51
|
Santos ACDM, Santos FF, Silva RM, Gomes TAT. Diversity of Hybrid- and Hetero-Pathogenic Escherichia coli and Their Potential Implication in More Severe Diseases. Front Cell Infect Microbiol 2020; 10:339. [PMID: 32766163 PMCID: PMC7381148 DOI: 10.3389/fcimb.2020.00339] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Although extraintestinal pathogenic Escherichia coli (ExPEC) are designated by their isolation site and grouped based on the type of host and the disease they cause, most diarrheagenic E. coli (DEC) are subdivided into several pathotypes based on the presence of specific virulence traits directly related to disease development. This scenario of a well-categorized E. coli collapsed after the German outbreak of 2011, caused by one strain bearing the virulence factors of two different DEC pathotypes (enteroaggregative E. coli and Shiga toxin-producing E. coli). Since the outbreak, many studies have shown that this phenomenon is more frequent than previously realized. Therefore, the terms hybrid- and hetero-pathogenic E. coli have been coined to describe new combinations of virulence factors among the classic E. coli pathotypes. In this review, we provide an overview of these classifications and highlight the E. coli genomic plasticity that results in some mixed E. coli pathotypes displaying novel pathogenic strategies, which lead to a new symptomatology related to E. coli diseases. In addition, as the capacity for genome interrogation has grown in the last few years, it is clear that genes encoding some virulence factors, such as Shiga toxin, are found among different E. coli pathotypes to which they have not traditionally been associated, perhaps foreshowing their emergence in new and severe outbreaks caused by such hybrid strains. Therefore, further studies regarding hetero-pathogenic and hybrid-pathogenic E. coli isolates are necessary to better understand and control the spread of these pathogens.
Collapse
Affiliation(s)
- Ana Carolina de Mello Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Silva
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia Aparecida Tardelli Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
52
|
Díaz-Jiménez D, García-Meniño I, Fernández J, García V, Mora A. Chicken and turkey meat: Consumer exposure to multidrug-resistant Enterobacteriaceae including mcr-carriers, uropathogenic E. coli and high-risk lineages such as ST131. Int J Food Microbiol 2020; 331:108750. [PMID: 32559710 DOI: 10.1016/j.ijfoodmicro.2020.108750] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/10/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
For the first time, this study evaluates consumer exposure via poultry meat to Enterobacteriaceae with capacity to develop severe extraintestinal infections by either bacterial virulence and/or antibiotic resistance traits. The characterization of 256 isolates and the assessment of five parameters, showed that 96 of 100 poultry meat samples from supermarkets of northwest Spain posed ≥ one potential risk: i) 96% carried Enterobacteriaceae resistant to antimicrobials of categories A (64% to monobactams) or B (95% to cephalosporins 3rd and 4rd- generation, quinolones and/or polymixins) of the new categorization of EMA. ii) More than one extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae species were recovered from 28% of poultry meat. iii) High-risk lineages of E. coli, including multidrug-resistant ST131-H22, were present in 62% of samples. iv) E. coli recovered from 25% of samples conformed the ExPEC status. v) E. coli from 17% of samples satisfied the UPEC status. Of note, the recovery from different samples of two E. coli CC10-A (CH11-54) carrying mcr-1.1-bearing IncX4 plasmids, and four E. coli CC10-A (eae-beta1) of the hybrid pathotype aEPEC/ExPEC. (ESBL)-producing K. pneumoniae were isolated from 27% of samples. In summary, poultry meat microbiota is a source of genetically diverse Enterobacteriaceae, resistant to relevant antimicrobials and potentially pathogenic for consumers.
Collapse
Affiliation(s)
- Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela (USC), Lugo, Spain.; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela (USC), Lugo, Spain.; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Javier Fernández
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA). Instituto de Investigación del Principado de Asturias (ISPA), Oviedo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela (USC), Lugo, Spain.; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain.; Department of Veterinary and Animal Sciences, Section of Veterinary Clinical Microbiology, University of Copenhagen, København, Denmark
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela (USC), Lugo, Spain.; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain..
| |
Collapse
|
53
|
Furlan JPR, da Silva Ferreira ME, Stehling EG. Genetic Diversity of Multidrug-Resistant CMY-Producing Escherichia coli from Feces and Soil in a Small-Scale Pig Farm. Microb Drug Resist 2020; 26:1365-1371. [PMID: 32379997 DOI: 10.1089/mdr.2020.0090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diarrheagenic Escherichia coli cause diarrheal diseases, which are a public health concern and affect mainly developing countries. Multidrug-resistant (MDR) pathogens have been spreading in different sources, including animals and the environment. E. coli strains were obtained from a small-scale pig farm and 33 antimicrobials were tested. All strains were classified as MDR and harbored several antimicrobial resistance genes (ARGs) [blaCMY, blaOXA-1-like, blaSHV, tet(A), tet(B), aadA, aac(6')-Ib, aph(3')-Ia, sul1, sul2, sul3, floR, and cmlA] and plasmids. Besides, mutations in quinolone resistance-determining region of GyrA (Ser83Leu and Asp87Asn) and ParC (Glu84Asp) were detected. Among the MDR E. coli, nine strains (52%) presented diarrheagenic virulence genes, including genes related to Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), and enteroaggregative E. coli (EAEC). The pulsed-field gel electrophoresis results showed a high genetic diversity among the MDR E. coli strains. Multilocus sequence typing (MLST) analyses revealed different sequence types phylogenetically related to each other, including ST10 and ST56. Subtyping of MLST by fimH gene showed different fimH type. This study shows a high genetic diversity among MDR ARG-producing E. coli belonging to STEC, EIEC, and EAEC pathotypes obtained from a small-scale pig farm and contributes to the monitoring of antimicrobial-resistant pathogens worldwide, mainly in environmental samples, which are associated with One Health framework.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Márcia Eliana da Silva Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
54
|
Clonal Structure, Virulence Factor-encoding Genes and Antibiotic Resistance of Escherichia coli, Causing Urinary Tract Infections and Other Extraintestinal Infections in Humans in Spain and France during 2016. Antibiotics (Basel) 2020; 9:antibiotics9040161. [PMID: 32260467 PMCID: PMC7235800 DOI: 10.3390/antibiotics9040161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Escherichia coli is the main pathogen responsible for extraintestinal infections. A total of 196 clinical E. coli consecutively isolated during 2016 in Spain (100 from Lucus Augusti hospital in Lugo) and France (96 from Beaujon hospital in Clichy) were characterized. Phylogroups, clonotypes, sequence types (STs), O:H serotypes, virulence factor (VF)-encoding genes and antibiotic resistance were determined. Approximately 10% of the infections were caused by ST131 isolates in both hospitals and approximately 60% of these infections were caused by isolates belonging to only 10 STs (ST10, ST12, ST58, ST69, ST73, ST88, ST95, ST127, ST131, ST141). ST88 isolates were frequent, especially in Spain, while ST141 isolates significantly predominated in France. The 23 ST131 isolates displayed four clonotypes: CH40-30, CH40-41, CH40-22 and CH40-298. Only 13 (6.6%) isolates were carriers of extended-spectrum beta-lactamase (ESBL) enzymes. However, 37.2% of the isolates were multidrug-resistant (MDR). Approximately 40% of the MDR isolates belonged to only four of the dominant clones (B2-CH40-30-ST131, B2-CH40-41-ST131, C-CH4-39-ST88 and D-CH35-27-ST69). Among the remaining MDR isolates, two isolates belonged to B2-CH14-64-ST1193, i.e., the new global emergent MDR clone. Moreover, a hybrid extraintestinal pathogenic E.coli (ExPEC)/enteroaggregative isolate belonging to the A-CH11-54-ST10 clone was identified.
Collapse
|
55
|
Ozturk II, Yarar S, Gürgan M, Ceyhan D, Panagiotou N, Tasiopoulos AJ, Demirkesen S, Aral C. Novel binuclear antimony(III) halide complexes of 5-methoxy-2-mercaptobenzimidazole: synthesis, structural characterization, and biological studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1735003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ibrahim Ismet Ozturk
- Section of Inorganic Chemistry, Department of Chemistry, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Sinem Yarar
- Section of Inorganic Chemistry, Department of Chemistry, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Muazzez Gürgan
- Department of Biology, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Deniz Ceyhan
- Section of Biochemistry, Department of Chemistry, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | | | | | - Seyma Demirkesen
- Department of Molecular Biology, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Cenk Aral
- Department of Molecular Biology, Tekirdag Namık Kemal University, Tekirdag, Turkey
| |
Collapse
|
56
|
The insect antimicrobial peptide cecropin A disrupts uropathogenic Escherichia coli biofilms. NPJ Biofilms Microbiomes 2020; 6:6. [PMID: 32051417 PMCID: PMC7016129 DOI: 10.1038/s41522-020-0116-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Current antibiotics cannot eradicate uropathogenic Escherichia coli (UPEC) biofilms, leading to recurrent urinary tract infections. Here, we show that the insect antimicrobial peptide cecropin A (CecA) can destroy planktonic and sessile biofilm-forming UPEC cells, either alone or when combined with the antibiotic nalidixic acid (NAL), synergistically clearing infection in vivo without off-target cytotoxicity. The multi-target mechanism of action involves outer membrane permeabilization followed by biofilm disruption triggered by the inhibition of efflux pump activity and interactions with extracellular and intracellular nucleic acids. These diverse targets ensure that resistance to the CecA + NAL combination emerges slowly. The antimicrobial mechanisms of CecA, thus, extend beyond pore-forming activity to include an unanticipated biofilm-eradication process, offering an alternative approach to combat antibiotic-resistant UPEC infections.
Collapse
|
57
|
Ji X, Liang B, Sun Y, Zhu L, Zhou B, Guo X, Liu J. An Extended-Spectrum Beta-Lactamase-Producing Hybrid Shiga-Toxigenic and Enterotoxigenic Escherichia coli Strain Isolated from a Piglet with Diarrheal Disease in Northeast China. Foodborne Pathog Dis 2020; 17:382-387. [PMID: 32043914 DOI: 10.1089/fpd.2019.2720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) can cause diarrhea in piglets. This is the first report and complete genome sequence of an extended-spectrum β-lactamase-producing hybrid STEC/ETEC strain isolated from a piglet with diarrhea on a swine farm in China. We investigated the virulence genes and phylogenetic diversity with publicly available E. coli genomes. Both E. coli strains S17-13 and S17-20 harbored multiple virulence genes, mainly including stx2e and eastA genes. Other important virulence genes (estIa, estIb, fedABCDEF, and hlyABCD) were located in the plasmid p1713-1 of S17-13, which could be transferred from E. coli S17-13 to S17-20 by conjugation. The presence of virulence genes associated with different pathogroups (STEC or ETEC) confirmed the hybrid status of E. coli strain S17-13. Phylogenetic analysis showed that STEC/ETEC S17-13, STEC S17-20, avian pathogenic E. coli (APEC) O78, and APEC ACN001 are located in the same evolutionary branch, indicating that they may originate from a common ancestor. It is crucial to understand the phylogeny of pathogenic bacteria to evaluate how they have evolved and to monitor the emergence of potential new pathogens. The emergence of novel hybrid E. coli strains presents a new public health risk. More attention must be paid to these hybrid pathogens during typing and epidemiological surveillance of E. coli infections, which challenges the traditional diagnostics of E. coli infections.
Collapse
Affiliation(s)
- Xue Ji
- Institute of Military Veterinary Science, The Academy of Military Medical Science of PLA, Changchun, China
| | - Bing Liang
- Institute of Military Veterinary Science, The Academy of Military Medical Science of PLA, Changchun, China
| | - Yang Sun
- Institute of Military Veterinary Science, The Academy of Military Medical Science of PLA, Changchun, China
| | - Lingwei Zhu
- Institute of Military Veterinary Science, The Academy of Military Medical Science of PLA, Changchun, China
| | - Bo Zhou
- Institute of Military Veterinary Science, The Academy of Military Medical Science of PLA, Changchun, China
| | - Xuejun Guo
- Institute of Military Veterinary Science, The Academy of Military Medical Science of PLA, Changchun, China
| | - Jun Liu
- Institute of Military Veterinary Science, The Academy of Military Medical Science of PLA, Changchun, China
| |
Collapse
|
58
|
Effect and Analysis of Bacterial Lysates for the Treatment of Recurrent Urinary Tract Infections in Adults. Pathogens 2020; 9:pathogens9020102. [PMID: 32041185 PMCID: PMC7168004 DOI: 10.3390/pathogens9020102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infection (UTI) is a relevant public health problem, economically and socially affecting the lives of patients. The increase of antimicrobial bacterial resistance significantly hinders the treatment of UTIs, raising the need to search for alternative therapies. Bacterial lysates (BL) obtained from Escherichia coli and other pathogens have been used to treat different infectious diseases with promising results. This work aims to evaluate the effect and composition of an autologous BL for the treatment and control of recurrent UTIs in adults. The results show remission in 70% of the patients within the first three months after the administration of BL, while the infection is maintained under control for 6-12 months. The analysis by liquid chromatography-mass spectrometry (LC-MS) of the BL fractions recognized by the sera of patients shows the presence of cytosolic proteins, fimbriae, OMPs, and LPS. Our study demonstrates that the autologous BL contributed to the treatment and control of recurrent UTIs in adults, and its composition shows that different surface components of E. coli are potential immunogens that could be used to create a polyvalent protective vaccine.
Collapse
|
59
|
Antibiofilm Activity of Kefir Probiotic Lactobacilli Against Uropathogenic Escherichia coli (UPEC). Avicenna J Med Biotechnol 2020; 12:221-229. [PMID: 33014313 PMCID: PMC7502162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Inhibition of biofilm formation is essential for the prevention and treatment of urinary tract infection. This study was aimed to identify the probiotic potential of Lactobacillus strains isolated from kefir and evaluate their antimicrobial and antibiofilm activities against Uropathogenic Escherichia coli (UPEC). METHODS Twelve Lactobacillus strains were evaluated. Antimicrobial and antibiofilm activities of Cell Free Supernatant (CFS) of the Lactobacillus strains against UPEC isolates were evaluated by agar well diffusion method and crystal violet assay, respectively. Probiotic potential of selected isolates was assessed by analyzing their tolerance to acidic pH and bile salts, auto-aggregation ability, co-aggregation with Escherichia coli (E. coli) and hemolytic activity. The isolates were identified by phenotypic and 16S rRNA gene sequencing. RESULTS The CFS of all lactobacilli strains was able to inhibit UPEC isolates even after neutralization. Four out of 12 isolates inhibited the biofilm formation by UPEC in the range 62-75%. The viability under acidic condition varied among the isolates ranging from 6-89.8%. All the isolates could tolerate the 0.3% bile and eight isolates showed the adaptation time of less than 1 hr. All the strains exhibited co-aggregation with E. coli. Auto-aggregation was highly correlated with co-aggregation of all lactobacilli strains with E. coli (r=0.889, p<0.001). The isolates with satisfactory probiotic potential and higher ability of biofilm inhibition and antibacterial activity belonged to the species Lactobacillus rhamnosus and Lactobacillus paracasei. CONCLUSION All four selected probiotic strains exhibited antimicrobial and antibiofilm activities, which suggest potential applications for controlling or preventing infections caused by UPEC.
Collapse
|
60
|
Critchley IA, Cotroneo N, Pucci MJ, Mendes R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS One 2019; 14:e0220265. [PMID: 31821338 PMCID: PMC6903708 DOI: 10.1371/journal.pone.0220265] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/25/2019] [Indexed: 12/02/2022] Open
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli have been historically managed with oral antibiotics including the cephalosporins, fluoroquinolones and trimethoprim-sulfamethoxazole. The use of these agents is being compromised by the increase in extended spectrum β-lactamase (ESBL)-producing organisms, mostly caused by the emergence and clonal expansion of E. coli multilocus sequence typing (ST) 131. In addition, ESBL isolates show co-resistance to many of oral agents. Management of UTIs caused by ESBL and fluoroquinolone-resistant organisms is becoming increasingly challenging to treat outside of the hospital setting with clinicians having to resort to intravenous agents. The aim of this study was to assess the prevalence of ESBL phenotypes and genotypes among UTI isolates of E. coli collected in the US during 2017 as well as the impact of co-resistance to oral agents such as the fluoroquinolones and trimethoprim-sulfamethoxazole. The national prevalence of ESBL phenotypes of E. coli was 15.7% and was geographically distributed across all nine Census regions. Levofloxacin and trimethoprim-sulfamethoxazole-resistance rates were ≥ 24% among all isolates and this co-resistance phenotype was considerably higher among isolates showing an ESBL phenotype (≥ 59.2%) and carrying blaCTX-M-15 (≥ 69.5%). The agents with the highest potency against UTI isolates of E. coli, including ESBL isolates showing cross-resistance across oral agents, were the intravenous carbapenems. The results of this study indicate that new oral options with the spectrum and potency similar to the intravenous carbapenems would address a significant unmet need for the treatment of UTIs in an era of emergence and clonal expansion of ESBL isolates resistant to several classes of antimicrobial agents, including oral options.
Collapse
Affiliation(s)
- Ian A. Critchley
- Spero Therapeutics, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Nicole Cotroneo
- Spero Therapeutics, Cambridge, Massachusetts, United States of America
| | - Michael J. Pucci
- Spero Therapeutics, Cambridge, Massachusetts, United States of America
| | - Rodrigo Mendes
- JMI Laboratories, North Liberty, Iowa, United States of America
| |
Collapse
|
61
|
Furlan JPR, Gallo IFL, de Campos ACLP, Passaglia J, Falcão JP, Navarro A, Nakazato G, Stehling EG. Molecular characterization of multidrug-resistant Shiga toxin-producing Escherichia coli harboring antimicrobial resistance genes obtained from a farmhouse. Pathog Glob Health 2019; 113:268-274. [PMID: 31757195 DOI: 10.1080/20477724.2019.1693712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) colonize the gastrointestinal tract of animals; however, STEC may also cause severe diarrheal diseases. Food-producing animals have been acting as reservoirs and disseminators of multidrug-resistant (MDR) bacteria and antimicrobial resistance genes (ARGs); however, there are few studies characterizing molecularly bacterial isolates from sheep. Therefore, this study aimed to characterize E. coli isolates obtained from feces of sheep in a Brazilian farmhouse. A total of 14 MDR E. coli isolates were obtained from 100 feces samples, six of which were classified as non-O157 STEC (stx1, stx2 and ehxA). MDR E. coli isolates presented different ARGs [blaCTX-M-Gp9, blaCMY, blaSHV, qnrS, oqxB, aac(6')-Ib, tet(A), tet(B), tet(C), sul1, sul2, and cmlA] and plasmids (IncI1, IncFrepB, IncFIB, IncFIA, IncHI1, IncK, and ColE-like). In addition, mutations in the quinolone-resistance determining region of GyrA (Ser83Leu; Asp87Asn) and ParC (Glu84Asp) were detected. PFGE showed a high genetic diversity (30.9 to 83.9%) and thirteen STs were detected (ST25, ST48, ST155, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST2522, ST3270, ST5036, and ST7100). Subtyping of the fimH gene showed seven fimH-type (25, 32, 38, 41, 54, 61, and 366). The results found in the present study showed high genetic diversity among MDR ARGs-producing E. coli obtained from a farmhouse. This study reports for the first time, the presence of MDR STEC and non-STEC belonging to ST25, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST3270, ST5036, and ST7100 in sheep, and contributes to the surveillance studies associated with One Health concept.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | | | - Jaqueline Passaglia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autônoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas - Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| |
Collapse
|
62
|
Nüesch-Inderbinen M, Käppeli N, Morach M, Eicher C, Corti S, Stephan R. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet Rec Open 2019; 6:e000369. [PMID: 31897302 PMCID: PMC6924703 DOI: 10.1136/vetreco-2019-000369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/04/2023] Open
Abstract
Background Escherichia coli is an important aetiological agent of bovine mastitis worldwide. Methods In this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method. Results The most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively. Conclusion Among the study's sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.
Collapse
Affiliation(s)
| | - Nadine Käppeli
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina Morach
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Corinne Eicher
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sabrina Corti
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
63
|
Awosile B, Reyes-Velez J, Cuesta-Astroz Y, Rodríguez-Lecompte JC, Saab ME, Heider LC, Keefe G, Sánchez J, McClure JT. Short communication: Whole-genome sequence analysis of 4 fecal bla CMY-2-producing Escherichia coli isolates from Holstein dairy calves. J Dairy Sci 2019; 103:877-883. [PMID: 31733866 DOI: 10.3168/jds.2019-16560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 4 fecal blaCMY-2-producing Escherichia coli isolated from Holstein dairy calves on the same farm using whole-genome sequencing. Genomic analysis revealed that 3 of the 4 isolates shared similar genetic features, including sequence type (ST), serotype, plasmid characteristics, insertion ST, and virulence genes. In addition to genes encoding for complex multidrug resistance efflux systems, all 4 isolates were carriers of genes conferring resistance to β-lactams (blaCMY-2, blaTEM-1B), tetracyclines (tetA, tetB, tetD), aminoglycosides [aadA1, aph(3")-lb, aph(6)-ld], sulfonamides (sul2), and trimethoprim (dfrA1). We also detected 4 incompatibility plasmid groups: Inc.F, Inc.N, Inc.I, and Inc.Q. A novel ST showing a new purA and mdh allelic combination was found. The 4 isolates were likely enterotoxigenic pathotypes of E. coli, based on serotype and presence of the plasmid Inc.FII(pCoo). This study provides information for comparative genomic analysis of AMR genes and mobile genetic elements. This analysis could give some explanation to the multidrug resistance characteristics of bacteria colonizing the intestinal tract of dairy calves in the first few weeks of life.
Collapse
Affiliation(s)
- Babafela Awosile
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3.
| | - Julian Reyes-Velez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3; Tropical Medicine Colombian Institute, CES University, Sabaneta, Antioquia, Colombia
| | - Yesid Cuesta-Astroz
- Tropical Medicine Colombian Institute, CES University, Sabaneta, Antioquia, Colombia
| | - Juan Carlos Rodríguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Matthew E Saab
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3; Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Luke C Heider
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Greg Keefe
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Javier Sánchez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - J Trenton McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| |
Collapse
|
64
|
Possible role of L-form switching in recurrent urinary tract infection. Nat Commun 2019; 10:4379. [PMID: 31558767 PMCID: PMC6763468 DOI: 10.1038/s41467-019-12359-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/28/2019] [Indexed: 11/15/2022] Open
Abstract
Recurrent urinary tract infection (rUTI) is a major medical problem, especially in the elderly and infirm, but the nature of the reservoir of organisms responsible for survival and recolonisation after antibiotic treatment in humans is unclear. Here, we demonstrate the presence of cell-wall deficient (L-form) bacteria in fresh urine from 29 out of 30 older patients with rUTI. In urine, E. coli strains from patient samples readily transition from the walled state to L-form during challenge with a cell wall targeting antibiotic. Following antibiotic withdrawal, they then efficiently transition back to the walled state. E. coli switches between walled and L-form states in a zebrafish larva infection model. The results suggest that L-form switching is a physiologically relevant phenomenon that may contribute to the recurrence of infection in older patients with rUTI, and potentially other infections.
Collapse
|
65
|
Khairy RM, Mohamed ES, Abdel Ghany HM, Abdelrahim SS. Phylogenic classification and virulence genes profiles of uropathogenic E. coli and diarrhegenic E. coli strains isolated from community acquired infections. PLoS One 2019; 14:e0222441. [PMID: 31513642 PMCID: PMC6742363 DOI: 10.1371/journal.pone.0222441] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of E.coli strains displaying patterns of virulence genes from different pathotypes shows that the current classification of E.coli pathotypes may be not enough, the study aimed to compare the phylogenetic groups and urovirulence genes of uropathogenic Escherichia coli (UPEC) and diarrheagenic E.coli (DEC) strains to extend the knowledge of E.coli classification into different pathotypes. A total of 173 UPEC and DEC strains were examined for phylogenetic typing and urovirulence genes by PCR amplifications. In contrast to most reports, phylogenetic group A was the most prevalent in both UPEC and DEC strains, followed by B2 group. Amplification assays revealed that 89.32% and 94.29% of UPEC and DEC strains, respectively, carried at least one of the urovirulence genes, 49.5% and 31.4% of UPEC and DEC strains, respectively, carried ≥ 2 of the urovirulence genes, fim H gene was the most prevalent (66.9% and 91.4%) in UPEC and DEC strains respectively. Twenty different patterns of virulence genes were identified in UPEC while 5 different patterns in DEC strains. Strains with combined virulence patterns of four or five genes were belonged to phylogenetic group B2. Our finding showed a closer relationship between the DEC and UPEC, so raised the suggestion that some DEC strains might be potential uropathogens. These findings also provide different insights into the phylogenetic classification of E. coli as pathogenic or commensals where group A can be an important pathogenic type as well as into the classification as intestinal or extra- intestinal virulence factors.
Collapse
Affiliation(s)
- Rasha M. Khairy
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ebtisam S. Mohamed
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hend M. Abdel Ghany
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Soha S. Abdelrahim
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
66
|
Haghighatpanah M, Mojtahedi A. Characterization of antibiotic resistance and virulence factors of Escherichia coli strains isolated from Iranian inpatients with urinary tract infections. Infect Drug Resist 2019; 12:2747-2754. [PMID: 31564925 PMCID: PMC6731957 DOI: 10.2147/idr.s219696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Urinary tract infections (UTIs) are one of the most frequent human infectious diseases causing considerable amount of morbidity and mortality. The present study aimed to investigate the occurrence of antibiotics resistance and virulence genes among Escherichia coli strains isolated from UTIs in the north of Iran. Methods This cross-sectional study was performed at 5 teaching hospitals in Rasht in the north of Iran. Totally, 129 E. coli isolates were identified by standard microbiologic tests. Antimicrobial susceptibility pattern was determined using disk diffusion method. The presence of virulence genes was detected by PCR method. Results The results of antibiotic susceptibility showed that the highest resistance rates were to ampicillin (78.3%) followed by nalidixic acid (74.4%) and trimethoprim/sulfamethoxazole (69.8%). On the other hand, the highest susceptibility was toward nitrofurantoin (96.1%) and imipenem (92.2%). Further analysis revealed that the rate of ESBL-producing and multiple-drug resistant isolates was 51.2% and 84.5%, respectively. Molecular analysis revealed that traaT (87.6%) gene was the most prevalent virulence factors followed by fyuA (86%) and kpsmt (76%) genes. Also, fimH gene was the most frequently detected adhesion-associated gene with 74.4%. Conclusion In summary, our results showed a remarkable rate of drug resistance and heterogeneity for virulence factors among E. coli strains isolated from UTIs in the north of Iran. The emergence of such strains can be a predictive marker for their persistence in the hospital and consequently a significant threat for hospitalized patients.
Collapse
Affiliation(s)
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
67
|
Sanches MS, Baptista AAS, de Souza M, Menck-Costa MF, Koga VL, Kobayashi RKT, Rocha SPD. Genotypic and phenotypic profiles of virulence factors and antimicrobial resistance of Proteus mirabilis isolated from chicken carcasses: potential zoonotic risk. Braz J Microbiol 2019; 50:685-694. [PMID: 31049879 PMCID: PMC6863274 DOI: 10.1007/s42770-019-00086-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 10/26/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen often associated with a variety of human infections acquired both in the community and in hospitals. In this context, the present work aimed to evaluate the genotypic and phenotypic characteristics of the virulence factors and antimicrobial resistance determinants of 32 P. mirabilis strains isolated from chicken carcasses in a poultry slaughterhouse in the north of the state of Paraná, Brazil, in order to assess a potential zoonotic risk. The isolates presented a variety of virulence genes that contribute to the development of infection in humans. The mrpA, pmfA, atfA (fimbriae), ireA (siderophores receptor), zapA, ptA (Proteases), and hpmA (hemolysin) genes were found in 32 (100%) isolates and ucaA (fimbriae) in 16 (50%). All isolates showed aggregative adherence in HEp-2 cells and formed biofilms. Of all strains, 27 (84.38%) showed cytotoxic effects in Vero cells. Antimicrobial susceptibility was tested using 20 antimicrobials, in which 25 (78.13%) strains were considered multidrug-resistant. The presence of blaESBL and blaampC genes conferring resistance to β-lactams and qnr to quinolones were also detected in the isolates after presumption in the phenotypic test, in which 7 (21.88%) isolates contained the CTX-M-2 group, 11 (34.38%) contained CIT group and 19 (59.38%) contained qnrD. Therefore, chicken carcasses contaminated with P. mirabilis may pose a health risk to the consumer, as these isolates have a variety of virulence and antimicrobial resistance characteristics that can be found in P. mirabilis strains isolated from human infections.
Collapse
Affiliation(s)
- Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ana Angelita Sampaio Baptista
- Laboratory of Avian Medicine, Department of Preventive Veterinary Medicine, Agricultural Sciences Center, Universidade Estadual de Londrina, Londrina, Brazil
| | - Marielen de Souza
- Laboratory of Avian Medicine, Department of Preventive Veterinary Medicine, Agricultural Sciences Center, Universidade Estadual de Londrina, Londrina, Brazil
| | - Maísa Fabiana Menck-Costa
- Laboratory of Avian Medicine, Department of Preventive Veterinary Medicine, Agricultural Sciences Center, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vanessa Lumi Koga
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Brazil.
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, Paraná, 86051-980, Brazil.
| |
Collapse
|
68
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.
Collapse
|
69
|
Ozturk I, Yarar S, Gürgan M, Ceyhan D, Banti C, Hadjikakou S, Manoli M, Moushi E, Tasiopoulos A. Synthesis, characterization and biological evaluation of novel antimony(III) iodide complexes with tetramethylthiourea and N-ethylthiourea. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
70
|
Bai X, Zhang J, Ambikan A, Jernberg C, Ehricht R, Scheutz F, Xiong Y, Matussek A. Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden. Sci Rep 2019; 9:5619. [PMID: 30948755 PMCID: PMC6449507 DOI: 10.1038/s41598-019-42122-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid E. coli pathotypes are representing emerging public health threats with enhanced virulence from different pathotypes. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) have been reported to be associated with diarrheal disease and hemolytic uremic syndrome (HUS) in humans. Here, we identified and characterized four clinical STEC/ETEC hybrids from diarrheal patients with or without fever or abdominal pain and healthy contact in Sweden. Rare stx2 subtypes were present in STEC/ETEC hybrids. Stx2 production was detectable in stx2a and stx2e containing strains. Different copies of ETEC virulence marker, sta gene, were found in two hybrids. Three sta subtypes, namely, sta1, sta4 and sta5 were designated, with sta4 being predominant. The hybrids represented diverse and rare serotypes (O15:H16, O187:H28, O100:H30, and O136:H12). Genome-wide phylogeny revealed that these hybrids exhibited close relatedness with certain ETEC, STEC/ETEC hybrid and commensal E. coli strains, implying the potential acquisition of Stx-phages or/and ETEC virulence genes in the emergence of STEC/ETEC hybrids. Given the emergence and public health significance of hybrid pathotypes, a broader range of virulence markers should be considered in the E. coli pathotypes diagnostics, and targeted follow up of cases is suggested to better understand the hybrid infection.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Massey, New Zealand
| | - Anoop Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Ralf Ehricht
- InfectoGnostics Research Campus e.V., Philosophenweg 7, Jena, Germany.,Leibniz Institute of Photonic Technology e.V. Jena (Leibniz-IPHT), Jena, Germany
| | - Flemming Scheutz
- The International Centre for Reference and Research on Escherichia and Klebsiella, Unit of Foodborne Bacteria and Typing, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden. .,Karolinska University Laboratory, Stockholm, Sweden. .,Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.
| |
Collapse
|
71
|
Ramstedt M, Ribeiro IAC, Bujdakova H, Mergulhão FJM, Jordao L, Thomsen P, Alm M, Burmølle M, Vladkova T, Can F, Reches M, Riool M, Barros A, Reis RL, Meaurio E, Kikhney J, Moter A, Zaat SAJ, Sjollema J. Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations. Macromol Biosci 2019; 19:e1800384. [PMID: 30884146 DOI: 10.1002/mabi.201800384] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/18/2019] [Indexed: 01/05/2023]
Abstract
In Europe, the mean incidence of urinary tract infections in intensive care units is 1.1 per 1000 patient-days. Of these cases, catheter-associated urinary tract infections (CAUTI) account for 98%. In total, CAUTI in hospitals is estimated to give additional health-care costs of £1-2.5 billion in the United Kingdom alone. This is in sharp contrast to the low cost of urinary catheters and emphasizes the need for innovative products that reduce the incidence rate of CAUTI. Ureteral stents and other urinary-tract devices suffer similar problems. Antimicrobial strategies are being developed, however, the evaluation of their efficacy is very challenging. This review aims to provide considerations and recommendations covering all relevant aspects of antimicrobial material testing, including surface characterization, biocompatibility, cytotoxicity, in vitro and in vivo tests, microbial strain selection, and hydrodynamic conditions, all in the perspective of complying to the complex pathology of device-associated urinary tract infection. The recommendations should be on the basis of standard assays to be developed which would enable comparisons of results obtained in different research labs both in industry and in academia, as well as provide industry and academia with tools to assess the antimicrobial properties for urinary tract devices in a reliable way.
Collapse
Affiliation(s)
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-004, Lisbon, Portugal
| | - Helena Bujdakova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 81499, Bratislava 1, Slovakia
| | - Filipe J M Mergulhão
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luisa Jordao
- Department of Environmental Health, Research and Development Unit, National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal
| | - Peter Thomsen
- BioModics ApS, Stengårds Alle 31A, DK-2800, Lyngby, Denmark
| | - Martin Alm
- BioModics ApS, Stengårds Alle 31A, DK-2800, Lyngby, Denmark
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Todorka Vladkova
- Department of Polymers, University of Chemical Technology and Metallurgy (UCTM), 8 Kliment Ohridski Blvd, 1756, Sofia, Bulgaria
| | - Fusun Can
- Department of Medical Microbiology, School of Medicine, Koc University, 34450, Sariyer, Istanbul, Turkey
| | - Meital Reches
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Alexandre Barros
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, 4710-057, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, 4710-057, Braga, Portugal
| | - Emilio Meaurio
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, School of Engineering, University of the Basque Country, 48940 Leina, Bizkaia, Bilbao, Spain
| | - Judith Kikhney
- Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
72
|
Detection of O25b-ST131 clone, CTX-M-1 and CTX-M-15 genes via real-time PCR in Escherichia coli strains in patients with UTIs obtained from a university hospital in Istanbul. J Infect Public Health 2019; 12:640-644. [PMID: 30826300 DOI: 10.1016/j.jiph.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/06/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Escherichia coli sequence type 131 is an important multidrug resistant clone responsible from more than half of ESBL-producing E.coli isolates. Aim of this study was to investigate the presence of O25b-ST131 clone, CTX-M-15 and CTX-M-1 genes in the E. coli strains isolated from both hospital and community acquired UTIs by real-time PCR and to reveal molecular epidemiological data. METHODS Non-duplicate E. coli (n = 101) strains isolated from UTI patients were included. Bacterial identifications were performed with VITEK Compact. Antimicrobial susceptibility tests, phenotypic ESBL and E-tests were performed conventionally. Real-time PCR was utilized to detect presence of O25b-ST131 clone, blaCTX-M-15 and blaCTX-M-1. RESULTS O25b-ST131 clone, CTX-M-1 and CTX-M-15 were detected in 22%, 73%, 37% in UTIs, respectively. Presence of O25b-ST131 clones and CTX-M-1 genes among E. coli strains isolated from inpatients were found statistically higher than outpatients. The most effective choice was found to be fosfomycin and nitrofurantoin in outpatients and inpatients, respectively. The MIC90 values of Amikacin, Cefotaxime, Cefepime and Ciprofloxacin were higher in inpatients than in oupatients, whereas Cefotaxime and Ciprofloxacin MIC50 values were found to be higher in inpatients than in outpatients. The highest increase of MIC90 values was observed in O25b-ST131, CTX-M-1 and CTX-M-15 coexistence. CONCLUSION The presence of O25b-ST131 clone, CTX-M-1 and CTX-M-15 genes in E. coli strains in patients with UTI has been revealed. In the presence of the O25b-ST131 clone, a significant increase was observed in the ciprofloxacin MIC values indicating the importance of monitorization of the clone using molecular epidemiology.
Collapse
|
73
|
Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M, Darling AE, Chapman TA, Djordjevic SP. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 2019; 3. [PMID: 29306352 PMCID: PMC5761274 DOI: 10.1099/mgen.0.000143] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97 % (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98 % (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry.
Collapse
Affiliation(s)
- Cameron J Reid
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ethan R Wyrsch
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tiziana Zingali
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Liu
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Aaron E Darling
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Toni A Chapman
- 2NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Steven P Djordjevic
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
74
|
Derakhshan S, Farhadifar F, Roshani D, Ahmadi A, Haghi F. Study on the presence of resistant diarrheagenic pathotypes in Escherichia coli isolated from patients with urinary tract infection. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:348-357. [PMID: 31749924 PMCID: PMC6820833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
AIM This article aimed to analyze the diarrheagenic potential of E. coli isolated from urinary tract infection (UTI) and to recognize the presence of antibiotic resistance genes. BACKGROUND The marked genome plasticity of Escherichia coli has allowed the emergence of resistant pathogenic strains displaying an unusual arrangement of genes. METHODS In this cross-sectional study, 110 E. coli were isolated from patients with the symptoms of UTI in Sanandaj, west of Iran between July and September - 2015. The isolates were examined by the disk diffusion method for antibiotic susceptibility test and by polymerase chain reaction for the presence of genes characteristic of diarrheagenic E. coli (DEC), Uropathogenic E. coli (UPEC) virulence genes, extended-spectrum β-lactamase bla CTX-M and plasmid-mediated quinolone resistance determinants, qnrA, qnrB, and qnrS. RESULTS The most and the least effective antibiotics were nitrofurantoin and cefotaxime (96.4% and 27.3% sensitivity, respectively). Of the 110 UTI isolates, 57.3% carried diarrheagenic genes. The bundle-forming pilus bfpA was the most prevalent diarrheagenic gene (39.1%). The most commonly detected DEC pathotype was enterotoxigenic E. coli (-ETEC, 12.7%). All the pathotypes carried the bla CTX-M and qnr. The -UPEC hly hemolysin and pap adhesin genes were mainly detected among ETEC isolates. CONCLUSION Our results indicated the presence of resistant diarrheagenic pathotypes in UTI-associated E. coli. Such isolates may have the capacity of causing both extraintestinal and intestinal infections. Based on our knowledge, this is the first report of the presence of qnr in ETEC from urine.
Collapse
Affiliation(s)
- Safoura Derakhshan
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fariba Farhadifar
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Daem Roshani
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amjad Ahmadi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Fakhri Haghi
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
75
|
Lugsomya K, Yindee J, Niyomtham W, Tribuddharat C, Tummaruk P, Hampson DJ, Prapasarakul N. Antimicrobial Resistance in Commensal Escherichia coli Isolated from Pigs and Pork Derived from Farms Either Routinely Using or Not Using In-Feed Antimicrobials. Microb Drug Resist 2018; 24:1054-1066. [PMID: 30204569 PMCID: PMC6154756 DOI: 10.1089/mdr.2018.0154] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aims of this study were (i) to evaluate whether routine in-feed antimicrobial use in pigs or not resulted in differences in antimicrobial resistance (AMR) E. coli at different pig producing stages, and (ii) to determine whether resistant strains were presented in pig meat postslaughter. A total of 300 commensal E. coli isolates were obtained and examined for antibiograms, AMR genes, plasmid replicons, and molecular types. The isolates were from two farms either using (A) or not using in-feed antimicrobials (NA), sampled four times during the production cycle and once postslaughter. E. coli resistant to aminoglycosides containing aadA1, aadA2, and aadB and extended-spectrum beta-lactamase-producing (ESBLP) E. coli containing blaCTX-M-1 were significantly increased in the nursery and growing periods in farm A compared to farm NA. IncI1-Iγ and IncHI2 were common in the nursery period and were shown to transfer blaCTX-M genes by conjugation. ST10 was the most common type only found in live pigs. ST604, ST877, ST1209, and ST2798 ESBLP were found only in live pigs, whereas ST72, ST302, and ST402 ESBLP were found in pig meat.
Collapse
Affiliation(s)
- Kittitat Lugsomya
- 1 Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - Jitrapa Yindee
- 1 Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - Waree Niyomtham
- 1 Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - Chanwit Tribuddharat
- 2 Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Padet Tummaruk
- 3 Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - David J Hampson
- 4 School of Veterinary and Life Sciences, Murdoch University , Perth, Australia .,5 College of Veterinary and Life Sciences, City University of Hong Kong , Kowloon Tong, Hong Kong SARS
| | - Nuvee Prapasarakul
- 1 Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand .,6 Diagnosis and Monitoring of Animal Pathogens Research Unit, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
76
|
Nagarjuna D, Mittal G, Dhanda RS, Gaind R, Yadav M. Alarming levels of antimicrobial resistance among sepsis patients admitted to ICU in a tertiary care hospital in India - a case control retrospective study. Antimicrob Resist Infect Control 2018; 7:150. [PMID: 30555689 PMCID: PMC6286518 DOI: 10.1186/s13756-018-0444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/22/2018] [Indexed: 01/22/2023] Open
Abstract
Background Hospital acquired infections (HAI) are principal threats to the patients of intensive care units. An increase in the antimicrobial resistance (AMR) observed in gram negative bacteria is a great challenge to deal with. HAI and AMR lead to prolonged hospitalization and additional doses of anti-microbial treatment affecting patient's fitness and finances. Present study was undertaken to determine the pathotypes, genetic diversity and the antimicrobial resistance of E.coli in isolates from the patients admitted to intensive care unit at a tertiary care hospital in Delhi, India. Methods E.coli isolates (N = 77) obtained from the blood culture of patients diagnosed with sepsis and the isolates (N = 71) from the stool culture of patients admitted in intensive care unit (ICU) but not diagnosed with sepsis were investigated for their pathotypes, adherence patterns and genetic diversity by Enterobacterial Repeated Intergenic Consensus-polymerase chain reaction (ERIC-PCR). A Kirby-Bauer Disc diffusion test and antimicrobial susceptibility assays were performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Extended-spectrum β-lactamase (ESBL) genes and sequence type 131 (ST131) clone were characterised genotypically by gene-specific PCRs. Results Pathotypes analysis revealed 46 and 16% of the blood E.coli isolates were ETEC and EAEC respectively, in contrast to the fecal isolates wherein 22% of the isolates were ETEC and 28.5% were EAEC. EPEC, STEC and EIEC pathotypes were not detected in blood or fecal isolates. Of all the isolates studied, more than 90% of the blood and 70% of the fecal isolates were found to be resistant to cephalosporins. On the other hand, 68% of blood and 44% of the fecal isolates were found to be ESBL producers. Interestingly 83% of the blood isolates contained CTX-M15, whereas only 21% of them contained CTX-M9 genes. On the other hand CTX-M15 genes were found in 90% and CTX-M9 genes were found in 63% of the fecal isolates. Conclusion The antimicrobial resistant profile found in this study is alarming and poses a great threat to public health. Apparently an increased antimicrobial resistance to the extensively used cephalosporins is affecting an optimal drug therapy for patients. In addition, the presence of catheters, prolonged duration of stay in the hospital and poor hygienic conditions due to infrequent urination of the patient can lead to an additional vulnerability. Therefore continuous surveillance and rational use of antibiotics along with effective hygienic measures are urgently recommended in such settings.
Collapse
Affiliation(s)
- D Nagarjuna
- 1Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi, 110007 India.,4Current address: Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667 India
| | - Gajanand Mittal
- Department of Microbiology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, Delhi, 110029 India
| | - Rakesh Singh Dhanda
- Stem Cell Laboratory, Longboat Explorers AB, SMiLE Incubator, Scheelevägen 2, 22381 Lund, Sweden
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, Delhi, 110029 India
| | - Manisha Yadav
- 1Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi, 110007 India.,5Current address: Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
77
|
Lindstedt BA, Finton MD, Porcellato D, Brandal LT. High frequency of hybrid Escherichia coli strains with combined Intestinal Pathogenic Escherichia coli (IPEC) and Extraintestinal Pathogenic Escherichia coli (ExPEC) virulence factors isolated from human faecal samples. BMC Infect Dis 2018; 18:544. [PMID: 30497396 PMCID: PMC6267907 DOI: 10.1186/s12879-018-3449-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Classification of pathogenic Escherichia coli (E. coli) has traditionally relied on detecting specific virulence associated genes (VAGs) or combinations thereof. For E. coli isolated from faecal samples, the presence of specific genes associated with different intestinal pathogenic pathovars will determine their classification and further course of action. However, the E. coli genome is not a static entity, and hybrid strains are emerging that cross the pathovar definitions. Hybrid strains may show gene contents previously associated with several distinct pathovars making the correct diagnostic classification difficult. We extended the analysis of routinely submitted faecal isolates to include known virulence associated genes that are usually not examined in faecal isolates to detect the frequency of possible hybrid strains. METHODS From September 2012 to February 2013, 168 faecal isolates of E. coli routinely submitted to the Norwegian Institute of Public Health (NIPH) from clinical microbiological laboratories throughout Norway were analysed for 33 VAGs using multiplex-PCR, including factors associated with extraintestinal pathogenic E. coli (ExPEC) strains. The strains were further typed by Multiple Locus Variable-Number Tandem-Repeat Analysis (MLVA), and the phylogenetic grouping was determined. One isolate from the study was selected for whole genome sequencing (WGS) with a combination of Oxford Nanopore's MinION and Illumina's MiSeq. RESULTS The analysis showed a surprisingly high number of strains carrying ExPEC associated VAGs and strains carrying a combination of both intestinal pathogenic E. coli (IPEC) and ExPEC VAGs. In particular, 93.5% (101/108) of isolates classified as belonging to an IPEC pathovar additionally carried ExPEC VAGs. WGS analysis of a selected hybrid strain revealed that it could, with present classification criteria, be classified as belonging to all of the Enteropathogenic Escherichia coli (EPEC), Uropathogenic Escherichia coli (UPEC), Neonatal meningitis Escherichia coli (NMEC) and Avian pathogenic Escherichia coli (APEC) pathovars. CONCLUSION Hybrid ExPEC/IPEC E. coli strains were found at a very high frequency in faecal samples and were in fact the predominant species present. A sequenced hybrid isolate was confirmed to be a cross-pathovar strain possessing recognised hallmarks of several pathovars, and a genome heavily influenced by horizontal gene transfer.
Collapse
Affiliation(s)
- Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway.
| | - Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
78
|
Karam MRA, Habibi M, Bouzari S. Relationships between Virulence Factors and Antimicrobial Resistance among Escherichia coli Isolated from Urinary Tract Infections and Commensal Isolates in Tehran, Iran. Osong Public Health Res Perspect 2018; 9:217-224. [PMID: 30402376 PMCID: PMC6202021 DOI: 10.24171/j.phrp.2018.9.5.02] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTIs). Here, we determined whether sensitivity to antibiotics was related to the prevalence of iron scavenging genes, or to biofilm and hemolysis formation. Methods A total of 110 UPEC and 30 E coli isolates were collected from the urine of UTI patients and feces of healthy individuals without UTI, respectively. The presence of iron receptor genes and phenotypic properties were evaluated by polymerase chain reaction and phenotypic methods, respectively. Susceptibility to routine antibiotics was evaluated using the disc diffusion method. Results The prevalence of iron scavenging genes ranged from 21.8% (ireA) to 84.5% (chuA) in the UPEC. Resistance to ceftazidime and cefotaxime was significantly correlated with the presence of fyuA and iutA iron genes. Biofilm production was significantly associated with the prevalence of fyuA and hma iron genes. A higher degree of antibiotic resistance was exhibited by isolates that produced biofilms than by their non-biofilm producing counterparts. Conclusion Our study clearly indicates that biofilm production is associated with antibiotic resistance, and that iron receptors and hemolysin production also contribute to reduced antibiotic sensitivity. These results further our understanding of the role that these virulence factors play during UPEC pathogenesis, which in turn may be valuable for the development of novel treatment strategies against UTIs.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
79
|
Ramírez-Castillo FY, Moreno-Flores AC, Avelar-González FJ, Márquez-Díaz F, Harel J, Guerrero-Barrera AL. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Ann Clin Microbiol Antimicrob 2018; 17:34. [PMID: 30041652 PMCID: PMC6057003 DOI: 10.1186/s12941-018-0286-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/14/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored blaCTX-M genes, with blaCTX-M-15 being the most prevalent. CONCLUSIONS Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.
Collapse
Affiliation(s)
- Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| | - Adriana C. Moreno-Flores
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| | - Francisco J. Avelar-González
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| | - Francisco Márquez-Díaz
- Departamento de Infectología, Centenario Hospital Miguel Hidalgo, Galeana Sur 495, Obraje, 20000 Aguascalientes, Mexico
| | - Josée Harel
- Département de pathologie et microbiologie, Centre de Recherche en Infectologíe Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200, rue Sicott, Saint-Hyacinthe, Montreal, QC J2S 2M2 Canada
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| |
Collapse
|
80
|
The Frequency of Shiga Toxin Producing Escherichia coli in Patients with Urinary Tract Infection in Iran: Systematic Review and Meta-Analysis. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2018. [DOI: 10.5812/pedinfect.78816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
Nunes KO, Santos ACP, Bando SY, Silva RM, Gomes TAT, Elias WP. Enteroaggregative Escherichia coli with uropathogenic characteristics are present in feces of diarrheic and healthy children. Pathog Dis 2018; 75:4111144. [PMID: 28961708 DOI: 10.1093/femspd/ftx106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/09/2017] [Indexed: 11/14/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) has been recently associated with urinary tract infections (UTI). Since EAEC are found in feces of both diarrheic and asymptomatic individuals, their presence in the intestine may be a source of UTI. In this study, we detected in feces of diarrheic and healthy children a subset of EAEC strains with genetic markers of extraintestinal pathogenic E. coli (ExPEC). MLST grouped these EAEC with ExPEC markers in three main clusters along with prototypes strains of EAEC, uropathogenic E. coli and UTI-causing EAEC. Interestingly, the latter cluster was composed by EAEC with ExPEC markers belonging to phylogroup A and closely related to the uropathogenic EAEC O78:H10 strain. Such attributes suggest that these strains have uropathogenic abilities. Therefore, intestinal carriers of these strains are potentially in risk to develop UTIs.
Collapse
Affiliation(s)
- Kamila O Nunes
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP-05503-900, Brazil
| | - Adriana C P Santos
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP-05503-900, Brazil
| | - Silvia Y Bando
- Departamento de Pediatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP- 05403-000, Brazil
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP- 04023-062, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP- 04023-062, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP-05503-900, Brazil
| |
Collapse
|
82
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
83
|
Bai X, Fu S, Zhang J, Fan R, Xu Y, Sun H, He X, Xu J, Xiong Y. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci Rep 2018; 8:6756. [PMID: 29712985 PMCID: PMC5928088 DOI: 10.1038/s41598-018-25233-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/17/2018] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin (Stx) is the key virulent factor in Shiga toxin-producing Escherichia coli (STEC). To date, three Stx1 subtypes and seven Stx2 subtypes have been described in E. coli, which differed in receptor preference and toxin potency. Here, we identified a novel Stx2 subtype designated Stx2h in E. coli strains isolated from wild marmots in the Qinghai-Tibetan plateau, China. Stx2h shares 91.9% nucleic acid sequence identity and 92.9% amino acid identity to the nearest Stx2 subtype. The expression of Stx2h in type strain STEC299 was inducible by mitomycin C, and culture supernatant from STEC299 was cytotoxic to Vero cells. The Stx2h converting prophage was unique in terms of insertion site and genetic composition. Whole genome-based phylo- and patho-genomic analysis revealed STEC299 was closer to other pathotypes of E. coli than STEC, and possesses virulence factors from other pathotypes. Our finding enlarges the pool of Stx2 subtypes and highlights the extraordinary genomic plasticity of E. coli strains. As the emergence of new Shiga toxin genotypes and new Stx-producing pathotypes pose a great threat to the public health, Stx2h should be further included in E. coli molecular typing, and in epidemiological surveillance of E. coli infections.
Collapse
Affiliation(s)
- Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shanshan Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Massey, New Zealand
| | - Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanmei Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiaohua He
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
84
|
Hashemizadeh Z, Kalantar-Neyestanaki D, Mansouri S. Clonal relationships, antimicrobial susceptibilities, and molecular characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolates from urinary tract infections and fecal samples in Southeast Iran. Rev Soc Bras Med Trop 2018. [PMID: 29513841 DOI: 10.1590/0037-8682-0080-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Multidrug-resistant (MDR) Escherichia coli, a species that is a leading cause of urinary tract infections (UTIs) and is a major global public health concern. This study was designed to detect the differences in antibiotic resistance patterns, the production and type of extended spectrum β-lactamases (ESBLs), and the clonal relationships among E. coli isolates from UTIs and fecal samples. METHODS Antibacterial resistance was determined by the disk diffusion method. ESBL, carbapenemase, and AmpC-producing isolates were detected phenotypically. Then, the ESBL genes were sequenced to detect the type. Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) was performed on the ESBL-positive isolates. RESULTS The most common effective antibacterial agents were colistin, imipenem, and amikacin. Among the isolates, 204 (56.6%) were MDR. Of the 163 ESBL-positive isolates, 11 (6.7%) produced AmpC, and the frequencies of beta-lactamase-positive genes were as follows: bla CTX-Mgroup1, 76%; bla TEM1, 74.8%; bla SHV12, 1.2%; and bla OXA1, 12.88%. ERIC PCR showed a diverse pattern, suggesting that clonal spread of E. coli in this area is uncommon, and that most of the infecting strains are endogenous. CONCLUSIONS The high rates of antibacterial-resistant and MDR isolates are quite important since these strains can act as source of resistant bacteria that can be spread in the community. Controlling antibiotic use, against inappropriate use and abuse, in the community and continuous surveillance of emerging resistance traits are critical to controlling the spread of resistance.
Collapse
Affiliation(s)
- Zahra Hashemizadeh
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences. Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences. Kerman, Iran.,Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahla Mansouri
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences. Kerman, Iran.,Research Center for Infectious Diseases and Tropical Medicine, Kerman, Iran
| |
Collapse
|
85
|
Galstyan A, Putze J, Dobrindt U. Gaining Access to Bacteria through (Reversible) Control of Lipophilicity. Chemistry 2017; 24:1178-1186. [DOI: 10.1002/chem.201704562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Anzhela Galstyan
- Center for Nanotechnology; Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Johannes Putze
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| | - Ulrich Dobrindt
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| |
Collapse
|
86
|
Arab Zoozani M, Ghaemi EA, Jamalli A. Frequency of AmpC β-lactamase Resistance in Escherichia coli Isolates from Urinary Tract Infections in Gorgan, Iran. JOURNAL OF CLINICAL AND BASIC RESEARCH 2017. [DOI: 10.29252/jcbr.1.4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
87
|
Nüesch-Inderbinen MT, Baschera M, Zurfluh K, Hächler H, Nüesch H, Stephan R. Clonal Diversity, Virulence Potential and Antimicrobial Resistance of Escherichia coli Causing Community Acquired Urinary Tract Infection in Switzerland. Front Microbiol 2017; 8:2334. [PMID: 29250044 PMCID: PMC5716990 DOI: 10.3389/fmicb.2017.02334] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
Abstract
Objectives: The aim of this study was to assess the clonal structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli (UPEC) isolates causing community acquired urinary tract infection (CAUTI) in unselected primary care patients in Switzerland. Methods: We performed multilocus sequence typing, virulence factor determination, and phenotypic and genotypic antimicrobial resistance testing on 44 non-duplicate UPEC isolates. Results: Twenty-seven different sequence types (STs) were identified. Major UPEC clones were represented by 19 (43.2%) of the isolates, including E. coli ST131, ST69 (both 13.6%), ST73 (6.8%), ST10 (4.5%), ST127, ST140, (both 2.3%). Five (11.4%) isolates belonged to ST141. Aggregate virulence factor (VF) scores were highest among isolates belonging to ST127 and ST141. Overall, 50% of the isolates were susceptible to all 12 antimicrobials tested, and all isolates remained susceptible to fosfomycin and nitrofurantoin. Resistance to sulfamethoxazole and ciprofloxacin were found in 31.8, and 15.9% of the isolates, respectively. Plasmid-mediated resistance genes were detected in ST69 and ST131 and included aac(6')-Ib-cr (2.3% of all isolates) blaCTX-M-14 and blaCTX-M-15 (9%), and mph(A) (13.6%). None of the isolates tested positive for mcr-1 or mcr-2. Conclusions: Our results show that CAUTI in Switzerland is caused by a wide variety of UPEC STs for which fosfomycin remains a good treatment option. We suggest that ST141 is an emerging clone associated with UTI in the community, and warrants closer attention. Moreover, the high rate of E. coli harboring mph(A) from patients without a history of antimicrobial therapy or hospitalization indicates that UPEC is an important reservoir for mph(A).
Collapse
Affiliation(s)
- Magdalena T. Nüesch-Inderbinen
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Melinda Baschera
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Herbert Hächler
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Hansjakob Nüesch
- Practice for General and Internal Medicine, Seuzach, Switzerland
| | - Roger Stephan
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| |
Collapse
|
88
|
Multidrug Resistant Enteric Bacterial Pathogens in a Psychiatric Hospital in Ghana: Implications for Control of Nosocomial Infections. Int J Microbiol 2017; 2017:9509087. [PMID: 29038662 PMCID: PMC5606046 DOI: 10.1155/2017/9509087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023] Open
Abstract
Enteric bacteria are commonly implicated in hospital-acquired or nosocomial infections. In Ghana, these infections constitute an important public health problem but little is known about their contribution to antibiotic resistance. The aim of the study was to determine the extent and pattern of antibiotic resistance of enteric bacteria isolated from patients and environmental sources at the Accra Psychiatric Hospital. A total of 265 samples were collected from the study site including 142 stool and 82 urine samples from patients, 7 swab samples of door handle, and 3 samples of drinking water. Enteric bacteria were isolated using standard microbiological methods. Antibiograms of the isolates were determined using the disc diffusion method. Overall, 232 enteric bacteria were isolated. Escherichia coli was the most common (38.3%), followed by Proteus (19.8%), Klebsiella (17.7%), Citrobacter (14.7%), Morganella (8.2%), and Pseudomonas (1.3%). All isolates were resistant to ampicillin but sensitive to cefotaxime. The resistance ranged from 15.5% to 84.5%. Multidrug resistance was most prevalent (100%) among isolates of Proteus and Morganella and least prevalent among isolates of Pseudomonas (33.3%). Multidrug resistance among enteric bacteria at the study hospital is high and hence there is a need for screening before therapy to ensure prudent use of antibiotics.
Collapse
|
89
|
Habibi M, Asadi Karam MR, Bouzari S. Evaluation of prevalence, immunogenicity and efficacy of FyuA iron receptor in uropathogenic Escherichia coli isolates as a vaccine target against urinary tract infection. Microb Pathog 2017; 110:477-483. [PMID: 28754265 DOI: 10.1016/j.micpath.2017.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are among the most prevalent agents of urinary tract infections (UTIs). Antibiotic resistance reaches the need for alternative treatment approaches such as vaccination against UTIs. There is no ideal vaccine against UTIs, thus there is a need to evaluate different targets of uropathogens against UTIs. Ferric scavenger receptor FyuA in UPEC has the properties of an ideal vaccine candidate against UTIs. In the present study, the prevalence of FyuA among UPEC isolates, its immunogenicity with and without alum adjuvant, and its efficacy against experimental UTI were assessed. Totally, fyuA gene was present in 77% of the UPEC isolates tested. Alignments of FyuA exhibited a high degree of conservation among different submitted UPEC isolates in GenBank. The bioinformatics studies showed the high confidence value and stability of the FyuA structure. SDS-PAGE and Western blot confirmed the purification of FyuA with high yield by nickel resins. Mice vaccinated subcutaneously with the FyuA induced a significantly higher humoral response (total IgG, IgG1 and IgG2a) than control mice that alum enhanced these responses. The FuyA alone showed the ability to reduce the colonization of UPEC in bladder and kidney of mice as compared to the control group. But the addition of alum to FyuA increased the protection level against UPEC in these organs. Since, FyuA induced significant IgG1 (Th2) and IgG2a (Th1) responses and protected the mice against experimental UTI, it could be a promising target against UPEC infections.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|
90
|
Lara FBM, Nery DR, de Oliveira PM, Araujo ML, Carvalho FRQ, Messias-Silva LCF, Ferreira LB, Faria-Junior C, Pereira AL. Virulence Markers and Phylogenetic Analysis of Escherichia coli Strains with Hybrid EAEC/UPEC Genotypes Recovered from Sporadic Cases of Extraintestinal Infections. Front Microbiol 2017; 8:146. [PMID: 28217123 PMCID: PMC5290387 DOI: 10.3389/fmicb.2017.00146] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Virulence genes from different E. coli pathotypes are blended in hybrid strains. E. coli strains with hybrid enteroaggregative/uropathogenic (EAEC/UPEC) genotypes have sporadically emerged causing outbreaks of extraintestinal infections, however their association with routine infections is yet underappreciated. We assessed 258 isolates of E. coli recovered from 86 consecutive cases of extraintestinal infections seeking EAEC and hybrid genotype (EAEC/UPEC) strains. Extensive virulence genotyping was carried out to detect 21 virulence genes, including molecular predictors of EAEC and UPEC strains. Phylogenetic groups and sequence types (STs) were identified, as well as it was performed phylogenetic analyses in order to evaluate whether hybrid EAEC/UPEC strains belonged to intestinal or extraintestinal lineages of E. coli. Adhesion assays were performed to evaluate the biofilm formation by hybrid strains in human urine and cell culture medium (DMEM). Molecular predictors of UPEC were detected in more than 70% of the strains (chuA in 85% and fyuA in 78%). Otherwise, molecular predictors of EAEC (aatA and aggR) were detected in only 3.4% (9/258) of the strains and always along with the UPEC predictor fyuA. Additionally, the pyelonephritis-associated pilus (pap) gene was also detected in all of the hybrid EAEC/UPEC strains. EAEC/UPEC strains were recovered from two cases of community-onset urinary tract infections (UTI) and from a case of bacteremia. Analyses revealed that hybrid EAEC/UPEC strains were phylogenetically positioned in two different clades. Two representative strains, each recovered from UTI and bacteremia, were positioned into a characteristic UPEC clade marked by strains belonging to phylogenetic group D and ST3 (Warwick ST 69). Another hybrid EAEC/UPEC strain was classified as phylogroup A-ST478 and positioned in a commensal clade. Hybrid EAEC/UPEC strains formed biofilms at modest, but perceptible levels either in DMEM or in urine samples. We showed that different lineages of E. coli, at least phylogenetic group A and D, can acquire and gather EAEC and UPEC virulence genes promoting the emergence of hybrid EAEC/UPEC strains.
Collapse
Affiliation(s)
- Flaviane B M Lara
- Graduate Program in Microbial Biology, Biology Institute, University of Brasília Brasília, Brazil
| | - Danielly R Nery
- Campus of Ceilândia, University of Brasília Brasília, Brazil
| | | | - Mayana L Araujo
- Campus of Ceilândia, University of Brasília Brasília, Brazil
| | | | | | | | - Celio Faria-Junior
- Central Laboratory for Public Health, Secretary of State for Health Brasília, Brazil
| | - Alex L Pereira
- Graduate Program in Microbial Biology, Biology Institute, University of BrasíliaBrasília, Brazil; Campus of Ceilândia, University of BrasíliaBrasília, Brazil
| |
Collapse
|
91
|
Seo DJ, Choi S, Jeon SB, Jeong S, Park H, Lee BH, Kim GB, Yang SJ, Nishikawa Y, Choi C. Comparative sequence analysis of enteroaggregative Escherichia coli heat-stable enterotoxin 1 identified in Korean and Japanese Escherichia coli strains. Int J Food Microbiol 2017; 243:1-8. [DOI: 10.1016/j.ijfoodmicro.2016.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 12/11/2022]
|
92
|
Ochoa SA, Cruz-Córdova A, Luna-Pineda VM, Reyes-Grajeda JP, Cázares-Domínguez V, Escalona G, Sepúlveda-González ME, López-Montiel F, Arellano-Galindo J, López-Martínez B, Parra-Ortega I, Giono-Cerezo S, Hernández-Castro R, de la Rosa-Zamboni D, Xicohtencatl-Cortes J. Multidrug- and Extensively Drug-Resistant Uropathogenic Escherichia coli Clinical Strains: Phylogenetic Groups Widely Associated with Integrons Maintain High Genetic Diversity. Front Microbiol 2016; 7:2042. [PMID: 28066364 PMCID: PMC5174082 DOI: 10.3389/fmicb.2016.02042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, an increase of uropathogenic Escherichia coli (UPEC) strains with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that complicate therapy for urinary tract infections (UTIs) has been observed and has directly impacted costs and extended hospital stays. The aim of this study was to determine MDR- and XDR-UPEC clinical strains, their virulence genes, their phylogenetic groups and to ascertain their relationship with integrons and genetic diversity. From a collection of 500 UPEC strains, 103 were selected with MDR and XDR characteristics. MDR-UPEC strains were mainly associated with phylogenetic groups D (54.87%) and B2 (39.02%) with a high percentage (≥70%) of several fimbrial genes (ecpA, fimH, csgA, and papGII), an iron uptake gene (chuA), and a toxin gene (hlyA). In addition, a moderate frequency (40–70%) of other genes (iutD, tosA, and bcsA) was observed. XDR-UPEC strains were predominantly associated with phylogenetic groups B2 (47.61%) and D (42.85%), which grouped with ≥80 virulence genes, including ecpA, fimH, csgA, papGII, iutD, and chuA. A moderate frequency (40–70%) of the tosA and hlyA genes was observed. The class 1 and 2 integrons that were identified in the MDR- and XDR-UPEC strains were associated with phylogenetic groups D, B2, and A, while the XDR-UPEC strains that were associated with phylogenetic groups B2, D, and A showed an extended-spectrum beta-lactamase (ESBL) phenotype. The modifying enzymes (aadA1, aadB, aacC, ant1, dfrA1, dfrA17, and aadA4) that were identified in the variable region of class 1 and 2 integrons from the MDR strains showed resistance to gentamycin (56.25 and 66.66%, respectively) and trimethoprim-sulfamethoxazole (84.61 and 66.66%, respectively). The MDR- and XDR-UPEC strains were distributed into seven clusters and were closely related to phylogenic groups B2 and D. The diversity analysis by PFGE showed 42.68% of clones of MDR-UPEC and no clonal association in the XDR-UPEC strains. In conclusion, phylogenetic groups including virulence genes are widely associated with two integron classes (1 and 2) in MDR- and XDR-UPEC strains.
Collapse
Affiliation(s)
- Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezMexico City, Mexico; Posgrado en Ciencias Químico-Biológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bacteriología Médica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Victor M Luna-Pineda
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Juan P Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica Mexico City, Mexico
| | - Vicenta Cázares-Domínguez
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Gerardo Escalona
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Ma Eugenia Sepúlveda-González
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Fernanda López-Montiel
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - José Arellano-Galindo
- Área de Virología, Laboratorio de Infectología, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Briceida López-Martínez
- Subdirección de Servicios Auxiliares de Diagnóstico, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Israel Parra-Ortega
- Laboratorio Clínico, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología Médica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Mexico City, Mexico
| | | | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Mexico City, Mexico
| |
Collapse
|
93
|
Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qinghai-Tibet plateau of China. Emerg Microbes Infect 2016; 5:e122. [PMID: 27924811 PMCID: PMC5180367 DOI: 10.1038/emi.2016.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023]
Abstract
Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai–Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli.
Collapse
|
94
|
Tabasi M, Karam MRA, Habibi M, Mostafavi E, Bouzari S. Genotypic Characterization of Virulence Factors in Escherichia coli Isolated from Patients with Acute Cystitis, Pyelonephritis and Asymptomatic Bacteriuria. J Clin Diagn Res 2016; 10:DC01-DC07. [PMID: 28208853 DOI: 10.7860/jcdr/2016/21379.9009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Urinary Tract Infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most common infections worldwide. It is well-documented that the pathogenesis of UPEC is mediated by the production of a wide variety of Virulence Factors (VFs). Thus, detection of these VFs and evaluation of their association with different clinical types of UTIs could help to understand the role of these factors in pathogenesis of UPEC isolates. AIM To investigate the genotypic characteristics of UPEC isolates and to examine the relationship between VFs and different clinical symptoms of UTI. MATERIALS AND METHODS In this cross-sectional study conducted at Pasteur Institute of Iran, a total of 156 UPEC isolated from outpatients and inpatients (symptomatic and asymptomatic UTI patients) visiting general and private hospitals in Tehran, Iran between March 2014 and February 2015 were included. Among them, 49 patients experienced at least one episode of recurrent UTI. A Polymerase Chain Reaction (PCR) assay was developed to detect the presence of different VFs in the isolates. Moreover, Pulsed-Field Gel Electrophoresis (PFGE) was used to characterize clonal relationships among UPEC isolates. RESULTS The prevalence of virulence genes ranged from 0% for cdtB to 100% for fimH. The papEF, hlyA and aer genes were found to be significantly more frequent in UPEC isolated from patients with pyelonephritis, while the afa gene, the only indicator of recurrent UTIs, was more prevalent in UPEC isolated from patients with cystitis. In the present study, 34 PFGE clonal groups were found in the UPEC genome. CONCLUSION Our findings showed that from outpatients and patients with pyelonephritis, isolates were more virulent than those isolated from inpatients and cystitis patients, respectively. PFGE displayed a large diversity in the UPEC isolates that could be considered as an evolutionary strategy in the survival of the bacteria.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Student, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Mohammad Reza Asadi Karam
- Assistant Professor, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Mehri Habibi
- Assistant Professor, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Ehsan Mostafavi
- Associate Professor, Department of Epidemiology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Saeid Bouzari
- Professor, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| |
Collapse
|
95
|
Guzman-Hernandez R, Contreras-Rodriguez A, Hernandez-Velez R, Perez-Martinez I, Lopez-Merino A, Zaidi MB, Estrada-Garcia T. Mexican unpasteurised fresh cheeses are contaminated with Salmonella spp., non-O157 Shiga toxin producing Escherichia coli and potential uropathogenic E. coli strains: A public health risk. Int J Food Microbiol 2016; 237:10-16. [DOI: 10.1016/j.ijfoodmicro.2016.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022]
|
96
|
Paim TGS, Pieta L, Prichula J, Sambrano GE, Soares R, Caierão J, Frazzon J, d'Azevedo PA. Draft Genome Sequence of Brazilian Escherichia coli Uropathogenic Strain E2. GENOME ANNOUNCEMENTS 2016; 4:e01085-16. [PMID: 27795253 PMCID: PMC5054324 DOI: 10.1128/genomea.01085-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022]
Abstract
Escherichia coli is a common pathogen recovered from cystitis infections. In this report, we announce the draft genome sequence of strain E2 isolated from the urine specimen from a female patient in South Brazil. The genome assembly has 5,081,209 bp, a G+C content of 50.57%, and virulence factors associated with both enteroaggregative and uropathogenic E. coli strains.
Collapse
Affiliation(s)
- Thiago G S Paim
- Laboratory of Molecular Microbiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Luiza Pieta
- Institute of Food Sciences and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Janira Prichula
- Laboratory of Molecular Microbiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Gustavo E Sambrano
- Laboratory of Molecular Microbiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Renata Soares
- Laboratory of Molecular Microbiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Juliana Caierão
- Laboratory of Molecular Microbiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jeverson Frazzon
- Institute of Food Sciences and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro A d'Azevedo
- Laboratory of Molecular Microbiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
97
|
Vranic SM, Uzunovic A. ANTIMICROBIAL RESISTANCE OF ESCHERICHIA COLI STRAINS ISOLATED FROM URINE AT OUTPATIENT POPULATION: A SINGLE LABORATORY EXPERIENCE. Mater Sociomed 2016; 28:121-4. [PMID: 27147918 PMCID: PMC4851537 DOI: 10.5455/msm.2016.28.121-124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/28/2016] [Indexed: 11/16/2022] Open
Abstract
Objectives: The aim of this study was to examine antimicrobial resistance of Escherichia coli strains isolated from urine in outpatient population. Material and methods: We performed a retrospective study for tree months period, between January 1st and March 31st, 2015, at the Department of Microbiology and Parasitology, Faculty of Medicine, University of Sarajevo. We determined the E. coli antimicrobial resistance in 556 first urine samples from outpatient population of Hrasno community in Sarajevo, Bosnia and Herzegovina. E. coli is the most frequent agent causing urinary tract infections in outpatients as well. The standard methods of descriptive statistics were performed for data analysis. Results: We observed the highest antimicrobial resistance of E. coli for ampicillin (82,79%), followed by trimethoprim-sulfamethoxazole (40,86%), nalidixic acid (19,35%), cephazolin (7,52%), nitrofurantoin (5,37%), gentamicin (2,15%) and ciprofloxacin (4,30%). Conclusions: The results of study showed that E. coli has the highest resistance to ampicillin and trimethoprim-sulfamethoxazole in outpatient population of Hrasno community.
Collapse
Affiliation(s)
- Sabina Mahmutovic Vranic
- Department of Microbiology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Aida Uzunovic
- Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
98
|
Evaluation of two multi-locus sequence typing schemes for commensal Escherichia coli from dairy cattle in Washington State. J Microbiol Methods 2016; 124:57-61. [PMID: 27001705 DOI: 10.1016/j.mimet.2016.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
Multi-locus sequence typing (MLST) is a useful system for phylogenetic and epidemiological studies of multidrug-resistant Escherichiacoli. Most studies utilize a seven-locus MLST, but an alternate two-locus typing method (fumC and fimH; CH typing) has been proposed that may offer a similar degree of discrimination at lower cost. Herein, we compare CH typing to the standard seven-locus method for typing commensal E. coli isolates from dairy cattle. In addition, we evaluated alternative combinations of eight loci to identify combinations that maximize discrimination and congruence with standard seven-locus MLST among commensal E. coli while minimizing the cost. We also compared both methods when used for typing uropathogenic E. coli (UPEC). CH typing was less discriminatory for commensal E. coli than the standard seven-locus method (Simpson's Index of Diversity=0.933 [0.902-0.964] and 0.97 [0.96-0.979], respectively). Combining fimH with housekeeping gene loci improved discriminatory power for commensal E. coli from cattle but resulted in poor congruence with MLST. We found that a four-locus typing method including the housekeeping genes adk, purA, gyrB and recA could be used to minimize cost without sacrificing discriminatory power or congruence with Achtman seven-locus MLST when typing commensal E. coli.
Collapse
|
99
|
Blyth DM, Mende K, Maranich AM, Beckius ML, Harnisch KA, Rosemann CA, Zera WC, Murray CK, Akers KS. Antimicrobial resistance acquisition after international travel in U.S. travelers. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2016; 2:4. [PMID: 28883948 PMCID: PMC5531010 DOI: 10.1186/s40794-016-0020-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/20/2016] [Indexed: 11/12/2022]
Abstract
Background Prior studies have shown an increase in multidrug-resistant (MDR) E. coli colonization from two percent in U.S.-based to 11 % in deployed, healthy military personnel. It is unclear if colonization with MDR organisms occurs through deployment exposures or risks related to routine overseas travel. This study prospectively evaluates rates and risk factors associated with MDR gram-negative bacterial and methicillin-resistant S. aureus (MRSA) colonization after international travel. Methods Participants traveled internationally for five or more days. Pre- and post-travel, colonizing bacteria from oropharyngeal, nares, groin, and peri-rectal (PR) areas were collected using BD CultureSwab™ MaxV(+). Identification and susceptibilities were done utilizing the BD Phoenix™ Automated Microbiology System. Non-MDR pre- and post-travel MDR bacteria within a subject were compared by pulsed-field gel electrophoresis (PFGE). A questionnaire solicited demographics and potential risk factors for MDR acquisition. Results Of 58 participants, 41 % were male and median age was 64 years. Pre- and post-travel swabs were obtained a median of ten and seven days before and after travel, respectively. Itineraries included 18 participants traveling to the Caribbean and Central America, 17 to Asia, 16 to Africa, 5 to Europe, 4 to South and North America. Seventeen of 22 travelers used atovaquone/proguanil for malaria prophylaxis. The only MDR organism isolated was extended-spectrum β-lactamase (ESBL)-producing E. coli in five (9 %) participants post-travel (all PR and unrelated by PFGE). There were no statistically significant associations between exposure risks and new ESBL-producing E.coli colonization. Of 36 participants colonized with E. coli pre- and post-travel, new resistance was detected: TMP/SMX in 42 % of isolates (p < 0.01), tetracycline in 44 % (p < 0.01), and ampicillin-sulbactam in 33 % (p = 0.09). No participants were colonized with MRSA pre- or post-travel. Conclusion Consistent with prior studies, new antimicrobial resistance was noted in colonizing E. coli after international travel. Nine percent of participants acquired new strains of ESBL-producing E.coli without identified risks.
Collapse
Affiliation(s)
- Dana M Blyth
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA
| | - Katrin Mende
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA.,Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland USA
| | - Ashley M Maranich
- Pediatric Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, Houston, Texas USA
| | - Miriam L Beckius
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA
| | - Kristie A Harnisch
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA
| | - Crystal A Rosemann
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA
| | - Wendy C Zera
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA.,Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland USA
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA
| | - Kevin S Akers
- Infectious Disease Service, San Antonio Military Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, Houston, Texas 78234-4505 USA.,U.S. Army Institute for Surgical Research, JBSA Fort Sam Houston, Houston, Texas USA
| |
Collapse
|
100
|
Marialouis XA, Santhanam A. Antibiotic Resistance, RAPD- PCR Typing of Multiple Drug Resistant Strains of Escherichia Coli From Urinary Tract Infection (UTI). J Clin Diagn Res 2016; 10:DC05-9. [PMID: 27134870 DOI: 10.7860/jcdr/2016/16470.7389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Global spreading of multidrug resistant strains of Escherichia coli is responsible for Urinary Tract Infection (UTI) which is a major health problem in of concern. Among the gram negative bacteria, the major contributors for UTI belongs to the family Enterobacteriaceae, which includes E. coli, Klebsiella, Citrobacter and Proteus. However, E. coli accounts for the major cause of Urinary tract infections (UTIs) and accounts for 75% to 90% of UTI isolates. AIM The main aim of this study is to analyse the phylogenetic grouping of clinical isolates of UTI E. coli. MATERIALS AND METHODS In this study nearly 58 E. coli strains were isolated and confirmed through microbiological, biochemical characterization. The urine samples were collected from outpatients having symptoms of UTI, irrespective of age and sex in Tamil Nadu, India. The isolates were subjected to analyse for ESBL and AmpC β-lactamase production. To understand its genetic correlation, molecular typing was carried out using RAPD-PCR method. RESULTS Here we noted phenotypically twenty seven isolates were positive for ESBL and seven for AmpC β-lactamase production. However, among the ESBL isolates higher sensitivity was noted for Nitrofurantoin and Cefoxitin. It is worth to note that the prevalence of UTIs was more common among female and elderly male. Phylogenetic grouping revealed the presence of 24 isolates belonged to B2 group followed by 19 isolates to group A, eight isolates to group B1 and Seven isolates to group D. CONCLUSION Phenotypically most of the strains were positive for ESBL and showed high sensitivity for Nitrofurantoin and cefoxitin.
Collapse
Affiliation(s)
- Xavier Alexander Marialouis
- Research Scholar, Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University , Madurai, Tamil Nadu, India
| | - Amutha Santhanam
- Professor, National Centre for Nanoscience and Nanotechnology, University of Madras , Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|