula M. Tribelli
- IQUIBICEN-CONICET and Dpto. de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Nancy I. López
- IQUIBICEN-CONICET and Dpto. de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
53
|
Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 2013; 3:a010306. [PMID: 23545571 DOI: 10.1101/cshperspect.a010306] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biofilm formation constitutes an alternative lifestyle in which microorganisms adopt a multicellular behavior that facilitates and/or prolongs survival in diverse environmental niches. Biofilms form on biotic and abiotic surfaces both in the environment and in the healthcare setting. In hospital wards, the formation of biofilms on vents and medical equipment enables pathogens to persist as reservoirs that can readily spread to patients. Inside the host, biofilms allow pathogens to subvert innate immune defenses and are thus associated with long-term persistence. Here we provide a general review of the steps leading to biofilm formation on surfaces and within eukaryotic cells, highlighting several medically important pathogens, and discuss recent advances on novel strategies aimed at biofilm prevention and/or dissolution.
Collapse
Affiliation(s)
- Maria Kostakioti
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110-1010, USA
| | | | | |
Collapse
|
54
|
Rueggeberg KG, Toba FA, Thompson MG, Campbell BR, Hay AG. A Q-like transcription factor regulates biofilm development in Escherichia coli by controlling expression of the DLP12 lysis cassette. Microbiology (Reading) 2013; 159:691-700. [DOI: 10.1099/mic.0.064741-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Faustino A. Toba
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | - Bryan R. Campbell
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Anthony G. Hay
- Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
55
|
Abstract
Quorum sensing(QS) is a mechanism of microbes to coordinate their activities, which allows them to function as multi-cellular systems. Recently, many researches have proved that the engineered QS system have a wide range of applications such as bioremediation of oil and heavy metal contaminated soils, and prevention of biofouling. Here we review the function of QS signals produced by bacteria, and the principle of enhancing degradative capacities of microbe. Specifically, we describe how QS system regulate the formation and dispersion of biofilms, which are reversible process that biofilms may be generated and removed as desired. The development of strategies to disrupt and manipulate QS are also implicated. Cells can be engineered to secrete QS signals to affect the behavior of neighboring cells in a consortium via engineered cellular communication. The complete genetic basis of QS may be used to control these communities of associated cells for bioremediation applications.
Collapse
|
56
|
Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis. J Bacteriol 2013; 195:1697-705. [PMID: 23378512 DOI: 10.1128/jb.02201-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm is a complex aggregate of cells that adhere to each other and produce an extracellular matrix. In Bacillus subtilis, an extracellular polysaccharide (EPS) and amyloid fiber (TasA), synthesized by the epsA-epsO and tapA-sipW-tasA operons, respectively, are the primary components of the extracellular matrix. In the current study, we investigated the functional role of the previously uncharacterized veg gene in B. subtilis. Overproduction of Veg, a small protein highly conserved among Gram-positive bacteria, stimulated biofilm formation via inducing transcription of the tapA-sipW-tasA operon. Moreover, overproduced Veg restored the impairment of biofilm formation in mutants carrying a deletion of of sinI, slrA, or slrR, encoding an antirepressor of SinR that acts as the master regulator of biofilm formation, while biofilm morphology in the absence of SinR was not affected by either additional veg deletion or overproduction, indicating that Veg negatively regulates SinR activity independently of the known antirepressors. Expression of sinR was not affected in Veg-overproducing cells, and amounts of SinR were similar in cells expressing different levels of Veg, strongly suggesting that Veg modulates the repressor activity of SinR. Interestingly, the results of in vivo pulldown assays of the SinR complex indicate that Veg inhibits the interactions between SinR and SlrR. Based on these findings, we propose that Veg or a Veg-induced protein acts as an antirepressor of SinR to regulate biofilm formation.
Collapse
|
57
|
Jahid IK, Lee NY, Kim A, Ha SD. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. J Food Prot 2013; 76:239-47. [PMID: 23433371 DOI: 10.4315/0362-028x.jfp-12-321] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.
Collapse
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Ansung, Kyunggido 456-756, South Korea
| | | | | | | |
Collapse
|
58
|
Abstract
The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.
Collapse
Affiliation(s)
- Noël Molière
- Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany,
| | | |
Collapse
|
59
|
Triveni S, Prasanna R, Shukla L, Saxena AK. Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0573-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
60
|
Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 2012; 195:545-55. [PMID: 23175653 DOI: 10.1128/jb.01980-12] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacteria within biofilms are protected from multiple stresses, including immune responses and antimicrobial agents. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Although biofilms have been well studied for several gut pathogens, little is known about biofilm formation by anaerobic gut species. The obligate anaerobe Clostridium difficile causes C. difficile infection (CDI), a major health care-associated problem primarily due to the high incidence of recurring infections. C. difficile colonizes the gut when the normal intestinal microflora is disrupted by antimicrobial agents; however, the factors or processes involved in gut colonization during infection remain unclear. We demonstrate that clinical C. difficile strains, i.e., strain 630 and the hypervirulent strain R20291, form structured biofilms in vitro, with R20291 accumulating substantially more biofilm. Microscopic and biochemical analyses show multiple layers of bacteria encased in a biofilm matrix containing proteins, DNA, and polysaccharide. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella, and a putative quorum-sensing regulator, LuxS, are all required for maximal biofilm formation by C. difficile. Interestingly, a mutant in Spo0A, a transcription factor that controls spore formation, was defective for biofilm formation, indicating a possible link between sporulation and biofilm formation. Furthermore, we demonstrate that bacteria in clostridial biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.
Collapse
|
61
|
Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8542-8573. [PMID: 22746978 DOI: 10.1021/es203906c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).
Collapse
|
62
|
Muscariello L, Marino C, Capri U, Vastano V, Marasco R, Sacco M. CcpA and three newly identified proteins are involved in biofilm development in Lactobacillus plantarum. J Basic Microbiol 2012; 53:62-71. [PMID: 22585750 DOI: 10.1002/jobm.201100456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/24/2011] [Indexed: 12/17/2022]
Abstract
The aim of this study was to identify genes involved in biofilm development in the probiotic lactic acid bacterium Lactobacillus plantarum. The ability of L. plantarum LM3 and of some derivative mutant strains to form biofilm has been investigated. Biofilm microtitre plate assays showed that L. plantarum LM3-2, carrying a null mutation in the ccpA gene, coding the CcpA master regulator, was partially impaired in biofilm production compared to wild type (LM3). Moreover, we found three genes in the L. plantarum genome, hereby named flmA, flmB, and flmC, whose deduced amino acid sequences show significant identity with the Streptococcus mutans BrpA (biofilm regulatory protein A). We investigated the role of FlmA, FlmB, and FlmC in biofilm formation by isolating strains carrying null mutations in the corresponding genes. Our results suggest involvement of the Flm proteins in biofilm development. Moreover, transcriptional studies show that expression of flmA, flmB, and flmC is under the control of CcpA. These results, together with the reduced ability of LM3-2 (ccpA1) to form biofilm, strongly suggest a positive role of the master regulator CcpA in biofilm development.
Collapse
Affiliation(s)
- Lidia Muscariello
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli, Caserta, Italy
| | | | | | | | | | | |
Collapse
|
63
|
Barbot V, Robert A, Rodier MH, Imbert C. Update on infectious risks associated with dental unit waterlines. ACTA ACUST UNITED AC 2012; 65:196-204. [PMID: 22469485 DOI: 10.1111/j.1574-695x.2012.00971.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/08/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
Abstract
Modern dental chair units consist of a network of interconnected narrow-bore plastic tubes called dental unit waterlines (DUWLs). The water delivered by these DUWLs acts as both a coolant for a range of instruments and an irrigant during dental treatments. The quality of water is of considerable importance because both patients and dental team are regularly exposed to water and aerosols generated by dental equipment. Studies have demonstrated that DUWLs provide a favourable environment for microbial proliferation and biofilm formation, and that water is consequently often contaminated with high densities of various microorganisms (bacteria, fungi, protozoa, viruses). The presence of high levels of microbial contamination may be a health problem for dentists and patients, especially those who are immunocompromised. The current status of knowledge on microbial contamination of DUWLs is presented, with an emphasis on the infectious risk associated with DUWLs and on the various approaches for disinfecting and protecting DUWLs.
Collapse
Affiliation(s)
- Vanessa Barbot
- Laboratoire de Chimie et Microbiologie de l'Eau, Université de Poitiers, Poitiers, France.
| | | | | | | |
Collapse
|
64
|
Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J Bacteriol 2012; 194:2781-90. [PMID: 22328672 DOI: 10.1128/jb.06780-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms of microbial cells encased in an exopolymeric matrix can form on solid surfaces, but how bacteria sense a solid surface and upregulate biofilm genes is largely unknown. We investigated the role of the Bacillus subtilis signal peptidase, SipW, which has a unique role in forming biofilms on a solid surface and is not required at an air-liquid interface. Surprisingly, we found that the signal peptidase activity of SipW was not required for solid-surface biofilms. Furthermore, a SipW mutant protein was constructed that lacks the ability to form a solid-surface biofilm but still retains signal peptidase activity. Through genetic and gene expression tests, the non-signal peptidase role of SipW was found to activate biofilm matrix genes specifically when cells were on a solid surface. These data provide the first evidence that a signal peptidase is bifunctional and that SipW has a regulatory role in addition to its role as a signal peptidase.
Collapse
|
65
|
Szkotak R, Niepa THR, Jawrani N, Gilbert JL, Jones MB, Ren D. Differential Gene Expression to Investigate the Effects of Low-level Electrochemical Currents on Bacillus subtilis. AMB Express 2011; 1:39. [PMID: 22078549 PMCID: PMC3294250 DOI: 10.1186/2191-0855-1-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 12/22/2022] Open
Abstract
With the emergence and spread of multidrug resistant bacteria, effective methods to eliminate both planktonic bacteria and those embedded in surface-attached biofilms are needed. Electric currents at μA-mA/cm2 range are known to reduce the viability of bacteria. However, the mechanism of such effects is still not well understood. In this study, Bacillus subtilis was used as the model Gram-positive species to systematically investigate the effects of electrochemical currents on bacteria including the morphology, viability, and gene expression of planktonic cells, and viability of biofilm cells. The data suggest that weak electrochemical currents can effectively eliminate B. subtilis both as planktonic cells and in biofilms. DNA microarray results indicate that the genes associated with oxidative stress response, nutrient starvation, and membrane functions were induced by electrochemical currents. These findings suggest that ions and oxidative species generated by electrochemical reactions might be important for the killing effects of these currents.
Collapse
Affiliation(s)
- Robert Szkotak
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Tagbo H R Niepa
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Nikhil Jawrani
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jeremy L Gilbert
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | | | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
66
|
YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J Bacteriol 2011; 193:4821-31. [PMID: 21742882 DOI: 10.1128/jb.00223-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During biofilm formation by Bacillus subtilis, two extracellular matrix components are synthesized, namely, the TasA amyloid fibers and an exopolysaccharide. In addition, a small protein called YuaB has been shown to allow the biofilm to form. The regulatory protein DegU is known to initiate biofilm formation. In this report we show that the main role of DegU during biofilm formation is to indirectly drive the activation of transcription from the yuaB promoter. The N terminus of YuaB constitutes a signal peptide for the Sec transport system. Here we show that the presence of the signal peptide is required for YuaB function. In addition we demonstrate that upon export of YuaB from the cytoplasm, it localizes to the cell wall. We continue with evidence that increased production of TasA and the exopolysaccharide is not sufficient to overcome the effects of a mutation in yuaB, demonstrating the unique involvement of YuaB in forming a biofilm. In line with this, YuaB is not involved in correct synthesis, export, or polymerization of either the TasA amyloid fibers or the exopolysaccharide. Taken together, these findings identify YuaB as a protein that plays a novel role during biofilm formation. We hypothesize that YuaB functions synergistically with the known components of the biofilm matrix to facilitate the assembly of the biofilm matrix.
Collapse
|
67
|
Bordi C, de Bentzmann S. Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 2011; 1:19. [PMID: 21906350 PMCID: PMC3224501 DOI: 10.1186/2110-5820-1-19] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023] Open
Abstract
Microbiologists have extensively worked during the past decade on a particular phase of the bacterial cell cycle known as biofilm, in which single-celled individuals gather together to form a sedentary but dynamic community within a complex structure, displaying spatial and functional heterogeneity. In response to the perception of environmental signals by sensing systems, appropriate responses are triggered, leading to biofilm formation. This process involves various molecular systems that enable bacteria to identify appropriate surfaces on which to anchor themselves, to stick to those surfaces and to each other, to construct multicellular communities several hundreds of micrometers thick, and to detach from the community. The biofilm microbial community is a unique, highly competitive, and crowded environment facilitating microevolutionary processes and horizontal gene transfer between distantly related microorganisms. It is governed by social rules, based on the production and use of "public" goods, with actors and recipients. Biofilms constitute a unique shield against external aggressions, including drug treatment and immune reactions. Biofilm-associated infections in humans have therefore generated major problems for the diagnosis and treatment of diseases. Improvements in our understanding of biofilms have led to innovative research designed to interfere with this process.
Collapse
Affiliation(s)
- Christophe Bordi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027 CNRS - Aix Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille, France.
| | | |
Collapse
|
68
|
Bridier A, Le Coq D, Dubois-Brissonnet F, Thomas V, Aymerich S, Briandet R. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging. PLoS One 2011; 6:e16177. [PMID: 21267464 PMCID: PMC3022735 DOI: 10.1371/journal.pone.0016177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022] Open
Abstract
The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding "beanstalk-like" structures with certain strains. Indeed, these structures can reach a height of more than 300 µm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities.
Collapse
|
69
|
|
70
|
Coenye T. Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation. ACTA ACUST UNITED AC 2010; 59:239-52. [PMID: 20482621 DOI: 10.1111/j.1574-695x.2010.00682.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A better understanding of the genotypic and phenotypic adaptation of sessile (biofilm-associated) microorganisms to various forms of stress is required in order to develop more effective antibiofilm strategies. This review presents an overview of what high-throughput transcriptomic analyses have taught us concerning the response of various clinically relevant microorganisms (including Pseudomonas aeruginosa, Burkholderia cenocepacia and Candida albicans) to treatment with antibiotics or disinfectants. In addition, several problems associated with identifying gene expression patterns in biofilms in general and their implications for identifying the response to stress are discussed (with a focus on heterogeneity in microbial biofilms and the role of small RNAs in microbial group behavior).
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium.
| |
Collapse
|
71
|
How Rhizobia Survive in the Absence of a Legume Host, a Stressful World Indeed. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-9449-0_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
72
|
Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms. ISME JOURNAL 2009; 4:509-19. [PMID: 20033069 DOI: 10.1038/ismej.2009.137] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. Cells throughout anode biofilms of Geobacter sulfurreducens reduced the metabolic stains: 5-cyano-2,3-ditolyl tetrazolium chloride and Redox Green, suggesting metabolic activity throughout the biofilm. To compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, anode biofilms were encased in resin and sectioned into inner (0-20 microm from anode surface) and outer (30-60 microm) fractions. Transcriptional analysis revealed that, at a twofold threshold, 146 genes had significant (P<0.05) differences in transcript abundance between the inner and outer biofilm sections. Only 1 gene, GSU0093, a hypothetical ATP-binding cassette transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting lower metabolic rates. However, differences in transcript abundance were relatively low (<threefold) and the expression of genes for the tricarboxylic acid cycle enzymes was not significantly lower. Lower expression of genes involved in stress responses in the outer biofilm may reflect the development of low pH near the surface of the anode. The results of this study suggest that cells throughout the biofilm are metabolically active and can potentially contribute to current production. The microtoming/microarray strategy described here may be useful for evaluating gene expression with depth in a diversity of microbial biofilms.
Collapse
|
73
|
Houry A, Briandet R, Aymerich S, Gohar M. Involvement of motility and flagella in Bacillus cereus biofilm formation. MICROBIOLOGY-SGM 2009; 156:1009-1018. [PMID: 20035003 DOI: 10.1099/mic.0.034827-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus cereus is a food-borne pathogen and a frequent contaminant of food production plants. The persistence of this pathogen in various environments results from the formation of spores and of biofilms. To investigate the role of the B. cereus flagellar apparatus in biofilm formation, we constructed a non-flagellated mutant and a flagellated but non-motile mutant. Unexpectedly, we found that the presence of flagella decreased the adhesion of the bacterium to glass surfaces. We hypothesize that this decrease is a consequence of the flagella hindering a direct interaction between the bacterial cell wall and the surface. In contrast, in specific conditions, motility promotes biofilm formation. Our results suggest that motility could influence biofilm formation by three mechanisms. Motility is necessary for the bacteria to reach surfaces suitable for biofilm formation. In static conditions, reaching the air-liquid interface, where the biofilm forms, is a strong requirement, whereas in flow cells bacteria can have access to the bottom glass slide by sedimentation. Therefore, motility is important for biofilm formation in glass tubes and in microtitre plates, but not in flow cells. Motility also promotes recruitment of planktonic cells within the biofilm by allowing motile bacteria to invade the whole biofilm. Finally, motility is involved in the spreading of the biofilm on glass surfaces.
Collapse
Affiliation(s)
- A Houry
- INRA, UMR763 Biologie et Hygiène des Matériaux, F-91300 Massy, France.,INRA, UMR1238 Microbiologie et Génétique Moléculaire, F-78850 Thiverval-Grignon, France
| | - R Briandet
- INRA, UMR763 Biologie et Hygiène des Matériaux, F-91300 Massy, France
| | - S Aymerich
- INRA, UMR1238 Microbiologie et Génétique Moléculaire, F-78850 Thiverval-Grignon, France
| | - M Gohar
- INRA, UMR1238 Microbiologie et Génétique Moléculaire, F-78850 Thiverval-Grignon, France
| |
Collapse
|
74
|
Duez C, Zervosen A, Teller N, Melkonian RÃ, Banzubazé E, Bouillenne F, Luxen A, Frère JM. Characterization of the proteins encoded by theBacillus subtilis yoxA-dacCâ operon. FEMS Microbiol Lett 2009; 300:42-7. [DOI: 10.1111/j.1574-6968.2009.01761.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
75
|
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. J Bacteriol 2009; 191:6822-32. [PMID: 19767430 DOI: 10.1128/jb.00618-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A characteristic feature of biofilm formation is the production of a protective extracellular polymeric matrix. In the gram-positive bacterium Bacillus subtilis, the biofilm matrix is synthesized by the products of the epsABCDEFGHIJKLMNO operon (hereafter called the eps operon) and yqxM-sipW-tasA loci. Transcription from these operons is repressed by two key regulators, AbrB and SinR. Relief of inhibition is necessary to allow biofilm formation to proceed. Here we present data indicating that Abh, a sequence and structural homologue of AbrB, regulates biofilm architecture by B. subtilis when colony morphology and pellicle formation are assessed. Data indicating that abh expression is dependent on the environmental signals that stimulate the activity of the extracytoplasmic function sigma-factor sigma(X) are shown. We demonstrate that expression of slrR, the proposed activator of yqxM transcription, is positively controlled by Abh. Furthermore, Abh is shown to activate transcription from the promoter of the eps operon through its control of SlrR. These findings add to the increasingly complex transcriptional network that controls biofilm formation by B. subtilis.
Collapse
|
76
|
Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-47. [PMID: 19487730 DOI: 10.1128/mmbr.00041-08] [Citation(s) in RCA: 607] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.
Collapse
|
77
|
Wang X, Kim Y, Wood TK. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME JOURNAL 2009; 3:1164-79. [PMID: 19458652 DOI: 10.1038/ismej.2009.59] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Earlier, we discovered that the global regulator, Hha, is related to cell death in biofilms and regulates cryptic prophage genes. Here, we show that Hha induces excision of prophages, CP4-57 and DLP12, by inducing excision genes and by reducing SsrA synthesis. SsrA is a tmRNA that is important for rescuing stalled ribosomes, contains an attachment site for CP4-57 and is shown here to be required for CP4-57 excision. These prophages impact biofilm development, as the deletion of 35 genes individually of prophages, CP4-57 and DLP12, increase biofilm formation up to 17-fold, and five genes decrease biofilm formation up to sixfold. In addition, CP4-57 excises during early biofilm development but not in planktonic cells, whereas DLP12 excision was detected at all the developmental stages for both biofilm and planktonic cells. CP4-57 excision leads to a chromosome region devoid of prophage and to the formation of a phage circle (which is lost). These results were corroborated by a whole-transcriptome analysis that showed that complete loss of CP4-57 activated the expression of the flg, flh and fli motility operons and repressed expression of key enzymes in the tricarboxylic acid cycle and of enzymes for lactate utilization. Prophage excision also results in the expression of cell lysis genes that reduce cell viability (for example, alpA, intA and intD). Hence, defective prophages are involved in host physiology through Hha and in biofilm formation by generating a diversified population with specialized functions in terms of motility and nutrient metabolism.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
78
|
Qiu J, Guo Z, Liu H, Zhou D, Han Y, Yang R. DNA microarray-based global transcriptional profiling of Yersinia pestis in multicellularity. J Microbiol 2008; 46:557-63. [DOI: 10.1007/s12275-008-0140-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 08/14/2008] [Indexed: 12/25/2022]
|
79
|
Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 2008; 76:4944-51. [PMID: 18765726 DOI: 10.1128/iai.00692-08] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The predominant organizational state of bacteria in nature is biofilms. Biofilms have been shown to increase bacterial resistance to a variety of stresses. We demonstrate for the first time that the anaerobic gram-positive pathogen Clostridium perfringens forms biofilms. At the same concentration of glucose in the medium, optimal biofilm formation depended on a functional CcpA protein. While the ratio of biofilm to planktonic growth was higher in the wild type than in a ccpA mutant strain in middle to late stages of biofilm development, the bacteria shifted from a predominantly biofilm state to planktonic growth as the concentration of glucose in the medium increased in a CcpA-independent manner. As is the case in some gram-negative bacteria, type IV pilus (TFP)-dependent gliding motility was necessary for efficient biofilm formation, as demonstrated by laser confocal and electron microscopy. However, TFP were not associated with the bacteria in the biofilm but with the extracellular matrix. Biofilms afforded C. perfringens protection from environmental stress, including exposure to atmospheric oxygen for 6 h and 24 h and to 10 mM H(2)O(2) for 5 min. Biofilm cells also showed 5- to 15-fold-increased survival over planktonic cells after exposure to 20 microg/ml (27 times the MIC) of penicillin G for 6 h and 24 h, respectively. These results indicate C. perfringens biofilms play an important role in the persistence of the bacteria in response to environmental stress and that they may be a factor in diseases, such as antibiotic-associated diarrhea and gas gangrene, that are caused by C. perfringens.
Collapse
|
80
|
Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J Bacteriol 2008; 190:6646-59. [PMID: 18708497 DOI: 10.1128/jb.00466-08] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vibrio cholerae is a facultative human pathogen. The ability of V. cholerae to form biofilms is crucial for its survival in aquatic habitats between epidemics and is advantageous for host-to-host transmission during epidemics. Formation of mature biofilms requires the production of extracellular matrix components, including Vibrio polysaccharide (VPS) and matrix proteins. Biofilm formation is positively controlled by the transcriptional regulators VpsR and VpsT and is negatively regulated by the quorum-sensing transcriptional regulator HapR, as well as the cyclic AMP (cAMP)-cAMP receptor protein (CRP) regulatory complex. Transcriptome analysis of cyaA (encoding adenylate cyclase) and crp (encoding cAMP receptor protein) deletion mutants revealed that cAMP-CRP negatively regulates transcription of both VPS biosynthesis genes and genes encoding biofilm matrix proteins. Further mutational and expression analysis revealed that cAMP-CRP negatively regulates transcription of vps genes indirectly through its action on vpsR transcription. However, negative regulation of the genes encoding biofilm matrix proteins by cAMP-CRP can also occur independent of VpsR. Transcriptome analysis also revealed that cAMP-CRP regulates the expression of a set of genes encoding diguanylate cyclases (DGCs) and phosphodiesterases. Mutational and phenotypic analysis of the differentially regulated DGCs revealed that a DGC, CdgA, is responsible for the increase in biofilm formation in the Deltacrp mutant, showing the connection between of cyclic di-GMP and cAMP signaling in V. cholerae.
Collapse
|
81
|
Viale P, Stefani S. Vascular catheter-associated infections: a microbiological and therapeutic update. J Chemother 2008; 18:235-49. [PMID: 17129833 DOI: 10.1179/joc.2006.18.3.235] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The increasing incidence of central venous catheter (CVC)-related infections can be ascribed to the wider indications to central venous catheterization, to the higher attention to this issue paid by clinicians and microbiologists, and to the patient population referred to hospitals, increasingly characterized by different degrees of immunosuppression and often in critical clinical conditions. This phenomenon implies a higher health care burden and higher related costs, as well as a significant attributable mortality, that varies however according to the pathogen involved. The microorganisms most frequently involved in CVC-related infections are coagulase-negative staphylococci, Staphylococcus aureus, aerobic Gram-negative bacilli, and Candida albicans. In the management of suspected or proven central venous catheter-related infections, several issues need to be addressed: the need to remove the device or the possibility of salvage, the immediate start of calculated antibiotic therapy or the possibility of waiting for results of microbiological diagnostics and proceeding to etiologically-guided therapy. The preferred conservative method is the "Antibiotic-Lock technique" (ALT), based on the endoluminal application of antibacterials at extremely high concentrations in situ for a period of time long enough to ensure bactericidal activity. On the other hand, immediate catheter removal and initiation of appropriate calculated therapy immediately after an adequate diagnostic work-up are strongly recommended in a clinical setting of severe sepsis or septic shock.
Collapse
Affiliation(s)
- P Viale
- Clinic of Infectious Diseases, Department of Medical and Morphological Research, Medical School, University of Udine, Italy
| | | |
Collapse
|
82
|
Yaryura PM, León M, Correa OS, Kerber NL, Pucheu NL, García AF. Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 2008; 56:625-32. [PMID: 18335278 DOI: 10.1007/s00284-008-9137-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
This article correlates colonization with parameters, such as chemotaxis, biofilm formation, and bacterial growth, that are believed to be connected. We show here, by using two varieties of soybean plants that seeds axenically produced exudates, induced a chemotactic response in Bacillus amyloliquefaciens, whereas root exudates did not, even when the exudates, also collected under axenic conditions, were concentrated up to 200-fold. Root exudates did not support bacterial cell division, whereas seed exudates contain compounds that support active cell division and high cell biomass at stationary phase. Seed exudates of the two soybean varieties also induced biofilm formation. B. amyloliquefaciens colonized both seeds and roots, and plant variety significantly affected bacterial root colonization, whereas it did not affect seed colonization. Colonization of roots in B. amyloliquefaciens occurred despite the lack of chemotaxis and growth stimulation by root exudates. The data presented in this article suggest that soybean seed colonization, but not root colonization, by B. amyloliquefaciens is influenced by chemotaxis, growth, and biofilm formation and that this may be caused by qualitative changes of the composition of root exudates.
Collapse
Affiliation(s)
- P M Yaryura
- Instituto de Investigaciones Bioquímicas y Fisiológicas CONICET-FAUBA, C1417DSE, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Biofilm formation in Staphylococcus aureus under in vitro growth conditions is generally promoted by high concentrations of sugar and/or salts. The addition of glucose to routinely used complex growth media triggered biofilm formation in S. aureus strain SA113. Deletion of ccpA, coding for the catabolite control protein A (CcpA), which regulates gene expression in response to the carbon source, abolished the capacity of SA113 to form a biofilm under static and flow conditions, while still allowing primary attachment to polystyrene surfaces. This suggested that CcpA mainly affects biofilm accumulation and intercellular aggregation. trans-Complementation of the mutant with the wild-type ccpA allele fully restored the biofilm formation. The biofilm produced by SA113 was susceptible to sodium metaperiodate, DNase I, and proteinase K treatment, indicating the presence of polysaccharide intercellular adhesin (PIA), protein factors, and extracellular DNA (eDNA). The investigation of several factors which were reported to influence biofilm formation in S. aureus (arlRS, mgrA, rbf, sarA, atl, ica, citZ, citB, and cidABC) showed that CcpA up-regulated the transcription of cidA, which was recently shown to contribute to eDNA production. Moreover, we showed that CcpA increased icaA expression and PIA production, presumably over the down-regulation of the tricarboxylic acid cycle genes citB and citZ.
Collapse
|
84
|
Influence of the sigmaB stress factor and yxaB, the gene for a putative exopolysaccharide synthase under sigmaB Control, on biofilm formation. J Bacteriol 2008; 190:3546-56. [PMID: 18326573 DOI: 10.1128/jb.01665-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms structured communities of biofilms encased in an exopolysaccharide matrix on solid surfaces and at the air-liquid interface. It is postulated that nonoptimal growth conditions induce this multicellular behavior. We showed that under laboratory conditions a strain deleted for sigB was unable to form a floating pellicle on the surface of a liquid medium. However, overexpression of yxaB, encoding a putative exopolysaccharide synthase, from a p(Spac) promoter in a sigB-deleted strain resulted in partial recovery of the wild-type phenotype, indicating the participation of the YxaB protein in this multicellular process. We present data concerning the regulation of transcription of genes yxaB and yxaA, encoding a putative glycerate kinase. Both genes are cotranscribed as a single transcription unit from a sigma(A)-dependent promoter during vegetative growth of a liquid bacterial culture. The promoter driving transcription of the yxaAB operon is regulated by AbrB. In addition, the second gene in the operon, yxaB, possesses its own promoter, which is recognized by RNA polymerase containing the sigma(B) subunit. This transcription start site is used under general stress conditions, resulting in increased expression.
Collapse
|
85
|
Fujishige NA, Lum MR, De Hoff PL, Whitelegge JP, Faull KF, Hirsch AM. Rhizobiumcommonnodgenes are required for biofilm formation. Mol Microbiol 2008; 67:504-15. [DOI: 10.1111/j.1365-2958.2007.06064.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
86
|
Abstract
Our understanding of the molecular mechanisms involved in biofilm formation has increased tremendously in recent years. From research on diverse bacteria, a general model of bacterial biofilm development has emerged. This model can be adjusted to fit either of two common modes of unicellular existence: nonmotile and motile. Here we provide a detailed review of what is currently known about biofilm formation by the motile bacterium Bacillus subtilis. While the ability of bacteria to form a biofilm appears to be almost universal and overarching themes apply, the combination of molecular events necessary varies widely, and this is reflected in the other chapters of this book.
Collapse
|
87
|
Auvray F, Chassaing D, Duprat C, Carpentier B. The Listeria monocytogenes homolog of the Escherichia coli era gene is involved in adhesion to inert surfaces. Appl Environ Microbiol 2007; 73:7789-92. [PMID: 17921262 PMCID: PMC2168078 DOI: 10.1128/aem.01157-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022] Open
Abstract
Two transposon-insertional mutants of Listeria monocytogenes showing smaller viable surface-attached cell populations after disinfection with N,N-didecyl-N,N-dimethylammonium chloride were identified. In both mutants, transposon Tn917-lac was found to be inserted into the same gene, lmo1462, which is homologous to the essential Escherichia coli era gene. Both L. monocytogenes lmo1462-disrupted mutants displayed lower growth rates, as was also shown for several E. coli era mutants, and the lmo1462 gene was able to complement the growth defect of an E. coli era mutant. We showed that the disruption of lmo1462 decreased the ability of L. monocytogenes cells to adhere to stainless steel. Our results suggest that this era-like gene is involved in adhesion and contributes to the presence of L. monocytogenes on surfaces.
Collapse
Affiliation(s)
- Frédéric Auvray
- AFSSA-LERQAP, 23 Avenue du Général de Gaulle, 94706 Maisons-Alfort, France.
| | | | | | | |
Collapse
|
88
|
Jordan S, Rietkötter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD, Mascher T. LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. MICROBIOLOGY-SGM 2007; 153:2530-2540. [PMID: 17660417 DOI: 10.1099/mic.0.2007/006817-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Maintaining envelope integrity is crucial for the survival of any bacterial cell, especially those living in a complex and ever-changing habitat such as the soil ecosystem. The LiaRS two-component system is part of the regulatory network orchestrating the cell-envelope stress response in Bacillus subtilis. It responds to perturbations of the cell envelope, especially the presence of antibiotics that interfere with the lipid II cycle, such as bacitracin or vancomycin. LiaRS-dependent regulation is strictly repressed by the membrane protein LiaF in the absence of inducing conditions. Here, it is shown that the LiaR-dependent liaI promoter is induced at the onset of stationary phase without addition of exogenous stresses. Its activity is embedded in the complex regulatory cascade governing adaptation at the onset of stationary phase. The liaI promoter is directly repressed by the transition state regulator AbrB and responds indirectly to the activity of Spo0A, the master regulator of sporulation. The activity of the liaI promoter is therefore tightly regulated by at least five regulators to ensure an appropriate level of liaIH expression.
Collapse
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| | - Eva Rietkötter
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| | - Mark A Strauch
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Falk Kalamorz
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| | - Bronwyn G Butcher
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Thorsten Mascher
- Department of General Microbiology, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
89
|
Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J Bacteriol 2007; 190:48-60. [PMID: 17981974 DOI: 10.1128/jb.01407-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium responsible for the production of severe histotoxic and gastrointestinal diseases in humans and animals. In silico analysis of the three available genome-sequenced C. perfringens strains (13, SM101, and ATCC13124) revealed that genes that encode flagellar proteins and genes involved in chemotaxis are absent. However, those strains exhibit type IV pilus (TFP)-dependent gliding motility. Since carbon catabolite regulation has been implicated in the control of different bacterial behaviors, we investigated the effects of glucose and other readily metabolized carbohydrates on C. perfringens gliding motility. Our results demonstrate that carbon catabolite regulation constitutes an important physiological regulatory mechanism that reduces the proficiencies of the gliding motilities of a large number of unrelated human- and animal-derived pathogenic C. perfringens strains. Glucose produces a strong dose-dependent inhibition of gliding development without affecting vegetative growth. Maximum gliding inhibition was observed at a glucose concentration (1%) previously reported to also inhibit other important behaviors in C. perfringens, such as spore development. The inhibition of gliding development in the presence of glucose was due, at least in part, to the repression of the genes pilT and pilD, whose products are essential for TFP-dependent gliding proficiency. The inhibitory effects of glucose on pilT and pilD expression were under the control of the key regulatory protein CcpA (catabolite control protein A). The deficiency in CcpA activity of a ccpA knockout C. perfringens mutant strain restored the expressions of pilT and pilD and gliding proficiency in the presence of 1% glucose. The carbon catabolite repression of the gliding motility of the ccpA mutant strain was restored after the introduction of a complementing plasmid harboring a wild-type copy of ccpA. These results point to a central role for CcpA in orchestrating the negative effect of carbon catabolite regulation on C. perfringens gliding motility. Furthermore, we discovered a novel positive role for CcpA in pilT and pilD expression and gliding proficiency in the absence of catabolite regulation. Carbon catabolite repression of gliding motility and the dual role of CcpA, either as repressor or as activator of gliding, are analyzed in the context of the different social behaviors and diseases produced by C. perfringens.
Collapse
|
90
|
A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. J Bacteriol 2007; 190:311-20. [PMID: 17981973 DOI: 10.1128/jb.01410-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose is a universal energy source and a potent inducer of surface colonization for many microbial species. Highly efficient sugar assimilation pathways ensure successful competition for this preferred carbon source. One such pathway is the phosphoenolpyruvate phosphotransferase system (PTS), a multicomponent sugar transport system that phosphorylates the sugar as it enters the cell. Components required for transport of glucose through the PTS include enzyme I, histidine protein, enzyme IIA(Glc), and enzyme IIBC(Glc). In Escherichia coli, components of the PTS fulfill many regulatory roles, including regulation of nutrient scavenging and catabolism, chemotaxis, glycogen utilization, catabolite repression, and inducer exclusion. We previously observed that genes encoding the components of the Vibrio cholerae PTS were coregulated with the vps genes, which are required for synthesis of the biofilm matrix exopolysaccharide. In this work, we identify the PTS components required for transport of glucose and investigate the role of each of these components in regulation of biofilm formation. Our results establish a novel role for the phosphorylated form of enzyme I in specific regulation of biofilm-associated growth. As the PTS is highly conserved among bacteria, the enzyme I regulatory pathway may be relevant to a number of biofilm-based infections.
Collapse
|
91
|
Jain S, Chen J. Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. J Food Prot 2007; 70:2473-9. [PMID: 18044423 DOI: 10.4315/0362-028x-70.11.2473] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was undertaken to quantify thin aggregative fimbriae and cellulose produced by Salmonella and to evaluate their roles in attachment and biofilm formation on polystyrene and glass surfaces. Thin aggregative fimbriae and cellulose produced by four wild-type and two pairs of Salmonella, representing four different colony morphotypes (rdar: red, dry, and rough; pdar: pink, dry, and rough; bdar: brown, dry, and rough; and saw: smooth and white), were quantified. The ability of the Salmonella cells to attach and form biofilms on the selected surfaces was evaluated in Luria-Bertani (LB) broth with or without salt (0.5%) or glucose (2%) at 28 degrees C during a 7-day period. The cells expressing the rdar or pdar colony morphotypes produced significantly greater amounts of thin aggregative fimbriae and cellulose on LB no salt agar, respectively. The cells expressing the rdar colony morphotype attached in higher numbers and formed more biofilm than did the cells expressing the pdar colony morphotype. The members of the pairs expressing the bdar colony morphotype attached more efficiently and formed more biofilm on the tested surfaces than did their counterparts expressing the saw colony morphotype. These results indicated that thin aggregative fimbriae impart attachment ability to Salmonella and, upon coexpression with cellulose, enhance biofilm formation on certain abiotic surfaces. The knowledge acquired in the study may help develop better cleaning strategies for food processing equipment.
Collapse
Affiliation(s)
- Sudeep Jain
- Department of Food Science and Technology, The University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA
| | | |
Collapse
|
92
|
Aguilar C, Vlamakis H, Losick R, Kolter R. Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 2007; 10:638-43. [PMID: 17977783 DOI: 10.1016/j.mib.2007.09.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Initial attempts to use colony morphogenesis as a tool to investigate bacterial multicellularity were limited by the fact that laboratory strains often have lost many of their developmental properties. Recent advances in elucidating the molecular mechanisms underlying colony morphogenesis have been made possible through the use of undomesticated strains. In particular, Bacillus subtilis has proven to be a remarkable model system to study colony morphogenesis because of its well-characterized developmental features. Genetic screens that analyze mutants defective in colony morphology have led to the discovery of an intricate regulatory network that controls the production of an extracellular matrix. This matrix is essential for the development of complex colony architecture characterized by aerial projections that serve as preferential sites for sporulation. While much progress has been made, the challenge for future studies will be to determine the underlying mechanisms that regulate development such that differentiation occurs in a spatially and temporally organized manner.
Collapse
Affiliation(s)
- Claudio Aguilar
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
93
|
Ojha A, Hatfull GF. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 2007; 66:468-83. [PMID: 17854402 PMCID: PMC2170428 DOI: 10.1111/j.1365-2958.2007.05935.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.
Collapse
|
94
|
Sutrina SL, McGeary T, Bourne CA. The phosphoenolpyruvate:sugar phosphotransferase system and biofilms in gram-positive bacteria. J Mol Microbiol Biotechnol 2007; 12:269-72. [PMID: 17587875 DOI: 10.1159/000099648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This review will examine the connection between the bacterial phosphoenolpyruvate:sugar phosphotransferase system and biofilms. We will consider both the primary role of the phosphoenolpyruvate:sugar phosphotransferase system in sugar uptake by biofilm cells and its possible role in regulatory processes in cells growing as biofilms, and in establishment and maintenance of these biofilms.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, Bridgetown, Barbados.
| | | | | |
Collapse
|
95
|
Rudrappa T, Bais HP. Arabidopsis thaliana Root Surface Chemistry Regulates in Planta Biofilm Formation of Bacillus subtilis. PLANT SIGNALING & BEHAVIOR 2007; 2:349-50. [PMID: 19704655 PMCID: PMC2634208 DOI: 10.4161/psb.2.5.4117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 05/15/2023]
Abstract
Among the various rhizospheric interactions, plant root-microbe interactions are very important both economically and ecologically. The interaction of plant roots with plant growth promoting rhizobacteria (PGPR) have been studied in case of symbiotic organisms. However, the knowledge on interaction with other PGPRs such as biocontrol Bacillus sps. is vastly unexplored. Especially the complex root surface chemistry and its effect on modulating the bacterial growth and association with the root system has not been investigated. Recently, by adopting a systematic stepwise experimental approach we unraveled the importance of root plane chemistry on the colonization and biofilm formation by B. subtilis, an important biocontrol-PGPR. This study may further increase our understanding in the field of rhizosphere biology and area of root secretions and their possible role in plant microbe interactions.
Collapse
Affiliation(s)
- Thimmaraju Rudrappa
- Department of Plant and Soil Sciences; Delaware Biotechnology Institute; Newark, Delaware USA
| | | |
Collapse
|
96
|
Curtis PD, Atwood J, Orlando R, Shimkets LJ. Proteins associated with the Myxococcus xanthus extracellular matrix. J Bacteriol 2007; 189:7634-42. [PMID: 17766415 PMCID: PMC2168726 DOI: 10.1128/jb.01007-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fruiting body formation of Myxococcus xanthus, like biofilm formation of many other organisms, involves the production of an extracellular matrix (ECM). While the polysaccharide component has been studied, the protein component has been largely unexplored. Proteins associated with the ECM were solubilized from purified ECM by boiling with sodium dodecyl sulfate and were identified by liquid chromatography-tandem mass spectrometry of tryptic fragments. The ECM is enriched in proteins of novel function; putative functions were assigned for only 5 of the 21 proteins. Thirteen putative ECM proteins had lipoprotein secretion signals. The genes for many ECM proteins were disrupted in the wild-type (WT), fibA, and pilA backgrounds. Disruption of the MXAN4860 gene had no effect in the WT or fibA background but in the pilA background resulted in a 24-h delay in aggregation and sporulation compared to its parent. The results of this study show that the M. xanthus ECM proteome is diverse and novel.
Collapse
Affiliation(s)
- Patrick D Curtis
- Department of Microbiology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
97
|
Rudrappa T, Quinn WJ, Stanley-Wall NR, Bais HP. A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. PLANTA 2007; 226:283-97. [PMID: 17554552 DOI: 10.1007/s00425-007-0480-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 01/17/2007] [Indexed: 05/15/2023]
Abstract
Bacillus subtilis, a plant growth promoting rhizobacteria (PGPR), induces growth response and protection against pathogenic organisms through colonization and biofilm formation on the Arabidopsis thaliana root surface. In the current investigation, we utilized various Arabidopsis defense pathway mutants in a series of studies and showed that the plants recognize B. subtilis by a chemical-dependent cascade, which is independent of the salicylic acid (SA), jasmonic acid (JA), or ethylene pathways. These experiments revealed the importance of root surface chemistry in colonization and biofilm formation by B. subtilis. It was found that B. subtilis FB17 could not form biofilms on the roots of NahG, a transgenic Arabidopsis line for salicylate hydroxylase that produces catechol as the degradation product of SA. These findings suggest that catechol may play a direct role in inhibiting B. subtilis FB17 biofilm formation on the NahG root surface, possibly through induction of reactive oxygen species (ROS) in the roots. Using both in vitro microtitre plate and in planta assays we confirmed that catechol inhibited biofilm formation, but not the planktonic growth, of B. subtilis. Inhibition of biofilm formation was shown to be the result of a physiological response by B. subtilis to the presence of catechol, which resulted in the down-regulation of transcription of the yqxM-sipW-tasA and epsA-O operons, both of which are required for biofilm formation by B. subtilis. These data indicate that the suppression of biofilm formation on NahG plants was strongly influenced by the root-derived catechol production through ROS-mediated down-regulation of B. subtilis biofilm genes.
Collapse
Affiliation(s)
- Thimmaraju Rudrappa
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
98
|
Rochex A, Lebeault JM. Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. WATER RESEARCH 2007; 41:2885-92. [PMID: 17532362 DOI: 10.1016/j.watres.2007.03.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/14/2007] [Accepted: 03/30/2007] [Indexed: 05/15/2023]
Abstract
The aim of this study was to determine the effect of varying nutrient conditions on biofilm formation of a Pseudomonas putida strain isolated from a paper machine under controlled conditions. Biofilm accumulation, was investigated using a laminar flow cell reactor in a defined mineral medium. Our results indicate that increasing nutrient concentration (from 0.1 to 0.5 gl(-1) glucose, C/N=40, C/P=100) or phosphate concentration (from C/P=200 to C/P=100) increased the rate and extent of biofilm accumulation, however, higher nutrient (1 gl(-1) glucose, C/N=40, C/P=100) or phosphate (C/P=50) concentration reduced biofilm accumulation rate because of a higher detachment. The rate and extent of biofilm accumulation increased with nitrogen concentration (from C/N=90 to C/N=20). Detachment is a key parameter that influences biofilm accumulation since the early stage (2h) of colonisation and strongly depends on nutrient conditions. In practice, controlling nutrient levels may be interesting to reduce biofilm formation in the paper industry.
Collapse
Affiliation(s)
- A Rochex
- Laboratoire Génie des Procédés Industriels, Université de Technologie de Compiègne, UMR CNRS 6067, BP 20529, F-60205 Compiègne, France.
| | | |
Collapse
|
99
|
Verhamme DT, Kiley TB, Stanley-Wall NR. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol 2007; 65:554-68. [PMID: 17590234 DOI: 10.1111/j.1365-2958.2007.05810.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Unicellular organisms use a variety of mechanisms to co-ordinate activity within a community and accomplish complex multicellular processes. Because some of the processes that are exhibited by one species can be physiologically incompatible, it raises the question of how entry into these different pathways is regulated. In the Gram-positive bacterium Bacillus subtilis, genetic competence, swarming motility, biofilm formation, complex colony architecture and protease production are all regulated by the response regulator DegU. DegU appears to integrate environmental signals and co-ordinate multicellular behaviours that are subsequently manifested at different levels of DegU phosphorylation. Data are presented which indicate that: (i) swarming motility is activated by very low levels of DegU approximately P that can be generated independently from its cognate sensor kinase DegS; (ii) complex colony architecture is activated by low levels of DegU approximately P that are produced in a DegS-dependent manner to activate transcription of yvcA, a novel gene required for complex colony architecture; and (iii) high levels of DegU approximately P inhibit complex colony architecture and swarming motility but are required prior to the activation of exoprotease production. A model is proposed to explain why such a system may have evolved within B. subtilis to control these multicellular processes through a single regulator.
Collapse
Affiliation(s)
- Daniël T Verhamme
- Division of Environmental and Applied Biology, College of Life Sciences, MSI/WTB/JBC Complex, University of Dundee, Dundee DD1 4EH, UK
| | | | | |
Collapse
|
100
|
An D, Parsek MR. The promise and peril of transcriptional profiling in biofilm communities. Curr Opin Microbiol 2007; 10:292-6. [PMID: 17573234 DOI: 10.1016/j.mib.2007.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022]
Abstract
DNA microarray technology has been successfully used to identify genes that contribute to biofilm formation for a handful of bacterial species. However, as the number of profiling studies increases, it is becoming increasingly apparent that these data might miss important aspects of biofilm development. One reason for this is the inability of current experimental designs to resolve spatial and functional heterogeneity in the biofilm community. Thus, an emerging challenge is to use transcriptional profiling in combination with techniques that can identify and separate relevant subpopulations within a biofilm.
Collapse
Affiliation(s)
- Dingding An
- Department of Microbiology, University of Washington, School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-7242, USA
| | | |
Collapse
|